src/hotspot/share/c1/c1_LIRGenerator.cpp
changeset 47216 71c04702a3d5
parent 46633 5b87fe93ef6d
child 47580 96392e113a0a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/c1/c1_LIRGenerator.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,3794 @@
+/*
+ * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "c1/c1_Compilation.hpp"
+#include "c1/c1_Defs.hpp"
+#include "c1/c1_FrameMap.hpp"
+#include "c1/c1_Instruction.hpp"
+#include "c1/c1_LIRAssembler.hpp"
+#include "c1/c1_LIRGenerator.hpp"
+#include "c1/c1_ValueStack.hpp"
+#include "ci/ciArrayKlass.hpp"
+#include "ci/ciInstance.hpp"
+#include "ci/ciObjArray.hpp"
+#include "gc/shared/cardTableModRefBS.hpp"
+#include "runtime/arguments.hpp"
+#include "runtime/sharedRuntime.hpp"
+#include "runtime/stubRoutines.hpp"
+#include "runtime/vm_version.hpp"
+#include "utilities/bitMap.inline.hpp"
+#include "utilities/macros.hpp"
+#if INCLUDE_ALL_GCS
+#include "gc/g1/heapRegion.hpp"
+#endif // INCLUDE_ALL_GCS
+#ifdef TRACE_HAVE_INTRINSICS
+#include "trace/traceMacros.hpp"
+#endif
+
+#ifdef ASSERT
+#define __ gen()->lir(__FILE__, __LINE__)->
+#else
+#define __ gen()->lir()->
+#endif
+
+#ifndef PATCHED_ADDR
+#define PATCHED_ADDR  (max_jint)
+#endif
+
+void PhiResolverState::reset(int max_vregs) {
+  // Initialize array sizes
+  _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
+  _virtual_operands.trunc_to(0);
+  _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
+  _other_operands.trunc_to(0);
+  _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
+  _vreg_table.trunc_to(0);
+}
+
+
+
+//--------------------------------------------------------------
+// PhiResolver
+
+// Resolves cycles:
+//
+//  r1 := r2  becomes  temp := r1
+//  r2 := r1           r1 := r2
+//                     r2 := temp
+// and orders moves:
+//
+//  r2 := r3  becomes  r1 := r2
+//  r1 := r2           r2 := r3
+
+PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
+ : _gen(gen)
+ , _state(gen->resolver_state())
+ , _temp(LIR_OprFact::illegalOpr)
+{
+  // reinitialize the shared state arrays
+  _state.reset(max_vregs);
+}
+
+
+void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
+  assert(src->is_valid(), "");
+  assert(dest->is_valid(), "");
+  __ move(src, dest);
+}
+
+
+void PhiResolver::move_temp_to(LIR_Opr dest) {
+  assert(_temp->is_valid(), "");
+  emit_move(_temp, dest);
+  NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
+}
+
+
+void PhiResolver::move_to_temp(LIR_Opr src) {
+  assert(_temp->is_illegal(), "");
+  _temp = _gen->new_register(src->type());
+  emit_move(src, _temp);
+}
+
+
+// Traverse assignment graph in depth first order and generate moves in post order
+// ie. two assignments: b := c, a := b start with node c:
+// Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
+// Generates moves in this order: move b to a and move c to b
+// ie. cycle a := b, b := a start with node a
+// Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
+// Generates moves in this order: move b to temp, move a to b, move temp to a
+void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
+  if (!dest->visited()) {
+    dest->set_visited();
+    for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
+      move(dest, dest->destination_at(i));
+    }
+  } else if (!dest->start_node()) {
+    // cylce in graph detected
+    assert(_loop == NULL, "only one loop valid!");
+    _loop = dest;
+    move_to_temp(src->operand());
+    return;
+  } // else dest is a start node
+
+  if (!dest->assigned()) {
+    if (_loop == dest) {
+      move_temp_to(dest->operand());
+      dest->set_assigned();
+    } else if (src != NULL) {
+      emit_move(src->operand(), dest->operand());
+      dest->set_assigned();
+    }
+  }
+}
+
+
+PhiResolver::~PhiResolver() {
+  int i;
+  // resolve any cycles in moves from and to virtual registers
+  for (i = virtual_operands().length() - 1; i >= 0; i --) {
+    ResolveNode* node = virtual_operands().at(i);
+    if (!node->visited()) {
+      _loop = NULL;
+      move(NULL, node);
+      node->set_start_node();
+      assert(_temp->is_illegal(), "move_temp_to() call missing");
+    }
+  }
+
+  // generate move for move from non virtual register to abitrary destination
+  for (i = other_operands().length() - 1; i >= 0; i --) {
+    ResolveNode* node = other_operands().at(i);
+    for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
+      emit_move(node->operand(), node->destination_at(j)->operand());
+    }
+  }
+}
+
+
+ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
+  ResolveNode* node;
+  if (opr->is_virtual()) {
+    int vreg_num = opr->vreg_number();
+    node = vreg_table().at_grow(vreg_num, NULL);
+    assert(node == NULL || node->operand() == opr, "");
+    if (node == NULL) {
+      node = new ResolveNode(opr);
+      vreg_table().at_put(vreg_num, node);
+    }
+    // Make sure that all virtual operands show up in the list when
+    // they are used as the source of a move.
+    if (source && !virtual_operands().contains(node)) {
+      virtual_operands().append(node);
+    }
+  } else {
+    assert(source, "");
+    node = new ResolveNode(opr);
+    other_operands().append(node);
+  }
+  return node;
+}
+
+
+void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
+  assert(dest->is_virtual(), "");
+  // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
+  assert(src->is_valid(), "");
+  assert(dest->is_valid(), "");
+  ResolveNode* source = source_node(src);
+  source->append(destination_node(dest));
+}
+
+
+//--------------------------------------------------------------
+// LIRItem
+
+void LIRItem::set_result(LIR_Opr opr) {
+  assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
+  value()->set_operand(opr);
+
+  if (opr->is_virtual()) {
+    _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
+  }
+
+  _result = opr;
+}
+
+void LIRItem::load_item() {
+  if (result()->is_illegal()) {
+    // update the items result
+    _result = value()->operand();
+  }
+  if (!result()->is_register()) {
+    LIR_Opr reg = _gen->new_register(value()->type());
+    __ move(result(), reg);
+    if (result()->is_constant()) {
+      _result = reg;
+    } else {
+      set_result(reg);
+    }
+  }
+}
+
+
+void LIRItem::load_for_store(BasicType type) {
+  if (_gen->can_store_as_constant(value(), type)) {
+    _result = value()->operand();
+    if (!_result->is_constant()) {
+      _result = LIR_OprFact::value_type(value()->type());
+    }
+  } else if (type == T_BYTE || type == T_BOOLEAN) {
+    load_byte_item();
+  } else {
+    load_item();
+  }
+}
+
+void LIRItem::load_item_force(LIR_Opr reg) {
+  LIR_Opr r = result();
+  if (r != reg) {
+#if !defined(ARM) && !defined(E500V2)
+    if (r->type() != reg->type()) {
+      // moves between different types need an intervening spill slot
+      r = _gen->force_to_spill(r, reg->type());
+    }
+#endif
+    __ move(r, reg);
+    _result = reg;
+  }
+}
+
+ciObject* LIRItem::get_jobject_constant() const {
+  ObjectType* oc = type()->as_ObjectType();
+  if (oc) {
+    return oc->constant_value();
+  }
+  return NULL;
+}
+
+
+jint LIRItem::get_jint_constant() const {
+  assert(is_constant() && value() != NULL, "");
+  assert(type()->as_IntConstant() != NULL, "type check");
+  return type()->as_IntConstant()->value();
+}
+
+
+jint LIRItem::get_address_constant() const {
+  assert(is_constant() && value() != NULL, "");
+  assert(type()->as_AddressConstant() != NULL, "type check");
+  return type()->as_AddressConstant()->value();
+}
+
+
+jfloat LIRItem::get_jfloat_constant() const {
+  assert(is_constant() && value() != NULL, "");
+  assert(type()->as_FloatConstant() != NULL, "type check");
+  return type()->as_FloatConstant()->value();
+}
+
+
+jdouble LIRItem::get_jdouble_constant() const {
+  assert(is_constant() && value() != NULL, "");
+  assert(type()->as_DoubleConstant() != NULL, "type check");
+  return type()->as_DoubleConstant()->value();
+}
+
+
+jlong LIRItem::get_jlong_constant() const {
+  assert(is_constant() && value() != NULL, "");
+  assert(type()->as_LongConstant() != NULL, "type check");
+  return type()->as_LongConstant()->value();
+}
+
+
+
+//--------------------------------------------------------------
+
+
+void LIRGenerator::init() {
+  _bs = Universe::heap()->barrier_set();
+}
+
+
+void LIRGenerator::block_do_prolog(BlockBegin* block) {
+#ifndef PRODUCT
+  if (PrintIRWithLIR) {
+    block->print();
+  }
+#endif
+
+  // set up the list of LIR instructions
+  assert(block->lir() == NULL, "LIR list already computed for this block");
+  _lir = new LIR_List(compilation(), block);
+  block->set_lir(_lir);
+
+  __ branch_destination(block->label());
+
+  if (LIRTraceExecution &&
+      Compilation::current()->hir()->start()->block_id() != block->block_id() &&
+      !block->is_set(BlockBegin::exception_entry_flag)) {
+    assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
+    trace_block_entry(block);
+  }
+}
+
+
+void LIRGenerator::block_do_epilog(BlockBegin* block) {
+#ifndef PRODUCT
+  if (PrintIRWithLIR) {
+    tty->cr();
+  }
+#endif
+
+  // LIR_Opr for unpinned constants shouldn't be referenced by other
+  // blocks so clear them out after processing the block.
+  for (int i = 0; i < _unpinned_constants.length(); i++) {
+    _unpinned_constants.at(i)->clear_operand();
+  }
+  _unpinned_constants.trunc_to(0);
+
+  // clear our any registers for other local constants
+  _constants.trunc_to(0);
+  _reg_for_constants.trunc_to(0);
+}
+
+
+void LIRGenerator::block_do(BlockBegin* block) {
+  CHECK_BAILOUT();
+
+  block_do_prolog(block);
+  set_block(block);
+
+  for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
+    if (instr->is_pinned()) do_root(instr);
+  }
+
+  set_block(NULL);
+  block_do_epilog(block);
+}
+
+
+//-------------------------LIRGenerator-----------------------------
+
+// This is where the tree-walk starts; instr must be root;
+void LIRGenerator::do_root(Value instr) {
+  CHECK_BAILOUT();
+
+  InstructionMark im(compilation(), instr);
+
+  assert(instr->is_pinned(), "use only with roots");
+  assert(instr->subst() == instr, "shouldn't have missed substitution");
+
+  instr->visit(this);
+
+  assert(!instr->has_uses() || instr->operand()->is_valid() ||
+         instr->as_Constant() != NULL || bailed_out(), "invalid item set");
+}
+
+
+// This is called for each node in tree; the walk stops if a root is reached
+void LIRGenerator::walk(Value instr) {
+  InstructionMark im(compilation(), instr);
+  //stop walk when encounter a root
+  if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
+    assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
+  } else {
+    assert(instr->subst() == instr, "shouldn't have missed substitution");
+    instr->visit(this);
+    // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
+  }
+}
+
+
+CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
+  assert(state != NULL, "state must be defined");
+
+#ifndef PRODUCT
+  state->verify();
+#endif
+
+  ValueStack* s = state;
+  for_each_state(s) {
+    if (s->kind() == ValueStack::EmptyExceptionState) {
+      assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
+      continue;
+    }
+
+    int index;
+    Value value;
+    for_each_stack_value(s, index, value) {
+      assert(value->subst() == value, "missed substitution");
+      if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
+        walk(value);
+        assert(value->operand()->is_valid(), "must be evaluated now");
+      }
+    }
+
+    int bci = s->bci();
+    IRScope* scope = s->scope();
+    ciMethod* method = scope->method();
+
+    MethodLivenessResult liveness = method->liveness_at_bci(bci);
+    if (bci == SynchronizationEntryBCI) {
+      if (x->as_ExceptionObject() || x->as_Throw()) {
+        // all locals are dead on exit from the synthetic unlocker
+        liveness.clear();
+      } else {
+        assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
+      }
+    }
+    if (!liveness.is_valid()) {
+      // Degenerate or breakpointed method.
+      bailout("Degenerate or breakpointed method");
+    } else {
+      assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
+      for_each_local_value(s, index, value) {
+        assert(value->subst() == value, "missed substition");
+        if (liveness.at(index) && !value->type()->is_illegal()) {
+          if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
+            walk(value);
+            assert(value->operand()->is_valid(), "must be evaluated now");
+          }
+        } else {
+          // NULL out this local so that linear scan can assume that all non-NULL values are live.
