src/hotspot/share/gc/g1/g1ConcurrentMark.hpp
changeset 47216 71c04702a3d5
parent 46752 a2b799e3f0be
child 47678 c84eeb55c55e
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/gc/g1/g1ConcurrentMark.hpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,915 @@
+/*
+ * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifndef SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
+#define SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
+
+#include "classfile/javaClasses.hpp"
+#include "gc/g1/g1ConcurrentMarkBitMap.hpp"
+#include "gc/g1/g1ConcurrentMarkObjArrayProcessor.hpp"
+#include "gc/g1/g1RegionToSpaceMapper.hpp"
+#include "gc/g1/heapRegionSet.hpp"
+#include "gc/shared/taskqueue.hpp"
+
+class G1CollectedHeap;
+class G1CMTask;
+class G1ConcurrentMark;
+class ConcurrentGCTimer;
+class G1OldTracer;
+class G1SurvivorRegions;
+
+#ifdef _MSC_VER
+#pragma warning(push)
+// warning C4522: multiple assignment operators specified
+#pragma warning(disable:4522)
+#endif
+
+// This is a container class for either an oop or a continuation address for
+// mark stack entries. Both are pushed onto the mark stack.
+class G1TaskQueueEntry VALUE_OBJ_CLASS_SPEC {
+private:
+  void* _holder;
+
+  static const uintptr_t ArraySliceBit = 1;
+
+  G1TaskQueueEntry(oop obj) : _holder(obj) {
+    assert(_holder != NULL, "Not allowed to set NULL task queue element");
+  }
+  G1TaskQueueEntry(HeapWord* addr) : _holder((void*)((uintptr_t)addr | ArraySliceBit)) { }
+public:
+  G1TaskQueueEntry(const G1TaskQueueEntry& other) { _holder = other._holder; }
+  G1TaskQueueEntry() : _holder(NULL) { }
+
+  static G1TaskQueueEntry from_slice(HeapWord* what) { return G1TaskQueueEntry(what); }
+  static G1TaskQueueEntry from_oop(oop obj) { return G1TaskQueueEntry(obj); }
+
+  G1TaskQueueEntry& operator=(const G1TaskQueueEntry& t) {
+    _holder = t._holder;
+    return *this;
+  }
+
+  volatile G1TaskQueueEntry& operator=(const volatile G1TaskQueueEntry& t) volatile {
+    _holder = t._holder;
+    return *this;
+  }
+
+  oop obj() const {
+    assert(!is_array_slice(), "Trying to read array slice " PTR_FORMAT " as oop", p2i(_holder));
+    return (oop)_holder;
+  }
+
+  HeapWord* slice() const {
+    assert(is_array_slice(), "Trying to read oop " PTR_FORMAT " as array slice", p2i(_holder));
+    return (HeapWord*)((uintptr_t)_holder & ~ArraySliceBit);
+  }
+
+  bool is_oop() const { return !is_array_slice(); }
+  bool is_array_slice() const { return ((uintptr_t)_holder & ArraySliceBit) != 0; }
+  bool is_null() const { return _holder == NULL; }
+};
+
+#ifdef _MSC_VER
+#pragma warning(pop)
+#endif
+
+typedef GenericTaskQueue<G1TaskQueueEntry, mtGC> G1CMTaskQueue;
+typedef GenericTaskQueueSet<G1CMTaskQueue, mtGC> G1CMTaskQueueSet;
+
+// Closure used by CM during concurrent reference discovery
+// and reference processing (during remarking) to determine
+// if a particular object is alive. It is primarily used
+// to determine if referents of discovered reference objects
+// are alive. An instance is also embedded into the
+// reference processor as the _is_alive_non_header field
+class G1CMIsAliveClosure: public BoolObjectClosure {
+  G1CollectedHeap* _g1;
+ public:
+  G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
+
+  bool do_object_b(oop obj);
+};
+
+// Represents the overflow mark stack used by concurrent marking.
+//
+// Stores oops in a huge buffer in virtual memory that is always fully committed.
+// Resizing may only happen during a STW pause when the stack is empty.
+//
+// Memory is allocated on a "chunk" basis, i.e. a set of oops. For this, the mark
+// stack memory is split into evenly sized chunks of oops. Users can only
+// add or remove entries on that basis.
+// Chunks are filled in increasing address order. Not completely filled chunks
+// have a NULL element as a terminating element.
