src/hotspot/share/gc/g1/g1ParScanThreadState.cpp
changeset 47216 71c04702a3d5
parent 46571 c70b36f0730d
child 48157 7c4d43c26352
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/gc/g1/g1ParScanThreadState.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,392 @@
+/*
+ * Copyright (c) 2014, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "gc/g1/g1Allocator.inline.hpp"
+#include "gc/g1/g1CollectedHeap.inline.hpp"
+#include "gc/g1/g1CollectionSet.hpp"
+#include "gc/g1/g1OopClosures.inline.hpp"
+#include "gc/g1/g1ParScanThreadState.inline.hpp"
+#include "gc/g1/g1RootClosures.hpp"
+#include "gc/g1/g1StringDedup.hpp"
+#include "gc/shared/gcTrace.hpp"
+#include "gc/shared/taskqueue.inline.hpp"
+#include "oops/oop.inline.hpp"
+#include "runtime/prefetch.inline.hpp"
+
+G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint worker_id, size_t young_cset_length)
+  : _g1h(g1h),
+    _refs(g1h->task_queue(worker_id)),
+    _dcq(&g1h->dirty_card_queue_set()),
+    _ct_bs(g1h->g1_barrier_set()),
+    _closures(NULL),
+    _hash_seed(17),
+    _worker_id(worker_id),
+    _tenuring_threshold(g1h->g1_policy()->tenuring_threshold()),
+    _age_table(false),
+    _scanner(g1h, this),
+    _old_gen_is_full(false)
+{
+  // we allocate G1YoungSurvRateNumRegions plus one entries, since
+  // we "sacrifice" entry 0 to keep track of surviving bytes for
+  // non-young regions (where the age is -1)
+  // We also add a few elements at the beginning and at the end in
+  // an attempt to eliminate cache contention
+  size_t real_length = 1 + young_cset_length;
+  size_t array_length = PADDING_ELEM_NUM +
+                      real_length +
+                      PADDING_ELEM_NUM;
+  _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
+  if (_surviving_young_words_base == NULL)
+    vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
+                          "Not enough space for young surv histo.");
+  _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
+  memset(_surviving_young_words, 0, real_length * sizeof(size_t));
+
+  _plab_allocator = G1PLABAllocator::create_allocator(_g1h->allocator());
+
+  _dest[InCSetState::NotInCSet]    = InCSetState::NotInCSet;
+  // The dest for Young is used when the objects are aged enough to
+  // need to be moved to the next space.
+  _dest[InCSetState::Young]        = InCSetState::Old;
+  _dest[InCSetState::Old]          = InCSetState::Old;
+
+  _closures = G1EvacuationRootClosures::create_root_closures(this, _g1h);
+}
+
+// Pass locally gathered statistics to global state.
+void G1ParScanThreadState::flush(size_t* surviving_young_words) {
+  _dcq.flush();
+  // Update allocation statistics.
+  _plab_allocator->flush_and_retire_stats();
+  _g1h->g1_policy()->record_age_table(&_age_table);
+
+  uint length = _g1h->collection_set()->young_region_length();
+  for (uint region_index = 0; region_index < length; region_index++) {
+    surviving_young_words[region_index] += _surviving_young_words[region_index];
+  }
+}
+
+G1ParScanThreadState::~G1ParScanThreadState() {
+  delete _plab_allocator;
+  delete _closures;
+  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
+}
+
+void G1ParScanThreadState::waste(size_t& wasted, size_t& undo_wasted) {
+  _plab_allocator->waste(wasted, undo_wasted);
+}
+
+#ifdef ASSERT
+bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
+  assert(ref != NULL, "invariant");
+  assert(UseCompressedOops, "sanity");
+  assert(!has_partial_array_mask(ref), "ref=" PTR_FORMAT, p2i(ref));
+  oop p = oopDesc::load_decode_heap_oop(ref);
+  assert(_g1h->is_in_g1_reserved(p),
+         "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
+  return true;
+}
+
+bool G1ParScanThreadState::verify_ref(oop* ref) const {
+  assert(ref != NULL, "invariant");
+  if (has_partial_array_mask(ref)) {
+    // Must be in the collection set--it's already been copied.
+    oop p = clear_partial_array_mask(ref);
+    assert(_g1h->is_in_cset(p),
+           "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
+  } else {
+    oop p = oopDesc::load_decode_heap_oop(ref);
+    assert(_g1h->is_in_g1_reserved(p),
+           "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
+  }
+  return true;
+}
+
+bool G1ParScanThreadState::verify_task(StarTask ref) const {
+  if (ref.is_narrow()) {
+    return verify_ref((narrowOop*) ref);
+  } else {
+    return verify_ref((oop*) ref);
+  }
+}
+#endif // ASSERT
+
+void G1ParScanThreadState::trim_queue() {
+  StarTask ref;
+  do {
+    // Drain the overflow stack first, so other threads can steal.
