src/hotspot/share/gc/cms/parNewGeneration.cpp
changeset 47216 71c04702a3d5
parent 46968 9119841280f4
child 47552 8a3599d60996
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/gc/cms/parNewGeneration.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,1480 @@
+/*
+ * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "gc/cms/compactibleFreeListSpace.hpp"
+#include "gc/cms/concurrentMarkSweepGeneration.hpp"
+#include "gc/cms/parNewGeneration.inline.hpp"
+#include "gc/cms/parOopClosures.inline.hpp"
+#include "gc/serial/defNewGeneration.inline.hpp"
+#include "gc/shared/adaptiveSizePolicy.hpp"
+#include "gc/shared/ageTable.inline.hpp"
+#include "gc/shared/copyFailedInfo.hpp"
+#include "gc/shared/gcHeapSummary.hpp"
+#include "gc/shared/gcTimer.hpp"
+#include "gc/shared/gcTrace.hpp"
+#include "gc/shared/gcTraceTime.inline.hpp"
+#include "gc/shared/genCollectedHeap.hpp"
+#include "gc/shared/genOopClosures.inline.hpp"
+#include "gc/shared/generation.hpp"
+#include "gc/shared/plab.inline.hpp"
+#include "gc/shared/preservedMarks.inline.hpp"
+#include "gc/shared/referencePolicy.hpp"
+#include "gc/shared/space.hpp"
+#include "gc/shared/spaceDecorator.hpp"
+#include "gc/shared/strongRootsScope.hpp"
+#include "gc/shared/taskqueue.inline.hpp"
+#include "gc/shared/workgroup.hpp"
+#include "logging/log.hpp"
+#include "logging/logStream.hpp"
+#include "memory/resourceArea.hpp"
+#include "oops/objArrayOop.hpp"
+#include "oops/oop.inline.hpp"
+#include "runtime/atomic.hpp"
+#include "runtime/handles.hpp"
+#include "runtime/handles.inline.hpp"
+#include "runtime/java.hpp"
+#include "runtime/thread.inline.hpp"
+#include "utilities/copy.hpp"
+#include "utilities/globalDefinitions.hpp"
+#include "utilities/stack.inline.hpp"
+
+ParScanThreadState::ParScanThreadState(Space* to_space_,
+                                       ParNewGeneration* young_gen_,
+                                       Generation* old_gen_,
+                                       int thread_num_,
+                                       ObjToScanQueueSet* work_queue_set_,
+                                       Stack<oop, mtGC>* overflow_stacks_,
+                                       PreservedMarks* preserved_marks_,
+                                       size_t desired_plab_sz_,
+                                       ParallelTaskTerminator& term_) :
+  _to_space(to_space_),
+  _old_gen(old_gen_),
+  _young_gen(young_gen_),
+  _thread_num(thread_num_),
+  _work_queue(work_queue_set_->queue(thread_num_)),
+  _to_space_full(false),
+  _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
+  _preserved_marks(preserved_marks_),
+  _ageTable(false), // false ==> not the global age table, no perf data.
+  _to_space_alloc_buffer(desired_plab_sz_),
+  _to_space_closure(young_gen_, this),
+  _old_gen_closure(young_gen_, this),
+  _to_space_root_closure(young_gen_, this),
+  _old_gen_root_closure(young_gen_, this),
+  _older_gen_closure(young_gen_, this),
+  _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
+                      &_to_space_root_closure, young_gen_, &_old_gen_root_closure,
+                      work_queue_set_, &term_),
+  _is_alive_closure(young_gen_),
+  _scan_weak_ref_closure(young_gen_, this),
+  _keep_alive_closure(&_scan_weak_ref_closure),
+  _strong_roots_time(0.0),
+  _term_time(0.0)
+{
+  #if TASKQUEUE_STATS
+  _term_attempts = 0;
+  _overflow_refills = 0;
+  _overflow_refill_objs = 0;
+  #endif // TASKQUEUE_STATS
+
+  _survivor_chunk_array = (ChunkArray*) old_gen()->get_data_recorder(thread_num());
+  _hash_seed = 17;  // Might want to take time-based random value.
+  _start = os::elapsedTime();
+  _old_gen_closure.set_generation(old_gen_);
+  _old_gen_root_closure.set_generation(old_gen_);
+}
+
+void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
+                                              size_t plab_word_size) {
+  ChunkArray* sca = survivor_chunk_array();
+  if (sca != NULL) {
+    // A non-null SCA implies that we want the PLAB data recorded.
+    sca->record_sample(plab_start, plab_word_size);
+  }
+}
+
+bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
+  return new_obj->is_objArray() &&
+         arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
+         new_obj != old_obj;
+}
+
+void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
+  assert(old->is_objArray(), "must be obj array");
+  assert(old->is_forwarded(), "must be forwarded");
+  assert(GenCollectedHeap::heap()->is_in_reserved(old), "must be in heap.");
+  assert(!old_gen()->is_in(old), "must be in young generation.");
+
+  objArrayOop obj = objArrayOop(old->forwardee());
+  // Process ParGCArrayScanChunk elements now
+  // and push the remainder back onto queue
+  int start     = arrayOop(old)->length();
+  int end       = obj->length();
+  int remainder = end - start;
+  assert(start <= end, "just checking");
+  if (remainder > 2 * ParGCArrayScanChunk) {
+    // Test above combines last partial chunk with a full chunk
+    end = start + ParGCArrayScanChunk;
+    arrayOop(old)->set_length(end);
+    // Push remainder.
+    bool ok = work_queue()->push(old);
+    assert(ok, "just popped, push must be okay");
+  } else {
+    // Restore length so that it can be used if there
+    // is a promotion failure and forwarding pointers
+    // must be removed.
+    arrayOop(old)->set_length(end);
+  }
+
+  // process our set of indices (include header in first chunk)
+  // should make sure end is even (aligned to HeapWord in case of compressed oops)
+  if ((HeapWord *)obj < young_old_boundary()) {
+    // object is in to_space
+    obj->oop_iterate_range(&_to_space_closure, start, end);
+  } else {
+    // object is in old generation
+    obj->oop_iterate_range(&_old_gen_closure, start, end);
+  }
+}
+
+void ParScanThreadState::trim_queues(int max_size) {
+  ObjToScanQueue* queue = work_queue();
+  do {
+    while (queue->size() > (juint)max_size) {
+      oop obj_to_scan;
+      if (queue->pop_local(obj_to_scan)) {
+        if ((HeapWord *)obj_to_scan < young_old_boundary()) {
+          if (obj_to_scan->is_objArray() &&
+              obj_to_scan->is_forwarded() &&
+              obj_to_scan->forwardee() != obj_to_scan) {
+            scan_partial_array_and_push_remainder(obj_to_scan);
+          } else {
+            // object is in to_space
+            obj_to_scan->oop_iterate(&_to_space_closure);
+          }
+        } else {
+          // object is in old generation
+          obj_to_scan->oop_iterate(&_old_gen_closure);
+        }
+      }
+    }
+    // For the  case of compressed oops, we have a private, non-shared
+    // overflow stack, so we eagerly drain it so as to more evenly
+    // distribute load early. Note: this may be good to do in
+    // general rather than delay for the final stealing phase.