+//
+// Every chunk has a header containing a single pointer element used for memory
+// management. This wastes some space, but is negligible (< .1% with current sizing).
+//
+// Memory management is done using a mix of tracking a high water-mark indicating
+// that all chunks at a lower address are valid chunks, and a singly linked free
+// list connecting all empty chunks.
+class G1CMMarkStack VALUE_OBJ_CLASS_SPEC {
+public:
+  // Number of TaskQueueEntries that can fit in a single chunk.
+  static const size_t EntriesPerChunk = 1024 - 1 /* One reference for the next pointer */;
+private:
+  struct TaskQueueEntryChunk {
+    TaskQueueEntryChunk* next;
+    G1TaskQueueEntry data[EntriesPerChunk];
+  };
+
+  size_t _max_chunk_capacity;    // Maximum number of TaskQueueEntryChunk elements on the stack.
+
+  TaskQueueEntryChunk* _base;    // Bottom address of allocated memory area.
+  size_t _chunk_capacity;        // Current maximum number of TaskQueueEntryChunk elements.
+
+  char _pad0[DEFAULT_CACHE_LINE_SIZE];
+  TaskQueueEntryChunk* volatile _free_list;  // Linked list of free chunks that can be allocated by users.
+  char _pad1[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*)];
+  TaskQueueEntryChunk* volatile _chunk_list; // List of chunks currently containing data.
+  volatile size_t _chunks_in_chunk_list;
+  char _pad2[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*) - sizeof(size_t)];
+
+  volatile size_t _hwm;          // High water mark within the reserved space.
+  char _pad4[DEFAULT_CACHE_LINE_SIZE - sizeof(size_t)];
+
+  // Allocate a new chunk from the reserved memory, using the high water mark. Returns
+  // NULL if out of memory.
+  TaskQueueEntryChunk* allocate_new_chunk();
+
+  // Atomically add the given chunk to the list.
+  void add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem);
+  // Atomically remove and return a chunk from the given list. Returns NULL if the
+  // list is empty.
+  TaskQueueEntryChunk* remove_chunk_from_list(TaskQueueEntryChunk* volatile* list);
+
+  void add_chunk_to_chunk_list(TaskQueueEntryChunk* elem);
+  void add_chunk_to_free_list(TaskQueueEntryChunk* elem);
+
+  TaskQueueEntryChunk* remove_chunk_from_chunk_list();
+  TaskQueueEntryChunk* remove_chunk_from_free_list();
+
+  // Resizes the mark stack to the given new capacity. Releases any previous
+  // memory if successful.
+  bool resize(size_t new_capacity);
+
+ public:
+  G1CMMarkStack();
+  ~G1CMMarkStack();
+
+  // Alignment and minimum capacity of this mark stack in number of oops.
+  static size_t capacity_alignment();
+
+  // Allocate and initialize the mark stack with the given number of oops.
+  bool initialize(size_t initial_capacity, size_t max_capacity);
+
+  // Pushes the given buffer containing at most EntriesPerChunk elements on the mark
+  // stack. If less than EntriesPerChunk elements are to be pushed, the array must
+  // be terminated with a NULL.
+  // Returns whether the buffer contents were successfully pushed to the global mark
+  // stack.
+  bool par_push_chunk(G1TaskQueueEntry* buffer);
+
+  // Pops a chunk from this mark stack, copying them into the given buffer. This
+  // chunk may contain up to EntriesPerChunk elements. If there are less, the last
+  // element in the array is a NULL pointer.
+  bool par_pop_chunk(G1TaskQueueEntry* buffer);
+
+  // Return whether the chunk list is empty. Racy due to unsynchronized access to
+  // _chunk_list.
+  bool is_empty() const { return _chunk_list == NULL; }
+
+  size_t capacity() const  { return _chunk_capacity; }
+
+  // Expand the stack, typically in response to an overflow condition
+  void expand();
+
+  // Return the approximate number of oops on this mark stack. Racy due to
+  // unsynchronized access to _chunks_in_chunk_list.
+  size_t size() const { return _chunks_in_chunk_list * EntriesPerChunk; }
+
+  void set_empty();
+
+  // Apply Fn to every oop on the mark stack. The mark stack must not
+  // be modified while iterating.