+    while (_refs->pop_overflow(ref)) {
+      if (!_refs->try_push_to_taskqueue(ref)) {
+        dispatch_reference(ref);
+      }
+    }
+
+    while (_refs->pop_local(ref)) {
+      dispatch_reference(ref);
+    }
+  } while (!_refs->is_empty());
+}
+
+HeapWord* G1ParScanThreadState::allocate_in_next_plab(InCSetState const state,
+                                                      InCSetState* dest,
+                                                      size_t word_sz,
+                                                      AllocationContext_t const context,
+                                                      bool previous_plab_refill_failed) {
+  assert(state.is_in_cset_or_humongous(), "Unexpected state: " CSETSTATE_FORMAT, state.value());
+  assert(dest->is_in_cset_or_humongous(), "Unexpected dest: " CSETSTATE_FORMAT, dest->value());
+
+  // Right now we only have two types of regions (young / old) so
+  // let's keep the logic here simple. We can generalize it when necessary.
+  if (dest->is_young()) {
+    bool plab_refill_in_old_failed = false;
+    HeapWord* const obj_ptr = _plab_allocator->allocate(InCSetState::Old,
+                                                        word_sz,
+                                                        context,
+                                                        &plab_refill_in_old_failed);
+    // Make sure that we won't attempt to copy any other objects out
+    // of a survivor region (given that apparently we cannot allocate
+    // any new ones) to avoid coming into this slow path again and again.
+    // Only consider failed PLAB refill here: failed inline allocations are
+    // typically large, so not indicative of remaining space.
+    if (previous_plab_refill_failed) {
+      _tenuring_threshold = 0;
+    }
+
+    if (obj_ptr != NULL) {
+      dest->set_old();
+    } else {
+      // We just failed to allocate in old gen. The same idea as explained above
+      // for making survivor gen unavailable for allocation applies for old gen.
+      _old_gen_is_full = plab_refill_in_old_failed;
+    }
+    return obj_ptr;
+  } else {
+    _old_gen_is_full = previous_plab_refill_failed;
+    assert(dest->is_old(), "Unexpected dest: " CSETSTATE_FORMAT, dest->value());
+    // no other space to try.
+    return NULL;
+  }
+}
+
+InCSetState G1ParScanThreadState::next_state(InCSetState const state, markOop const m, uint& age) {
+  if (state.is_young()) {
+    age = !m->has_displaced_mark_helper() ? m->age()
+                                          : m->displaced_mark_helper()->age();
+    if (age < _tenuring_threshold) {
+      return state;
+    }
+  }
+  return dest(state);
+}
+
+void G1ParScanThreadState::report_promotion_event(InCSetState const dest_state,
+                                                  oop const old, size_t word_sz, uint age,
+                                                  HeapWord * const obj_ptr,
+                                                  const AllocationContext_t context) const {
+  G1PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_state, context);
+  if (alloc_buf->contains(obj_ptr)) {
+    _g1h->_gc_tracer_stw->report_promotion_in_new_plab_event(old->klass(), word_sz, age,
+                                                             dest_state.value() == InCSetState::Old,
+                                                             alloc_buf->word_sz());
+  } else {
+    _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz, age,
+                                                              dest_state.value() == InCSetState::Old);
+  }
+}
+
+oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state,
+                                                 oop const old,
+                                                 markOop const old_mark) {
+  const size_t word_sz = old->size();
+  HeapRegion* const from_region = _g1h->heap_region_containing(old);
+  // +1 to make the -1 indexes valid...
+  const int young_index = from_region->young_index_in_cset()+1;
+  assert( (from_region->is_young() && young_index >  0) ||
+         (!from_region->is_young() && young_index == 0), "invariant" );
+  const AllocationContext_t context = from_region->allocation_context();
+
+  uint age = 0;
+  InCSetState dest_state = next_state(state, old_mark, age);
+  // The second clause is to prevent premature evacuation failure in case there
+  // is still space in survivor, but old gen is full.
+  if (_old_gen_is_full && dest_state.is_old()) {
+    return handle_evacuation_failure_par(old, old_mark);
+  }
+  HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_state, word_sz, context);
+
+  // PLAB allocations should succeed most of the time, so we'll
+  // normally check against NULL once and that's it.
+  if (obj_ptr == NULL) {
+    bool plab_refill_failed = false;
+    obj_ptr = _plab_allocator->allocate_direct_or_new_plab(dest_state, word_sz, context, &plab_refill_failed);
+    if (obj_ptr == NULL) {
+      obj_ptr = allocate_in_next_plab(state, &dest_state, word_sz, context, plab_refill_failed);
+      if (obj_ptr == NULL) {
+        // This will either forward-to-self, or detect that someone else has
+        // installed a forwarding pointer.