+          s->invalidate_local(index);
+        }
+      }
+    }
+  }
+
+  return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
+}
+
+
+CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
+  return state_for(x, x->exception_state());
+}
+
+
+void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
+  /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
+   * is active and the class hasn't yet been resolved we need to emit a patch that resolves
+   * the class. */
+  if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
+    assert(info != NULL, "info must be set if class is not loaded");
+    __ klass2reg_patch(NULL, r, info);
+  } else {
+    // no patching needed
+    __ metadata2reg(obj->constant_encoding(), r);
+  }
+}
+
+
+void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
+                                    CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
+  CodeStub* stub = new RangeCheckStub(range_check_info, index);
+  if (index->is_constant()) {
+    cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
+                index->as_jint(), null_check_info);
+    __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
+  } else {
+    cmp_reg_mem(lir_cond_aboveEqual, index, array,
+                arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
+    __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
+  }
+}
+
+
+void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
+  CodeStub* stub = new RangeCheckStub(info, index, true);
+  if (index->is_constant()) {
+    cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
+    __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
+  } else {
+    cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
+                java_nio_Buffer::limit_offset(), T_INT, info);
+    __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
+  }
+  __ move(index, result);
+}
+
+
+
+void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
+  LIR_Opr result_op = result;
+  LIR_Opr left_op   = left;
+  LIR_Opr right_op  = right;
+
+  if (TwoOperandLIRForm && left_op != result_op) {
+    assert(right_op != result_op, "malformed");
+    __ move(left_op, result_op);
+    left_op = result_op;
+  }
+
+  switch(code) {
+    case Bytecodes::_dadd:
+    case Bytecodes::_fadd:
+    case Bytecodes::_ladd:
+    case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
+    case Bytecodes::_fmul:
+    case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
+
+    case Bytecodes::_dmul:
+      {
+        if (is_strictfp) {
+          __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
+        } else {
+          __ mul(left_op, right_op, result_op); break;
+        }
+      }
+      break;
+
+    case Bytecodes::_imul:
+      {
+        bool did_strength_reduce = false;
+
+        if (right->is_constant()) {
+          jint c = right->as_jint();
+          if (c > 0 && is_power_of_2(c)) {
+            // do not need tmp here
+            __ shift_left(left_op, exact_log2(c), result_op);
+            did_strength_reduce = true;
+          } else {
+            did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
+          }
+        }
+        // we couldn't strength reduce so just emit the multiply
+        if (!did_strength_reduce) {
+          __ mul(left_op, right_op, result_op);
+        }
+      }
+      break;
+
+    case Bytecodes::_dsub:
+    case Bytecodes::_fsub:
+    case Bytecodes::_lsub:
+    case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
+
+    case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
+    // ldiv and lrem are implemented with a direct runtime call
+
+    case Bytecodes::_ddiv:
+      {
+        if (is_strictfp) {
+          __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
+        } else {
+          __ div (left_op, right_op, result_op); break;
+        }
+      }
+      break;
+
+    case Bytecodes::_drem:
+    case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
+
+    default: ShouldNotReachHere();
+  }
+}
+
+
+void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
+  arithmetic_op(code, result, left, right, false, tmp);
+}
+
+
+void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
+  arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
+}
+
+
+void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
+  arithmetic_op(code, result, left, right, is_strictfp, tmp);
+}
+
+
+void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
+
+  if (TwoOperandLIRForm && value != result_op
+      // Only 32bit right shifts require two operand form on S390.
+      S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
+    assert(count != result_op, "malformed");
+    __ move(value, result_op);
+    value = result_op;
+  }
+
+  assert(count->is_constant() || count->is_register(), "must be");
+  switch(code) {
+  case Bytecodes::_ishl:
+  case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
+  case Bytecodes::_ishr:
+  case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
+  case Bytecodes::_iushr:
+  case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
+  default: ShouldNotReachHere();
+  }
+}
+
+
+void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
+  if (TwoOperandLIRForm && left_op != result_op) {
+    assert(right_op != result_op, "malformed");
+    __ move(left_op, result_op);
+    left_op = result_op;
+  }
+
+  switch(code) {
+    case Bytecodes::_iand:
+    case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
+
+    case Bytecodes::_ior:
+    case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
+
+    case Bytecodes::_ixor:
+    case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
+
+    default: ShouldNotReachHere();
+  }
+}
+
+
+void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
+  if (!GenerateSynchronizationCode) return;
+  // for slow path, use debug info for state after successful locking
+  CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
+  __ load_stack_address_monitor(monitor_no, lock);
+  // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
+  __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
+}
+
+
+void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
+  if (!GenerateSynchronizationCode) return;
+  // setup registers
+  LIR_Opr hdr = lock;
+  lock = new_hdr;
+  CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
+  __ load_stack_address_monitor(monitor_no, lock);
+  __ unlock_object(hdr, object, lock, scratch, slow_path);
+}
+
+#ifndef PRODUCT
+void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
+  if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
+    tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
+  } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
+    tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
+  }
+}
+#endif
+
+void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
+  klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
+  // If klass is not loaded we do not know if the klass has finalizers:
+  if (UseFastNewInstance && klass->is_loaded()
+      && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
+
+    Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
+
+    CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
+
+    assert(klass->is_loaded(), "must be loaded");
+    // allocate space for instance
+    assert(klass->size_helper() >= 0, "illegal instance size");
+    const int instance_size = align_object_size(klass->size_helper());
+    __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
+                       oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
+  } else {
+    CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
+    __ branch(lir_cond_always, T_ILLEGAL, slow_path);
+    __ branch_destination(slow_path->continuation());
+  }
+}
+
+
+static bool is_constant_zero(Instruction* inst) {
+  IntConstant* c = inst->type()->as_IntConstant();
+  if (c) {
+    return (c->value() == 0);
+  }
+  return false;
+}
+
+
+static bool positive_constant(Instruction* inst) {
+  IntConstant* c = inst->type()->as_IntConstant();
+  if (c) {
+    return (c->value() >= 0);
+  }
+  return false;
+}
+
+
+static ciArrayKlass* as_array_klass(ciType* type) {
+  if (type != NULL && type->is_array_klass() && type->is_loaded()) {
+    return (ciArrayKlass*)type;
+  } else {
+    return NULL;
+  }
+}
+
+static ciType* phi_declared_type(Phi* phi) {
+  ciType* t = phi->operand_at(0)->declared_type();
+  if (t == NULL) {
+    return NULL;
+  }
+  for(int i = 1; i < phi->operand_count(); i++) {
+    if (t != phi->operand_at(i)->declared_type()) {
+      return NULL;
+    }
+  }
+  return t;
+}
+
+void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
+  Instruction* src     = x->argument_at(0);
+  Instruction* src_pos = x->argument_at(1);
+  Instruction* dst     = x->argument_at(2);
+  Instruction* dst_pos = x->argument_at(3);
+  Instruction* length  = x->argument_at(4);
+
+  // first try to identify the likely type of the arrays involved
+  ciArrayKlass* expected_type = NULL;
+  bool is_exact = false, src_objarray = false, dst_objarray = false;
+  {
+    ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
+    ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
+    Phi* phi;
+    if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
+      src_declared_type = as_array_klass(phi_declared_type(phi));
+    }
+    ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
+    ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
+    if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
+      dst_declared_type = as_array_klass(phi_declared_type(phi));
+    }
+
+    if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
+      // the types exactly match so the type is fully known
+      is_exact = true;
+      expected_type = src_exact_type;
+    } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
+      ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
+      ciArrayKlass* src_type = NULL;
+      if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
+        src_type = (ciArrayKlass*) src_exact_type;
+      } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
+        src_type = (ciArrayKlass*) src_declared_type;
+      }
+      if (src_type != NULL) {
+        if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
+          is_exact = true;
+          expected_type = dst_type;
+        }
+      }
+    }
+    // at least pass along a good guess
+    if (expected_type == NULL) expected_type = dst_exact_type;
+    if (expected_type == NULL) expected_type = src_declared_type;
+    if (expected_type == NULL) expected_type = dst_declared_type;
+
+    src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
+    dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
+  }
+
+  // if a probable array type has been identified, figure out if any
+  // of the required checks for a fast case can be elided.
+  int flags = LIR_OpArrayCopy::all_flags;
+
+  if (!src_objarray)
+    flags &= ~LIR_OpArrayCopy::src_objarray;
+  if (!dst_objarray)
+    flags &= ~LIR_OpArrayCopy::dst_objarray;
+
+  if (!x->arg_needs_null_check(0))
+    flags &= ~LIR_OpArrayCopy::src_null_check;
+  if (!x->arg_needs_null_check(2))
+    flags &= ~LIR_OpArrayCopy::dst_null_check;
+
+
+  if (expected_type != NULL) {
+    Value length_limit = NULL;
+
+    IfOp* ifop = length->as_IfOp();
+    if (ifop != NULL) {
+      // look for expressions like min(v, a.length) which ends up as
+      //   x > y ? y : x  or  x >= y ? y : x
+      if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
+          ifop->x() == ifop->fval() &&
+          ifop->y() == ifop->tval()) {
+        length_limit = ifop->y();
+      }
+    }
+
+    // try to skip null checks and range checks
+    NewArray* src_array = src->as_NewArray();
+    if (src_array != NULL) {
+      flags &= ~LIR_OpArrayCopy::src_null_check;
+      if (length_limit != NULL &&
+          src_array->length() == length_limit &&
+          is_constant_zero(src_pos)) {
+        flags &= ~LIR_OpArrayCopy::src_range_check;
+      }
+    }
+
+    NewArray* dst_array = dst->as_NewArray();
+    if (dst_array != NULL) {
+      flags &= ~LIR_OpArrayCopy::dst_null_check;
+      if (length_limit != NULL &&
+          dst_array->length() == length_limit &&
+          is_constant_zero(dst_pos)) {
+        flags &= ~LIR_OpArrayCopy::dst_range_check;
+      }
+    }
+
+    // check from incoming constant values
+    if (positive_constant(src_pos))
+      flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
+    if (positive_constant(dst_pos))
+      flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
+    if (positive_constant(length))
+      flags &= ~LIR_OpArrayCopy::length_positive_check;
+
+    // see if the range check can be elided, which might also imply
+    // that src or dst is non-null.
+    ArrayLength* al = length->as_ArrayLength();
+    if (al != NULL) {
+      if (al->array() == src) {
+        // it's the length of the source array
+        flags &= ~LIR_OpArrayCopy::length_positive_check;
+        flags &= ~LIR_OpArrayCopy::src_null_check;
+        if (is_constant_zero(src_pos))
+          flags &= ~LIR_OpArrayCopy::src_range_check;
+      }
+      if (al->array() == dst) {
+        // it's the length of the destination array
+        flags &= ~LIR_OpArrayCopy::length_positive_check;
+        flags &= ~LIR_OpArrayCopy::dst_null_check;
+        if (is_constant_zero(dst_pos))
+          flags &= ~LIR_OpArrayCopy::dst_range_check;
+      }
+    }
+    if (is_exact) {
+      flags &= ~LIR_OpArrayCopy::type_check;
+    }
+  }
+
+  IntConstant* src_int = src_pos->type()->as_IntConstant();
+  IntConstant* dst_int = dst_pos->type()->as_IntConstant();
+  if (src_int && dst_int) {
+    int s_offs = src_int->value();
+    int d_offs = dst_int->value();
+    if (src_int->value() >= dst_int->value()) {
+      flags &= ~LIR_OpArrayCopy::overlapping;
+    }
+    if (expected_type != NULL) {
+      BasicType t = expected_type->element_type()->basic_type();
+      int element_size = type2aelembytes(t);
+      if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
+          ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
+        flags &= ~LIR_OpArrayCopy::unaligned;
+      }
+    }
+  } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
+    // src and dest positions are the same, or dst is zero so assume
+    // nonoverlapping copy.
+    flags &= ~LIR_OpArrayCopy::overlapping;
+  }
+
+  if (src == dst) {
+    // moving within a single array so no type checks are needed
+    if (flags & LIR_OpArrayCopy::type_check) {
+      flags &= ~LIR_OpArrayCopy::type_check;
+    }
+  }
+  *flagsp = flags;
+  *expected_typep = (ciArrayKlass*)expected_type;
+}
+
+
+LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
+  assert(opr->is_register(), "why spill if item is not register?");
+
+  if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
+    LIR_Opr result = new_register(T_FLOAT);
+    set_vreg_flag(result, must_start_in_memory);
+    assert(opr->is_register(), "only a register can be spilled");
+    assert(opr->value_type()->is_float(), "rounding only for floats available");
+    __ roundfp(opr, LIR_OprFact::illegalOpr, result);
+    return result;
+  }
+  return opr;
+}
+
+
+LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
+  assert(type2size[t] == type2size[value->type()],
+         "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
+  if (!value->is_register()) {
+    // force into a register
+    LIR_Opr r = new_register(value->type());
+    __ move(value, r);
+    value = r;
+  }
+
+  // create a spill location
+  LIR_Opr tmp = new_register(t);
+  set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
+
+  // move from register to spill
+  __ move(value, tmp);
+  return tmp;
+}
+
+void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
+  if (if_instr->should_profile()) {
+    ciMethod* method = if_instr->profiled_method();
+    assert(method != NULL, "method should be set if branch is profiled");
+    ciMethodData* md = method->method_data_or_null();
+    assert(md != NULL, "Sanity");
+    ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
+    assert(data != NULL, "must have profiling data");
+    assert(data->is_BranchData(), "need BranchData for two-way branches");
+    int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
+    int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
+    if (if_instr->is_swapped()) {
+      int t = taken_count_offset;
+      taken_count_offset = not_taken_count_offset;
+      not_taken_count_offset = t;
+    }
+
+    LIR_Opr md_reg = new_register(T_METADATA);
+    __ metadata2reg(md->constant_encoding(), md_reg);
+
+    LIR_Opr data_offset_reg = new_pointer_register();
+    __ cmove(lir_cond(cond),
+             LIR_OprFact::intptrConst(taken_count_offset),
+             LIR_OprFact::intptrConst(not_taken_count_offset),
+             data_offset_reg, as_BasicType(if_instr->x()->type()));
+
+    // MDO cells are intptr_t, so the data_reg width is arch-dependent.
+    LIR_Opr data_reg = new_pointer_register();
+    LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
+    __ move(data_addr, data_reg);
+    // Use leal instead of add to avoid destroying condition codes on x86
+    LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
+    __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
+    __ move(data_reg, data_addr);
+  }
+}
+
+// Phi technique:
+// This is about passing live values from one basic block to the other.
+// In code generated with Java it is rather rare that more than one
+// value is on the stack from one basic block to the other.
+// We optimize our technique for efficient passing of one value
+// (of type long, int, double..) but it can be extended.
+// When entering or leaving a basic block, all registers and all spill
+// slots are release and empty. We use the released registers
+// and spill slots to pass the live values from one block
+// to the other. The topmost value, i.e., the value on TOS of expression
+// stack is passed in registers. All other values are stored in spilling
+// area. Every Phi has an index which designates its spill slot
+// At exit of a basic block, we fill the register(s) and spill slots.
+// At entry of a basic block, the block_prolog sets up the content of phi nodes
+// and locks necessary registers and spilling slots.
+
+
+// move current value to referenced phi function
+void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
+  Phi* phi = sux_val->as_Phi();
+  // cur_val can be null without phi being null in conjunction with inlining
+  if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
+    Phi* cur_phi = cur_val->as_Phi();
+    if (cur_phi != NULL && cur_phi->is_illegal()) {
+      // Phi and local would need to get invalidated
+      // (which is unexpected for Linear Scan).
+      // But this case is very rare so we simply bail out.