+  template<typename Fn> void iterate(Fn fn) const PRODUCT_RETURN;
+};
+
+// Root Regions are regions that are not empty at the beginning of a
+// marking cycle and which we might collect during an evacuation pause
+// while the cycle is active. Given that, during evacuation pauses, we
+// do not copy objects that are explicitly marked, what we have to do
+// for the root regions is to scan them and mark all objects reachable
+// from them. According to the SATB assumptions, we only need to visit
+// each object once during marking. So, as long as we finish this scan
+// before the next evacuation pause, we can copy the objects from the
+// root regions without having to mark them or do anything else to them.
+//
+// Currently, we only support root region scanning once (at the start
+// of the marking cycle) and the root regions are all the survivor
+// regions populated during the initial-mark pause.
+class G1CMRootRegions VALUE_OBJ_CLASS_SPEC {
+private:
+  const G1SurvivorRegions* _survivors;
+  G1ConcurrentMark*        _cm;
+
+  volatile bool            _scan_in_progress;
+  volatile bool            _should_abort;
+  volatile int             _claimed_survivor_index;
+
+  void notify_scan_done();
+
+public:
+  G1CMRootRegions();
+  // We actually do most of the initialization in this method.
+  void init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm);
+
+  // Reset the claiming / scanning of the root regions.
+  void prepare_for_scan();
+
+  // Forces get_next() to return NULL so that the iteration aborts early.
+  void abort() { _should_abort = true; }
+
+  // Return true if the CM thread are actively scanning root regions,
+  // false otherwise.
+  bool scan_in_progress() { return _scan_in_progress; }
+
+  // Claim the next root region to scan atomically, or return NULL if
+  // all have been claimed.
+  HeapRegion* claim_next();
+
+  // The number of root regions to scan.
+  uint num_root_regions() const;
+
+  void cancel_scan();
+
+  // Flag that we're done with root region scanning and notify anyone
+  // who's waiting on it. If aborted is false, assume that all regions
+  // have been claimed.
+  void scan_finished();
+
+  // If CM threads are still scanning root regions, wait until they
+  // are done. Return true if we had to wait, false otherwise.
+  bool wait_until_scan_finished();
+};
+
+class ConcurrentMarkThread;
+
+class G1ConcurrentMark: public CHeapObj<mtGC> {
+  friend class ConcurrentMarkThread;
+  friend class G1ParNoteEndTask;
+  friend class G1VerifyLiveDataClosure;
+  friend class G1CMRefProcTaskProxy;
+  friend class G1CMRefProcTaskExecutor;
+  friend class G1CMKeepAliveAndDrainClosure;
+  friend class G1CMDrainMarkingStackClosure;
+  friend class G1CMBitMapClosure;
+  friend class G1CMConcurrentMarkingTask;
+  friend class G1CMRemarkTask;
+  friend class G1CMTask;
+
+protected:
+  ConcurrentMarkThread* _cmThread;   // The thread doing the work
+  G1CollectedHeap*      _g1h;        // The heap
+  uint                  _parallel_marking_threads; // The number of marking
+                                                   // threads we're using
+  uint                  _max_parallel_marking_threads; // Max number of marking
+                                                       // threads we'll ever use
+  double                _sleep_factor; // How much we have to sleep, with
+                                       // respect to the work we just did, to
+                                       // meet the marking overhead goal
+  double                _marking_task_overhead; // Marking target overhead for
+                                                // a single task
+
+  FreeRegionList        _cleanup_list;
+
+  // Concurrent marking support structures
+  G1CMBitMap              _markBitMap1;
+  G1CMBitMap              _markBitMap2;
+  G1CMBitMap*             _prevMarkBitMap; // Completed mark bitmap
+  G1CMBitMap*             _nextMarkBitMap; // Under-construction mark bitmap
+
+  // Heap bounds
+  HeapWord*               _heap_start;
+  HeapWord*               _heap_end;
+
+  // Root region tracking and claiming
+  G1CMRootRegions         _root_regions;
+
+  // For gray objects
+  G1CMMarkStack           _global_mark_stack; // Grey objects behind global finger
+  HeapWord* volatile      _finger;  // The global finger, region aligned,
+                                    // always points to the end of the
+                                    // last claimed region
+
+  // Marking tasks
+  uint                    _max_worker_id;// Maximum worker id
+  uint                    _active_tasks; // Task num currently active
+  G1CMTask**              _tasks;        // Task queue array (max_worker_id len)
+  G1CMTaskQueueSet*       _task_queues;  // Task queue set
+  ParallelTaskTerminator  _terminator;   // For termination
+
+  // Two sync barriers that are used to synchronize tasks when an
+  // overflow occurs. The algorithm is the following. All tasks enter
+  // the first one to ensure that they have all stopped manipulating
+  // the global data structures. After they exit it, they re-initialize
+  // their data structures and task 0 re-initializes the global data
+  // structures. Then, they enter the second sync barrier. This
+  // ensure, that no task starts doing work before all data
+  // structures (local and global) have been re-initialized. When they
+  // exit it, they are free to start working again.