+        return handle_evacuation_failure_par(old, old_mark);
+      }
+    }
+    if (_g1h->_gc_tracer_stw->should_report_promotion_events()) {
+      // The events are checked individually as part of the actual commit
+      report_promotion_event(dest_state, old, word_sz, age, obj_ptr, context);
+    }
+  }
+
+  assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
+  assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
+
+#ifndef PRODUCT
+  // Should this evacuation fail?
+  if (_g1h->evacuation_should_fail()) {
+    // Doing this after all the allocation attempts also tests the
+    // undo_allocation() method too.
+    _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
+    return handle_evacuation_failure_par(old, old_mark);
+  }
+#endif // !PRODUCT
+
+  // We're going to allocate linearly, so might as well prefetch ahead.
+  Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
+
+  const oop obj = oop(obj_ptr);
+  const oop forward_ptr = old->forward_to_atomic(obj);
+  if (forward_ptr == NULL) {
+    Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
+
+    if (dest_state.is_young()) {
+      if (age < markOopDesc::max_age) {
+        age++;
+      }
+      if (old_mark->has_displaced_mark_helper()) {
+        // In this case, we have to install the mark word first,
+        // otherwise obj looks to be forwarded (the old mark word,
+        // which contains the forward pointer, was copied)
+        obj->set_mark(old_mark);
+        markOop new_mark = old_mark->displaced_mark_helper()->set_age(age);
+        old_mark->set_displaced_mark_helper(new_mark);
+      } else {
+        obj->set_mark(old_mark->set_age(age));
+      }
+      _age_table.add(age, word_sz);
+    } else {
+      obj->set_mark(old_mark);
+    }
+
+    if (G1StringDedup::is_enabled()) {
+      const bool is_from_young = state.is_young();
+      const bool is_to_young = dest_state.is_young();
+      assert(is_from_young == _g1h->heap_region_containing(old)->is_young(),
+             "sanity");
+      assert(is_to_young == _g1h->heap_region_containing(obj)->is_young(),
+             "sanity");
+      G1StringDedup::enqueue_from_evacuation(is_from_young,
+                                             is_to_young,
+                                             _worker_id,
+                                             obj);
+    }
+
+    _surviving_young_words[young_index] += word_sz;
+
+    if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
+      // We keep track of the next start index in the length field of
+      // the to-space object. The actual length can be found in the
+      // length field of the from-space object.
+      arrayOop(obj)->set_length(0);
+      oop* old_p = set_partial_array_mask(old);
+      push_on_queue(old_p);
+    } else {
+      HeapRegion* const to_region = _g1h->heap_region_containing(obj_ptr);
+      _scanner.set_region(to_region);
+      obj->oop_iterate_backwards(&_scanner);
+    }
+    return obj;
+  } else {
+    _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
+    return forward_ptr;
+  }
+}
+
+G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
+  assert(worker_id < _n_workers, "out of bounds access");
+  if (_states[worker_id] == NULL) {
+    _states[worker_id] = new_par_scan_state(worker_id, _young_cset_length);
+  }
+  return _states[worker_id];
+}
+
+const size_t* G1ParScanThreadStateSet::surviving_young_words() const {
+  assert(_flushed, "thread local state from the per thread states should have been flushed");
+  return _surviving_young_words_total;
+}
+
+void G1ParScanThreadStateSet::flush() {
+  assert(!_flushed, "thread local state from the per thread states should be flushed once");
+
+  for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) {
+    G1ParScanThreadState* pss = _states[worker_index];
+
+    if (pss == NULL) {
+      continue;
+    }
+
+    pss->flush(_surviving_young_words_total);
+    delete pss;
+    _states[worker_index] = NULL;
+  }
+  _flushed = true;
+}
+
+oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markOop m) {
+  assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
+
+  oop forward_ptr = old->forward_to_atomic(old);
+  if (forward_ptr == NULL) {
+    // Forward-to-self succeeded. We are the "owner" of the object.
+    HeapRegion* r = _g1h->heap_region_containing(old);
+
+    if (!r->evacuation_failed()) {
+      r->set_evacuation_failed(true);
+     _g1h->hr_printer()->evac_failure(r);
+    }
+
+    _g1h->preserve_mark_during_evac_failure(_worker_id, old, m);
+
+    _scanner.set_region(r);
+    old->oop_iterate_backwards(&_scanner);
+
+    return old;
+  } else {
+    // Forward-to-self failed. Either someone else managed to allocate
+    // space for this object (old != forward_ptr) or they beat us in
+    // self-forwarding it (old == forward_ptr).
+    assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr),
+           "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
+           "should not be in the CSet",
+           p2i(old), p2i(forward_ptr));
+    return forward_ptr;
+  }
+}
+