+    // If applicable, we'll transfer a set of objects over to our
+    // work queue, allowing them to be stolen and draining our
+    // private overflow stack.
+  } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
+}
+
+bool ParScanThreadState::take_from_overflow_stack() {
+  assert(ParGCUseLocalOverflow, "Else should not call");
+  assert(young_gen()->overflow_list() == NULL, "Error");
+  ObjToScanQueue* queue = work_queue();
+  Stack<oop, mtGC>* const of_stack = overflow_stack();
+  const size_t num_overflow_elems = of_stack->size();
+  const size_t space_available = queue->max_elems() - queue->size();
+  const size_t num_take_elems = MIN3(space_available / 4,
+                                     ParGCDesiredObjsFromOverflowList,
+                                     num_overflow_elems);
+  // Transfer the most recent num_take_elems from the overflow
+  // stack to our work queue.
+  for (size_t i = 0; i != num_take_elems; i++) {
+    oop cur = of_stack->pop();
+    oop obj_to_push = cur->forwardee();
+    assert(GenCollectedHeap::heap()->is_in_reserved(cur), "Should be in heap");
+    assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
+    assert(GenCollectedHeap::heap()->is_in_reserved(obj_to_push), "Should be in heap");
+    if (should_be_partially_scanned(obj_to_push, cur)) {
+      assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
+      obj_to_push = cur;
+    }
+    bool ok = queue->push(obj_to_push);
+    assert(ok, "Should have succeeded");
+  }
+  assert(young_gen()->overflow_list() == NULL, "Error");
+  return num_take_elems > 0;  // was something transferred?
+}
+
+void ParScanThreadState::push_on_overflow_stack(oop p) {
+  assert(ParGCUseLocalOverflow, "Else should not call");
+  overflow_stack()->push(p);
+  assert(young_gen()->overflow_list() == NULL, "Error");
+}
+
+HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
+  // If the object is small enough, try to reallocate the buffer.
+  HeapWord* obj = NULL;
+  if (!_to_space_full) {
+    PLAB* const plab = to_space_alloc_buffer();
+    Space* const sp  = to_space();
+    if (word_sz * 100 < ParallelGCBufferWastePct * plab->word_sz()) {
+      // Is small enough; abandon this buffer and start a new one.
+      plab->retire();
+      // The minimum size has to be twice SurvivorAlignmentInBytes to
+      // allow for padding used in the alignment of 1 word.  A padding
+      // of 1 is too small for a filler word so the padding size will
+      // be increased by SurvivorAlignmentInBytes.
+      size_t min_usable_size = 2 * static_cast<size_t>(SurvivorAlignmentInBytes >> LogHeapWordSize);
+      size_t buf_size = MAX2(plab->word_sz(), min_usable_size);
+      HeapWord* buf_space = sp->par_allocate(buf_size);
+      if (buf_space == NULL) {
+        const size_t min_bytes = MAX2(PLAB::min_size(), min_usable_size) << LogHeapWordSize;
+        size_t free_bytes = sp->free();
+        while(buf_space == NULL && free_bytes >= min_bytes) {
+          buf_size = free_bytes >> LogHeapWordSize;
+          assert(buf_size == (size_t)align_object_size(buf_size), "Invariant");
+          buf_space  = sp->par_allocate(buf_size);
+          free_bytes = sp->free();
+        }
+      }
+      if (buf_space != NULL) {
+        plab->set_buf(buf_space, buf_size);
+        record_survivor_plab(buf_space, buf_size);
+        obj = plab->allocate_aligned(word_sz, SurvivorAlignmentInBytes);
+        // Note that we cannot compare buf_size < word_sz below
+        // because of AlignmentReserve (see PLAB::allocate()).
+        assert(obj != NULL || plab->words_remaining() < word_sz,
+               "Else should have been able to allocate requested object size "
+               SIZE_FORMAT ", PLAB size " SIZE_FORMAT ", SurvivorAlignmentInBytes "
+               SIZE_FORMAT ", words_remaining " SIZE_FORMAT,
+               word_sz, buf_size, SurvivorAlignmentInBytes, plab->words_remaining());
+        // It's conceivable that we may be able to use the
+        // buffer we just grabbed for subsequent small requests
+        // even if not for this one.
+      } else {
+        // We're used up.
+        _to_space_full = true;
+      }
+    } else {
+      // Too large; allocate the object individually.
+      obj = sp->par_allocate(word_sz);
+    }
+  }
+  return obj;
+}
+
+void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj, size_t word_sz) {
+  to_space_alloc_buffer()->undo_allocation(obj, word_sz);
+}
+
+void ParScanThreadState::print_promotion_failure_size() {
+  if (_promotion_failed_info.has_failed()) {
+    log_trace(gc, promotion)(" (%d: promotion failure size = " SIZE_FORMAT ") ",
+                             _thread_num, _promotion_failed_info.first_size());
+  }
+}
+
+class ParScanThreadStateSet: StackObj {
+public:
+  // Initializes states for the specified number of threads;
+  ParScanThreadStateSet(int                     num_threads,
+                        Space&                  to_space,
+                        ParNewGeneration&       young_gen,
+                        Generation&             old_gen,
+                        ObjToScanQueueSet&      queue_set,
+                        Stack<oop, mtGC>*       overflow_stacks_,
+                        PreservedMarksSet&      preserved_marks_set,
+                        size_t                  desired_plab_sz,
+                        ParallelTaskTerminator& term);
+
+  ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
+
+  inline ParScanThreadState& thread_state(int i);
+
+  void trace_promotion_failed(const YoungGCTracer* gc_tracer);
+  void reset(uint active_workers, bool promotion_failed);
+  void flush();
+
+  #if TASKQUEUE_STATS
+  static void
+    print_termination_stats_hdr(outputStream* const st);
+  void print_termination_stats();
+  static void
+    print_taskqueue_stats_hdr(outputStream* const st);
+  void print_taskqueue_stats();
+  void reset_stats();
+  #endif // TASKQUEUE_STATS
+
+private:
+  ParallelTaskTerminator& _term;
+  ParNewGeneration&       _young_gen;
+  Generation&             _old_gen;
+  ParScanThreadState*     _per_thread_states;
+  const int               _num_threads;
+ public:
+  bool is_valid(int id) const { return id < _num_threads; }
+  ParallelTaskTerminator* terminator() { return &_term; }
+};
+
+ParScanThreadStateSet::ParScanThreadStateSet(int num_threads,
+                                             Space& to_space,
+                                             ParNewGeneration& young_gen,
+                                             Generation& old_gen,
+                                             ObjToScanQueueSet& queue_set,
+                                             Stack<oop, mtGC>* overflow_stacks,
+                                             PreservedMarksSet& preserved_marks_set,
+                                             size_t desired_plab_sz,
+                                             ParallelTaskTerminator& term)
+  : _young_gen(young_gen),
+    _old_gen(old_gen),
+    _term(term),
+    _per_thread_states(NEW_RESOURCE_ARRAY(ParScanThreadState, num_threads)),
+    _num_threads(num_threads)
+{
+  assert(num_threads > 0, "sanity check!");
+  assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
+         "overflow_stack allocation mismatch");
+  // Initialize states.