+  WorkGangBarrierSync     _first_overflow_barrier_sync;
+  WorkGangBarrierSync     _second_overflow_barrier_sync;
+
+  // This is set by any task, when an overflow on the global data
+  // structures is detected
+  volatile bool           _has_overflown;
+  // True: marking is concurrent, false: we're in remark
+  volatile bool           _concurrent;
+  // Set at the end of a Full GC so that marking aborts
+  volatile bool           _has_aborted;
+
+  // Used when remark aborts due to an overflow to indicate that
+  // another concurrent marking phase should start
+  volatile bool           _restart_for_overflow;
+
+  // This is true from the very start of concurrent marking until the
+  // point when all the tasks complete their work. It is really used
+  // to determine the points between the end of concurrent marking and
+  // time of remark.
+  volatile bool           _concurrent_marking_in_progress;
+
+  ConcurrentGCTimer*      _gc_timer_cm;
+
+  G1OldTracer*            _gc_tracer_cm;
+
+  // All of these times are in ms
+  NumberSeq _init_times;
+  NumberSeq _remark_times;
+  NumberSeq _remark_mark_times;
+  NumberSeq _remark_weak_ref_times;
+  NumberSeq _cleanup_times;
+  double    _total_counting_time;
+  double    _total_rs_scrub_time;
+
+  double*   _accum_task_vtime;   // Accumulated task vtime
+
+  WorkGang* _parallel_workers;
+
+  void weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes);
+  void weakRefsWork(bool clear_all_soft_refs);
+
+  void swapMarkBitMaps();
+
+  // It resets the global marking data structures, as well as the
+  // task local ones; should be called during initial mark.
+  void reset();
+
+  // Resets all the marking data structures. Called when we have to restart
+  // marking or when marking completes (via set_non_marking_state below).
+  void reset_marking_state();
+
+  // We do this after we're done with marking so that the marking data
+  // structures are initialized to a sensible and predictable state.
+  void set_non_marking_state();
+
+  // Called to indicate how many threads are currently active.
+  void set_concurrency(uint active_tasks);
+
+  // It should be called to indicate which phase we're in (concurrent
+  // mark or remark) and how many threads are currently active.
+  void set_concurrency_and_phase(uint active_tasks, bool concurrent);
+
+  // Prints all gathered CM-related statistics
+  void print_stats();
+
+  bool cleanup_list_is_empty() {
+    return _cleanup_list.is_empty();
+  }
+
+  // Accessor methods
+  uint parallel_marking_threads() const     { return _parallel_marking_threads; }
+  uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
+  double sleep_factor()                     { return _sleep_factor; }
+  double marking_task_overhead()            { return _marking_task_overhead;}
+
+  HeapWord*               finger()          { return _finger;   }
+  bool                    concurrent()      { return _concurrent; }
+  uint                    active_tasks()    { return _active_tasks; }
+  ParallelTaskTerminator* terminator()      { return &_terminator; }
+
+  // It claims the next available region to be scanned by a marking
+  // task/thread. It might return NULL if the next region is empty or
+  // we have run out of regions. In the latter case, out_of_regions()
+  // determines whether we've really run out of regions or the task
+  // should call claim_region() again. This might seem a bit
+  // awkward. Originally, the code was written so that claim_region()
+  // either successfully returned with a non-empty region or there
+  // were no more regions to be claimed. The problem with this was
+  // that, in certain circumstances, it iterated over large chunks of
+  // the heap finding only empty regions and, while it was working, it
+  // was preventing the calling task to call its regular clock
+  // method. So, this way, each task will spend very little time in
+  // claim_region() and is allowed to call the regular clock method
+  // frequently.
+  HeapRegion* claim_region(uint worker_id);
+
+  // It determines whether we've run out of regions to scan. Note that
+  // the finger can point past the heap end in case the heap was expanded
+  // to satisfy an allocation without doing a GC. This is fine, because all
+  // objects in those regions will be considered live anyway because of
+  // SATB guarantees (i.e. their TAMS will be equal to bottom).