+      bailout("propagation of illegal phi");
+      return;
+    }
+    LIR_Opr operand = cur_val->operand();
+    if (operand->is_illegal()) {
+      assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
+             "these can be produced lazily");
+      operand = operand_for_instruction(cur_val);
+    }
+    resolver->move(operand, operand_for_instruction(phi));
+  }
+}
+
+
+// Moves all stack values into their PHI position
+void LIRGenerator::move_to_phi(ValueStack* cur_state) {
+  BlockBegin* bb = block();
+  if (bb->number_of_sux() == 1) {
+    BlockBegin* sux = bb->sux_at(0);
+    assert(sux->number_of_preds() > 0, "invalid CFG");
+
+    // a block with only one predecessor never has phi functions
+    if (sux->number_of_preds() > 1) {
+      int max_phis = cur_state->stack_size() + cur_state->locals_size();
+      PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
+
+      ValueStack* sux_state = sux->state();
+      Value sux_value;
+      int index;
+
+      assert(cur_state->scope() == sux_state->scope(), "not matching");
+      assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
+      assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
+
+      for_each_stack_value(sux_state, index, sux_value) {
+        move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
+      }
+
+      for_each_local_value(sux_state, index, sux_value) {
+        move_to_phi(&resolver, cur_state->local_at(index), sux_value);
+      }
+
+      assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
+    }
+  }
+}
+
+
+LIR_Opr LIRGenerator::new_register(BasicType type) {
+  int vreg = _virtual_register_number;
+  // add a little fudge factor for the bailout, since the bailout is
+  // only checked periodically.  This gives a few extra registers to
+  // hand out before we really run out, which helps us keep from
+  // tripping over assertions.
+  if (vreg + 20 >= LIR_OprDesc::vreg_max) {
+    bailout("out of virtual registers");
+    if (vreg + 2 >= LIR_OprDesc::vreg_max) {
+      // wrap it around
+      _virtual_register_number = LIR_OprDesc::vreg_base;
+    }
+  }
+  _virtual_register_number += 1;
+  return LIR_OprFact::virtual_register(vreg, type);
+}
+
+
+// Try to lock using register in hint
+LIR_Opr LIRGenerator::rlock(Value instr) {
+  return new_register(instr->type());
+}
+
+
+// does an rlock and sets result
+LIR_Opr LIRGenerator::rlock_result(Value x) {
+  LIR_Opr reg = rlock(x);
+  set_result(x, reg);
+  return reg;
+}
+
+
+// does an rlock and sets result
+LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
+  LIR_Opr reg;
+  switch (type) {
+  case T_BYTE:
+  case T_BOOLEAN:
+    reg = rlock_byte(type);
+    break;
+  default:
+    reg = rlock(x);
+    break;
+  }
+
+  set_result(x, reg);
+  return reg;
+}
+
+
+//---------------------------------------------------------------------
+ciObject* LIRGenerator::get_jobject_constant(Value value) {
+  ObjectType* oc = value->type()->as_ObjectType();
+  if (oc) {
+    return oc->constant_value();
+  }
+  return NULL;
+}
+
+
+void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
+  assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
+  assert(block()->next() == x, "ExceptionObject must be first instruction of block");
+
+  // no moves are created for phi functions at the begin of exception
+  // handlers, so assign operands manually here
+  for_each_phi_fun(block(), phi,
+                   operand_for_instruction(phi));
+
+  LIR_Opr thread_reg = getThreadPointer();
+  __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
+               exceptionOopOpr());
+  __ move_wide(LIR_OprFact::oopConst(NULL),
+               new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
+  __ move_wide(LIR_OprFact::oopConst(NULL),
+               new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
+
+  LIR_Opr result = new_register(T_OBJECT);
+  __ move(exceptionOopOpr(), result);
+  set_result(x, result);
+}
+
+
+//----------------------------------------------------------------------
+//----------------------------------------------------------------------
+//----------------------------------------------------------------------
+//----------------------------------------------------------------------
+//                        visitor functions
+//----------------------------------------------------------------------
+//----------------------------------------------------------------------
+//----------------------------------------------------------------------
+//----------------------------------------------------------------------
+
+void LIRGenerator::do_Phi(Phi* x) {
+  // phi functions are never visited directly
+  ShouldNotReachHere();
+}
+
+
+// Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
+void LIRGenerator::do_Constant(Constant* x) {
+  if (x->state_before() != NULL) {
+    // Any constant with a ValueStack requires patching so emit the patch here
+    LIR_Opr reg = rlock_result(x);
+    CodeEmitInfo* info = state_for(x, x->state_before());
+    __ oop2reg_patch(NULL, reg, info);
+  } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
+    if (!x->is_pinned()) {
+      // unpinned constants are handled specially so that they can be
+      // put into registers when they are used multiple times within a
+      // block.  After the block completes their operand will be
+      // cleared so that other blocks can't refer to that register.
+      set_result(x, load_constant(x));
+    } else {
+      LIR_Opr res = x->operand();
+      if (!res->is_valid()) {
+        res = LIR_OprFact::value_type(x->type());
+      }
+      if (res->is_constant()) {
+        LIR_Opr reg = rlock_result(x);
+        __ move(res, reg);
+      } else {
+        set_result(x, res);
+      }
+    }
+  } else {
+    set_result(x, LIR_OprFact::value_type(x->type()));
+  }
+}
+
+
+void LIRGenerator::do_Local(Local* x) {
+  // operand_for_instruction has the side effect of setting the result
+  // so there's no need to do it here.
+  operand_for_instruction(x);
+}
+
+
+void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
+  Unimplemented();
+}
+
+
+void LIRGenerator::do_Return(Return* x) {
+  if (compilation()->env()->dtrace_method_probes()) {
+    BasicTypeList signature;
+    signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
+    signature.append(T_METADATA); // Method*
+    LIR_OprList* args = new LIR_OprList();
+    args->append(getThreadPointer());
+    LIR_Opr meth = new_register(T_METADATA);
+    __ metadata2reg(method()->constant_encoding(), meth);
+    args->append(meth);
+    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
+  }
+
+  if (x->type()->is_void()) {
+    __ return_op(LIR_OprFact::illegalOpr);
+  } else {
+    LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
+    LIRItem result(x->result(), this);
+
+    result.load_item_force(reg);
+    __ return_op(result.result());
+  }
+  set_no_result(x);
+}
+
+// Examble: ref.get()
+// Combination of LoadField and g1 pre-write barrier
+void LIRGenerator::do_Reference_get(Intrinsic* x) {
+
+  const int referent_offset = java_lang_ref_Reference::referent_offset;
+  guarantee(referent_offset > 0, "referent offset not initialized");
+
+  assert(x->number_of_arguments() == 1, "wrong type");
+
+  LIRItem reference(x->argument_at(0), this);
+  reference.load_item();
+
+  // need to perform the null check on the reference objecy
+  CodeEmitInfo* info = NULL;
+  if (x->needs_null_check()) {
+    info = state_for(x);
+  }
+
+  LIR_Address* referent_field_adr =
+    new LIR_Address(reference.result(), referent_offset, T_OBJECT);
+
+  LIR_Opr result = rlock_result(x);
+
+  __ load(referent_field_adr, result, info);
+
+  // Register the value in the referent field with the pre-barrier
+  pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
+              result /* pre_val */,
+              false  /* do_load */,
+              false  /* patch */,
+              NULL   /* info */);
+}
+
+// Example: clazz.isInstance(object)
+void LIRGenerator::do_isInstance(Intrinsic* x) {
+  assert(x->number_of_arguments() == 2, "wrong type");
+
+  // TODO could try to substitute this node with an equivalent InstanceOf
+  // if clazz is known to be a constant Class. This will pick up newly found
+  // constants after HIR construction. I'll leave this to a future change.
+
+  // as a first cut, make a simple leaf call to runtime to stay platform independent.
+  // could follow the aastore example in a future change.
+
+  LIRItem clazz(x->argument_at(0), this);
+  LIRItem object(x->argument_at(1), this);
+  clazz.load_item();
+  object.load_item();
+  LIR_Opr result = rlock_result(x);
+
+  // need to perform null check on clazz
+  if (x->needs_null_check()) {
+    CodeEmitInfo* info = state_for(x);
+    __ null_check(clazz.result(), info);
+  }
+
+  LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
+                                     CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
+                                     x->type(),
+                                     NULL); // NULL CodeEmitInfo results in a leaf call
+  __ move(call_result, result);
+}
+
+// Example: object.getClass ()
+void LIRGenerator::do_getClass(Intrinsic* x) {
+  assert(x->number_of_arguments() == 1, "wrong type");
+
+  LIRItem rcvr(x->argument_at(0), this);
+  rcvr.load_item();
+  LIR_Opr temp = new_register(T_METADATA);
+  LIR_Opr result = rlock_result(x);
+
+  // need to perform the null check on the rcvr
+  CodeEmitInfo* info = NULL;
+  if (x->needs_null_check()) {
+    info = state_for(x);
+  }
+
+  // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
+  // meaning of these two is mixed up (see JDK-8026837).
+  __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
+  __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
+}
+
+// java.lang.Class::isPrimitive()
+void LIRGenerator::do_isPrimitive(Intrinsic* x) {
+  assert(x->number_of_arguments() == 1, "wrong type");
+
+  LIRItem rcvr(x->argument_at(0), this);
+  rcvr.load_item();
+  LIR_Opr temp = new_register(T_METADATA);
+  LIR_Opr result = rlock_result(x);
+
+  CodeEmitInfo* info = NULL;
+  if (x->needs_null_check()) {
+    info = state_for(x);
+  }
+
+  __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
+  __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
+  __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
+}
+
+
+// Example: Thread.currentThread()
+void LIRGenerator::do_currentThread(Intrinsic* x) {
+  assert(x->number_of_arguments() == 0, "wrong type");
+  LIR_Opr reg = rlock_result(x);
+  __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
+}
+
+
+void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
+  assert(x->number_of_arguments() == 1, "wrong type");
+  LIRItem receiver(x->argument_at(0), this);
+
+  receiver.load_item();
+  BasicTypeList signature;
+  signature.append(T_OBJECT); // receiver
+  LIR_OprList* args = new LIR_OprList();
+  args->append(receiver.result());
+  CodeEmitInfo* info = state_for(x, x->state());
+  call_runtime(&signature, args,
+               CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
+               voidType, info);
+
+  set_no_result(x);
+}
+
+
+//------------------------local access--------------------------------------
+
+LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
+  if (x->operand()->is_illegal()) {
+    Constant* c = x->as_Constant();
+    if (c != NULL) {
+      x->set_operand(LIR_OprFact::value_type(c->type()));
+    } else {
+      assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
+      // allocate a virtual register for this local or phi
+      x->set_operand(rlock(x));
+      _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
+    }
+  }
+  return x->operand();
+}
+
+
+Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
+  if (opr->is_virtual()) {
+    return instruction_for_vreg(opr->vreg_number());
+  }
+  return NULL;
+}
+
+
+Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
+  if (reg_num < _instruction_for_operand.length()) {
+    return _instruction_for_operand.at(reg_num);
+  }
+  return NULL;
+}
+
+
+void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
+  if (_vreg_flags.size_in_bits() == 0) {
+    BitMap2D temp(100, num_vreg_flags);
+    _vreg_flags = temp;
+  }
+  _vreg_flags.at_put_grow(vreg_num, f, true);
+}
+
+bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
+  if (!_vreg_flags.is_valid_index(vreg_num, f)) {
+    return false;
+  }
+  return _vreg_flags.at(vreg_num, f);
+}
+
+
+// Block local constant handling.  This code is useful for keeping
+// unpinned constants and constants which aren't exposed in the IR in
+// registers.  Unpinned Constant instructions have their operands
+// cleared when the block is finished so that other blocks can't end
+// up referring to their registers.
+
+LIR_Opr LIRGenerator::load_constant(Constant* x) {
+  assert(!x->is_pinned(), "only for unpinned constants");
+  _unpinned_constants.append(x);
+  return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
+}
+
+
+LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
+  BasicType t = c->type();
+  for (int i = 0; i < _constants.length(); i++) {
+    LIR_Const* other = _constants.at(i);
+    if (t == other->type()) {
+      switch (t) {
+      case T_INT:
+      case T_FLOAT:
+        if (c->as_jint_bits() != other->as_jint_bits()) continue;
+        break;
+      case T_LONG:
+      case T_DOUBLE:
+        if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
+        if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
+        break;
+      case T_OBJECT:
+        if (c->as_jobject() != other->as_jobject()) continue;
+        break;
+      default:
+        break;
+      }
+      return _reg_for_constants.at(i);
+    }
+  }
+
+  LIR_Opr result = new_register(t);
+  __ move((LIR_Opr)c, result);
+  _constants.append(c);
+  _reg_for_constants.append(result);
+  return result;
+}
+
+// Various barriers
+
+void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
+                               bool do_load, bool patch, CodeEmitInfo* info) {
+  // Do the pre-write barrier, if any.
+  switch (_bs->kind()) {
+#if INCLUDE_ALL_GCS
+    case BarrierSet::G1SATBCTLogging:
+      G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
+      break;
+#endif // INCLUDE_ALL_GCS
+    case BarrierSet::CardTableForRS:
+    case BarrierSet::CardTableExtension:
+      // No pre barriers
+      break;
+    case BarrierSet::ModRef:
+      // No pre barriers
+      break;
+    default      :
+      ShouldNotReachHere();
+
+  }
+}
+
+void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
+  switch (_bs->kind()) {
+#if INCLUDE_ALL_GCS
+    case BarrierSet::G1SATBCTLogging:
+      G1SATBCardTableModRef_post_barrier(addr,  new_val);
+      break;
+#endif // INCLUDE_ALL_GCS
+    case BarrierSet::CardTableForRS:
+    case BarrierSet::CardTableExtension:
+      CardTableModRef_post_barrier(addr,  new_val);
+      break;
+    case BarrierSet::ModRef:
+      // No post barriers
+      break;
+    default      :
+      ShouldNotReachHere();
+    }
+}
+
+////////////////////////////////////////////////////////////////////////
+#if INCLUDE_ALL_GCS
+
+void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
+                                                     bool do_load, bool patch, CodeEmitInfo* info) {
+  // First we test whether marking is in progress.
+  BasicType flag_type;
+  if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
+    flag_type = T_INT;
+  } else {
+    guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1,
+              "Assumption");
+    // Use unsigned type T_BOOLEAN here rather than signed T_BYTE since some platforms, eg. ARM,
+    // need to use unsigned instructions to use the large offset to load the satb_mark_queue.
+    flag_type = T_BOOLEAN;
+  }
+  LIR_Opr thrd = getThreadPointer();
+  LIR_Address* mark_active_flag_addr =
+    new LIR_Address(thrd,
+                    in_bytes(JavaThread::satb_mark_queue_offset() +
+                             SATBMarkQueue::byte_offset_of_active()),
+                    flag_type);
+  // Read the marking-in-progress flag.
+  LIR_Opr flag_val = new_register(T_INT);
+  __ load(mark_active_flag_addr, flag_val);
+  __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
+
+  LIR_PatchCode pre_val_patch_code = lir_patch_none;
+
+  CodeStub* slow;
+
+  if (do_load) {
+    assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
+    assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
+
+    if (patch)
+      pre_val_patch_code = lir_patch_normal;
+
+    pre_val = new_register(T_OBJECT);
+
+    if (!addr_opr->is_address()) {
+      assert(addr_opr->is_register(), "must be");
+      addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
+    }
+    slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
+  } else {
+    assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
+    assert(pre_val->is_register(), "must be");
+    assert(pre_val->type() == T_OBJECT, "must be an object");
+    assert(info == NULL, "sanity");
+
+    slow = new G1PreBarrierStub(pre_val);
+  }
+
+  __ branch(lir_cond_notEqual, T_INT, slow);
+  __ branch_destination(slow->continuation());
+}
+
+void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
+  // If the "new_val" is a constant NULL, no barrier is necessary.
+  if (new_val->is_constant() &&
+      new_val->as_constant_ptr()->as_jobject() == NULL) return;
+
+  if (!new_val->is_register()) {
+    LIR_Opr new_val_reg = new_register(T_OBJECT);
+    if (new_val->is_constant()) {
+      __ move(new_val, new_val_reg);
+    } else {
+      __ leal(new_val, new_val_reg);
+    }
+    new_val = new_val_reg;
+  }
+  assert(new_val->is_register(), "must be a register at this point");
+
+  if (addr->is_address()) {
+    LIR_Address* address = addr->as_address_ptr();
+    LIR_Opr ptr = new_pointer_register();
+    if (!address->index()->is_valid() && address->disp() == 0) {
+      __ move(address->base(), ptr);
+    } else {
+      assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
+      __ leal(addr, ptr);
+    }
+    addr = ptr;
+  }
+  assert(addr->is_register(), "must be a register at this point");
+
+  LIR_Opr xor_res = new_pointer_register();
+  LIR_Opr xor_shift_res = new_pointer_register();
+  if (TwoOperandLIRForm ) {
+    __ move(addr, xor_res);
+    __ logical_xor(xor_res, new_val, xor_res);
+    __ move(xor_res, xor_shift_res);
+    __ unsigned_shift_right(xor_shift_res,
+                            LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
+                            xor_shift_res,
+                            LIR_OprDesc::illegalOpr());
+  } else {
+    __ logical_xor(addr, new_val, xor_res);
+    __ unsigned_shift_right(xor_res,
+                            LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
+                            xor_shift_res,
+                            LIR_OprDesc::illegalOpr());
+  }
+
+  if (!new_val->is_register()) {
+    LIR_Opr new_val_reg = new_register(T_OBJECT);
+    __ leal(new_val, new_val_reg);
+    new_val = new_val_reg;
+  }
+  assert(new_val->is_register(), "must be a register at this point");
+
+  __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
+
+  CodeStub* slow = new G1PostBarrierStub(addr, new_val);
+  __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
+  __ branch_destination(slow->continuation());
+}
+
+#endif // INCLUDE_ALL_GCS
+////////////////////////////////////////////////////////////////////////
+
+void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
+  CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(_bs);
+  assert(sizeof(*(ct->byte_map_base)) == sizeof(jbyte), "adjust this code");
+  LIR_Const* card_table_base = new LIR_Const(ct->byte_map_base);
+  if (addr->is_address()) {
+    LIR_Address* address = addr->as_address_ptr();
+    // ptr cannot be an object because we use this barrier for array card marks
+    // and addr can point in the middle of an array.
+    LIR_Opr ptr = new_pointer_register();
+    if (!address->index()->is_valid() && address->disp() == 0) {
+      __ move(address->base(), ptr);
+    } else {
+      assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
+      __ leal(addr, ptr);
+    }
+    addr = ptr;
+  }
+  assert(addr->is_register(), "must be a register at this point");
+
+#ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
+  CardTableModRef_post_barrier_helper(addr, card_table_base);
+#else
+  LIR_Opr tmp = new_pointer_register();
+  if (TwoOperandLIRForm) {
+    __ move(addr, tmp);
+    __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
+  } else {
+    __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
+  }
+
+  LIR_Address* card_addr;
+  if (can_inline_as_constant(card_table_base)) {
+    card_addr = new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE);
+  } else {
+    card_addr = new LIR_Address(tmp, load_constant(card_table_base), T_BYTE);
+  }
+
+  LIR_Opr dirty = LIR_OprFact::intConst(CardTableModRefBS::dirty_card_val());
+  if (UseCondCardMark) {
+    LIR_Opr cur_value = new_register(T_INT);
+    if (UseConcMarkSweepGC) {
+      __ membar_storeload();
+    }
+    __ move(card_addr, cur_value);
+
+    LabelObj* L_already_dirty = new LabelObj();
+    __ cmp(lir_cond_equal, cur_value, dirty);
+    __ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
+    __ move(dirty, card_addr);
+    __ branch_destination(L_already_dirty->label());
+  } else {
+    if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
+      __ membar_storestore();
+    }
+    __ move(dirty, card_addr);
+  }
+#endif
+}
+
+
+//------------------------field access--------------------------------------
+
+// Comment copied form templateTable_i486.cpp
+// ----------------------------------------------------------------------------
+// Volatile variables demand their effects be made known to all CPU's in
+// order.  Store buffers on most chips allow reads & writes to reorder; the
+// JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
+// memory barrier (i.e., it's not sufficient that the interpreter does not
+// reorder volatile references, the hardware also must not reorder them).
+//
+// According to the new Java Memory Model (JMM):
+// (1) All volatiles are serialized wrt to each other.
+// ALSO reads & writes act as aquire & release, so:
+// (2) A read cannot let unrelated NON-volatile memory refs that happen after
+// the read float up to before the read.  It's OK for non-volatile memory refs
+// that happen before the volatile read to float down below it.
+// (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
+// that happen BEFORE the write float down to after the write.  It's OK for
+// non-volatile memory refs that happen after the volatile write to float up
+// before it.
+//
+// We only put in barriers around volatile refs (they are expensive), not
+// _between_ memory refs (that would require us to track the flavor of the
+// previous memory refs).  Requirements (2) and (3) require some barriers
+// before volatile stores and after volatile loads.  These nearly cover
+// requirement (1) but miss the volatile-store-volatile-load case.  This final
+// case is placed after volatile-stores although it could just as well go
+// before volatile-loads.
+
+
+void LIRGenerator::do_StoreField(StoreField* x) {
+  bool needs_patching = x->needs_patching();
+  bool is_volatile = x->field()->is_volatile();
+  BasicType field_type = x->field_type();
+  bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
+
+  CodeEmitInfo* info = NULL;
+  if (needs_patching) {
+    assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
+    info = state_for(x, x->state_before());
+  } else if (x->needs_null_check()) {
+    NullCheck* nc = x->explicit_null_check();
+    if (nc == NULL) {
+      info = state_for(x);
+    } else {
+      info = state_for(nc);
+    }
+  }
+
+
+  LIRItem object(x->obj(), this);
+  LIRItem value(x->value(),  this);
+
+  object.load_item();
+
+  if (is_volatile || needs_patching) {
+    // load item if field is volatile (fewer special cases for volatiles)
+    // load item if field not initialized
+    // load item if field not constant
+    // because of code patching we cannot inline constants
+    if (field_type == T_BYTE || field_type == T_BOOLEAN) {
+      value.load_byte_item();
+    } else  {
+      value.load_item();
+    }
+  } else {
+    value.load_for_store(field_type);
+  }
+
+  set_no_result(x);
+
+#ifndef PRODUCT
+  if (PrintNotLoaded && needs_patching) {
+    tty->print_cr("   ###class not loaded at store_%s bci %d",
+                  x->is_static() ?  "static" : "field", x->printable_bci());
+  }
+#endif
+
+  if (x->needs_null_check() &&
+      (needs_patching ||
+       MacroAssembler::needs_explicit_null_check(x->offset()))) {
+    // Emit an explicit null check because the offset is too large.
+    // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
+    // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
+    __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
+  }
+
+  LIR_Address* address;
+  if (needs_patching) {
+    // we need to patch the offset in the instruction so don't allow
+    // generate_address to try to be smart about emitting the -1.
+    // Otherwise the patching code won't know how to find the
+    // instruction to patch.
+    address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
+  } else {
+    address = generate_address(object.result(), x->offset(), field_type);
+  }
+
+  if (is_volatile && os::is_MP()) {
+    __ membar_release();
+  }
+
+  if (is_oop) {
+    // Do the pre-write barrier, if any.
+    pre_barrier(LIR_OprFact::address(address),
+                LIR_OprFact::illegalOpr /* pre_val */,
+                true /* do_load*/,
+                needs_patching,
+                (info ? new CodeEmitInfo(info) : NULL));
+  }
+
+  bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
+  if (needs_atomic_access && !needs_patching) {
+    volatile_field_store(value.result(), address, info);
+  } else {
+    LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
+    __ store(value.result(), address, info, patch_code);
+  }
+
+  if (is_oop) {
+    // Store to object so mark the card of the header
+    post_barrier(object.result(), value.result());
+  }
+
+  if (!support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
+    __ membar();
+  }
+}
+
+
+void LIRGenerator::do_LoadField(LoadField* x) {
+  bool needs_patching = x->needs_patching();
+  bool is_volatile = x->field()->is_volatile();
+  BasicType field_type = x->field_type();
+
+  CodeEmitInfo* info = NULL;
+  if (needs_patching) {
+    assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
+    info = state_for(x, x->state_before());
+  } else if (x->needs_null_check()) {
+    NullCheck* nc = x->explicit_null_check();
+    if (nc == NULL) {
+      info = state_for(x);
+    } else {
+      info = state_for(nc);
+    }
+  }
+
+  LIRItem object(x->obj(), this);
+
+  object.load_item();
+
+#ifndef PRODUCT
+  if (PrintNotLoaded && needs_patching) {
+    tty->print_cr("   ###class not loaded at load_%s bci %d",
+                  x->is_static() ?  "static" : "field", x->printable_bci());
+  }
+#endif
+
+  bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
+  if (x->needs_null_check() &&
+      (needs_patching ||
+       MacroAssembler::needs_explicit_null_check(x->offset()) ||
+       stress_deopt)) {
+    LIR_Opr obj = object.result();
+    if (stress_deopt) {
+      obj = new_register(T_OBJECT);
+      __ move(LIR_OprFact::oopConst(NULL), obj);
+    }
+    // Emit an explicit null check because the offset is too large.
+    // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
+    // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
+    __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
+  }
+
+  LIR_Opr reg = rlock_result(x, field_type);
+  LIR_Address* address;
+  if (needs_patching) {
+    // we need to patch the offset in the instruction so don't allow
+    // generate_address to try to be smart about emitting the -1.
+    // Otherwise the patching code won't know how to find the
+    // instruction to patch.
+    address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
+  } else {
+    address = generate_address(object.result(), x->offset(), field_type);
+  }
+
+  if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
+    __ membar();
+  }
+
+  bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
+  if (needs_atomic_access && !needs_patching) {
+    volatile_field_load(address, reg, info);
+  } else {
+    LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
+    __ load(address, reg, info, patch_code);
+  }
+
+  if (is_volatile && os::is_MP()) {
+    __ membar_acquire();
+  }
+}
+
+
+//------------------------java.nio.Buffer.checkIndex------------------------
+
+// int java.nio.Buffer.checkIndex(int)
+void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
+  // NOTE: by the time we are in checkIndex() we are guaranteed that
+  // the buffer is non-null (because checkIndex is package-private and
+  // only called from within other methods in the buffer).
+  assert(x->number_of_arguments() == 2, "wrong type");
+  LIRItem buf  (x->argument_at(0), this);
+  LIRItem index(x->argument_at(1), this);
+  buf.load_item();
+  index.load_item();
+
+  LIR_Opr result = rlock_result(x);
+  if (GenerateRangeChecks) {
+    CodeEmitInfo* info = state_for(x);
+    CodeStub* stub = new RangeCheckStub(info, index.result(), true);
+    if (index.result()->is_constant()) {
+      cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
+      __ branch(lir_cond_belowEqual, T_INT, stub);
+    } else {
+      cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
+                  java_nio_Buffer::limit_offset(), T_INT, info);
+      __ branch(lir_cond_aboveEqual, T_INT, stub);
+    }
+    __ move(index.result(), result);
+  } else {
+    // Just load the index into the result register
+    __ move(index.result(), result);
+  }
+}
+
+
+//------------------------array access--------------------------------------
+
+
+void LIRGenerator::do_ArrayLength(ArrayLength* x) {
+  LIRItem array(x->array(), this);
+  array.load_item();
+  LIR_Opr reg = rlock_result(x);
+
+  CodeEmitInfo* info = NULL;
+  if (x->needs_null_check()) {
+    NullCheck* nc = x->explicit_null_check();
+    if (nc == NULL) {
+      info = state_for(x);
+    } else {
+      info = state_for(nc);
+    }
+    if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
+      LIR_Opr obj = new_register(T_OBJECT);
+      __ move(LIR_OprFact::oopConst(NULL), obj);
+      __ null_check(obj, new CodeEmitInfo(info));
+    }
+  }
+  __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
+}
+
+
+void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
+  bool use_length = x->length() != NULL;
+  LIRItem array(x->array(), this);
+  LIRItem index(x->index(), this);
+  LIRItem length(this);
+  bool needs_range_check = x->compute_needs_range_check();
+
+  if (use_length && needs_range_check) {
+    length.set_instruction(x->length());
+    length.load_item();
+  }
+
+  array.load_item();
+  if (index.is_constant() && can_inline_as_constant(x->index())) {
+    // let it be a constant
+    index.dont_load_item();
+  } else {
+    index.load_item();
+  }
+
+  CodeEmitInfo* range_check_info = state_for(x);
+  CodeEmitInfo* null_check_info = NULL;
+  if (x->needs_null_check()) {
+    NullCheck* nc = x->explicit_null_check();
+    if (nc != NULL) {
+      null_check_info = state_for(nc);
+    } else {
+      null_check_info = range_check_info;
+    }
+    if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
+      LIR_Opr obj = new_register(T_OBJECT);
+      __ move(LIR_OprFact::oopConst(NULL), obj);
+      __ null_check(obj, new CodeEmitInfo(null_check_info));
+    }
+  }
+
+  // emit array address setup early so it schedules better
+  LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
+
+  if (GenerateRangeChecks && needs_range_check) {
+    if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
+      __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
+    } else if (use_length) {
+      // TODO: use a (modified) version of array_range_check that does not require a
+      //       constant length to be loaded to a register
+      __ cmp(lir_cond_belowEqual, length.result(), index.result());
+      __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
+    } else {
+      array_range_check(array.result(), index.result(), null_check_info, range_check_info);
+      // The range check performs the null check, so clear it out for the load
+      null_check_info = NULL;
+    }
+  }
+
+  __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
+}
+
+
+void LIRGenerator::do_NullCheck(NullCheck* x) {
+  if (x->can_trap()) {
+    LIRItem value(x->obj(), this);
+    value.load_item();
+    CodeEmitInfo* info = state_for(x);
+    __ null_check(value.result(), info);
+  }
+}
+
+
+void LIRGenerator::do_TypeCast(TypeCast* x) {
+  LIRItem value(x->obj(), this);
+  value.load_item();
+  // the result is the same as from the node we are casting
+  set_result(x, value.result());
+}
+
+
+void LIRGenerator::do_Throw(Throw* x) {
+  LIRItem exception(x->exception(), this);
+  exception.load_item();
+  set_no_result(x);
+  LIR_Opr exception_opr = exception.result();
+  CodeEmitInfo* info = state_for(x, x->state());
+
+#ifndef PRODUCT
+  if (PrintC1Statistics) {
+    increment_counter(Runtime1::throw_count_address(), T_INT);
+  }
+#endif
+
+  // check if the instruction has an xhandler in any of the nested scopes
+  bool unwind = false;
+  if (info->exception_handlers()->length() == 0) {
+    // this throw is not inside an xhandler
+    unwind = true;
+  } else {
+    // get some idea of the throw type
+    bool type_is_exact = true;
+    ciType* throw_type = x->exception()->exact_type();
+    if (throw_type == NULL) {
+      type_is_exact = false;
+      throw_type = x->exception()->declared_type();
+    }
+    if (throw_type != NULL && throw_type->is_instance_klass()) {
+      ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
+      unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
+    }
+  }
+
+  // do null check before moving exception oop into fixed register
+  // to avoid a fixed interval with an oop during the null check.
+  // Use a copy of the CodeEmitInfo because debug information is
+  // different for null_check and throw.
+  if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
+    // if the exception object wasn't created using new then it might be null.
+    __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
+  }
+
+  if (compilation()->env()->jvmti_can_post_on_exceptions()) {
+    // we need to go through the exception lookup path to get JVMTI
+    // notification done
+    unwind = false;
+  }
+
+  // move exception oop into fixed register
+  __ move(exception_opr, exceptionOopOpr());
+
+  if (unwind) {
+    __ unwind_exception(exceptionOopOpr());
+  } else {
+    __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
+  }
+}
+
+
+void LIRGenerator::do_RoundFP(RoundFP* x) {
+  LIRItem input(x->input(), this);
+  input.load_item();
+  LIR_Opr input_opr = input.result();
+  assert(input_opr->is_register(), "why round if value is not in a register?");
+  assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
+  if (input_opr->is_single_fpu()) {
+    set_result(x, round_item(input_opr)); // This code path not currently taken
+  } else {
+    LIR_Opr result = new_register(T_DOUBLE);
+    set_vreg_flag(result, must_start_in_memory);
+    __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
+    set_result(x, result);
+  }
+}
+
+// Here UnsafeGetRaw may have x->base() and x->index() be int or long
+// on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
+void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
+  LIRItem base(x->base(), this);
+  LIRItem idx(this);
+
+  base.load_item();
+  if (x->has_index()) {
+    idx.set_instruction(x->index());
+    idx.load_nonconstant();
+  }
+
+  LIR_Opr reg = rlock_result(x, x->basic_type());
+
+  int   log2_scale = 0;
+  if (x->has_index()) {
+    log2_scale = x->log2_scale();
+  }
+
+  assert(!x->has_index() || idx.value() == x->index(), "should match");
+
+  LIR_Opr base_op = base.result();
+  LIR_Opr index_op = idx.result();
+#ifndef _LP64
+  if (base_op->type() == T_LONG) {
+    base_op = new_register(T_INT);
+    __ convert(Bytecodes::_l2i, base.result(), base_op);
+  }
+  if (x->has_index()) {
+    if (index_op->type() == T_LONG) {
+      LIR_Opr long_index_op = index_op;
+      if (index_op->is_constant()) {
+        long_index_op = new_register(T_LONG);
+        __ move(index_op, long_index_op);
+      }
+      index_op = new_register(T_INT);
+      __ convert(Bytecodes::_l2i, long_index_op, index_op);
+    } else {
+      assert(x->index()->type()->tag() == intTag, "must be");
+    }
+  }
+  // At this point base and index should be all ints.
+  assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
+  assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
+#else
+  if (x->has_index()) {
+    if (index_op->type() == T_INT) {
+      if (!index_op->is_constant()) {
+        index_op = new_register(T_LONG);
+        __ convert(Bytecodes::_i2l, idx.result(), index_op);
+      }
+    } else {
+      assert(index_op->type() == T_LONG, "must be");
+      if (index_op->is_constant()) {
+        index_op = new_register(T_LONG);
+        __ move(idx.result(), index_op);
+      }
+    }
+  }
+  // At this point base is a long non-constant
+  // Index is a long register or a int constant.
+  // We allow the constant to stay an int because that would allow us a more compact encoding by
+  // embedding an immediate offset in the address expression. If we have a long constant, we have to
+  // move it into a register first.
+  assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
+  assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
+                            (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
+#endif
+
+  BasicType dst_type = x->basic_type();
+
+  LIR_Address* addr;
+  if (index_op->is_constant()) {
+    assert(log2_scale == 0, "must not have a scale");
+    assert(index_op->type() == T_INT, "only int constants supported");
+    addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
+  } else {
+#ifdef X86
+    addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
+#elif defined(GENERATE_ADDRESS_IS_PREFERRED)
+    addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
+#else
+    if (index_op->is_illegal() || log2_scale == 0) {
+      addr = new LIR_Address(base_op, index_op, dst_type);
+    } else {
+      LIR_Opr tmp = new_pointer_register();
+      __ shift_left(index_op, log2_scale, tmp);
+      addr = new LIR_Address(base_op, tmp, dst_type);
+    }
+#endif
+  }
+
+  if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
+    __ unaligned_move(addr, reg);
+  } else {
+    if (dst_type == T_OBJECT && x->is_wide()) {
+      __ move_wide(addr, reg);
+    } else {
+      __ move(addr, reg);
+    }
+  }
+}
+
+
+void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
+  int  log2_scale = 0;
+  BasicType type = x->basic_type();
+
+  if (x->has_index()) {
+    log2_scale = x->log2_scale();
+  }
+
+  LIRItem base(x->base(), this);
+  LIRItem value(x->value(), this);
+  LIRItem idx(this);
+
+  base.load_item();
+  if (x->has_index()) {
+    idx.set_instruction(x->index());
+    idx.load_item();
+  }
+
+  if (type == T_BYTE || type == T_BOOLEAN) {
+    value.load_byte_item();
+  } else {
+    value.load_item();
+  }
+
+  set_no_result(x);
+
+  LIR_Opr base_op = base.result();
+  LIR_Opr index_op = idx.result();
+
+#ifdef GENERATE_ADDRESS_IS_PREFERRED
+  LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
+#else
+#ifndef _LP64
+  if (base_op->type() == T_LONG) {
+    base_op = new_register(T_INT);
+    __ convert(Bytecodes::_l2i, base.result(), base_op);
+  }
+  if (x->has_index()) {
+    if (index_op->type() == T_LONG) {
+      index_op = new_register(T_INT);
+      __ convert(Bytecodes::_l2i, idx.result(), index_op);
+    }
+  }
+  // At this point base and index should be all ints and not constants
+  assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
+  assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
+#else
+  if (x->has_index()) {
+    if (index_op->type() == T_INT) {
+      index_op = new_register(T_LONG);
+      __ convert(Bytecodes::_i2l, idx.result(), index_op);
+    }
+  }
+  // At this point base and index are long and non-constant
+  assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
+  assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
+#endif
+
+  if (log2_scale != 0) {
+    // temporary fix (platform dependent code without shift on Intel would be better)
+    // TODO: ARM also allows embedded shift in the address
+    LIR_Opr tmp = new_pointer_register();
+    if (TwoOperandLIRForm) {
+      __ move(index_op, tmp);
+      index_op = tmp;
+    }
+    __ shift_left(index_op, log2_scale, tmp);
+    if (!TwoOperandLIRForm) {
+      index_op = tmp;
+    }
+  }
+
+  LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
+#endif // !GENERATE_ADDRESS_IS_PREFERRED
+  __ move(value.result(), addr);
+}
+
+
+void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
+  BasicType type = x->basic_type();
+  LIRItem src(x->object(), this);
+  LIRItem off(x->offset(), this);
+
+  off.load_item();
+  src.load_item();
+
+  LIR_Opr value = rlock_result(x, x->basic_type());
+
+  if (support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) {
+    __ membar();
+  }
+
+  get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
+
+#if INCLUDE_ALL_GCS
+  // We might be reading the value of the referent field of a
+  // Reference object in order to attach it back to the live
+  // object graph. If G1 is enabled then we need to record
+  // the value that is being returned in an SATB log buffer.
+  //
+  // We need to generate code similar to the following...
+  //
+  // if (offset == java_lang_ref_Reference::referent_offset) {
+  //   if (src != NULL) {
+  //     if (klass(src)->reference_type() != REF_NONE) {
+  //       pre_barrier(..., value, ...);
+  //     }
+  //   }
+  // }
+
+  if (UseG1GC && type == T_OBJECT) {
+    bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
+    bool gen_offset_check = true;    // Assume we need to generate the offset guard.
+    bool gen_source_check = true;    // Assume we need to check the src object for null.
+    bool gen_type_check = true;      // Assume we need to check the reference_type.
+
+    if (off.is_constant()) {
+      jlong off_con = (off.type()->is_int() ?
+                        (jlong) off.get_jint_constant() :
+                        off.get_jlong_constant());
+
+
+      if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
+        // The constant offset is something other than referent_offset.
+        // We can skip generating/checking the remaining guards and
+        // skip generation of the code stub.
+        gen_pre_barrier = false;
+      } else {
+        // The constant offset is the same as referent_offset -
+        // we do not need to generate a runtime offset check.
+        gen_offset_check = false;
+      }
+    }
+
+    // We don't need to generate stub if the source object is an array
+    if (gen_pre_barrier && src.type()->is_array()) {
+      gen_pre_barrier = false;
+    }
+
+    if (gen_pre_barrier) {
+      // We still need to continue with the checks.
+      if (src.is_constant()) {
+        ciObject* src_con = src.get_jobject_constant();
+        guarantee(src_con != NULL, "no source constant");
+
+        if (src_con->is_null_object()) {
+          // The constant src object is null - We can skip
+          // generating the code stub.
+          gen_pre_barrier = false;
+        } else {
+          // Non-null constant source object. We still have to generate
+          // the slow stub - but we don't need to generate the runtime
+          // null object check.
+          gen_source_check = false;
+        }
+      }
+    }
+    if (gen_pre_barrier && !PatchALot) {
+      // Can the klass of object be statically determined to be
+      // a sub-class of Reference?
+      ciType* type = src.value()->declared_type();
+      if ((type != NULL) && type->is_loaded()) {
+        if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
+          gen_type_check = false;
+        } else if (type->is_klass() &&
+                   !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
+          // Not Reference and not Object klass.
+          gen_pre_barrier = false;
+        }
+      }
+    }
+
+    if (gen_pre_barrier) {
+      LabelObj* Lcont = new LabelObj();
+
+      // We can have generate one runtime check here. Let's start with
+      // the offset check.
+      if (gen_offset_check) {
+        // if (offset != referent_offset) -> continue
+        // If offset is an int then we can do the comparison with the
+        // referent_offset constant; otherwise we need to move
+        // referent_offset into a temporary register and generate
+        // a reg-reg compare.
+
+        LIR_Opr referent_off;
+
+        if (off.type()->is_int()) {
+          referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
+        } else {
+          assert(off.type()->is_long(), "what else?");
+          referent_off = new_register(T_LONG);
+          __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
+        }
+        __ cmp(lir_cond_notEqual, off.result(), referent_off);
+        __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
+      }
+      if (gen_source_check) {
+        // offset is a const and equals referent offset
+        // if (source == null) -> continue
+        __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
+        __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
+      }
+      LIR_Opr src_klass = new_register(T_OBJECT);
+      if (gen_type_check) {
+        // We have determined that offset == referent_offset && src != null.
+        // if (src->_klass->_reference_type == REF_NONE) -> continue
+        __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
+        LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
+        LIR_Opr reference_type = new_register(T_INT);
+        __ move(reference_type_addr, reference_type);
+        __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
+        __ branch(lir_cond_equal, T_INT, Lcont->label());
+      }
+      {
+        // We have determined that src->_klass->_reference_type != REF_NONE
+        // so register the value in the referent field with the pre-barrier.