+  for (int i = 0; i < num_threads; ++i) {
+    new(_per_thread_states + i)
+      ParScanThreadState(&to_space, &young_gen, &old_gen, i, &queue_set,
+                         overflow_stacks, preserved_marks_set.get(i),
+                         desired_plab_sz, term);
+  }
+}
+
+inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i) {
+  assert(i >= 0 && i < _num_threads, "sanity check!");
+  return _per_thread_states[i];
+}
+
+void ParScanThreadStateSet::trace_promotion_failed(const YoungGCTracer* gc_tracer) {
+  for (int i = 0; i < _num_threads; ++i) {
+    if (thread_state(i).promotion_failed()) {
+      gc_tracer->report_promotion_failed(thread_state(i).promotion_failed_info());
+      thread_state(i).promotion_failed_info().reset();
+    }
+  }
+}
+
+void ParScanThreadStateSet::reset(uint active_threads, bool promotion_failed) {
+  _term.reset_for_reuse(active_threads);
+  if (promotion_failed) {
+    for (int i = 0; i < _num_threads; ++i) {
+      thread_state(i).print_promotion_failure_size();
+    }
+  }
+}
+
+#if TASKQUEUE_STATS
+void ParScanThreadState::reset_stats() {
+  taskqueue_stats().reset();
+  _term_attempts = 0;
+  _overflow_refills = 0;
+  _overflow_refill_objs = 0;
+}
+
+void ParScanThreadStateSet::reset_stats() {
+  for (int i = 0; i < _num_threads; ++i) {
+    thread_state(i).reset_stats();
+  }
+}
+
+void ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st) {
+  st->print_raw_cr("GC Termination Stats");
+  st->print_raw_cr("     elapsed  --strong roots-- -------termination-------");
+  st->print_raw_cr("thr     ms        ms       %       ms       %   attempts");
+  st->print_raw_cr("--- --------- --------- ------ --------- ------ --------");
+}
+
+void ParScanThreadStateSet::print_termination_stats() {
+  Log(gc, task, stats) log;
+  if (!log.is_debug()) {
+    return;
+  }
+
+  ResourceMark rm;
+  LogStream ls(log.debug());
+  outputStream* st = &ls;
+
+  print_termination_stats_hdr(st);
+
+  for (int i = 0; i < _num_threads; ++i) {
+    const ParScanThreadState & pss = thread_state(i);
+    const double elapsed_ms = pss.elapsed_time() * 1000.0;
+    const double s_roots_ms = pss.strong_roots_time() * 1000.0;
+    const double term_ms = pss.term_time() * 1000.0;
+    st->print_cr("%3d %9.2f %9.2f %6.2f %9.2f %6.2f " SIZE_FORMAT_W(8),
+                 i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
+                 term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
+  }
+}
+
+// Print stats related to work queue activity.
+void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st) {
+  st->print_raw_cr("GC Task Stats");
+  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
+  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
+}
+
+void ParScanThreadStateSet::print_taskqueue_stats() {
+  if (!log_develop_is_enabled(Trace, gc, task, stats)) {
+    return;
+  }
+  Log(gc, task, stats) log;
+  ResourceMark rm;
+  LogStream ls(log.trace());
+  outputStream* st = &ls;
+  print_taskqueue_stats_hdr(st);
+
+  TaskQueueStats totals;
+  for (int i = 0; i < _num_threads; ++i) {
+    const ParScanThreadState & pss = thread_state(i);
+    const TaskQueueStats & stats = pss.taskqueue_stats();
+    st->print("%3d ", i); stats.print(st); st->cr();
+    totals += stats;
+
+    if (pss.overflow_refills() > 0) {
+      st->print_cr("    " SIZE_FORMAT_W(10) " overflow refills    "
+                   SIZE_FORMAT_W(10) " overflow objects",
+                   pss.overflow_refills(), pss.overflow_refill_objs());
+    }
+  }
+  st->print("tot "); totals.print(st); st->cr();
+
+  DEBUG_ONLY(totals.verify());
+}
+#endif // TASKQUEUE_STATS
+
+void ParScanThreadStateSet::flush() {
+  // Work in this loop should be kept as lightweight as
+  // possible since this might otherwise become a bottleneck
+  // to scaling. Should we add heavy-weight work into this
+  // loop, consider parallelizing the loop into the worker threads.
+  for (int i = 0; i < _num_threads; ++i) {
+    ParScanThreadState& par_scan_state = thread_state(i);
+
+    // Flush stats related to To-space PLAB activity and
+    // retire the last buffer.
+    par_scan_state.to_space_alloc_buffer()->flush_and_retire_stats(_young_gen.plab_stats());
+
+    // Every thread has its own age table.  We need to merge
+    // them all into one.
+    AgeTable *local_table = par_scan_state.age_table();
+    _young_gen.age_table()->merge(local_table);
+
+    // Inform old gen that we're done.
+    _old_gen.par_promote_alloc_done(i);
+  }
+
+  if (UseConcMarkSweepGC) {
+    // We need to call this even when ResizeOldPLAB is disabled
+    // so as to avoid breaking some asserts. While we may be able
+    // to avoid this by reorganizing the code a bit, I am loathe
+    // to do that unless we find cases where ergo leads to bad
+    // performance.
+    CompactibleFreeListSpaceLAB::compute_desired_plab_size();
+  }
+}
+
+ParScanClosure::ParScanClosure(ParNewGeneration* g,
+                               ParScanThreadState* par_scan_state) :
+  OopsInKlassOrGenClosure(g), _par_scan_state(par_scan_state), _g(g) {
+  _boundary = _g->reserved().end();
+}
+
+void ParScanWithBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, false); }
+void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
+
+void ParScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, false); }
+void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
+
+void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
+void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
+
+void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
+void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
+
+ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
+                                             ParScanThreadState* par_scan_state)
+  : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
+{}
+
+void ParScanWeakRefClosure::do_oop(oop* p)       { ParScanWeakRefClosure::do_oop_work(p); }
+void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
+
+#ifdef WIN32
+#pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
+#endif
+
+ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
+    ParScanThreadState* par_scan_state_,
+    ParScanWithoutBarrierClosure* to_space_closure_,
+    ParScanWithBarrierClosure* old_gen_closure_,
+    ParRootScanWithoutBarrierClosure* to_space_root_closure_,
+    ParNewGeneration* par_gen_,
+    ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
+    ObjToScanQueueSet* task_queues_,
+    ParallelTaskTerminator* terminator_) :
+
+    _par_scan_state(par_scan_state_),
+    _to_space_closure(to_space_closure_),
+    _old_gen_closure(old_gen_closure_),
+    _to_space_root_closure(to_space_root_closure_),
+    _old_gen_root_closure(old_gen_root_closure_),
+    _par_gen(par_gen_),
+    _task_queues(task_queues_),
+    _terminator(terminator_)
+{}
+
+void ParEvacuateFollowersClosure::do_void() {
+  ObjToScanQueue* work_q = par_scan_state()->work_queue();
+
+  while (true) {
+    // Scan to-space and old-gen objs until we run out of both.
+    oop obj_to_scan;
+    par_scan_state()->trim_queues(0);
+
+    // We have no local work, attempt to steal from other threads.
+
+    // Attempt to steal work from promoted.
+    if (task_queues()->steal(par_scan_state()->thread_num(),
+                             par_scan_state()->hash_seed(),
+                             obj_to_scan)) {
+      bool res = work_q->push(obj_to_scan);
+      assert(res, "Empty queue should have room for a push.");
+
+      // If successful, goto Start.
+      continue;
+
+      // Try global overflow list.
+    } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
+      continue;
+    }
+
+    // Otherwise, offer termination.
+    par_scan_state()->start_term_time();
+    if (terminator()->offer_termination()) break;
+    par_scan_state()->end_term_time();
+  }
+  assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
+         "Broken overflow list?");
+  // Finish the last termination pause.
+  par_scan_state()->end_term_time();
+}
+
+ParNewGenTask::ParNewGenTask(ParNewGeneration* young_gen,
+                             Generation* old_gen,
+                             HeapWord* young_old_boundary,
+                             ParScanThreadStateSet* state_set,
+                             StrongRootsScope* strong_roots_scope) :
+    AbstractGangTask("ParNewGeneration collection"),
+    _young_gen(young_gen), _old_gen(old_gen),
+    _young_old_boundary(young_old_boundary),
+    _state_set(state_set),
+    _strong_roots_scope(strong_roots_scope)
+{}
+
+void ParNewGenTask::work(uint worker_id) {
+  GenCollectedHeap* gch = GenCollectedHeap::heap();
+  // Since this is being done in a separate thread, need new resource
+  // and handle marks.
+  ResourceMark rm;
+  HandleMark hm;
+
+  ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
+  assert(_state_set->is_valid(worker_id), "Should not have been called");
+
+  par_scan_state.set_young_old_boundary(_young_old_boundary);
+
+  KlassScanClosure klass_scan_closure(&par_scan_state.to_space_root_closure(),
+                                      gch->rem_set()->klass_rem_set());
+  CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
+                                           &par_scan_state.to_space_root_closure(),
+                                           false);
+
+  par_scan_state.start_strong_roots();
+  gch->young_process_roots(_strong_roots_scope,
+                           &par_scan_state.to_space_root_closure(),
+                           &par_scan_state.older_gen_closure(),
+                           &cld_scan_closure);
+
+  par_scan_state.end_strong_roots();
+
+  // "evacuate followers".
+  par_scan_state.evacuate_followers_closure().do_void();
+
+  // This will collapse this worker's promoted object list that's
+  // created during the main ParNew parallel phase of ParNew. This has
+  // to be called after all workers have finished promoting objects
+  // and scanning promoted objects. It should be safe calling it from
+  // here, given that we can only reach here after all thread have
+  // offered termination, i.e., after there is no more work to be
+  // done. It will also disable promotion tracking for the rest of
+  // this GC as it's not necessary to be on during reference processing.
+  _old_gen->par_oop_since_save_marks_iterate_done((int) worker_id);
+}
+
+ParNewGeneration::ParNewGeneration(ReservedSpace rs, size_t initial_byte_size)
+  : DefNewGeneration(rs, initial_byte_size, "PCopy"),
+  _overflow_list(NULL),
+  _is_alive_closure(this),
+  _plab_stats("Young", YoungPLABSize, PLABWeight)
+{
+  NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
+  NOT_PRODUCT(_num_par_pushes = 0;)
+  _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
+  guarantee(_task_queues != NULL, "task_queues allocation failure.");
+
+  for (uint i = 0; i < ParallelGCThreads; i++) {
+    ObjToScanQueue *q = new ObjToScanQueue();
+    guarantee(q != NULL, "work_queue Allocation failure.");
+    _task_queues->register_queue(i, q);
+  }
+
+  for (uint i = 0; i < ParallelGCThreads; i++) {
+    _task_queues->queue(i)->initialize();
+  }
+
+  _overflow_stacks = NULL;
+  if (ParGCUseLocalOverflow) {
+    // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal with ','
+    typedef Stack<oop, mtGC> GCOopStack;
+
+    _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
+    for (size_t i = 0; i < ParallelGCThreads; ++i) {
+      new (_overflow_stacks + i) Stack<oop, mtGC>();
+    }
+  }
+
+  if (UsePerfData) {
+    EXCEPTION_MARK;
+    ResourceMark rm;
+
+    const char* cname =
+         PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
+    PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
+                                     ParallelGCThreads, CHECK);
+  }
+}
+
+// ParNewGeneration::
+ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
+  DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
+
+template <class T>
+void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
+#ifdef ASSERT
+  {
+    assert(!oopDesc::is_null(*p), "expected non-null ref");
+    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
+    // We never expect to see a null reference being processed
+    // as a weak reference.
+    assert(oopDesc::is_oop(obj), "expected an oop while scanning weak refs");
+  }
+#endif // ASSERT
+
+  _par_cl->do_oop_nv(p);
+
+  if (GenCollectedHeap::heap()->is_in_reserved(p)) {
+    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
+    _rs->write_ref_field_gc_par(p, obj);
+  }
+}
+
+void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
+void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
+
+// ParNewGeneration::
+KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
+  DefNewGeneration::KeepAliveClosure(cl) {}
+
+template <class T>
+void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
+#ifdef ASSERT
+  {
+    assert(!oopDesc::is_null(*p), "expected non-null ref");
+    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
+    // We never expect to see a null reference being processed
+    // as a weak reference.
+    assert(oopDesc::is_oop(obj), "expected an oop while scanning weak refs");
+  }
+#endif // ASSERT
+
+  _cl->do_oop_nv(p);
+
+  if (GenCollectedHeap::heap()->is_in_reserved(p)) {
+    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
+    _rs->write_ref_field_gc_par(p, obj);
+  }
+}
+
+void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
+void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
+
+template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
+  T heap_oop = oopDesc::load_heap_oop(p);
+  if (!oopDesc::is_null(heap_oop)) {
+    oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
+    if ((HeapWord*)obj < _boundary) {
+      assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
+      oop new_obj = obj->is_forwarded()
+                      ? obj->forwardee()
+                      : _g->DefNewGeneration::copy_to_survivor_space(obj);
+      oopDesc::encode_store_heap_oop_not_null(p, new_obj);
+    }
+    if (_gc_barrier) {
+      // If p points to a younger generation, mark the card.
+      if ((HeapWord*)obj < _gen_boundary) {
+        _rs->write_ref_field_gc_par(p, obj);
+      }
+    }
+  }
+}
+
+void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
+void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
+
+class ParNewRefProcTaskProxy: public AbstractGangTask {
+  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
+public:
+  ParNewRefProcTaskProxy(ProcessTask& task,
+                         ParNewGeneration& young_gen,
+                         Generation& old_gen,
+                         HeapWord* young_old_boundary,
+                         ParScanThreadStateSet& state_set);
+
+private:
+  virtual void work(uint worker_id);
+private:
+  ParNewGeneration&      _young_gen;
+  ProcessTask&           _task;
+  Generation&            _old_gen;
+  HeapWord*              _young_old_boundary;
+  ParScanThreadStateSet& _state_set;
+};
+
+ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(ProcessTask& task,
+                                               ParNewGeneration& young_gen,
+                                               Generation& old_gen,
+                                               HeapWord* young_old_boundary,
+                                               ParScanThreadStateSet& state_set)
+  : AbstractGangTask("ParNewGeneration parallel reference processing"),
+    _young_gen(young_gen),
+    _task(task),
+    _old_gen(old_gen),
+    _young_old_boundary(young_old_boundary),
+    _state_set(state_set)
+{ }
+
+void ParNewRefProcTaskProxy::work(uint worker_id) {
+  ResourceMark rm;
+  HandleMark hm;
+  ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
+  par_scan_state.set_young_old_boundary(_young_old_boundary);
+  _task.work(worker_id, par_scan_state.is_alive_closure(),
+             par_scan_state.keep_alive_closure(),
+             par_scan_state.evacuate_followers_closure());
+}
+
+class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
+  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
+  EnqueueTask& _task;
+
+public:
+  ParNewRefEnqueueTaskProxy(EnqueueTask& task)
+    : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
+      _task(task)
+  { }
+
+  virtual void work(uint worker_id) {
+    _task.work(worker_id);
+  }
+};
+
+void ParNewRefProcTaskExecutor::execute(ProcessTask& task) {
+  GenCollectedHeap* gch = GenCollectedHeap::heap();
+  WorkGang* workers = gch->workers();
+  assert(workers != NULL, "Need parallel worker threads.");
+  _state_set.reset(workers->active_workers(), _young_gen.promotion_failed());
+  ParNewRefProcTaskProxy rp_task(task, _young_gen, _old_gen,
+                                 _young_gen.reserved().end(), _state_set);
+  workers->run_task(&rp_task);
+  _state_set.reset(0 /* bad value in debug if not reset */,
+                   _young_gen.promotion_failed());
+}
+
+void ParNewRefProcTaskExecutor::execute(EnqueueTask& task) {
+  GenCollectedHeap* gch = GenCollectedHeap::heap();
+  WorkGang* workers = gch->workers();
+  assert(workers != NULL, "Need parallel worker threads.");
+  ParNewRefEnqueueTaskProxy enq_task(task);
+  workers->run_task(&enq_task);
+}
+
+void ParNewRefProcTaskExecutor::set_single_threaded_mode() {
+  _state_set.flush();
+  GenCollectedHeap* gch = GenCollectedHeap::heap();
+  gch->save_marks();
+}
+
+ScanClosureWithParBarrier::
+ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
+  ScanClosure(g, gc_barrier)
+{ }
+
+EvacuateFollowersClosureGeneral::
+EvacuateFollowersClosureGeneral(GenCollectedHeap* gch,
+                                OopsInGenClosure* cur,
+                                OopsInGenClosure* older) :
+  _gch(gch),
+  _scan_cur_or_nonheap(cur), _scan_older(older)
+{ }
+
+void EvacuateFollowersClosureGeneral::do_void() {
+  do {
+    // Beware: this call will lead to closure applications via virtual
+    // calls.
+    _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen,
+                                       _scan_cur_or_nonheap,
+                                       _scan_older);
+  } while (!_gch->no_allocs_since_save_marks());
+}
+
+// A Generation that does parallel young-gen collection.
+
+void ParNewGeneration::handle_promotion_failed(GenCollectedHeap* gch, ParScanThreadStateSet& thread_state_set) {
+  assert(_promo_failure_scan_stack.is_empty(), "post condition");
+  _promo_failure_scan_stack.clear(true); // Clear cached segments.
+
+  remove_forwarding_pointers();
+  log_info(gc, promotion)("Promotion failed");
+  // All the spaces are in play for mark-sweep.
+  swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
+  from()->set_next_compaction_space(to());
+  gch->set_incremental_collection_failed();
+  // Inform the next generation that a promotion failure occurred.
+  _old_gen->promotion_failure_occurred();
+
+  // Trace promotion failure in the parallel GC threads
+  thread_state_set.trace_promotion_failed(gc_tracer());
+  // Single threaded code may have reported promotion failure to the global state
+  if (_promotion_failed_info.has_failed()) {
+    _gc_tracer.report_promotion_failed(_promotion_failed_info);
+  }
+  // Reset the PromotionFailureALot counters.
+  NOT_PRODUCT(gch->reset_promotion_should_fail();)
+}
+
+void ParNewGeneration::collect(bool   full,
+                               bool   clear_all_soft_refs,
+                               size_t size,
+                               bool   is_tlab) {
+  assert(full || size > 0, "otherwise we don't want to collect");
+
+  GenCollectedHeap* gch = GenCollectedHeap::heap();
+
+  _gc_timer->register_gc_start();
+
+  AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
+  WorkGang* workers = gch->workers();
+  assert(workers != NULL, "Need workgang for parallel work");
+  uint active_workers =
+       AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
+                                               workers->active_workers(),
+                                               Threads::number_of_non_daemon_threads());
+  active_workers = workers->update_active_workers(active_workers);
+  log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers->total_workers());
+
+  _old_gen = gch->old_gen();
+
+  // If the next generation is too full to accommodate worst-case promotion
+  // from this generation, pass on collection; let the next generation
+  // do it.
+  if (!collection_attempt_is_safe()) {
+    gch->set_incremental_collection_failed();  // slight lie, in that we did not even attempt one
+    return;
+  }
+  assert(to()->is_empty(), "Else not collection_attempt_is_safe");
+
+  _gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
+  gch->trace_heap_before_gc(gc_tracer());
+
+  init_assuming_no_promotion_failure();
+
+  if (UseAdaptiveSizePolicy) {
+    set_survivor_overflow(false);
+    size_policy->minor_collection_begin();
+  }
+
+  GCTraceTime(Trace, gc, phases) t1("ParNew", NULL, gch->gc_cause());
+
+  age_table()->clear();
+  to()->clear(SpaceDecorator::Mangle);
+
+  gch->save_marks();
+
+  // Set the correct parallelism (number of queues) in the reference processor
+  ref_processor()->set_active_mt_degree(active_workers);
+
+  // Need to initialize the preserved marks before the ThreadStateSet c'tor.
+  _preserved_marks_set.init(active_workers);
+
+  // Always set the terminator for the active number of workers
+  // because only those workers go through the termination protocol.
+  ParallelTaskTerminator _term(active_workers, task_queues());
+  ParScanThreadStateSet thread_state_set(active_workers,
+                                         *to(), *this, *_old_gen, *task_queues(),
+                                         _overflow_stacks, _preserved_marks_set,
+                                         desired_plab_sz(), _term);
+
+  thread_state_set.reset(active_workers, promotion_failed());
+
+  {
+    StrongRootsScope srs(active_workers);
+
+    ParNewGenTask tsk(this, _old_gen, reserved().end(), &thread_state_set, &srs);
+    gch->rem_set()->prepare_for_younger_refs_iterate(true);
+    // It turns out that even when we're using 1 thread, doing the work in a
+    // separate thread causes wide variance in run times.  We can't help this
+    // in the multi-threaded case, but we special-case n=1 here to get
+    // repeatable measurements of the 1-thread overhead of the parallel code.
+    // Might multiple workers ever be used?  If yes, initialization
+    // has been done such that the single threaded path should not be used.
+    if (workers->total_workers() > 1) {
+      workers->run_task(&tsk);
+    } else {
+      tsk.work(0);
+    }
+  }
+
+  thread_state_set.reset(0 /* Bad value in debug if not reset */,
+                         promotion_failed());
+
+  // Trace and reset failed promotion info.
+  if (promotion_failed()) {
+    thread_state_set.trace_promotion_failed(gc_tracer());
+  }
+
+  // Process (weak) reference objects found during scavenge.
+  ReferenceProcessor* rp = ref_processor();
+  IsAliveClosure is_alive(this);
+  ScanWeakRefClosure scan_weak_ref(this);
+  KeepAliveClosure keep_alive(&scan_weak_ref);
+  ScanClosure               scan_without_gc_barrier(this, false);
+  ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
+  set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
+  EvacuateFollowersClosureGeneral evacuate_followers(gch,
+    &scan_without_gc_barrier, &scan_with_gc_barrier);
+  rp->setup_policy(clear_all_soft_refs);
+  // Can  the mt_degree be set later (at run_task() time would be best)?
+  rp->set_active_mt_degree(active_workers);
+  ReferenceProcessorStats stats;
+  ReferenceProcessorPhaseTimes pt(_gc_timer, rp->num_q());
+  if (rp->processing_is_mt()) {
+    ParNewRefProcTaskExecutor task_executor(*this, *_old_gen, thread_state_set);
+    stats = rp->process_discovered_references(&is_alive, &keep_alive,
+                                              &evacuate_followers, &task_executor,
+                                              &pt);
+  } else {
+    thread_state_set.flush();
+    gch->save_marks();
+    stats = rp->process_discovered_references(&is_alive, &keep_alive,
+                                              &evacuate_followers, NULL,
+                                              &pt);
+  }
+  _gc_tracer.report_gc_reference_stats(stats);
+  _gc_tracer.report_tenuring_threshold(tenuring_threshold());
+  pt.print_all_references();
+
+  if (!promotion_failed()) {
+    // Swap the survivor spaces.
+    eden()->clear(SpaceDecorator::Mangle);
+    from()->clear(SpaceDecorator::Mangle);
+    if (ZapUnusedHeapArea) {
+      // This is now done here because of the piece-meal mangling which
+      // can check for valid mangling at intermediate points in the
+      // collection(s).  When a young collection fails to collect
+      // sufficient space resizing of the young generation can occur
+      // and redistribute the spaces in the young generation.  Mangle
+      // here so that unzapped regions don't get distributed to
+      // other spaces.
+      to()->mangle_unused_area();
+    }
+    swap_spaces();
+
+    // A successful scavenge should restart the GC time limit count which is
+    // for full GC's.
+    size_policy->reset_gc_overhead_limit_count();
+
+    assert(to()->is_empty(), "to space should be empty now");
+
+    adjust_desired_tenuring_threshold();
+  } else {
+    handle_promotion_failed(gch, thread_state_set);
+  }
+  _preserved_marks_set.reclaim();
+  // set new iteration safe limit for the survivor spaces
+  from()->set_concurrent_iteration_safe_limit(from()->top());
+  to()->set_concurrent_iteration_safe_limit(to()->top());
+
+  plab_stats()->adjust_desired_plab_sz();
+
+  TASKQUEUE_STATS_ONLY(thread_state_set.print_termination_stats());
+  TASKQUEUE_STATS_ONLY(thread_state_set.print_taskqueue_stats());
+
+  if (UseAdaptiveSizePolicy) {
+    size_policy->minor_collection_end(gch->gc_cause());
+    size_policy->avg_survived()->sample(from()->used());
+  }
+
+  // We need to use a monotonically non-decreasing time in ms
+  // or we will see time-warp warnings and os::javaTimeMillis()
+  // does not guarantee monotonicity.
+  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
+  update_time_of_last_gc(now);
+
+  rp->set_enqueuing_is_done(true);
+  if (rp->processing_is_mt()) {
+    ParNewRefProcTaskExecutor task_executor(*this, *_old_gen, thread_state_set);
+    rp->enqueue_discovered_references(&task_executor, &pt);
+  } else {
+    rp->enqueue_discovered_references(NULL, &pt);
+  }
+  rp->verify_no_references_recorded();
+
+  gch->trace_heap_after_gc(gc_tracer());
+
+  pt.print_enqueue_phase();
+
+  _gc_timer->register_gc_end();
+
+  _gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
+}
+
+size_t ParNewGeneration::desired_plab_sz() {
+  return _plab_stats.desired_plab_sz(GenCollectedHeap::heap()->workers()->active_workers());
+}
+
+static int sum;
+void ParNewGeneration::waste_some_time() {
+  for (int i = 0; i < 100; i++) {
+    sum += i;
+  }
+}
+
+static const oop ClaimedForwardPtr = cast_to_oop<intptr_t>(0x4);
+
+// Because of concurrency, there are times where an object for which
+// "is_forwarded()" is true contains an "interim" forwarding pointer
+// value.  Such a value will soon be overwritten with a real value.
+// This method requires "obj" to have a forwarding pointer, and waits, if
+// necessary for a real one to be inserted, and returns it.
+
+oop ParNewGeneration::real_forwardee(oop obj) {
+  oop forward_ptr = obj->forwardee();
+  if (forward_ptr != ClaimedForwardPtr) {
+    return forward_ptr;
+  } else {
+    return real_forwardee_slow(obj);
+  }
+}
+
+oop ParNewGeneration::real_forwardee_slow(oop obj) {
+  // Spin-read if it is claimed but not yet written by another thread.
+  oop forward_ptr = obj->forwardee();
+  while (forward_ptr == ClaimedForwardPtr) {
+    waste_some_time();
+    assert(obj->is_forwarded(), "precondition");
+    forward_ptr = obj->forwardee();
+  }
+  return forward_ptr;
+}
+
+// Multiple GC threads may try to promote an object.  If the object
+// is successfully promoted, a forwarding pointer will be installed in
+// the object in the young generation.  This method claims the right
+// to install the forwarding pointer before it copies the object,
+// thus avoiding the need to undo the copy as in
+// copy_to_survivor_space_avoiding_with_undo.
+
+oop ParNewGeneration::copy_to_survivor_space(ParScanThreadState* par_scan_state,
+                                             oop old,
+                                             size_t sz,
+                                             markOop m) {
+  // In the sequential version, this assert also says that the object is
+  // not forwarded.  That might not be the case here.  It is the case that
+  // the caller observed it to be not forwarded at some time in the past.
+  assert(is_in_reserved(old), "shouldn't be scavenging this oop");
+
+  // The sequential code read "old->age()" below.  That doesn't work here,
+  // since the age is in the mark word, and that might be overwritten with
+  // a forwarding pointer by a parallel thread.  So we must save the mark
+  // word in a local and then analyze it.
+  oopDesc dummyOld;
+  dummyOld.set_mark(m);
+  assert(!dummyOld.is_forwarded(),
+         "should not be called with forwarding pointer mark word.");
+
+  oop new_obj = NULL;
+  oop forward_ptr;
+
+  // Try allocating obj in to-space (unless too old)
+  if (dummyOld.age() < tenuring_threshold()) {
+    new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
+    if (new_obj == NULL) {
+      set_survivor_overflow(true);
+    }
+  }
+
+  if (new_obj == NULL) {
+    // Either to-space is full or we decided to promote try allocating obj tenured
+
+    // Attempt to install a null forwarding pointer (atomically),
+    // to claim the right to install the real forwarding pointer.
+    forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
+    if (forward_ptr != NULL) {
+      // someone else beat us to it.
+        return real_forwardee(old);
+    }
+
+    if (!_promotion_failed) {
+      new_obj = _old_gen->par_promote(par_scan_state->thread_num(),
+                                      old, m, sz);
+    }
+
+    if (new_obj == NULL) {
+      // promotion failed, forward to self
+      _promotion_failed = true;
+      new_obj = old;
+
+      par_scan_state->preserved_marks()->push_if_necessary(old, m);
+      par_scan_state->register_promotion_failure(sz);
+    }
+
+    old->forward_to(new_obj);
+    forward_ptr = NULL;
+  } else {
+    // Is in to-space; do copying ourselves.
+    Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
+    assert(GenCollectedHeap::heap()->is_in_reserved(new_obj), "illegal forwarding pointer value.");
+    forward_ptr = old->forward_to_atomic(new_obj);
+    // Restore the mark word copied above.
+    new_obj->set_mark(m);
+    // Increment age if obj still in new generation
+    new_obj->incr_age();
+    par_scan_state->age_table()->add(new_obj, sz);
+  }
+  assert(new_obj != NULL, "just checking");
+
+  // This code must come after the CAS test, or it will print incorrect
+  // information.
+  log_develop_trace(gc, scavenge)("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
+                                  is_in_reserved(new_obj) ? "copying" : "tenuring",
+                                  new_obj->klass()->internal_name(), p2i(old), p2i(new_obj), new_obj->size());
+
+  if (forward_ptr == NULL) {
+    oop obj_to_push = new_obj;
+    if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
+      // Length field used as index of next element to be scanned.
+      // Real length can be obtained from real_forwardee()
+      arrayOop(old)->set_length(0);
+      obj_to_push = old;
+      assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
+             "push forwarded object");
+    }
+    // Push it on one of the queues of to-be-scanned objects.
+    bool simulate_overflow = false;
+    NOT_PRODUCT(
+      if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
+        // simulate a stack overflow
+        simulate_overflow = true;
+      }
+    )
+    if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
+      // Add stats for overflow pushes.
+      log_develop_trace(gc)("Queue Overflow");
+      push_on_overflow_list(old, par_scan_state);
+      TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
+    }
+
+    return new_obj;
+  }
+
+  // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
+  // allocate it?
+  if (is_in_reserved(new_obj)) {
+    // Must be in to_space.
+    assert(to()->is_in_reserved(new_obj), "Checking");
+    if (forward_ptr == ClaimedForwardPtr) {
+      // Wait to get the real forwarding pointer value.
+      forward_ptr = real_forwardee(old);
+    }
+    par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
+  }
+
+  return forward_ptr;
+}
+
+#ifndef PRODUCT
+// It's OK to call this multi-threaded;  the worst thing
+// that can happen is that we'll get a bunch of closely
+// spaced simulated overflows, but that's OK, in fact
+// probably good as it would exercise the overflow code
+// under contention.
+bool ParNewGeneration::should_simulate_overflow() {
+  if (_overflow_counter-- <= 0) { // just being defensive
+    _overflow_counter = ParGCWorkQueueOverflowInterval;
+    return true;
+  } else {
+    return false;
+  }
+}
+#endif
+
+// In case we are using compressed oops, we need to be careful.
+// If the object being pushed is an object array, then its length
+// field keeps track of the "grey boundary" at which the next
+// incremental scan will be done (see ParGCArrayScanChunk).
+// When using compressed oops, this length field is kept in the
+// lower 32 bits of the erstwhile klass word and cannot be used
+// for the overflow chaining pointer (OCP below). As such the OCP
+// would itself need to be compressed into the top 32-bits in this
+// case. Unfortunately, see below, in the event that we have a
+// promotion failure, the node to be pushed on the list can be
+// outside of the Java heap, so the heap-based pointer compression
+// would not work (we would have potential aliasing between C-heap
+// and Java-heap pointers). For this reason, when using compressed
+// oops, we simply use a worker-thread-local, non-shared overflow
+// list in the form of a growable array, with a slightly different
+// overflow stack draining strategy. If/when we start using fat
+// stacks here, we can go back to using (fat) pointer chains
+// (although some performance comparisons would be useful since
+// single global lists have their own performance disadvantages
+// as we were made painfully aware not long ago, see 6786503).
+#define BUSY (cast_to_oop<intptr_t>(0x1aff1aff))
+void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
+  assert(is_in_reserved(from_space_obj), "Should be from this generation");
+  if (ParGCUseLocalOverflow) {
+    // In the case of compressed oops, we use a private, not-shared
+    // overflow stack.
+    par_scan_state->push_on_overflow_stack(from_space_obj);
+  } else {
+    assert(!UseCompressedOops, "Error");
+    // if the object has been forwarded to itself, then we cannot
+    // use the klass pointer for the linked list.  Instead we have
+    // to allocate an oopDesc in the C-Heap and use that for the linked list.
+    // XXX This is horribly inefficient when a promotion failure occurs
+    // and should be fixed. XXX FIX ME !!!
+#ifndef PRODUCT
+    Atomic::inc_ptr(&_num_par_pushes);
+    assert(_num_par_pushes > 0, "Tautology");
+#endif
+    if (from_space_obj->forwardee() == from_space_obj) {
+      oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
+      listhead->forward_to(from_space_obj);
+      from_space_obj = listhead;
+    }
+    oop observed_overflow_list = _overflow_list;
+    oop cur_overflow_list;
+    do {
+      cur_overflow_list = observed_overflow_list;
+      if (cur_overflow_list != BUSY) {
+        from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
+      } else {
+        from_space_obj->set_klass_to_list_ptr(NULL);
+      }
+      observed_overflow_list =
+        (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
+    } while (cur_overflow_list != observed_overflow_list);
+  }
+}
+
+bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
+  bool res;
+
+  if (ParGCUseLocalOverflow) {
+    res = par_scan_state->take_from_overflow_stack();
+  } else {
+    assert(!UseCompressedOops, "Error");
+    res = take_from_overflow_list_work(par_scan_state);
+  }
+  return res;
+}
+
+
+// *NOTE*: The overflow list manipulation code here and
+// in CMSCollector:: are very similar in shape,
+// except that in the CMS case we thread the objects
+// directly into the list via their mark word, and do
+// not need to deal with special cases below related
+// to chunking of object arrays and promotion failure
+// handling.
+// CR 6797058 has been filed to attempt consolidation of
+// the common code.
+// Because of the common code, if you make any changes in
+// the code below, please check the CMS version to see if
+// similar changes might be needed.
+// See CMSCollector::par_take_from_overflow_list() for
+// more extensive documentation comments.
+bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
+  ObjToScanQueue* work_q = par_scan_state->work_queue();
+  // How many to take?
+  size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
+                                 (size_t)ParGCDesiredObjsFromOverflowList);
+
+  assert(!UseCompressedOops, "Error");
+  assert(par_scan_state->overflow_stack() == NULL, "Error");
+  if (_overflow_list == NULL) return false;
+
+  // Otherwise, there was something there; try claiming the list.
+  oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
+  // Trim off a prefix of at most objsFromOverflow items
+  Thread* tid = Thread::current();
+  size_t spin_count = ParallelGCThreads;
+  size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
+  for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
+    // someone grabbed it before we did ...
+    // ... we spin for a short while...
+    os::sleep(tid, sleep_time_millis, false);
+    if (_overflow_list == NULL) {
+      // nothing left to take
+      return false;
+    } else if (_overflow_list != BUSY) {
+     // try and grab the prefix
+     prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
+    }
+  }
+  if (prefix == NULL || prefix == BUSY) {
+     // Nothing to take or waited long enough
+     if (prefix == NULL) {
+       // Write back the NULL in case we overwrote it with BUSY above
+       // and it is still the same value.
+       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
+     }
+     return false;
+  }
+  assert(prefix != NULL && prefix != BUSY, "Error");
+  oop cur = prefix;
+  for (size_t i = 1; i < objsFromOverflow; ++i) {
+    oop next = cur->list_ptr_from_klass();
+    if (next == NULL) break;
+    cur = next;
+  }
+  assert(cur != NULL, "Loop postcondition");
+
+  // Reattach remaining (suffix) to overflow list
+  oop suffix = cur->list_ptr_from_klass();
+  if (suffix == NULL) {
+    // Write back the NULL in lieu of the BUSY we wrote
+    // above and it is still the same value.
+    if (_overflow_list == BUSY) {
+      (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
+    }
+  } else {
+    assert(suffix != BUSY, "Error");
+    // suffix will be put back on global list
+    cur->set_klass_to_list_ptr(NULL);     // break off suffix
+    // It's possible that the list is still in the empty(busy) state
+    // we left it in a short while ago; in that case we may be
+    // able to place back the suffix.
+    oop observed_overflow_list = _overflow_list;
+    oop cur_overflow_list = observed_overflow_list;
+    bool attached = false;
+    while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
+      observed_overflow_list =
+        (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
+      if (cur_overflow_list == observed_overflow_list) {
+        attached = true;
+        break;
+      } else cur_overflow_list = observed_overflow_list;
+    }
+    if (!attached) {
+      // Too bad, someone else got in in between; we'll need to do a splice.
+      // Find the last item of suffix list
+      oop last = suffix;
+      while (true) {
+        oop next = last->list_ptr_from_klass();
+        if (next == NULL) break;
+        last = next;
+      }
+      // Atomically prepend suffix to current overflow list
+      observed_overflow_list = _overflow_list;
+      do {
+        cur_overflow_list = observed_overflow_list;
+        if (cur_overflow_list != BUSY) {
+          // Do the splice ...
+          last->set_klass_to_list_ptr(cur_overflow_list);
+        } else { // cur_overflow_list == BUSY
+          last->set_klass_to_list_ptr(NULL);
+        }
+        observed_overflow_list =
+          (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
+      } while (cur_overflow_list != observed_overflow_list);
+    }
+  }
+
+  // Push objects on prefix list onto this thread's work queue
+  assert(prefix != NULL && prefix != BUSY, "program logic");
+  cur = prefix;
+  ssize_t n = 0;
+  while (cur != NULL) {
+    oop obj_to_push = cur->forwardee();
+    oop next        = cur->list_ptr_from_klass();
+    cur->set_klass(obj_to_push->klass());
+    // This may be an array object that is self-forwarded. In that case, the list pointer
+    // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
+    if (!is_in_reserved(cur)) {
+      // This can become a scaling bottleneck when there is work queue overflow coincident
+      // with promotion failure.
+      oopDesc* f = cur;
+      FREE_C_HEAP_ARRAY(oopDesc, f);
+    } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
+      assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
+      obj_to_push = cur;
+    }
+    bool ok = work_q->push(obj_to_push);
+    assert(ok, "Should have succeeded");
+    cur = next;
+    n++;
+  }
+  TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
+#ifndef PRODUCT
+  assert(_num_par_pushes >= n, "Too many pops?");
+  Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
+#endif
+  return true;
+}
+#undef BUSY
+
+void ParNewGeneration::ref_processor_init() {
+  if (_ref_processor == NULL) {
+    // Allocate and initialize a reference processor
+    _ref_processor =
+      new ReferenceProcessor(_reserved,                  // span
+                             ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
+                             ParallelGCThreads,          // mt processing degree
+                             refs_discovery_is_mt(),     // mt discovery
+                             ParallelGCThreads,          // mt discovery degree
+                             refs_discovery_is_atomic(), // atomic_discovery
+                             NULL);                      // is_alive_non_header
+  }
+}
+
+const char* ParNewGeneration::name() const {
+  return "par new generation";
+}