+  bool        out_of_regions() { return _finger >= _heap_end; }
+
+  // Returns the task with the given id
+  G1CMTask* task(int id) {
+    assert(0 <= id && id < (int) _active_tasks,
+           "task id not within active bounds");
+    return _tasks[id];
+  }
+
+  // Returns the task queue with the given id
+  G1CMTaskQueue* task_queue(int id) {
+    assert(0 <= id && id < (int) _active_tasks,
+           "task queue id not within active bounds");
+    return (G1CMTaskQueue*) _task_queues->queue(id);
+  }
+
+  // Returns the task queue set
+  G1CMTaskQueueSet* task_queues()  { return _task_queues; }
+
+  // Access / manipulation of the overflow flag which is set to
+  // indicate that the global stack has overflown
+  bool has_overflown()           { return _has_overflown; }
+  void set_has_overflown()       { _has_overflown = true; }
+  void clear_has_overflown()     { _has_overflown = false; }
+  bool restart_for_overflow()    { return _restart_for_overflow; }
+
+  // Methods to enter the two overflow sync barriers
+  void enter_first_sync_barrier(uint worker_id);
+  void enter_second_sync_barrier(uint worker_id);
+
+  // Card index of the bottom of the G1 heap. Used for biasing indices into
+  // the card bitmaps.
+  intptr_t _heap_bottom_card_num;
+
+  // Set to true when initialization is complete
+  bool _completed_initialization;
+
+  // end_timer, true to end gc timer after ending concurrent phase.
+  void register_concurrent_phase_end_common(bool end_timer);
+
+  // Clear the given bitmap in parallel using the given WorkGang. If may_yield is
+  // true, periodically insert checks to see if this method should exit prematurely.
+  void clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield);
+public:
+  // Manipulation of the global mark stack.
+  // The push and pop operations are used by tasks for transfers
+  // between task-local queues and the global mark stack.
+  bool mark_stack_push(G1TaskQueueEntry* arr) {
+    if (!_global_mark_stack.par_push_chunk(arr)) {
+      set_has_overflown();
+      return false;
+    }
+    return true;
+  }
+  bool mark_stack_pop(G1TaskQueueEntry* arr) {
+    return _global_mark_stack.par_pop_chunk(arr);
+  }
+  size_t mark_stack_size()                { return _global_mark_stack.size(); }
+  size_t partial_mark_stack_size_target() { return _global_mark_stack.capacity()/3; }
+  bool mark_stack_empty()                 { return _global_mark_stack.is_empty(); }
+
+  G1CMRootRegions* root_regions() { return &_root_regions; }
+
+  bool concurrent_marking_in_progress() {
+    return _concurrent_marking_in_progress;
+  }
+  void set_concurrent_marking_in_progress() {
+    _concurrent_marking_in_progress = true;
+  }
+  void clear_concurrent_marking_in_progress() {
+    _concurrent_marking_in_progress = false;
+  }
+
+  void concurrent_cycle_start();
+  void concurrent_cycle_end();
+
+  void update_accum_task_vtime(int i, double vtime) {
+    _accum_task_vtime[i] += vtime;
+  }
+
+  double all_task_accum_vtime() {
+    double ret = 0.0;
+    for (uint i = 0; i < _max_worker_id; ++i)
+      ret += _accum_task_vtime[i];
+    return ret;
+  }
+
+  // Attempts to steal an object from the task queues of other tasks
+  bool try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry);
+
+  G1ConcurrentMark(G1CollectedHeap* g1h,
+                   G1RegionToSpaceMapper* prev_bitmap_storage,
+                   G1RegionToSpaceMapper* next_bitmap_storage);
+  ~G1ConcurrentMark();
+
+  ConcurrentMarkThread* cmThread() { return _cmThread; }
+
+  const G1CMBitMap* const prevMarkBitMap() const { return _prevMarkBitMap; }
+  G1CMBitMap* nextMarkBitMap() const { return _nextMarkBitMap; }
+
+  // Returns the number of GC threads to be used in a concurrent
+  // phase based on the number of GC threads being used in a STW
+  // phase.
+  uint scale_parallel_threads(uint n_par_threads);
+
+  // Calculates the number of GC threads to be used in a concurrent phase.