+        pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
+                    value  /* pre_val */,
+                    false  /* do_load */,
+                    false  /* patch */,
+                    NULL   /* info */);
+      }
+      __ branch_destination(Lcont->label());
+    }
+  }
+#endif // INCLUDE_ALL_GCS
+
+  if (x->is_volatile() && os::is_MP()) __ membar_acquire();
+
+  /* Normalize boolean value returned by unsafe operation, i.e., value  != 0 ? value = true : value false. */
+  if (type == T_BOOLEAN) {
+    LabelObj* equalZeroLabel = new LabelObj();
+    __ cmp(lir_cond_equal, value, 0);
+    __ branch(lir_cond_equal, T_BOOLEAN, equalZeroLabel->label());
+    __ move(LIR_OprFact::intConst(1), value);
+    __ branch_destination(equalZeroLabel->label());
+  }
+}
+
+
+void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
+  BasicType type = x->basic_type();
+  LIRItem src(x->object(), this);
+  LIRItem off(x->offset(), this);
+  LIRItem data(x->value(), this);
+
+  src.load_item();
+  if (type == T_BOOLEAN || type == T_BYTE) {
+    data.load_byte_item();
+  } else {
+    data.load_item();
+  }
+  off.load_item();
+
+  set_no_result(x);
+
+  if (x->is_volatile() && os::is_MP()) __ membar_release();
+  put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
+  if (!support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) __ membar();
+}
+
+
+void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
+  int lng = x->length();
+
+  for (int i = 0; i < lng; i++) {
+    SwitchRange* one_range = x->at(i);
+    int low_key = one_range->low_key();
+    int high_key = one_range->high_key();
+    BlockBegin* dest = one_range->sux();
+    if (low_key == high_key) {
+      __ cmp(lir_cond_equal, value, low_key);
+      __ branch(lir_cond_equal, T_INT, dest);
+    } else if (high_key - low_key == 1) {
+      __ cmp(lir_cond_equal, value, low_key);
+      __ branch(lir_cond_equal, T_INT, dest);
+      __ cmp(lir_cond_equal, value, high_key);
+      __ branch(lir_cond_equal, T_INT, dest);
+    } else {
+      LabelObj* L = new LabelObj();
+      __ cmp(lir_cond_less, value, low_key);
+      __ branch(lir_cond_less, T_INT, L->label());
+      __ cmp(lir_cond_lessEqual, value, high_key);
+      __ branch(lir_cond_lessEqual, T_INT, dest);
+      __ branch_destination(L->label());
+    }
+  }
+  __ jump(default_sux);
+}
+
+
+SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
+  SwitchRangeList* res = new SwitchRangeList();
+  int len = x->length();
+  if (len > 0) {
+    BlockBegin* sux = x->sux_at(0);
+    int key = x->lo_key();
+    BlockBegin* default_sux = x->default_sux();
+    SwitchRange* range = new SwitchRange(key, sux);
+    for (int i = 0; i < len; i++, key++) {
+      BlockBegin* new_sux = x->sux_at(i);
+      if (sux == new_sux) {
+        // still in same range
+        range->set_high_key(key);
+      } else {
+        // skip tests which explicitly dispatch to the default
+        if (sux != default_sux) {
+          res->append(range);
+        }
+        range = new SwitchRange(key, new_sux);
+      }
+      sux = new_sux;
+    }
+    if (res->length() == 0 || res->last() != range)  res->append(range);
+  }
+  return res;
+}
+
+
+// we expect the keys to be sorted by increasing value
+SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
+  SwitchRangeList* res = new SwitchRangeList();
+  int len = x->length();
+  if (len > 0) {
+    BlockBegin* default_sux = x->default_sux();
+    int key = x->key_at(0);
+    BlockBegin* sux = x->sux_at(0);
+    SwitchRange* range = new SwitchRange(key, sux);
+    for (int i = 1; i < len; i++) {
+      int new_key = x->key_at(i);
+      BlockBegin* new_sux = x->sux_at(i);
+      if (key+1 == new_key && sux == new_sux) {
+        // still in same range
+        range->set_high_key(new_key);
+      } else {
+        // skip tests which explicitly dispatch to the default
+        if (range->sux() != default_sux) {
+          res->append(range);
+        }
+        range = new SwitchRange(new_key, new_sux);
+      }
+      key = new_key;
+      sux = new_sux;
+    }
+    if (res->length() == 0 || res->last() != range)  res->append(range);
+  }
+  return res;
+}
+
+
+void LIRGenerator::do_TableSwitch(TableSwitch* x) {
+  LIRItem tag(x->tag(), this);
+  tag.load_item();
+  set_no_result(x);
+
+  if (x->is_safepoint()) {
+    __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
+  }
+
+  // move values into phi locations
+  move_to_phi(x->state());
+
+  int lo_key = x->lo_key();
+  int hi_key = x->hi_key();
+  int len = x->length();
+  LIR_Opr value = tag.result();
+  if (UseTableRanges) {
+    do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
+  } else {
+    for (int i = 0; i < len; i++) {
+      __ cmp(lir_cond_equal, value, i + lo_key);
+      __ branch(lir_cond_equal, T_INT, x->sux_at(i));
+    }
+    __ jump(x->default_sux());
+  }
+}
+
+
+void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
+  LIRItem tag(x->tag(), this);
+  tag.load_item();
+  set_no_result(x);
+
+  if (x->is_safepoint()) {
+    __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
+  }
+
+  // move values into phi locations
+  move_to_phi(x->state());
+
+  LIR_Opr value = tag.result();
+  if (UseTableRanges) {
+    do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
+  } else {
+    int len = x->length();
+    for (int i = 0; i < len; i++) {
+      __ cmp(lir_cond_equal, value, x->key_at(i));
+      __ branch(lir_cond_equal, T_INT, x->sux_at(i));
+    }
+    __ jump(x->default_sux());
+  }
+}
+
+
+void LIRGenerator::do_Goto(Goto* x) {
+  set_no_result(x);
+
+  if (block()->next()->as_OsrEntry()) {
+    // need to free up storage used for OSR entry point
+    LIR_Opr osrBuffer = block()->next()->operand();
+    BasicTypeList signature;
+    signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
+    CallingConvention* cc = frame_map()->c_calling_convention(&signature);
+    __ move(osrBuffer, cc->args()->at(0));
+    __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
+                         getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
+  }
+
+  if (x->is_safepoint()) {
+    ValueStack* state = x->state_before() ? x->state_before() : x->state();
+
+    // increment backedge counter if needed
+    CodeEmitInfo* info = state_for(x, state);
+    increment_backedge_counter(info, x->profiled_bci());
+    CodeEmitInfo* safepoint_info = state_for(x, state);
+    __ safepoint(safepoint_poll_register(), safepoint_info);
+  }
+
+  // Gotos can be folded Ifs, handle this case.
+  if (x->should_profile()) {
+    ciMethod* method = x->profiled_method();
+    assert(method != NULL, "method should be set if branch is profiled");
+    ciMethodData* md = method->method_data_or_null();
+    assert(md != NULL, "Sanity");
+    ciProfileData* data = md->bci_to_data(x->profiled_bci());
+    assert(data != NULL, "must have profiling data");
+    int offset;
+    if (x->direction() == Goto::taken) {
+      assert(data->is_BranchData(), "need BranchData for two-way branches");
+      offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
+    } else if (x->direction() == Goto::not_taken) {
+      assert(data->is_BranchData(), "need BranchData for two-way branches");
+      offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
+    } else {
+      assert(data->is_JumpData(), "need JumpData for branches");
+      offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
+    }
+    LIR_Opr md_reg = new_register(T_METADATA);
+    __ metadata2reg(md->constant_encoding(), md_reg);
+
+    increment_counter(new LIR_Address(md_reg, offset,
+                                      NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
+  }
+
+  // emit phi-instruction move after safepoint since this simplifies
+  // describing the state as the safepoint.
+  move_to_phi(x->state());
+
+  __ jump(x->default_sux());
+}
+
+/**
+ * Emit profiling code if needed for arguments, parameters, return value types
+ *
+ * @param md                    MDO the code will update at runtime
+ * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
+ * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
+ * @param profiled_k            current profile
+ * @param obj                   IR node for the object to be profiled
+ * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
+ *                              Set once we find an update to make and use for next ones.
+ * @param not_null              true if we know obj cannot be null
+ * @param signature_at_call_k   signature at call for obj
+ * @param callee_signature_k    signature of callee for obj
+ *                              at call and callee signatures differ at method handle call
+ * @return                      the only klass we know will ever be seen at this profile point
+ */
+ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
+                                    Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
+                                    ciKlass* callee_signature_k) {
+  ciKlass* result = NULL;
+  bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
+  bool do_update = !TypeEntries::is_type_unknown(profiled_k);
+  // known not to be null or null bit already set and already set to
+  // unknown: nothing we can do to improve profiling
+  if (!do_null && !do_update) {
+    return result;
+  }
+
+  ciKlass* exact_klass = NULL;
+  Compilation* comp = Compilation::current();
+  if (do_update) {
+    // try to find exact type, using CHA if possible, so that loading
+    // the klass from the object can be avoided
+    ciType* type = obj->exact_type();
+    if (type == NULL) {
+      type = obj->declared_type();
+      type = comp->cha_exact_type(type);
+    }
+    assert(type == NULL || type->is_klass(), "type should be class");
+    exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
+
+    do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
+  }
+
+  if (!do_null && !do_update) {
+    return result;
+  }
+
+  ciKlass* exact_signature_k = NULL;
+  if (do_update) {
+    // Is the type from the signature exact (the only one possible)?
+    exact_signature_k = signature_at_call_k->exact_klass();
+    if (exact_signature_k == NULL) {
+      exact_signature_k = comp->cha_exact_type(signature_at_call_k);
+    } else {
+      result = exact_signature_k;
+      // Known statically. No need to emit any code: prevent
+      // LIR_Assembler::emit_profile_type() from emitting useless code
+      profiled_k = ciTypeEntries::with_status(result, profiled_k);
+    }
+    // exact_klass and exact_signature_k can be both non NULL but
+    // different if exact_klass is loaded after the ciObject for
+    // exact_signature_k is created.
+    if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
+      // sometimes the type of the signature is better than the best type
+      // the compiler has
+      exact_klass = exact_signature_k;
+    }
+    if (callee_signature_k != NULL &&
+        callee_signature_k != signature_at_call_k) {
+      ciKlass* improved_klass = callee_signature_k->exact_klass();
+      if (improved_klass == NULL) {
+        improved_klass = comp->cha_exact_type(callee_signature_k);
+      }
+      if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
+        exact_klass = exact_signature_k;
+      }
+    }
+    do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
+  }
+
+  if (!do_null && !do_update) {
+    return result;
+  }
+
+  if (mdp == LIR_OprFact::illegalOpr) {
+    mdp = new_register(T_METADATA);
+    __ metadata2reg(md->constant_encoding(), mdp);
+    if (md_base_offset != 0) {
+      LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
+      mdp = new_pointer_register();
+      __ leal(LIR_OprFact::address(base_type_address), mdp);
+    }
+  }
+  LIRItem value(obj, this);
+  value.load_item();
+  __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
+                  value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
+  return result;
+}
+
+// profile parameters on entry to the root of the compilation
+void LIRGenerator::profile_parameters(Base* x) {
+  if (compilation()->profile_parameters()) {
+    CallingConvention* args = compilation()->frame_map()->incoming_arguments();
+    ciMethodData* md = scope()->method()->method_data_or_null();
+    assert(md != NULL, "Sanity");
+
+    if (md->parameters_type_data() != NULL) {
+      ciParametersTypeData* parameters_type_data = md->parameters_type_data();
+      ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
+      LIR_Opr mdp = LIR_OprFact::illegalOpr;
+      for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
+        LIR_Opr src = args->at(i);
+        assert(!src->is_illegal(), "check");
+        BasicType t = src->type();
+        if (t == T_OBJECT || t == T_ARRAY) {
+          intptr_t profiled_k = parameters->type(j);
+          Local* local = x->state()->local_at(java_index)->as_Local();
+          ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
+                                        in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
+                                        profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
+          // If the profile is known statically set it once for all and do not emit any code
+          if (exact != NULL) {
+            md->set_parameter_type(j, exact);
+          }
+          j++;
+        }
+        java_index += type2size[t];
+      }
+    }
+  }
+}
+
+void LIRGenerator::do_Base(Base* x) {
+  __ std_entry(LIR_OprFact::illegalOpr);
+  // Emit moves from physical registers / stack slots to virtual registers
+  CallingConvention* args = compilation()->frame_map()->incoming_arguments();
+  IRScope* irScope = compilation()->hir()->top_scope();
+  int java_index = 0;
+  for (int i = 0; i < args->length(); i++) {
+    LIR_Opr src = args->at(i);
+    assert(!src->is_illegal(), "check");
+    BasicType t = src->type();
+
+    // Types which are smaller than int are passed as int, so
+    // correct the type which passed.
+    switch (t) {
+    case T_BYTE:
+    case T_BOOLEAN:
+    case T_SHORT:
+    case T_CHAR:
+      t = T_INT;
+      break;
+    default:
+      break;
+    }
+
+    LIR_Opr dest = new_register(t);
+    __ move(src, dest);
+
+    // Assign new location to Local instruction for this local
+    Local* local = x->state()->local_at(java_index)->as_Local();
+    assert(local != NULL, "Locals for incoming arguments must have been created");
+#ifndef __SOFTFP__
+    // The java calling convention passes double as long and float as int.
+    assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
+#endif // __SOFTFP__
+    local->set_operand(dest);
+    _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
+    java_index += type2size[t];
+  }
+
+  if (compilation()->env()->dtrace_method_probes()) {
+    BasicTypeList signature;
+    signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
+    signature.append(T_METADATA); // Method*
+    LIR_OprList* args = new LIR_OprList();
+    args->append(getThreadPointer());
+    LIR_Opr meth = new_register(T_METADATA);
+    __ metadata2reg(method()->constant_encoding(), meth);
+    args->append(meth);
+    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
+  }
+
+  if (method()->is_synchronized()) {
+    LIR_Opr obj;
+    if (method()->is_static()) {
+      obj = new_register(T_OBJECT);
+      __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
+    } else {
+      Local* receiver = x->state()->local_at(0)->as_Local();
+      assert(receiver != NULL, "must already exist");
+      obj = receiver->operand();
+    }
+    assert(obj->is_valid(), "must be valid");
+
+    if (method()->is_synchronized() && GenerateSynchronizationCode) {
+      LIR_Opr lock = syncLockOpr();
+      __ load_stack_address_monitor(0, lock);
+
+      CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
+      CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
+
+      // receiver is guaranteed non-NULL so don't need CodeEmitInfo
+      __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
+    }
+  }
+  if (compilation()->age_code()) {
+    CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
+    decrement_age(info);
+  }
+  // increment invocation counters if needed
+  if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
+    profile_parameters(x);
+    CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
+    increment_invocation_counter(info);
+  }
+
+  // all blocks with a successor must end with an unconditional jump
+  // to the successor even if they are consecutive
+  __ jump(x->default_sux());
+}
+
+
+void LIRGenerator::do_OsrEntry(OsrEntry* x) {
+  // construct our frame and model the production of incoming pointer
+  // to the OSR buffer.
+  __ osr_entry(LIR_Assembler::osrBufferPointer());
+  LIR_Opr result = rlock_result(x);
+  __ move(LIR_Assembler::osrBufferPointer(), result);
+}
+
+
+void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
+  assert(args->length() == arg_list->length(),
+         "args=%d, arg_list=%d", args->length(), arg_list->length());
+  for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
+    LIRItem* param = args->at(i);
+    LIR_Opr loc = arg_list->at(i);
+    if (loc->is_register()) {
+      param->load_item_force(loc);
+    } else {
+      LIR_Address* addr = loc->as_address_ptr();
+      param->load_for_store(addr->type());
+      if (addr->type() == T_OBJECT) {
+        __ move_wide(param->result(), addr);
+      } else
+        if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
+          __ unaligned_move(param->result(), addr);
+        } else {
+          __ move(param->result(), addr);
+        }
+    }
+  }
+
+  if (x->has_receiver()) {
+    LIRItem* receiver = args->at(0);
+    LIR_Opr loc = arg_list->at(0);
+    if (loc->is_register()) {
+      receiver->load_item_force(loc);
+    } else {
+      assert(loc->is_address(), "just checking");
+      receiver->load_for_store(T_OBJECT);
+      __ move_wide(receiver->result(), loc->as_address_ptr());
+    }
+  }
+}
+
+
+// Visits all arguments, returns appropriate items without loading them
+LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
+  LIRItemList* argument_items = new LIRItemList();
+  if (x->has_receiver()) {
+    LIRItem* receiver = new LIRItem(x->receiver(), this);
+    argument_items->append(receiver);
+  }
+  for (int i = 0; i < x->number_of_arguments(); i++) {
+    LIRItem* param = new LIRItem(x->argument_at(i), this);
+    argument_items->append(param);
+  }
+  return argument_items;
+}
+
+
+// The invoke with receiver has following phases:
+//   a) traverse and load/lock receiver;
+//   b) traverse all arguments -> item-array (invoke_visit_argument)
+//   c) push receiver on stack
+//   d) load each of the items and push on stack
+//   e) unlock receiver
+//   f) move receiver into receiver-register %o0
+//   g) lock result registers and emit call operation
+//
+// Before issuing a call, we must spill-save all values on stack
+// that are in caller-save register. "spill-save" moves those registers
+// either in a free callee-save register or spills them if no free
+// callee save register is available.
+//
+// The problem is where to invoke spill-save.
+// - if invoked between e) and f), we may lock callee save
+//   register in "spill-save" that destroys the receiver register
+//   before f) is executed
+// - if we rearrange f) to be earlier (by loading %o0) it
+//   may destroy a value on the stack that is currently in %o0
+//   and is waiting to be spilled
+// - if we keep the receiver locked while doing spill-save,
+//   we cannot spill it as it is spill-locked
+//
+void LIRGenerator::do_Invoke(Invoke* x) {
+  CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
+
+  LIR_OprList* arg_list = cc->args();
+  LIRItemList* args = invoke_visit_arguments(x);
+  LIR_Opr receiver = LIR_OprFact::illegalOpr;
+
+  // setup result register
+  LIR_Opr result_register = LIR_OprFact::illegalOpr;
+  if (x->type() != voidType) {
+    result_register = result_register_for(x->type());
+  }
+
+  CodeEmitInfo* info = state_for(x, x->state());
+
+  invoke_load_arguments(x, args, arg_list);
+
+  if (x->has_receiver()) {
+    args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
+    receiver = args->at(0)->result();
+  }
+
+  // emit invoke code
+  assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
+
+  // JSR 292
+  // Preserve the SP over MethodHandle call sites, if needed.
+  ciMethod* target = x->target();
+  bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
+                                  target->is_method_handle_intrinsic() ||
+                                  target->is_compiled_lambda_form());
+  if (is_method_handle_invoke) {
+    info->set_is_method_handle_invoke(true);
+    if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
+        __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
+    }
+  }
+
+  switch (x->code()) {
+    case Bytecodes::_invokestatic:
+      __ call_static(target, result_register,
+                     SharedRuntime::get_resolve_static_call_stub(),
+                     arg_list, info);
+      break;
+    case Bytecodes::_invokespecial:
+    case Bytecodes::_invokevirtual:
+    case Bytecodes::_invokeinterface:
+      // for loaded and final (method or class) target we still produce an inline cache,
+      // in order to be able to call mixed mode
+      if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
+        __ call_opt_virtual(target, receiver, result_register,
+                            SharedRuntime::get_resolve_opt_virtual_call_stub(),
+                            arg_list, info);
+      } else if (x->vtable_index() < 0) {
+        __ call_icvirtual(target, receiver, result_register,
+                          SharedRuntime::get_resolve_virtual_call_stub(),
+                          arg_list, info);
+      } else {
+        int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
+        int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
+        __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
+      }
+      break;
+    case Bytecodes::_invokedynamic: {
+      __ call_dynamic(target, receiver, result_register,
+                      SharedRuntime::get_resolve_static_call_stub(),
+                      arg_list, info);
+      break;
+    }
+    default:
+      fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
+      break;
+  }
+
+  // JSR 292
+  // Restore the SP after MethodHandle call sites, if needed.
+  if (is_method_handle_invoke
+      && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
+    __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
+  }
+
+  if (x->type()->is_float() || x->type()->is_double()) {
+    // Force rounding of results from non-strictfp when in strictfp
+    // scope (or when we don't know the strictness of the callee, to
+    // be safe.)
+    if (method()->is_strict()) {
+      if (!x->target_is_loaded() || !x->target_is_strictfp()) {
+        result_register = round_item(result_register);
+      }
+    }
+  }
+
+  if (result_register->is_valid()) {
+    LIR_Opr result = rlock_result(x);
+    __ move(result_register, result);
+  }
+}
+
+
+void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
+  assert(x->number_of_arguments() == 1, "wrong type");
+  LIRItem value       (x->argument_at(0), this);
+  LIR_Opr reg = rlock_result(x);
+  value.load_item();
+  LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
+  __ move(tmp, reg);
+}
+
+
+
+// Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
+void LIRGenerator::do_IfOp(IfOp* x) {
+#ifdef ASSERT
+  {
+    ValueTag xtag = x->x()->type()->tag();
+    ValueTag ttag = x->tval()->type()->tag();
+    assert(xtag == intTag || xtag == objectTag, "cannot handle others");
+    assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
+    assert(ttag == x->fval()->type()->tag(), "cannot handle others");
+  }
+#endif
+
+  LIRItem left(x->x(), this);
+  LIRItem right(x->y(), this);
+  left.load_item();
+  if (can_inline_as_constant(right.value())) {
+    right.dont_load_item();
+  } else {
+    right.load_item();
+  }
+
+  LIRItem t_val(x->tval(), this);
+  LIRItem f_val(x->fval(), this);
+  t_val.dont_load_item();
+  f_val.dont_load_item();
+  LIR_Opr reg = rlock_result(x);
+
+  __ cmp(lir_cond(x->cond()), left.result(), right.result());
+  __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
+}
+
+#ifdef TRACE_HAVE_INTRINSICS
+void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
+  CodeEmitInfo* info = state_for(x);
+  CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
+
+  assert(info != NULL, "must have info");
+  LIRItem arg(x->argument_at(0), this);
+
+  arg.load_item();
+  LIR_Opr klass = new_register(T_METADATA);
+  __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
+  LIR_Opr id = new_register(T_LONG);
+  ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
+  LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
+
+  __ move(trace_id_addr, id);
+  __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
+  __ store(id, trace_id_addr);
+
+#ifdef TRACE_ID_META_BITS
+  __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
+#endif
+#ifdef TRACE_ID_CLASS_SHIFT
+  __ unsigned_shift_right(id, TRACE_ID_CLASS_SHIFT, id);
+#endif
+
+  __ move(id, rlock_result(x));
+}
+
+void LIRGenerator::do_getBufferWriter(Intrinsic* x) {
+  LabelObj* L_end = new LabelObj();
+
+  LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
+                                           in_bytes(TRACE_THREAD_DATA_WRITER_OFFSET),
+                                           T_OBJECT);
+  LIR_Opr result = rlock_result(x);
+  __ move_wide(jobj_addr, result);
+  __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
+  __ branch(lir_cond_equal, T_OBJECT, L_end->label());
+  __ move_wide(new LIR_Address(result, T_OBJECT), result);
+
+  __ branch_destination(L_end->label());
+}
+
+#endif
+
+
+void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
+  assert(x->number_of_arguments() == 0, "wrong type");
+  // Enforce computation of _reserved_argument_area_size which is required on some platforms.
+  BasicTypeList signature;
+  CallingConvention* cc = frame_map()->c_calling_convention(&signature);
+  LIR_Opr reg = result_register_for(x->type());
+  __ call_runtime_leaf(routine, getThreadTemp(),
+                       reg, new LIR_OprList());
+  LIR_Opr result = rlock_result(x);
+  __ move(reg, result);
+}
+
+
+
+void LIRGenerator::do_Intrinsic(Intrinsic* x) {
+  switch (x->id()) {
+  case vmIntrinsics::_intBitsToFloat      :
+  case vmIntrinsics::_doubleToRawLongBits :
+  case vmIntrinsics::_longBitsToDouble    :
+  case vmIntrinsics::_floatToRawIntBits   : {
+    do_FPIntrinsics(x);
+    break;
+  }
+
+#ifdef TRACE_HAVE_INTRINSICS
+  case vmIntrinsics::_getClassId:
+    do_ClassIDIntrinsic(x);
+    break;
+  case vmIntrinsics::_getBufferWriter:
+    do_getBufferWriter(x);
+    break;
+  case vmIntrinsics::_counterTime:
+    do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), x);
+    break;
+#endif
+
+  case vmIntrinsics::_currentTimeMillis:
+    do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
+    break;
+
+  case vmIntrinsics::_nanoTime:
+    do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
+    break;
+
+  case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
+  case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
+  case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
+  case vmIntrinsics::_getClass:       do_getClass(x);      break;
+  case vmIntrinsics::_currentThread:  do_currentThread(x); break;
+
+  case vmIntrinsics::_dlog:           // fall through
+  case vmIntrinsics::_dlog10:         // fall through
+  case vmIntrinsics::_dabs:           // fall through
+  case vmIntrinsics::_dsqrt:          // fall through
+  case vmIntrinsics::_dtan:           // fall through
+  case vmIntrinsics::_dsin :          // fall through
+  case vmIntrinsics::_dcos :          // fall through
+  case vmIntrinsics::_dexp :          // fall through
+  case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
+  case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
+
+  case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
+  case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
+
+  // java.nio.Buffer.checkIndex
+  case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
+
+  case vmIntrinsics::_compareAndSetObject:
+    do_CompareAndSwap(x, objectType);
+    break;
+  case vmIntrinsics::_compareAndSetInt:
+    do_CompareAndSwap(x, intType);
+    break;
+  case vmIntrinsics::_compareAndSetLong:
+    do_CompareAndSwap(x, longType);
+    break;
+
+  case vmIntrinsics::_loadFence :
+    if (os::is_MP()) __ membar_acquire();
+    break;
+  case vmIntrinsics::_storeFence:
+    if (os::is_MP()) __ membar_release();
+    break;
+  case vmIntrinsics::_fullFence :
+    if (os::is_MP()) __ membar();
+    break;
+  case vmIntrinsics::_onSpinWait:
+    __ on_spin_wait();
+    break;
+  case vmIntrinsics::_Reference_get:
+    do_Reference_get(x);
+    break;
+
+  case vmIntrinsics::_updateCRC32:
+  case vmIntrinsics::_updateBytesCRC32:
+  case vmIntrinsics::_updateByteBufferCRC32:
+    do_update_CRC32(x);
+    break;
+
+  case vmIntrinsics::_updateBytesCRC32C:
+  case vmIntrinsics::_updateDirectByteBufferCRC32C:
+    do_update_CRC32C(x);
+    break;
+
+  case vmIntrinsics::_vectorizedMismatch:
+    do_vectorizedMismatch(x);
+    break;
+
+  default: ShouldNotReachHere(); break;
+  }
+}
+
+void LIRGenerator::profile_arguments(ProfileCall* x) {
+  if (compilation()->profile_arguments()) {
+    int bci = x->bci_of_invoke();
+    ciMethodData* md = x->method()->method_data_or_null();
+    ciProfileData* data = md->bci_to_data(bci);
+    if (data != NULL) {
+      if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
+          (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
+        ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
+        int base_offset = md->byte_offset_of_slot(data, extra);
+        LIR_Opr mdp = LIR_OprFact::illegalOpr;
+        ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
+
+        Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
+        int start = 0;
+        int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
+        if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
+          // first argument is not profiled at call (method handle invoke)
+          assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
+          start = 1;
+        }
+        ciSignature* callee_signature = x->callee()->signature();
+        // method handle call to virtual method
+        bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
+        ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
+
+        bool ignored_will_link;
+        ciSignature* signature_at_call = NULL;
+        x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
+        ciSignatureStream signature_at_call_stream(signature_at_call);
+
+        // if called through method handle invoke, some arguments may have been popped
+        for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
+          int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
+          ciKlass* exact = profile_type(md, base_offset, off,
+              args->type(i), x->profiled_arg_at(i+start), mdp,
+              !x->arg_needs_null_check(i+start),
+              signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
+          if (exact != NULL) {
+            md->set_argument_type(bci, i, exact);
+          }
+        }
+      } else {
+#ifdef ASSERT
+        Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
+        int n = x->nb_profiled_args();
+        assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
+            (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
+            "only at JSR292 bytecodes");
+#endif
+      }
+    }
+  }
+}
+
+// profile parameters on entry to an inlined method
+void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
+  if (compilation()->profile_parameters() && x->inlined()) {
+    ciMethodData* md = x->callee()->method_data_or_null();
+    if (md != NULL) {
+      ciParametersTypeData* parameters_type_data = md->parameters_type_data();
+      if (parameters_type_data != NULL) {
+        ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
+        LIR_Opr mdp = LIR_OprFact::illegalOpr;
+        bool has_receiver = !x->callee()->is_static();
+        ciSignature* sig = x->callee()->signature();
+        ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
+        int i = 0; // to iterate on the Instructions
+        Value arg = x->recv();
+        bool not_null = false;
+        int bci = x->bci_of_invoke();
+        Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
+        // The first parameter is the receiver so that's what we start
+        // with if it exists. One exception is method handle call to
+        // virtual method: the receiver is in the args list
+        if (arg == NULL || !Bytecodes::has_receiver(bc)) {
+          i = 1;
+          arg = x->profiled_arg_at(0);
+          not_null = !x->arg_needs_null_check(0);
+        }
+        int k = 0; // to iterate on the profile data
+        for (;;) {
+          intptr_t profiled_k = parameters->type(k);
+          ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
+                                        in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
+                                        profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
+          // If the profile is known statically set it once for all and do not emit any code
+          if (exact != NULL) {
+            md->set_parameter_type(k, exact);
+          }
+          k++;
+          if (k >= parameters_type_data->number_of_parameters()) {
+#ifdef ASSERT
+            int extra = 0;
+            if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
+                x->nb_profiled_args() >= TypeProfileParmsLimit &&
+                x->recv() != NULL && Bytecodes::has_receiver(bc)) {
+              extra += 1;
+            }
+            assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
+#endif
+            break;
+          }
+          arg = x->profiled_arg_at(i);
+          not_null = !x->arg_needs_null_check(i);
+          i++;
+        }
+      }
+    }
+  }
+}
+
+void LIRGenerator::do_ProfileCall(ProfileCall* x) {
+  // Need recv in a temporary register so it interferes with the other temporaries
+  LIR_Opr recv = LIR_OprFact::illegalOpr;
+  LIR_Opr mdo = new_register(T_OBJECT);
+  // tmp is used to hold the counters on SPARC
+  LIR_Opr tmp = new_pointer_register();
+
+  if (x->nb_profiled_args() > 0) {
+    profile_arguments(x);
+  }
+
+  // profile parameters on inlined method entry including receiver
+  if (x->recv() != NULL || x->nb_profiled_args() > 0) {
+    profile_parameters_at_call(x);
+  }
+
+  if (x->recv() != NULL) {
+    LIRItem value(x->recv(), this);
+    value.load_item();
+    recv = new_register(T_OBJECT);
+    __ move(value.result(), recv);
+  }
+  __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
+}
+
+void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
+  int bci = x->bci_of_invoke();
+  ciMethodData* md = x->method()->method_data_or_null();
+  ciProfileData* data = md->bci_to_data(bci);
+  if (data != NULL) {
+    assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
+    ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
+    LIR_Opr mdp = LIR_OprFact::illegalOpr;
+
+    bool ignored_will_link;
+    ciSignature* signature_at_call = NULL;
+    x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
+
+    // The offset within the MDO of the entry to update may be too large
+    // to be used in load/store instructions on some platforms. So have
+    // profile_type() compute the address of the profile in a register.