+  uint calc_parallel_marking_threads();
+
+  // Prepare internal data structures for the next mark cycle. This includes clearing
+  // the next mark bitmap and some internal data structures. This method is intended
+  // to be called concurrently to the mutator. It will yield to safepoint requests.
+  void cleanup_for_next_mark();
+
+  // Clear the previous marking bitmap during safepoint.
+  void clear_prev_bitmap(WorkGang* workers);
+
+  // Return whether the next mark bitmap has no marks set. To be used for assertions
+  // only. Will not yield to pause requests.
+  bool nextMarkBitmapIsClear();
+
+  // These two do the work that needs to be done before and after the
+  // initial root checkpoint. Since this checkpoint can be done at two
+  // different points (i.e. an explicit pause or piggy-backed on a
+  // young collection), then it's nice to be able to easily share the
+  // pre/post code. It might be the case that we can put everything in
+  // the post method. TP
+  void checkpointRootsInitialPre();
+  void checkpointRootsInitialPost();
+
+  // Scan all the root regions and mark everything reachable from
+  // them.
+  void scan_root_regions();
+
+  // Scan a single root region and mark everything reachable from it.
+  void scanRootRegion(HeapRegion* hr);
+
+  // Do concurrent phase of marking, to a tentative transitive closure.
+  void mark_from_roots();
+
+  void checkpointRootsFinal(bool clear_all_soft_refs);
+  void checkpointRootsFinalWork();
+  void cleanup();
+  void complete_cleanup();
+
+  // Mark in the previous bitmap.  NB: this is usually read-only, so use
+  // this carefully!
+  inline void markPrev(oop p);
+
+  // Clears marks for all objects in the given range, for the prev or
+  // next bitmaps.  NB: the previous bitmap is usually
+  // read-only, so use this carefully!
+  void clearRangePrevBitmap(MemRegion mr);
+
+  // Verify that there are no CSet oops on the stacks (taskqueues /
+  // global mark stack) and fingers (global / per-task).
+  // If marking is not in progress, it's a no-op.
+  void verify_no_cset_oops() PRODUCT_RETURN;
+
+  inline bool isPrevMarked(oop p) const;
+
+  inline bool do_yield_check();
+
+  // Abandon current marking iteration due to a Full GC.
+  void abort();
+
+  bool has_aborted()      { return _has_aborted; }
+
+  void print_summary_info();
+
+  void print_worker_threads_on(outputStream* st) const;
+  void threads_do(ThreadClosure* tc) const;
+
+  void print_on_error(outputStream* st) const;
+
+  // Mark the given object on the next bitmap if it is below nTAMS.
+  inline bool mark_in_next_bitmap(HeapRegion* const hr, oop const obj);
+  inline bool mark_in_next_bitmap(oop const obj);
+
+  // Returns true if initialization was successfully completed.
+  bool completed_initialization() const {
+    return _completed_initialization;
+  }
+
+  ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
+  G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
+
+private:
+  // Clear (Reset) all liveness count data.
+  void clear_live_data(WorkGang* workers);
+
+#ifdef ASSERT
+  // Verify all of the above data structures that they are in initial state.
+  void verify_live_data_clear();
+#endif
+
+  // Aggregates the per-card liveness data based on the current marking. Also sets
+  // the amount of marked bytes for each region.
+  void create_live_data();
+
+  void finalize_live_data();
+
+  void verify_live_data();
+};
+
+// A class representing a marking task.
+class G1CMTask : public TerminatorTerminator {
+private:
+  enum PrivateConstants {
+    // The regular clock call is called once the scanned words reaches
+    // this limit
+    words_scanned_period          = 12*1024,
+    // The regular clock call is called once the number of visited
+    // references reaches this limit
+    refs_reached_period           = 1024,
+    // Initial value for the hash seed, used in the work stealing code
+    init_hash_seed                = 17
+  };
+
+  G1CMObjArrayProcessor       _objArray_processor;
+
+  uint                        _worker_id;
+  G1CollectedHeap*            _g1h;
+  G1ConcurrentMark*           _cm;
+  G1CMBitMap*                 _nextMarkBitMap;
+  // the task queue of this task
+  G1CMTaskQueue*              _task_queue;
+private:
+  // the task queue set---needed for stealing
+  G1CMTaskQueueSet*           _task_queues;
+  // indicates whether the task has been claimed---this is only  for
+  // debugging purposes
+  bool                        _claimed;
+
+  // number of calls to this task
+  int                         _calls;
+
+  // when the virtual timer reaches this time, the marking step should
+  // exit
+  double                      _time_target_ms;
+  // the start time of the current marking step
+  double                      _start_time_ms;
+
+  // the oop closure used for iterations over oops
+  G1CMOopClosure*             _cm_oop_closure;
+
+  // the region this task is scanning, NULL if we're not scanning any
+  HeapRegion*                 _curr_region;
+  // the local finger of this task, NULL if we're not scanning a region
+  HeapWord*                   _finger;
+  // limit of the region this task is scanning, NULL if we're not scanning one
+  HeapWord*                   _region_limit;
+
+  // the number of words this task has scanned
+  size_t                      _words_scanned;
+  // When _words_scanned reaches this limit, the regular clock is
+  // called. Notice that this might be decreased under certain
+  // circumstances (i.e. when we believe that we did an expensive
+  // operation).
+  size_t                      _words_scanned_limit;
+  // the initial value of _words_scanned_limit (i.e. what it was
+  // before it was decreased).
+  size_t                      _real_words_scanned_limit;
+
+  // the number of references this task has visited
+  size_t                      _refs_reached;
+  // When _refs_reached reaches this limit, the regular clock is
+  // called. Notice this this might be decreased under certain
+  // circumstances (i.e. when we believe that we did an expensive
+  // operation).
+  size_t                      _refs_reached_limit;
+  // the initial value of _refs_reached_limit (i.e. what it was before
+  // it was decreased).
+  size_t                      _real_refs_reached_limit;
+
+  // used by the work stealing stuff
+  int                         _hash_seed;
+  // if this is true, then the task has aborted for some reason
+  bool                        _has_aborted;
+  // set when the task aborts because it has met its time quota
+  bool                        _has_timed_out;
+  // true when we're draining SATB buffers; this avoids the task
+  // aborting due to SATB buffers being available (as we're already
+  // dealing with them)
+  bool                        _draining_satb_buffers;
+
+  // number sequence of past step times
+  NumberSeq                   _step_times_ms;
+  // elapsed time of this task
+  double                      _elapsed_time_ms;
+  // termination time of this task
+  double                      _termination_time_ms;
+  // when this task got into the termination protocol
+  double                      _termination_start_time_ms;
+
+  // true when the task is during a concurrent phase, false when it is
+  // in the remark phase (so, in the latter case, we do not have to
+  // check all the things that we have to check during the concurrent
+  // phase, i.e. SATB buffer availability...)
+  bool                        _concurrent;
+
+  TruncatedSeq                _marking_step_diffs_ms;
+
+  // it updates the local fields after this task has claimed
+  // a new region to scan
+  void setup_for_region(HeapRegion* hr);
+  // it brings up-to-date the limit of the region
+  void update_region_limit();
+
+  // called when either the words scanned or the refs visited limit
+  // has been reached
+  void reached_limit();
+  // recalculates the words scanned and refs visited limits
+  void recalculate_limits();
+  // decreases the words scanned and refs visited limits when we reach
+  // an expensive operation
+  void decrease_limits();
+  // it checks whether the words scanned or refs visited reached their
+  // respective limit and calls reached_limit() if they have
+  void check_limits() {
+    if (_words_scanned >= _words_scanned_limit ||
+        _refs_reached >= _refs_reached_limit) {
+      reached_limit();
+    }
+  }
+  // this is supposed to be called regularly during a marking step as
+  // it checks a bunch of conditions that might cause the marking step
+  // to abort
+  void regular_clock_call();
+  bool concurrent() { return _concurrent; }
+
+  // Test whether obj might have already been passed over by the
+  // mark bitmap scan, and so needs to be pushed onto the mark stack.
+  bool is_below_finger(oop obj, HeapWord* global_finger) const;
+
+  template<bool scan> void process_grey_task_entry(G1TaskQueueEntry task_entry);
+public:
+  // Apply the closure on the given area of the objArray. Return the number of words
+  // scanned.
+  inline size_t scan_objArray(objArrayOop obj, MemRegion mr);
+  // It resets the task; it should be called right at the beginning of
+  // a marking phase.
+  void reset(G1CMBitMap* _nextMarkBitMap);
+  // it clears all the fields that correspond to a claimed region.