+    ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
+        ret->type(), x->ret(), mdp,
+        !x->needs_null_check(),
+        signature_at_call->return_type()->as_klass(),
+        x->callee()->signature()->return_type()->as_klass());
+    if (exact != NULL) {
+      md->set_return_type(bci, exact);
+    }
+  }
+}
+
+void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
+  // We can safely ignore accessors here, since c2 will inline them anyway,
+  // accessors are also always mature.
+  if (!x->inlinee()->is_accessor()) {
+    CodeEmitInfo* info = state_for(x, x->state(), true);
+    // Notify the runtime very infrequently only to take care of counter overflows
+    int freq_log = Tier23InlineeNotifyFreqLog;
+    double scale;
+    if (_method->has_option_value("CompileThresholdScaling", scale)) {
+      freq_log = Arguments::scaled_freq_log(freq_log, scale);
+    }
+    increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
+  }
+}
+
+void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
+  int freq_log = 0;
+  int level = compilation()->env()->comp_level();
+  if (level == CompLevel_limited_profile) {
+    freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
+  } else if (level == CompLevel_full_profile) {
+    freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
+  } else {
+    ShouldNotReachHere();
+  }
+  // Increment the appropriate invocation/backedge counter and notify the runtime.
+  double scale;
+  if (_method->has_option_value("CompileThresholdScaling", scale)) {
+    freq_log = Arguments::scaled_freq_log(freq_log, scale);
+  }
+  increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
+}
+
+void LIRGenerator::decrement_age(CodeEmitInfo* info) {
+  ciMethod* method = info->scope()->method();
+  MethodCounters* mc_adr = method->ensure_method_counters();
+  if (mc_adr != NULL) {
+    LIR_Opr mc = new_pointer_register();
+    __ move(LIR_OprFact::intptrConst(mc_adr), mc);
+    int offset = in_bytes(MethodCounters::nmethod_age_offset());
+    LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
+    LIR_Opr result = new_register(T_INT);
+    __ load(counter, result);
+    __ sub(result, LIR_OprFact::intConst(1), result);
+    __ store(result, counter);
+    // DeoptimizeStub will reexecute from the current state in code info.
+    CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
+                                         Deoptimization::Action_make_not_entrant);
+    __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
+    __ branch(lir_cond_lessEqual, T_INT, deopt);
+  }
+}
+
+
+void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
+                                                ciMethod *method, int frequency,
+                                                int bci, bool backedge, bool notify) {
+  assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
+  int level = _compilation->env()->comp_level();
+  assert(level > CompLevel_simple, "Shouldn't be here");
+
+  int offset = -1;
+  LIR_Opr counter_holder = NULL;
+  if (level == CompLevel_limited_profile) {
+    MethodCounters* counters_adr = method->ensure_method_counters();
+    if (counters_adr == NULL) {
+      bailout("method counters allocation failed");
+      return;
+    }
+    counter_holder = new_pointer_register();
+    __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
+    offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
+                                 MethodCounters::invocation_counter_offset());
+  } else if (level == CompLevel_full_profile) {
+    counter_holder = new_register(T_METADATA);
+    offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
+                                 MethodData::invocation_counter_offset());
+    ciMethodData* md = method->method_data_or_null();
+    assert(md != NULL, "Sanity");
+    __ metadata2reg(md->constant_encoding(), counter_holder);
+  } else {
+    ShouldNotReachHere();
+  }
+  LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
+  LIR_Opr result = new_register(T_INT);
+  __ load(counter, result);
+  __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
+  __ store(result, counter);
+  if (notify && (!backedge || UseOnStackReplacement)) {
+    LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
+    // The bci for info can point to cmp for if's we want the if bci
+    CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
+    int freq = frequency << InvocationCounter::count_shift;
+    if (freq == 0) {
+      __ branch(lir_cond_always, T_ILLEGAL, overflow);
+    } else {
+      LIR_Opr mask = load_immediate(freq, T_INT);
+      __ logical_and(result, mask, result);
+      __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
+      __ branch(lir_cond_equal, T_INT, overflow);
+    }
+    __ branch_destination(overflow->continuation());
+  }
+}
+
+void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
+  LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
+  BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
+
+  if (x->pass_thread()) {
+    signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
+    args->append(getThreadPointer());
+  }
+
+  for (int i = 0; i < x->number_of_arguments(); i++) {
+    Value a = x->argument_at(i);
+    LIRItem* item = new LIRItem(a, this);
+    item->load_item();
+    args->append(item->result());
+    signature->append(as_BasicType(a->type()));
+  }
+
+  LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
+  if (x->type() == voidType) {
+    set_no_result(x);
+  } else {
+    __ move(result, rlock_result(x));
+  }
+}
+
+#ifdef ASSERT
+void LIRGenerator::do_Assert(Assert *x) {
+  ValueTag tag = x->x()->type()->tag();
+  If::Condition cond = x->cond();
+
+  LIRItem xitem(x->x(), this);
+  LIRItem yitem(x->y(), this);
+  LIRItem* xin = &xitem;
+  LIRItem* yin = &yitem;
+
+  assert(tag == intTag, "Only integer assertions are valid!");
+
+  xin->load_item();
+  yin->dont_load_item();
+
+  set_no_result(x);
+
+  LIR_Opr left = xin->result();
+  LIR_Opr right = yin->result();
+
+  __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
+}
+#endif
+
+void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
+
+
+  Instruction *a = x->x();
+  Instruction *b = x->y();
+  if (!a || StressRangeCheckElimination) {
+    assert(!b || StressRangeCheckElimination, "B must also be null");
+
+    CodeEmitInfo *info = state_for(x, x->state());
+    CodeStub* stub = new PredicateFailedStub(info);
+
+    __ jump(stub);
+  } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
+    int a_int = a->type()->as_IntConstant()->value();
+    int b_int = b->type()->as_IntConstant()->value();
+
+    bool ok = false;
+
+    switch(x->cond()) {
+      case Instruction::eql: ok = (a_int == b_int); break;
+      case Instruction::neq: ok = (a_int != b_int); break;
+      case Instruction::lss: ok = (a_int < b_int); break;
+      case Instruction::leq: ok = (a_int <= b_int); break;
+      case Instruction::gtr: ok = (a_int > b_int); break;
+      case Instruction::geq: ok = (a_int >= b_int); break;
+      case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
+      case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
+      default: ShouldNotReachHere();
+    }
+
+    if (ok) {
+
+      CodeEmitInfo *info = state_for(x, x->state());
+      CodeStub* stub = new PredicateFailedStub(info);
+
+      __ jump(stub);
+    }
+  } else {
+
+    ValueTag tag = x->x()->type()->tag();
+    If::Condition cond = x->cond();
+    LIRItem xitem(x->x(), this);
+    LIRItem yitem(x->y(), this);
+    LIRItem* xin = &xitem;
+    LIRItem* yin = &yitem;
+
+    assert(tag == intTag, "Only integer deoptimizations are valid!");
+
+    xin->load_item();
+    yin->dont_load_item();
+    set_no_result(x);
+
+    LIR_Opr left = xin->result();
+    LIR_Opr right = yin->result();
+
+    CodeEmitInfo *info = state_for(x, x->state());
+    CodeStub* stub = new PredicateFailedStub(info);
+
+    __ cmp(lir_cond(cond), left, right);
+    __ branch(lir_cond(cond), right->type(), stub);
+  }
+}
+
+
+LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
+  LIRItemList args(1);
+  LIRItem value(arg1, this);
+  args.append(&value);
+  BasicTypeList signature;
+  signature.append(as_BasicType(arg1->type()));
+
+  return call_runtime(&signature, &args, entry, result_type, info);
+}
+
+
+LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
+  LIRItemList args(2);
+  LIRItem value1(arg1, this);
+  LIRItem value2(arg2, this);
+  args.append(&value1);
+  args.append(&value2);
+  BasicTypeList signature;
+  signature.append(as_BasicType(arg1->type()));
+  signature.append(as_BasicType(arg2->type()));
+
+  return call_runtime(&signature, &args, entry, result_type, info);
+}
+
+
+LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
+                                   address entry, ValueType* result_type, CodeEmitInfo* info) {
+  // get a result register
+  LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
+  LIR_Opr result = LIR_OprFact::illegalOpr;
+  if (result_type->tag() != voidTag) {
+    result = new_register(result_type);
+    phys_reg = result_register_for(result_type);
+  }
+
+  // move the arguments into the correct location
+  CallingConvention* cc = frame_map()->c_calling_convention(signature);
+  assert(cc->length() == args->length(), "argument mismatch");
+  for (int i = 0; i < args->length(); i++) {
+    LIR_Opr arg = args->at(i);
+    LIR_Opr loc = cc->at(i);
+    if (loc->is_register()) {
+      __ move(arg, loc);
+    } else {
+      LIR_Address* addr = loc->as_address_ptr();
+//           if (!can_store_as_constant(arg)) {
+//             LIR_Opr tmp = new_register(arg->type());
+//             __ move(arg, tmp);
+//             arg = tmp;
+//           }
+      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
+        __ unaligned_move(arg, addr);
+      } else {
+        __ move(arg, addr);
+      }
+    }
+  }
+
+  if (info) {
+    __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
+  } else {
+    __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
+  }
+  if (result->is_valid()) {
+    __ move(phys_reg, result);
+  }
+  return result;
+}
+
+
+LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
+                                   address entry, ValueType* result_type, CodeEmitInfo* info) {
+  // get a result register
+  LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
+  LIR_Opr result = LIR_OprFact::illegalOpr;
+  if (result_type->tag() != voidTag) {
+    result = new_register(result_type);
+    phys_reg = result_register_for(result_type);
+  }
+
+  // move the arguments into the correct location
+  CallingConvention* cc = frame_map()->c_calling_convention(signature);
+
+  assert(cc->length() == args->length(), "argument mismatch");
+  for (int i = 0; i < args->length(); i++) {
+    LIRItem* arg = args->at(i);
+    LIR_Opr loc = cc->at(i);
+    if (loc->is_register()) {
+      arg->load_item_force(loc);
+    } else {
+      LIR_Address* addr = loc->as_address_ptr();
+      arg->load_for_store(addr->type());
+      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
+        __ unaligned_move(arg->result(), addr);
+      } else {
+        __ move(arg->result(), addr);
+      }
+    }
+  }
+
+  if (info) {
+    __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
+  } else {
+    __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
+  }
+  if (result->is_valid()) {
+    __ move(phys_reg, result);
+  }
+  return result;
+}
+
+void LIRGenerator::do_MemBar(MemBar* x) {
+  if (os::is_MP()) {
+    LIR_Code code = x->code();
+    switch(code) {
+      case lir_membar_acquire   : __ membar_acquire(); break;
+      case lir_membar_release   : __ membar_release(); break;
+      case lir_membar           : __ membar(); break;
+      case lir_membar_loadload  : __ membar_loadload(); break;
+      case lir_membar_storestore: __ membar_storestore(); break;
+      case lir_membar_loadstore : __ membar_loadstore(); break;
+      case lir_membar_storeload : __ membar_storeload(); break;
+      default                   : ShouldNotReachHere(); break;
+    }
+  }
+}
+
+LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
+  if (x->check_boolean()) {
+    LIR_Opr value_fixed = rlock_byte(T_BYTE);
+    if (TwoOperandLIRForm) {
+      __ move(value, value_fixed);
+      __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
+    } else {
+      __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
+    }
+    LIR_Opr klass = new_register(T_METADATA);
+    __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
+    null_check_info = NULL;
+    LIR_Opr layout = new_register(T_INT);
+    __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
+    int diffbit = Klass::layout_helper_boolean_diffbit();
+    __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
+    __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
+    __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
+    value = value_fixed;
+  }
+  return value;
+}