+  void clear_region_fields();
+
+  void set_concurrent(bool concurrent) { _concurrent = concurrent; }
+
+  // The main method of this class which performs a marking step
+  // trying not to exceed the given duration. However, it might exit
+  // prematurely, according to some conditions (i.e. SATB buffers are
+  // available for processing).
+  void do_marking_step(double target_ms,
+                       bool do_termination,
+                       bool is_serial);
+
+  // These two calls start and stop the timer
+  void record_start_time() {
+    _elapsed_time_ms = os::elapsedTime() * 1000.0;
+  }
+  void record_end_time() {
+    _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
+  }
+
+  // returns the worker ID associated with this task.
+  uint worker_id() { return _worker_id; }
+
+  // From TerminatorTerminator. It determines whether this task should
+  // exit the termination protocol after it's entered it.
+  virtual bool should_exit_termination();
+
+  // Resets the local region fields after a task has finished scanning a
+  // region; or when they have become stale as a result of the region
+  // being evacuated.
+  void giveup_current_region();
+
+  HeapWord* finger()            { return _finger; }
+
+  bool has_aborted()            { return _has_aborted; }
+  void set_has_aborted()        { _has_aborted = true; }
+  void clear_has_aborted()      { _has_aborted = false; }
+  bool has_timed_out()          { return _has_timed_out; }
+  bool claimed()                { return _claimed; }
+
+  void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
+
+  // Increment the number of references this task has visited.
+  void increment_refs_reached() { ++_refs_reached; }
+
+  // Grey the object by marking it.  If not already marked, push it on
+  // the local queue if below the finger.
+  // obj is below its region's NTAMS.
+  inline void make_reference_grey(oop obj);
+
+  // Grey the object (by calling make_grey_reference) if required,
+  // e.g. obj is below its containing region's NTAMS.
+  // Precondition: obj is a valid heap object.
+  inline void deal_with_reference(oop obj);
+
+  // It scans an object and visits its children.
+  inline void scan_task_entry(G1TaskQueueEntry task_entry);
+
+  // It pushes an object on the local queue.
+  inline void push(G1TaskQueueEntry task_entry);
+
+  // Move entries to the global stack.
+  void move_entries_to_global_stack();
+  // Move entries from the global stack, return true if we were successful to do so.
+  bool get_entries_from_global_stack();
+
+  // It pops and scans objects from the local queue. If partially is
+  // true, then it stops when the queue size is of a given limit. If
+  // partially is false, then it stops when the queue is empty.
+  void drain_local_queue(bool partially);
+  // It moves entries from the global stack to the local queue and
+  // drains the local queue. If partially is true, then it stops when
+  // both the global stack and the local queue reach a given size. If
+  // partially if false, it tries to empty them totally.
+  void drain_global_stack(bool partially);
+  // It keeps picking SATB buffers and processing them until no SATB
+  // buffers are available.
+  void drain_satb_buffers();
+
+  // moves the local finger to a new location
+  inline void move_finger_to(HeapWord* new_finger) {
+    assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
+    _finger = new_finger;
+  }
+
+  G1CMTask(uint worker_id,
+           G1ConcurrentMark *cm,
+           G1CMTaskQueue* task_queue,
+           G1CMTaskQueueSet* task_queues);
+
+  // it prints statistics associated with this task
+  void print_stats();
+};
+
+// Class that's used to to print out per-region liveness
+// information. It's currently used at the end of marking and also
+// after we sort the old regions at the end of the cleanup operation.
+class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
+private:
+  // Accumulators for these values.
+  size_t _total_used_bytes;
+  size_t _total_capacity_bytes;
+  size_t _total_prev_live_bytes;
+  size_t _total_next_live_bytes;
+
+  // Accumulator for the remembered set size
+  size_t _total_remset_bytes;
+
+  // Accumulator for strong code roots memory size
+  size_t _total_strong_code_roots_bytes;
+
+  static double perc(size_t val, size_t total) {
+    if (total == 0) {
+      return 0.0;
+    } else {
+      return 100.0 * ((double) val / (double) total);
+    }
+  }
+
+  static double bytes_to_mb(size_t val) {
+    return (double) val / (double) M;
+  }
+
+public:
+  // The header and footer are printed in the constructor and
+  // destructor respectively.
+  G1PrintRegionLivenessInfoClosure(const char* phase_name);
+  virtual bool doHeapRegion(HeapRegion* r);
+  ~G1PrintRegionLivenessInfoClosure();
+};
+
+#endif // SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP