src/hotspot/share/adlc/output_c.cpp
changeset 47216 71c04702a3d5
parent 46630 75aa3e39d02c
child 47583 2dcbf51d0431
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/adlc/output_c.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,4364 @@
+/*
+ * Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+// output_c.cpp - Class CPP file output routines for architecture definition
+
+#include "adlc.hpp"
+
+// Utilities to characterize effect statements
+static bool is_def(int usedef) {
+  switch(usedef) {
+  case Component::DEF:
+  case Component::USE_DEF: return true; break;
+  }
+  return false;
+}
+
+// Define  an array containing the machine register names, strings.
+static void defineRegNames(FILE *fp, RegisterForm *registers) {
+  if (registers) {
+    fprintf(fp,"\n");
+    fprintf(fp,"// An array of character pointers to machine register names.\n");
+    fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
+
+    // Output the register name for each register in the allocation classes
+    RegDef *reg_def = NULL;
+    RegDef *next = NULL;
+    registers->reset_RegDefs();
+    for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
+      next = registers->iter_RegDefs();
+      const char *comma = (next != NULL) ? "," : " // no trailing comma";
+      fprintf(fp,"  \"%s\"%s\n", reg_def->_regname, comma);
+    }
+
+    // Finish defining enumeration
+    fprintf(fp,"};\n");
+
+    fprintf(fp,"\n");
+    fprintf(fp,"// An array of character pointers to machine register names.\n");
+    fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
+    reg_def = NULL;
+    next = NULL;
+    registers->reset_RegDefs();
+    for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
+      next = registers->iter_RegDefs();
+      const char *comma = (next != NULL) ? "," : " // no trailing comma";
+      fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma);
+    }
+    // Finish defining array
+    fprintf(fp,"\t};\n");
+    fprintf(fp,"\n");
+
+    fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
+
+  }
+}
+
+// Define an array containing the machine register encoding values
+static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
+  if (registers) {
+    fprintf(fp,"\n");
+    fprintf(fp,"// An array of the machine register encode values\n");
+    fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
+
+    // Output the register encoding for each register in the allocation classes
+    RegDef *reg_def = NULL;
+    RegDef *next    = NULL;
+    registers->reset_RegDefs();
+    for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
+      next = registers->iter_RegDefs();
+      const char* register_encode = reg_def->register_encode();
+      const char *comma = (next != NULL) ? "," : " // no trailing comma";
+      int encval;
+      if (!ADLParser::is_int_token(register_encode, encval)) {
+        fprintf(fp,"  %s%s  // %s\n", register_encode, comma, reg_def->_regname);
+      } else {
+        // Output known constants in hex char format (backward compatibility).
+        assert(encval < 256, "Exceeded supported width for register encoding");
+        fprintf(fp,"  (unsigned char)'\\x%X'%s  // %s\n", encval, comma, reg_def->_regname);
+      }
+    }
+    // Finish defining enumeration
+    fprintf(fp,"};\n");
+
+  } // Done defining array
+}
+
+// Output an enumeration of register class names
+static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
+  if (registers) {
+    // Output an enumeration of register class names
+    fprintf(fp,"\n");
+    fprintf(fp,"// Enumeration of register class names\n");
+    fprintf(fp, "enum machRegisterClass {\n");
+    registers->_rclasses.reset();
+    for (const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL;) {
+      const char * class_name_to_upper = toUpper(class_name);
+      fprintf(fp,"  %s,\n", class_name_to_upper);
+      delete[] class_name_to_upper;
+    }
+    // Finish defining enumeration
+    fprintf(fp, "  _last_Mach_Reg_Class\n");
+    fprintf(fp, "};\n");
+  }
+}
+
+// Declare an enumeration of user-defined register classes
+// and a list of register masks, one for each class.
+void ArchDesc::declare_register_masks(FILE *fp_hpp) {
+  const char  *rc_name;
+
+  if (_register) {
+    // Build enumeration of user-defined register classes.
+    defineRegClassEnum(fp_hpp, _register);
+
+    // Generate a list of register masks, one for each class.
+    fprintf(fp_hpp,"\n");
+    fprintf(fp_hpp,"// Register masks, one for each register class.\n");
+    _register->_rclasses.reset();
+    for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
+      RegClass *reg_class = _register->getRegClass(rc_name);
+      assert(reg_class, "Using an undefined register class");
+      reg_class->declare_register_masks(fp_hpp);
+    }
+  }
+}
+
+// Generate an enumeration of user-defined register classes
+// and a list of register masks, one for each class.
+void ArchDesc::build_register_masks(FILE *fp_cpp) {
+  const char  *rc_name;
+
+  if (_register) {
+    // Generate a list of register masks, one for each class.
+    fprintf(fp_cpp,"\n");
+    fprintf(fp_cpp,"// Register masks, one for each register class.\n");
+    _register->_rclasses.reset();
+    for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
+      RegClass *reg_class = _register->getRegClass(rc_name);
+      assert(reg_class, "Using an undefined register class");
+      reg_class->build_register_masks(fp_cpp);
+    }
+  }
+}
+
+// Compute an index for an array in the pipeline_reads_NNN arrays
+static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
+{
+  int templen = 1;
+  int paramcount = 0;
+  const char *paramname;
+
+  if (pipeclass->_parameters.count() == 0)
+    return -1;
+
+  pipeclass->_parameters.reset();
+  paramname = pipeclass->_parameters.iter();
+  const PipeClassOperandForm *pipeopnd =
+    (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
+  if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
+    pipeclass->_parameters.reset();
+
+  while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
+    const PipeClassOperandForm *tmppipeopnd =
+        (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
+
+    if (tmppipeopnd)
+      templen += 10 + (int)strlen(tmppipeopnd->_stage);
+    else
+      templen += 19;
+
+    paramcount++;
+  }
+
+  // See if the count is zero
+  if (paramcount == 0) {
+    return -1;
+  }
+
+  char *operand_stages = new char [templen];
+  operand_stages[0] = 0;
+  int i = 0;
+  templen = 0;
+
+  pipeclass->_parameters.reset();
+  paramname = pipeclass->_parameters.iter();
+  pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
+  if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
+    pipeclass->_parameters.reset();
+
+  while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
+    const PipeClassOperandForm *tmppipeopnd =
+        (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
+    templen += sprintf(&operand_stages[templen], "  stage_%s%c\n",
+      tmppipeopnd ? tmppipeopnd->_stage : "undefined",
+      (++i < paramcount ? ',' : ' ') );
+  }
+
+  // See if the same string is in the table
+  int ndx = pipeline_reads.index(operand_stages);
+
+  // No, add it to the table
+  if (ndx < 0) {
+    pipeline_reads.addName(operand_stages);
+    ndx = pipeline_reads.index(operand_stages);
+
+    fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
+      ndx+1, paramcount, operand_stages);
+  }
+  else
+    delete [] operand_stages;
+
+  return (ndx);
+}
+
+// Compute an index for an array in the pipeline_res_stages_NNN arrays
+static int pipeline_res_stages_initializer(
+  FILE *fp_cpp,
+  PipelineForm *pipeline,
+  NameList &pipeline_res_stages,
+  PipeClassForm *pipeclass)
+{
+  const PipeClassResourceForm *piperesource;
+  int * res_stages = new int [pipeline->_rescount];
+  int i;
+
+  for (i = 0; i < pipeline->_rescount; i++)
+     res_stages[i] = 0;
+
+  for (pipeclass->_resUsage.reset();
+       (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
+    int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
+    for (i = 0; i < pipeline->_rescount; i++)
+      if ((1 << i) & used_mask) {
+        int stage = pipeline->_stages.index(piperesource->_stage);
+        if (res_stages[i] < stage+1)
+          res_stages[i] = stage+1;
+      }
+  }
+
+  // Compute the length needed for the resource list
+  int commentlen = 0;
+  int max_stage = 0;
+  for (i = 0; i < pipeline->_rescount; i++) {
+    if (res_stages[i] == 0) {
+      if (max_stage < 9)
+        max_stage = 9;
+    }
+    else {
+      int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
+      if (max_stage < stagelen)
+        max_stage = stagelen;
+    }
+
+    commentlen += (int)strlen(pipeline->_reslist.name(i));
+  }
+
+  int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
+
+  // Allocate space for the resource list
+  char * resource_stages = new char [templen];
+
+  templen = 0;
+  for (i = 0; i < pipeline->_rescount; i++) {
+    const char * const resname =
+      res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
+
+    templen += sprintf(&resource_stages[templen], "  stage_%s%-*s // %s\n",
+      resname, max_stage - (int)strlen(resname) + 1,
+      (i < pipeline->_rescount-1) ? "," : "",
+      pipeline->_reslist.name(i));
+  }
+
+  // See if the same string is in the table
+  int ndx = pipeline_res_stages.index(resource_stages);
+
+  // No, add it to the table
+  if (ndx < 0) {
+    pipeline_res_stages.addName(resource_stages);
+    ndx = pipeline_res_stages.index(resource_stages);
+
+    fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
+      ndx+1, pipeline->_rescount, resource_stages);
+  }
+  else
+    delete [] resource_stages;
+
+  delete [] res_stages;
+
+  return (ndx);
+}
+
+// Compute an index for an array in the pipeline_res_cycles_NNN arrays
+static int pipeline_res_cycles_initializer(
+  FILE *fp_cpp,
+  PipelineForm *pipeline,
+  NameList &pipeline_res_cycles,
+  PipeClassForm *pipeclass)
+{
+  const PipeClassResourceForm *piperesource;
+  int * res_cycles = new int [pipeline->_rescount];
+  int i;
+
+  for (i = 0; i < pipeline->_rescount; i++)
+     res_cycles[i] = 0;
+
+  for (pipeclass->_resUsage.reset();
+       (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
+    int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
+    for (i = 0; i < pipeline->_rescount; i++)
+      if ((1 << i) & used_mask) {
+        int cycles = piperesource->_cycles;
+        if (res_cycles[i] < cycles)
+          res_cycles[i] = cycles;
+      }
+  }
+
+  // Pre-compute the string length
+  int templen;
+  int cyclelen = 0, commentlen = 0;
+  int max_cycles = 0;
+  char temp[32];
+
+  for (i = 0; i < pipeline->_rescount; i++) {
+    if (max_cycles < res_cycles[i])
+      max_cycles = res_cycles[i];
+    templen = sprintf(temp, "%d", res_cycles[i]);
+    if (cyclelen < templen)
+      cyclelen = templen;
+    commentlen += (int)strlen(pipeline->_reslist.name(i));
+  }
+
+  templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
+
+  // Allocate space for the resource list
+  char * resource_cycles = new char [templen];
+
+  templen = 0;
+
+  for (i = 0; i < pipeline->_rescount; i++) {
+    templen += sprintf(&resource_cycles[templen], "  %*d%c // %s\n",
+      cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
+  }
+
+  // See if the same string is in the table
+  int ndx = pipeline_res_cycles.index(resource_cycles);
+
+  // No, add it to the table
+  if (ndx < 0) {
+    pipeline_res_cycles.addName(resource_cycles);
+    ndx = pipeline_res_cycles.index(resource_cycles);
+
+    fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
+      ndx+1, pipeline->_rescount, resource_cycles);
+  }
+  else
+    delete [] resource_cycles;
+
+  delete [] res_cycles;
+
+  return (ndx);
+}
+
+//typedef unsigned long long uint64_t;
+
+// Compute an index for an array in the pipeline_res_mask_NNN arrays
+static int pipeline_res_mask_initializer(
+  FILE *fp_cpp,
+  PipelineForm *pipeline,
+  NameList &pipeline_res_mask,
+  NameList &pipeline_res_args,
+  PipeClassForm *pipeclass)
+{
+  const PipeClassResourceForm *piperesource;
+  const uint rescount      = pipeline->_rescount;
+  const uint maxcycleused  = pipeline->_maxcycleused;
+  const uint cyclemasksize = (maxcycleused + 31) >> 5;
+
+  int i, j;
+  int element_count = 0;
+  uint *res_mask = new uint [cyclemasksize];
+  uint resources_used             = 0;
+  uint resources_used_exclusively = 0;
+
+  for (pipeclass->_resUsage.reset();
+       (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
+    element_count++;
+  }
+
+  // Pre-compute the string length
+  int templen;
+  int commentlen = 0;
+  int max_cycles = 0;
+
+  int cyclelen = ((maxcycleused + 3) >> 2);
+  int masklen = (rescount + 3) >> 2;
+
+  int cycledigit = 0;
+  for (i = maxcycleused; i > 0; i /= 10)
+    cycledigit++;
+
+  int maskdigit = 0;
+  for (i = rescount; i > 0; i /= 10)
+    maskdigit++;
+
+  static const char* pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
+  static const char* pipeline_use_element    = "Pipeline_Use_Element";
+
+  templen = 1 +
+    (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
+     (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
+
+  // Allocate space for the resource list
+  char * resource_mask = new char [templen];
+  char * last_comma = NULL;
+
+  templen = 0;
+
+  for (pipeclass->_resUsage.reset();
+       (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
+    int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
+
+    if (!used_mask) {
+      fprintf(stderr, "*** used_mask is 0 ***\n");
+    }
+
+    resources_used |= used_mask;
+
+    uint lb, ub;
+
+    for (lb =  0; (used_mask & (1 << lb)) == 0; lb++);
+    for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
+
+    if (lb == ub) {
+      resources_used_exclusively |= used_mask;
+    }
+
+    int formatlen =
+      sprintf(&resource_mask[templen], "  %s(0x%0*x, %*d, %*d, %s %s(",
+        pipeline_use_element,
+        masklen, used_mask,
+        cycledigit, lb, cycledigit, ub,
+        ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
+        pipeline_use_cycle_mask);
+
+    templen += formatlen;
+
+    memset(res_mask, 0, cyclemasksize * sizeof(uint));
+
+    int cycles = piperesource->_cycles;
+    uint stage          = pipeline->_stages.index(piperesource->_stage);
+    if ((uint)NameList::Not_in_list == stage) {
+      fprintf(stderr,
+              "pipeline_res_mask_initializer: "
+              "semantic error: "
+              "pipeline stage undeclared: %s\n",
+              piperesource->_stage);
+      exit(1);
+    }
+    uint upper_limit    = stage + cycles - 1;
+    uint lower_limit    = stage - 1;
+    uint upper_idx      = upper_limit >> 5;
+    uint lower_idx      = lower_limit >> 5;
+    uint upper_position = upper_limit & 0x1f;
+    uint lower_position = lower_limit & 0x1f;
+
+    uint mask = (((uint)1) << upper_position) - 1;
+
+    while (upper_idx > lower_idx) {
+      res_mask[upper_idx--] |= mask;
+      mask = (uint)-1;
+    }
+
+    mask -= (((uint)1) << lower_position) - 1;
+    res_mask[upper_idx] |= mask;
+
+    for (j = cyclemasksize-1; j >= 0; j--) {
+      formatlen =
+        sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
+      templen += formatlen;
+    }
+
+    resource_mask[templen++] = ')';
+    resource_mask[templen++] = ')';
+    last_comma = &resource_mask[templen];
+    resource_mask[templen++] = ',';
+    resource_mask[templen++] = '\n';
+  }
+
+  resource_mask[templen] = 0;
+  if (last_comma) {
+    last_comma[0] = ' ';
+  }
+
+  // See if the same string is in the table
+  int ndx = pipeline_res_mask.index(resource_mask);
+
+  // No, add it to the table
+  if (ndx < 0) {
+    pipeline_res_mask.addName(resource_mask);
+    ndx = pipeline_res_mask.index(resource_mask);
+
+    if (strlen(resource_mask) > 0)
+      fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
+        ndx+1, element_count, resource_mask);
+
+    char* args = new char [9 + 2*masklen + maskdigit];
+
+    sprintf(args, "0x%0*x, 0x%0*x, %*d",
+      masklen, resources_used,
+      masklen, resources_used_exclusively,
+      maskdigit, element_count);
+
+    pipeline_res_args.addName(args);
+  }
+  else {
+    delete [] resource_mask;
+  }
+
+  delete [] res_mask;
+//delete [] res_masks;
+
+  return (ndx);
+}
+
+void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
+  const char *classname;
+  const char *resourcename;
+  int resourcenamelen = 0;
+  NameList pipeline_reads;
+  NameList pipeline_res_stages;
+  NameList pipeline_res_cycles;
+  NameList pipeline_res_masks;
+  NameList pipeline_res_args;
+  const int default_latency = 1;
+  const int non_operand_latency = 0;
+  const int node_latency = 0;
+
+  if (!_pipeline) {
+    fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
+    fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
+    fprintf(fp_cpp, "  return %d;\n", non_operand_latency);
+    fprintf(fp_cpp, "}\n");
+    return;
+  }
+
+  fprintf(fp_cpp, "\n");
+  fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
+  fprintf(fp_cpp, "#ifndef PRODUCT\n");
+  fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
+  fprintf(fp_cpp, "  static const char * const _stage_names[] = {\n");
+  fprintf(fp_cpp, "    \"undefined\"");
+
+  for (int s = 0; s < _pipeline->_stagecnt; s++)
+    fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
+
+  fprintf(fp_cpp, "\n  };\n\n");
+  fprintf(fp_cpp, "  return (s <= %d ? _stage_names[s] : \"???\");\n",
+    _pipeline->_stagecnt);
+  fprintf(fp_cpp, "}\n");
+  fprintf(fp_cpp, "#endif\n\n");
+
+  fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
+  fprintf(fp_cpp, "  // See if the functional units overlap\n");
+#if 0
+  fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
+  fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
+  fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
+  fprintf(fp_cpp, "  }\n");
+  fprintf(fp_cpp, "#endif\n\n");
+#endif
+  fprintf(fp_cpp, "  uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
+  fprintf(fp_cpp, "  if (mask == 0)\n    return (start);\n\n");
+#if 0
+  fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
+  fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
+  fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
+  fprintf(fp_cpp, "  }\n");
+  fprintf(fp_cpp, "#endif\n\n");
+#endif
+  fprintf(fp_cpp, "  for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
+  fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
+  fprintf(fp_cpp, "    if (predUse->multiple())\n");
+  fprintf(fp_cpp, "      continue;\n\n");
+  fprintf(fp_cpp, "    for (uint j = 0; j < resourceUseCount(); j++) {\n");
+  fprintf(fp_cpp, "      const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
+  fprintf(fp_cpp, "      if (currUse->multiple())\n");
+  fprintf(fp_cpp, "        continue;\n\n");
+  fprintf(fp_cpp, "      if (predUse->used() & currUse->used()) {\n");
+  fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
+  fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
+  fprintf(fp_cpp, "        for ( y <<= start; x.overlaps(y); start++ )\n");
+  fprintf(fp_cpp, "          y <<= 1;\n");
+  fprintf(fp_cpp, "      }\n");
+  fprintf(fp_cpp, "    }\n");
+  fprintf(fp_cpp, "  }\n\n");
+  fprintf(fp_cpp, "  // There is the potential for overlap\n");
+  fprintf(fp_cpp, "  return (start);\n");
+  fprintf(fp_cpp, "}\n\n");
+  fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
+  fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
+  fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
+  fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
+  fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
+  fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
+  fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
+  fprintf(fp_cpp, "      uint min_delay = %d;\n",
+    _pipeline->_maxcycleused+1);
+  fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
+  fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
+  fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
+  fprintf(fp_cpp, "        uint curr_delay = delay;\n");
+  fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
+  fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
+  fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
+  fprintf(fp_cpp, "          for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
+  fprintf(fp_cpp, "            y <<= 1;\n");
+  fprintf(fp_cpp, "        }\n");
+  fprintf(fp_cpp, "        if (min_delay > curr_delay)\n          min_delay = curr_delay;\n");
+  fprintf(fp_cpp, "      }\n");
+  fprintf(fp_cpp, "      if (delay < min_delay)\n      delay = min_delay;\n");
+  fprintf(fp_cpp, "    }\n");
+  fprintf(fp_cpp, "    else {\n");
+  fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
+  fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
+  fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
+  fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
+  fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
+  fprintf(fp_cpp, "          for ( y <<= delay; x.overlaps(y); delay++ )\n");
+  fprintf(fp_cpp, "            y <<= 1;\n");
+  fprintf(fp_cpp, "        }\n");
+  fprintf(fp_cpp, "      }\n");
+  fprintf(fp_cpp, "    }\n");
+  fprintf(fp_cpp, "  }\n\n");
+  fprintf(fp_cpp, "  return (delay);\n");
+  fprintf(fp_cpp, "}\n\n");
+  fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
+  fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
+  fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
+  fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
+  fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
+  fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
+  fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
+  fprintf(fp_cpp, "        if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
+  fprintf(fp_cpp, "          currUse->_used |= (1 << j);\n");
+  fprintf(fp_cpp, "          _resources_used |= (1 << j);\n");
+  fprintf(fp_cpp, "          currUse->_mask.Or(predUse->_mask);\n");
+  fprintf(fp_cpp, "          break;\n");
+  fprintf(fp_cpp, "        }\n");
+  fprintf(fp_cpp, "      }\n");
+  fprintf(fp_cpp, "    }\n");
+  fprintf(fp_cpp, "    else {\n");
+  fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
+  fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
+  fprintf(fp_cpp, "        currUse->_used |= (1 << j);\n");
+  fprintf(fp_cpp, "        _resources_used |= (1 << j);\n");
+  fprintf(fp_cpp, "        currUse->_mask.Or(predUse->_mask);\n");
+  fprintf(fp_cpp, "      }\n");
+  fprintf(fp_cpp, "    }\n");
+  fprintf(fp_cpp, "  }\n");
+  fprintf(fp_cpp, "}\n\n");
+
+  fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
+  fprintf(fp_cpp, "  int const default_latency = 1;\n");
+  fprintf(fp_cpp, "\n");
+#if 0
+  fprintf(fp_cpp, "#ifndef PRODUCT\n");
+  fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
+  fprintf(fp_cpp, "    tty->print(\"#   operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
+  fprintf(fp_cpp, "  }\n");
+  fprintf(fp_cpp, "#endif\n\n");
+#endif
+  fprintf(fp_cpp, "  assert(this, \"NULL pipeline info\");\n");
+  fprintf(fp_cpp, "  assert(pred, \"NULL predecessor pipline info\");\n\n");
+  fprintf(fp_cpp, "  if (pred->hasFixedLatency())\n    return (pred->fixedLatency());\n\n");
+  fprintf(fp_cpp, "  // If this is not an operand, then assume a dependence with 0 latency\n");
+  fprintf(fp_cpp, "  if (opnd > _read_stage_count)\n    return (0);\n\n");
+  fprintf(fp_cpp, "  uint writeStage = pred->_write_stage;\n");
+  fprintf(fp_cpp, "  uint readStage  = _read_stages[opnd-1];\n");
+#if 0
+  fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
+  fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
+  fprintf(fp_cpp, "    tty->print(\"#   operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
+  fprintf(fp_cpp, "  }\n");
+  fprintf(fp_cpp, "#endif\n\n");
+#endif
+  fprintf(fp_cpp, "\n");
+  fprintf(fp_cpp, "  if (writeStage == stage_undefined || readStage == stage_undefined)\n");
+  fprintf(fp_cpp, "    return (default_latency);\n");
+  fprintf(fp_cpp, "\n");
+  fprintf(fp_cpp, "  int delta = writeStage - readStage;\n");
+  fprintf(fp_cpp, "  if (delta < 0) delta = 0;\n\n");
+#if 0
+  fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
+  fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
+  fprintf(fp_cpp, "    tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
+  fprintf(fp_cpp, "  }\n");
+  fprintf(fp_cpp, "#endif\n\n");
+#endif
+  fprintf(fp_cpp, "  return (delta);\n");
+  fprintf(fp_cpp, "}\n\n");
+
+  if (!_pipeline)
+    /* Do Nothing */;
+
+  else if (_pipeline->_maxcycleused <=
+#ifdef SPARC
+    64
+#else
+    32
+#endif
+      ) {
+    fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
+    fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
+    fprintf(fp_cpp, "}\n\n");
+    fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
+    fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
+    fprintf(fp_cpp, "}\n\n");
+  }
+  else {
+    uint l;
+    uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
+    fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
+    fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
+    for (l = 1; l <= masklen; l++)
+      fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
+    fprintf(fp_cpp, ");\n");
+    fprintf(fp_cpp, "}\n\n");
+    fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
+    fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
+    for (l = 1; l <= masklen; l++)
+      fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
+    fprintf(fp_cpp, ");\n");
+    fprintf(fp_cpp, "}\n\n");
+    fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
+    for (l = 1; l <= masklen; l++)
+      fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
+    fprintf(fp_cpp, "\n}\n\n");
+  }
+
+  /* Get the length of all the resource names */
+  for (_pipeline->_reslist.reset(), resourcenamelen = 0;
+       (resourcename = _pipeline->_reslist.iter()) != NULL;
+       resourcenamelen += (int)strlen(resourcename));
+
+  // Create the pipeline class description
+
+  fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
+  fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
+
+  fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
+  for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
+    fprintf(fp_cpp, "  Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
+    uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
+    for (int i2 = masklen-1; i2 >= 0; i2--)
+      fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
+    fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
+  }
+  fprintf(fp_cpp, "};\n\n");
+
+  fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
+    _pipeline->_rescount);
+
+  for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
+    fprintf(fp_cpp, "\n");
+    fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
+    PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
+    int maxWriteStage = -1;
+    int maxMoreInstrs = 0;
+    int paramcount = 0;
+    int i = 0;
+    const char *paramname;
+    int resource_count = (_pipeline->_rescount + 3) >> 2;
+
+    // Scan the operands, looking for last output stage and number of inputs
+    for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
+      const PipeClassOperandForm *pipeopnd =
+          (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
+      if (pipeopnd) {
+        if (pipeopnd->_iswrite) {
+           int stagenum  = _pipeline->_stages.index(pipeopnd->_stage);
+           int moreinsts = pipeopnd->_more_instrs;
+          if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
+            maxWriteStage = stagenum;
+            maxMoreInstrs = moreinsts;
+          }
+        }
+      }
+
+      if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
+        paramcount++;
+    }
+
+    // Create the list of stages for the operands that are read
+    // Note that we will build a NameList to reduce the number of copies
+
+    int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
+
+    int pipeline_res_stages_index = pipeline_res_stages_initializer(
+      fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
+
+    int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
+      fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
+
+    int pipeline_res_mask_index = pipeline_res_mask_initializer(
+      fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
+
+#if 0
+    // Process the Resources
+    const PipeClassResourceForm *piperesource;
+
+    unsigned resources_used = 0;
+    unsigned exclusive_resources_used = 0;
+    unsigned resource_groups = 0;
+    for (pipeclass->_resUsage.reset();
+         (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
+      int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
+      if (used_mask)
+        resource_groups++;
+      resources_used |= used_mask;
+      if ((used_mask & (used_mask-1)) == 0)
+        exclusive_resources_used |= used_mask;
+    }
+
+    if (resource_groups > 0) {
+      fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
+        pipeclass->_num, resource_groups);
+      for (pipeclass->_resUsage.reset(), i = 1;
+           (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
+           i++ ) {
+        int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
+        if (used_mask) {
+          fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
+        }
+      }
+      fprintf(fp_cpp, "};\n\n");
+    }
+#endif
+
+    // Create the pipeline class description
+    fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
+      pipeclass->_num);
+    if (maxWriteStage < 0)
+      fprintf(fp_cpp, "(uint)stage_undefined");
+    else if (maxMoreInstrs == 0)
+      fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
+    else
+      fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
+    fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
+      paramcount,
+      pipeclass->hasFixedLatency() ? "true" : "false",
+      pipeclass->fixedLatency(),
+      pipeclass->InstructionCount(),
+      pipeclass->hasBranchDelay() ? "true" : "false",
+      pipeclass->hasMultipleBundles() ? "true" : "false",
+      pipeclass->forceSerialization() ? "true" : "false",
+      pipeclass->mayHaveNoCode() ? "true" : "false" );
+    if (paramcount > 0) {
+      fprintf(fp_cpp, "\n  (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
+        pipeline_reads_index+1);
+    }
+    else
+      fprintf(fp_cpp, " NULL,");
+    fprintf(fp_cpp, "  (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
+      pipeline_res_stages_index+1);
+    fprintf(fp_cpp, "  (uint * const) pipeline_res_cycles_%03d,\n",
+      pipeline_res_cycles_index+1);
+    fprintf(fp_cpp, "  Pipeline_Use(%s, (Pipeline_Use_Element *)",
+      pipeline_res_args.name(pipeline_res_mask_index));
+    if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
+      fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
+        pipeline_res_mask_index+1);
+    else
+      fprintf(fp_cpp, "NULL");
+    fprintf(fp_cpp, "));\n");
+  }
+
+  // Generate the Node::latency method if _pipeline defined
+  fprintf(fp_cpp, "\n");
+  fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
+  fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
+  if (_pipeline) {
+#if 0
+    fprintf(fp_cpp, "#ifndef PRODUCT\n");
+    fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
+    fprintf(fp_cpp, "    tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
+    fprintf(fp_cpp, " }\n");
+    fprintf(fp_cpp, "#endif\n");
+#endif
+    fprintf(fp_cpp, "  uint j;\n");
+    fprintf(fp_cpp, "  // verify in legal range for inputs\n");
+    fprintf(fp_cpp, "  assert(i < len(), \"index not in range\");\n\n");
+    fprintf(fp_cpp, "  // verify input is not null\n");
+    fprintf(fp_cpp, "  Node *pred = in(i);\n");
+    fprintf(fp_cpp, "  if (!pred)\n    return %d;\n\n",
+      non_operand_latency);
+    fprintf(fp_cpp, "  if (pred->is_Proj())\n    pred = pred->in(0);\n\n");
+    fprintf(fp_cpp, "  // if either node does not have pipeline info, use default\n");
+    fprintf(fp_cpp, "  const Pipeline *predpipe = pred->pipeline();\n");
+    fprintf(fp_cpp, "  assert(predpipe, \"no predecessor pipeline info\");\n\n");
+    fprintf(fp_cpp, "  if (predpipe->hasFixedLatency())\n    return predpipe->fixedLatency();\n\n");
+    fprintf(fp_cpp, "  const Pipeline *currpipe = pipeline();\n");
+    fprintf(fp_cpp, "  assert(currpipe, \"no pipeline info\");\n\n");
+    fprintf(fp_cpp, "  if (!is_Mach())\n    return %d;\n\n",
+      node_latency);
+    fprintf(fp_cpp, "  const MachNode *m = as_Mach();\n");
+    fprintf(fp_cpp, "  j = m->oper_input_base();\n");
+    fprintf(fp_cpp, "  if (i < j)\n    return currpipe->functional_unit_latency(%d, predpipe);\n\n",
+      non_operand_latency);
+    fprintf(fp_cpp, "  // determine which operand this is in\n");
+    fprintf(fp_cpp, "  uint n = m->num_opnds();\n");
+    fprintf(fp_cpp, "  int delta = %d;\n\n",
+      non_operand_latency);
+    fprintf(fp_cpp, "  uint k;\n");
+    fprintf(fp_cpp, "  for (k = 1; k < n; k++) {\n");
+    fprintf(fp_cpp, "    j += m->_opnds[k]->num_edges();\n");
+    fprintf(fp_cpp, "    if (i < j)\n");
+    fprintf(fp_cpp, "      break;\n");
+    fprintf(fp_cpp, "  }\n");
+    fprintf(fp_cpp, "  if (k < n)\n");
+    fprintf(fp_cpp, "    delta = currpipe->operand_latency(k,predpipe);\n\n");
+    fprintf(fp_cpp, "  return currpipe->functional_unit_latency(delta, predpipe);\n");
+  }
+  else {
+    fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
+    fprintf(fp_cpp, "  return %d;\n",
+      non_operand_latency);
+  }
+  fprintf(fp_cpp, "}\n\n");
+
+  // Output the list of nop nodes
+  fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
+  const char *nop;
+  int nopcnt = 0;
+  for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
+
+  fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d]) {\n", nopcnt);
+  int i = 0;
+  for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
+    fprintf(fp_cpp, "  nop_list[%d] = (MachNode *) new %sNode();\n", i, nop);
+  }
+  fprintf(fp_cpp, "};\n\n");
+  fprintf(fp_cpp, "#ifndef PRODUCT\n");
+  fprintf(fp_cpp, "void Bundle::dump(outputStream *st) const {\n");
+  fprintf(fp_cpp, "  static const char * bundle_flags[] = {\n");
+  fprintf(fp_cpp, "    \"\",\n");
+  fprintf(fp_cpp, "    \"use nop delay\",\n");
+  fprintf(fp_cpp, "    \"use unconditional delay\",\n");
+  fprintf(fp_cpp, "    \"use conditional delay\",\n");
+  fprintf(fp_cpp, "    \"used in conditional delay\",\n");
+  fprintf(fp_cpp, "    \"used in unconditional delay\",\n");
+  fprintf(fp_cpp, "    \"used in all conditional delays\",\n");
+  fprintf(fp_cpp, "  };\n\n");
+
+  fprintf(fp_cpp, "  static const char *resource_names[%d] = {", _pipeline->_rescount);
+  for (i = 0; i < _pipeline->_rescount; i++)
+    fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
+  fprintf(fp_cpp, "};\n\n");
+
+  // See if the same string is in the table
+  fprintf(fp_cpp, "  bool needs_comma = false;\n\n");
+  fprintf(fp_cpp, "  if (_flags) {\n");
+  fprintf(fp_cpp, "    st->print(\"%%s\", bundle_flags[_flags]);\n");
+  fprintf(fp_cpp, "    needs_comma = true;\n");
+  fprintf(fp_cpp, "  };\n");
+  fprintf(fp_cpp, "  if (instr_count()) {\n");
+  fprintf(fp_cpp, "    st->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
+  fprintf(fp_cpp, "    needs_comma = true;\n");
+  fprintf(fp_cpp, "  };\n");
+  fprintf(fp_cpp, "  uint r = resources_used();\n");
+  fprintf(fp_cpp, "  if (r) {\n");
+  fprintf(fp_cpp, "    st->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
+  fprintf(fp_cpp, "    for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
+  fprintf(fp_cpp, "      if ((r & (1 << i)) != 0)\n");
+  fprintf(fp_cpp, "        st->print(\" %%s\", resource_names[i]);\n");
+  fprintf(fp_cpp, "    needs_comma = true;\n");
+  fprintf(fp_cpp, "  };\n");
+  fprintf(fp_cpp, "  st->print(\"\\n\");\n");
+  fprintf(fp_cpp, "}\n");
+  fprintf(fp_cpp, "#endif\n");
+}
+
+// ---------------------------------------------------------------------------
+//------------------------------Utilities to build Instruction Classes--------
+// ---------------------------------------------------------------------------
+
+static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
+  fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
+          node, regMask);
+}
+
+static void print_block_index(FILE *fp, int inst_position) {
+  assert( inst_position >= 0, "Instruction number less than zero");
+  fprintf(fp, "block_index");
+  if( inst_position != 0 ) {
+    fprintf(fp, " - %d", inst_position);
+  }
+}
+
+// Scan the peepmatch and output a test for each instruction
+static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
+  int         parent        = -1;
+  int         inst_position = 0;
+  const char* inst_name     = NULL;
+  int         input         = 0;
+  fprintf(fp, "  // Check instruction sub-tree\n");
+  pmatch->reset();
+  for( pmatch->next_instruction( parent, inst_position, inst_name, input );
+       inst_name != NULL;
+       pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
+    // If this is not a placeholder
+    if( ! pmatch->is_placeholder() ) {
+      // Define temporaries 'inst#', based on parent and parent's input index
+      if( parent != -1 ) {                // root was initialized
+        fprintf(fp, "  // Identify previous instruction if inside this block\n");
+        fprintf(fp, "  if( ");
+        print_block_index(fp, inst_position);
+        fprintf(fp, " > 0 ) {\n    Node *n = block->get_node(");
+        print_block_index(fp, inst_position);
+        fprintf(fp, ");\n    inst%d = (n->is_Mach()) ? ", inst_position);
+        fprintf(fp, "n->as_Mach() : NULL;\n  }\n");
+      }
+
+      // When not the root
+      // Test we have the correct instruction by comparing the rule.
+      if( parent != -1 ) {
+        fprintf(fp, "  matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
+                inst_position, inst_position, inst_name);
+      }
+    } else {
+      // Check that user did not try to constrain a placeholder
+      assert( ! pconstraint->constrains_instruction(inst_position),
+              "fatal(): Can not constrain a placeholder instruction");
+    }
+  }
+}
+
+// Build mapping for register indices, num_edges to input
+static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
+  int         parent        = -1;
+  int         inst_position = 0;
+  const char* inst_name     = NULL;
+  int         input         = 0;
+  fprintf(fp, "      // Build map to register info\n");
+  pmatch->reset();
+  for( pmatch->next_instruction( parent, inst_position, inst_name, input );
+       inst_name != NULL;
+       pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
+    // If this is not a placeholder
+    if( ! pmatch->is_placeholder() ) {
+      // Define temporaries 'inst#', based on self's inst_position
+      InstructForm *inst = globals[inst_name]->is_instruction();
+      if( inst != NULL ) {
+        char inst_prefix[]  = "instXXXX_";
+        sprintf(inst_prefix, "inst%d_",   inst_position);
+        char receiver[]     = "instXXXX->";
+        sprintf(receiver,    "inst%d->", inst_position);
+        inst->index_temps( fp, globals, inst_prefix, receiver );
+      }
+    }
+  }
+}
+
+// Generate tests for the constraints
+static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
+  fprintf(fp, "\n");
+  fprintf(fp, "      // Check constraints on sub-tree-leaves\n");
+
+  // Build mapping from num_edges to local variables
+  build_instruction_index_mapping( fp, globals, pmatch );
+
+  // Build constraint tests
+  if( pconstraint != NULL ) {
+    fprintf(fp, "      matches = matches &&");
+    bool   first_constraint = true;
+    while( pconstraint != NULL ) {
+      // indentation and connecting '&&'
+      const char *indentation = "      ";
+      fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : "  "));
+
+      // Only have '==' relation implemented
+      if( strcmp(pconstraint->_relation,"==") != 0 ) {
+        assert( false, "Unimplemented()" );
+      }
+
+      // LEFT
+      int left_index       = pconstraint->_left_inst;
+      const char *left_op  = pconstraint->_left_op;
+      // Access info on the instructions whose operands are compared
+      InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
+      assert( inst_left, "Parser should guaranty this is an instruction");
+      int left_op_base  = inst_left->oper_input_base(globals);
+      // Access info on the operands being compared
+      int left_op_index  = inst_left->operand_position(left_op, Component::USE);
+      if( left_op_index == -1 ) {
+        left_op_index = inst_left->operand_position(left_op, Component::DEF);
+        if( left_op_index == -1 ) {
+          left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
+        }
+      }
+      assert( left_op_index  != NameList::Not_in_list, "Did not find operand in instruction");
+      ComponentList components_left = inst_left->_components;
+      const char *left_comp_type = components_left.at(left_op_index)->_type;
+      OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
+      Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
+
+
+      // RIGHT
+      int right_op_index = -1;
+      int right_index      = pconstraint->_right_inst;
+      const char *right_op = pconstraint->_right_op;
+      if( right_index != -1 ) { // Match operand
+        // Access info on the instructions whose operands are compared
+        InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
+        assert( inst_right, "Parser should guaranty this is an instruction");
+        int right_op_base = inst_right->oper_input_base(globals);
+        // Access info on the operands being compared
+        right_op_index = inst_right->operand_position(right_op, Component::USE);
+        if( right_op_index == -1 ) {
+          right_op_index = inst_right->operand_position(right_op, Component::DEF);
+          if( right_op_index == -1 ) {
+            right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
+          }
+        }
+        assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
+        ComponentList components_right = inst_right->_components;
+        const char *right_comp_type = components_right.at(right_op_index)->_type;
+        OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
+        Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
+        assert( right_interface_type == left_interface_type, "Both must be same interface");
+
+      } else {                  // Else match register
+        // assert( false, "should be a register" );
+      }
+
+      //
+      // Check for equivalence
+      //
+      // fprintf(fp, "phase->eqv( ");
+      // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
+      //         left_index,  left_op_base,  left_op_index,  left_op,
+      //         right_index, right_op_base, right_op_index, right_op );
+      // fprintf(fp, ")");
+      //
+      switch( left_interface_type ) {
+      case Form::register_interface: {
+        // Check that they are allocated to the same register
+        // Need parameter for index position if not result operand
+        char left_reg_index[] = ",instXXXX_idxXXXX";
+        if( left_op_index != 0 ) {
+          assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
+          // Must have index into operands
+          sprintf(left_reg_index,",inst%d_idx%d", (int)left_index, left_op_index);
+        } else {
+          strcpy(left_reg_index, "");
+        }
+        fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */",
+                left_index,  left_op_index, left_index, left_reg_index, left_index, left_op );
+        fprintf(fp, " == ");
+
+        if( right_index != -1 ) {
+          char right_reg_index[18] = ",instXXXX_idxXXXX";
+          if( right_op_index != 0 ) {
+            assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
+            // Must have index into operands
+            sprintf(right_reg_index,",inst%d_idx%d", (int)right_index, right_op_index);
+          } else {
+            strcpy(right_reg_index, "");
+          }
+          fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
+                  right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
+        } else {
+          fprintf(fp, "%s_enc", right_op );
+        }
+        fprintf(fp,")");
+        break;
+      }
+      case Form::constant_interface: {
+        // Compare the '->constant()' values
+        fprintf(fp, "(inst%d->_opnds[%d]->constant()  /* %d.%s */",
+                left_index,  left_op_index,  left_index, left_op );
+        fprintf(fp, " == ");
+        fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
+                right_index, right_op, right_index, right_op_index );
+        break;
+      }
+      case Form::memory_interface: {
+        // Compare 'base', 'index', 'scale', and 'disp'
+        // base
+        fprintf(fp, "( \n");
+        fprintf(fp, "  (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$base */",
+          left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
+        fprintf(fp, " == ");
+        fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
+                right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
+        // index
+        fprintf(fp, "  (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$index */",
+                left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
+        fprintf(fp, " == ");
+        fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
+                right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
+        // scale
+        fprintf(fp, "  (inst%d->_opnds[%d]->scale()  /* %d.%s$$scale */",
+                left_index,  left_op_index,  left_index, left_op );
+        fprintf(fp, " == ");
+        fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
+                right_index, right_op, right_index, right_op_index );
+        // disp
+        fprintf(fp, "  (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$disp */",
+                left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
+        fprintf(fp, " == ");
+        fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
+                right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
+        fprintf(fp, ") \n");
+        break;
+      }
+      case Form::conditional_interface: {
+        // Compare the condition code being tested
+        assert( false, "Unimplemented()" );
+        break;
+      }
+      default: {
+        assert( false, "ShouldNotReachHere()" );
+        break;
+      }
+      }
+
+      // Advance to next constraint
+      pconstraint = pconstraint->next();
+      first_constraint = false;
+    }
+
+    fprintf(fp, ";\n");
+  }
+}
+
+// // EXPERIMENTAL -- TEMPORARY code
+// static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
+//   int op_index = instr->operand_position(op_name, Component::USE);
+//   if( op_index == -1 ) {
+//     op_index = instr->operand_position(op_name, Component::DEF);
+//     if( op_index == -1 ) {
+//       op_index = instr->operand_position(op_name, Component::USE_DEF);
+//     }
+//   }
+//   assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
+//
+//   ComponentList components_right = instr->_components;
+//   char *right_comp_type = components_right.at(op_index)->_type;
+//   OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
+//   Form::InterfaceType  right_interface_type = right_opclass->interface_type(globals);
+//
+//   return;
+// }
+
+// Construct the new sub-tree
+static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
+  fprintf(fp, "      // IF instructions and constraints matched\n");
+  fprintf(fp, "      if( matches ) {\n");
+  fprintf(fp, "        // generate the new sub-tree\n");
+  fprintf(fp, "        assert( true, \"Debug stopping point\");\n");
+  if( preplace != NULL ) {
+    // Get the root of the new sub-tree
+    const char *root_inst = NULL;
+    preplace->next_instruction(root_inst);
+    InstructForm *root_form = globals[root_inst]->is_instruction();
+    assert( root_form != NULL, "Replacement instruction was not previously defined");
+    fprintf(fp, "        %sNode *root = new %sNode();\n", root_inst, root_inst);
+
+    int         inst_num;
+    const char *op_name;
+    int         opnds_index = 0;            // define result operand
+    // Then install the use-operands for the new sub-tree
+    // preplace->reset();             // reset breaks iteration
+    for( preplace->next_operand( inst_num, op_name );
+         op_name != NULL;
+         preplace->next_operand( inst_num, op_name ) ) {
+      InstructForm *inst_form;
+      inst_form  = globals[pmatch->instruction_name(inst_num)]->is_instruction();
+      assert( inst_form, "Parser should guaranty this is an instruction");
+      int inst_op_num = inst_form->operand_position(op_name, Component::USE);
+      if( inst_op_num == NameList::Not_in_list )
+        inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
+      assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
+      // find the name of the OperandForm from the local name
+      const Form *form   = inst_form->_localNames[op_name];
+      OperandForm  *op_form = form->is_operand();
+      if( opnds_index == 0 ) {
+        // Initial setup of new instruction
+        fprintf(fp, "        // ----- Initial setup -----\n");
+        //
+        // Add control edge for this node
+        fprintf(fp, "        root->add_req(_in[0]);                // control edge\n");
+        // Add unmatched edges from root of match tree
+        int op_base = root_form->oper_input_base(globals);
+        for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
+          fprintf(fp, "        root->add_req(inst%d->in(%d));        // unmatched ideal edge\n",
+                                          inst_num, unmatched_edge);
+        }
+        // If new instruction captures bottom type
+        if( root_form->captures_bottom_type(globals) ) {
+          // Get bottom type from instruction whose result we are replacing
+          fprintf(fp, "        root->_bottom_type = inst%d->bottom_type();\n", inst_num);
+        }
+        // Define result register and result operand
+        fprintf(fp, "        ra_->add_reference(root, inst%d);\n", inst_num);
+        fprintf(fp, "        ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
+        fprintf(fp, "        ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
+        fprintf(fp, "        root->_opnds[0] = inst%d->_opnds[0]->clone(); // result\n", inst_num);
+        fprintf(fp, "        // ----- Done with initial setup -----\n");
+      } else {
+        if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
+          // Do not have ideal edges for constants after matching
+          fprintf(fp, "        for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
+                  inst_op_num, inst_num, inst_op_num,
+                  inst_op_num, inst_num, inst_op_num+1, inst_op_num );
+          fprintf(fp, "          root->add_req( inst%d->in(x%d) );\n",
+                  inst_num, inst_op_num );
+        } else {
+          fprintf(fp, "        // no ideal edge for constants after matching\n");
+        }
+        fprintf(fp, "        root->_opnds[%d] = inst%d->_opnds[%d]->clone();\n",
+                opnds_index, inst_num, inst_op_num );
+      }
+      ++opnds_index;
+    }
+  }else {
+    // Replacing subtree with empty-tree
+    assert( false, "ShouldNotReachHere();");
+  }
+
+  // Return the new sub-tree
+  fprintf(fp, "        deleted = %d;\n", max_position+1 /*zero to one based*/);
+  fprintf(fp, "        return root;  // return new root;\n");
+  fprintf(fp, "      }\n");
+}
+
+
+// Define the Peephole method for an instruction node
+void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
+  // Generate Peephole function header
+  fprintf(fp, "MachNode *%sNode::peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted) {\n", node->_ident);
+  fprintf(fp, "  bool  matches = true;\n");
+
+  // Identify the maximum instruction position,
+  // generate temporaries that hold current instruction
+  //
+  //   MachNode  *inst0 = NULL;
+  //   ...
+  //   MachNode  *instMAX = NULL;
+  //
+  int max_position = 0;
+  Peephole *peep;
+  for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
+    PeepMatch *pmatch = peep->match();
+    assert( pmatch != NULL, "fatal(), missing peepmatch rule");
+    if( max_position < pmatch->max_position() )  max_position = pmatch->max_position();
+  }
+  for( int i = 0; i <= max_position; ++i ) {
+    if( i == 0 ) {
+      fprintf(fp, "  MachNode *inst0 = this;\n");
+    } else {
+      fprintf(fp, "  MachNode *inst%d = NULL;\n", i);
+    }
+  }
+
+  // For each peephole rule in architecture description
+  //   Construct a test for the desired instruction sub-tree
+  //   then check the constraints
+  //   If these match, Generate the new subtree
+  for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
+    int         peephole_number = peep->peephole_number();
+    PeepMatch      *pmatch      = peep->match();
+    PeepConstraint *pconstraint = peep->constraints();
+    PeepReplace    *preplace    = peep->replacement();
+
+    // Root of this peephole is the current MachNode
+    assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
+            "root of PeepMatch does not match instruction");
+
+    // Make each peephole rule individually selectable
+    fprintf(fp, "  if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
+    fprintf(fp, "    matches = true;\n");
+    // Scan the peepmatch and output a test for each instruction
+    check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
+
+    // Check constraints and build replacement inside scope
+    fprintf(fp, "    // If instruction subtree matches\n");
+    fprintf(fp, "    if( matches ) {\n");
+
+    // Generate tests for the constraints
+    check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
+
+    // Construct the new sub-tree
+    generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
+
+    // End of scope for this peephole's constraints
+    fprintf(fp, "    }\n");
+    // Closing brace '}' to make each peephole rule individually selectable
+    fprintf(fp, "  } // end of peephole rule #%d\n", peephole_number);
+    fprintf(fp, "\n");
+  }
+
+  fprintf(fp, "  return NULL;  // No peephole rules matched\n");
+  fprintf(fp, "}\n");
+  fprintf(fp, "\n");
+}
+
+// Define the Expand method for an instruction node
+void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
+  unsigned      cnt  = 0;          // Count nodes we have expand into
+  unsigned      i;
+
+  // Generate Expand function header
+  fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
+  fprintf(fp, "  Compile* C = Compile::current();\n");
+  // Generate expand code
+  if( node->expands() ) {
+    const char   *opid;
+    int           new_pos, exp_pos;
+    const char   *new_id   = NULL;
+    const Form   *frm      = NULL;
+    InstructForm *new_inst = NULL;
+    OperandForm  *new_oper = NULL;
+    unsigned      numo     = node->num_opnds() +
+                                node->_exprule->_newopers.count();
+
+    // If necessary, generate any operands created in expand rule
+    if (node->_exprule->_newopers.count()) {
+      for(node->_exprule->_newopers.reset();
+          (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
+        frm = node->_localNames[new_id];
+        assert(frm, "Invalid entry in new operands list of expand rule");
+        new_oper = frm->is_operand();
+        char *tmp = (char *)node->_exprule->_newopconst[new_id];
+        if (tmp == NULL) {
+          fprintf(fp,"  MachOper *op%d = new %sOper();\n",
+                  cnt, new_oper->_ident);
+        }
+        else {
+          fprintf(fp,"  MachOper *op%d = new %sOper(%s);\n",
+                  cnt, new_oper->_ident, tmp);
+        }
+      }
+    }
+    cnt = 0;
+    // Generate the temps to use for DAG building
+    for(i = 0; i < numo; i++) {
+      if (i < node->num_opnds()) {
+        fprintf(fp,"  MachNode *tmp%d = this;\n", i);
+      }
+      else {
+        fprintf(fp,"  MachNode *tmp%d = NULL;\n", i);
+      }
+    }
+    // Build mapping from num_edges to local variables
+    fprintf(fp,"  unsigned num0 = 0;\n");
+    for( i = 1; i < node->num_opnds(); i++ ) {
+      fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
+    }
+
+    // Build a mapping from operand index to input edges
+    fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
+
+    // The order in which the memory input is added to a node is very
+    // strange.  Store nodes get a memory input before Expand is
+    // called and other nodes get it afterwards or before depending on
+    // match order so oper_input_base is wrong during expansion.  This
+    // code adjusts it so that expansion will work correctly.
+    int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
+    if (has_memory_edge) {
+      fprintf(fp,"  if (mem == (Node*)1) {\n");
+      fprintf(fp,"    idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
+      fprintf(fp,"  }\n");
+    }
+
+    for( i = 0; i < node->num_opnds(); i++ ) {
+      fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
+              i+1,i,i);
+    }
+
+    // Declare variable to hold root of expansion
+    fprintf(fp,"  MachNode *result = NULL;\n");
+
+    // Iterate over the instructions 'node' expands into
+    ExpandRule  *expand       = node->_exprule;
+    NameAndList *expand_instr = NULL;
+    for (expand->reset_instructions();
+         (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
+      new_id = expand_instr->name();
+
+      InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
+
+      if (!expand_instruction) {
+        globalAD->syntax_err(node->_linenum, "In %s: instruction %s used in expand not declared\n",
+                             node->_ident, new_id);
+        continue;
+      }
+
+      // Build the node for the instruction
+      fprintf(fp,"\n  %sNode *n%d = new %sNode();\n", new_id, cnt, new_id);
+      // Add control edge for this node
+      fprintf(fp,"  n%d->add_req(_in[0]);\n", cnt);
+      // Build the operand for the value this node defines.
+      Form *form = (Form*)_globalNames[new_id];
+      assert(form, "'new_id' must be a defined form name");
+      // Grab the InstructForm for the new instruction
+      new_inst = form->is_instruction();
+      assert(new_inst, "'new_id' must be an instruction name");
+      if (node->is_ideal_if() && new_inst->is_ideal_if()) {
+        fprintf(fp, "  ((MachIfNode*)n%d)->_prob = _prob;\n", cnt);
+        fprintf(fp, "  ((MachIfNode*)n%d)->_fcnt = _fcnt;\n", cnt);
+      }
+
+      if (node->is_ideal_fastlock() && new_inst->is_ideal_fastlock()) {
+        fprintf(fp, "  ((MachFastLockNode*)n%d)->_counters = _counters;\n", cnt);
+        fprintf(fp, "  ((MachFastLockNode*)n%d)->_rtm_counters = _rtm_counters;\n", cnt);
+        fprintf(fp, "  ((MachFastLockNode*)n%d)->_stack_rtm_counters = _stack_rtm_counters;\n", cnt);
+      }
+
+      // Fill in the bottom_type where requested
+      if (node->captures_bottom_type(_globalNames) &&
+          new_inst->captures_bottom_type(_globalNames)) {
+        fprintf(fp, "  ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt);
+      }
+
+      const char *resultOper = new_inst->reduce_result();
+      fprintf(fp,"  n%d->set_opnd_array(0, state->MachOperGenerator(%s));\n",
+              cnt, machOperEnum(resultOper));
+
+      // get the formal operand NameList
+      NameList *formal_lst = &new_inst->_parameters;
+      formal_lst->reset();
+
+      // Handle any memory operand
+      int memory_operand = new_inst->memory_operand(_globalNames);
+      if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
+        int node_mem_op = node->memory_operand(_globalNames);
+        assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
+                "expand rule member needs memory but top-level inst doesn't have any" );
+        if (has_memory_edge) {
+          // Copy memory edge
+          fprintf(fp,"  if (mem != (Node*)1) {\n");
+          fprintf(fp,"    n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
+          fprintf(fp,"  }\n");
+        }
+      }
+
+      // Iterate over the new instruction's operands
+      int prev_pos = -1;
+      for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
+        // Use 'parameter' at current position in list of new instruction's formals
+        // instead of 'opid' when looking up info internal to new_inst
+        const char *parameter = formal_lst->iter();
+        if (!parameter) {
+          globalAD->syntax_err(node->_linenum, "Operand %s of expand instruction %s has"
+                               " no equivalent in new instruction %s.",
+                               opid, node->_ident, new_inst->_ident);
+          assert(0, "Wrong expand");
+        }
+
+        // Check for an operand which is created in the expand rule
+        if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
+          new_pos = new_inst->operand_position(parameter,Component::USE);
+          exp_pos += node->num_opnds();
+          // If there is no use of the created operand, just skip it
+          if (new_pos != NameList::Not_in_list) {
+            //Copy the operand from the original made above
+            fprintf(fp,"  n%d->set_opnd_array(%d, op%d->clone()); // %s\n",
+                    cnt, new_pos, exp_pos-node->num_opnds(), opid);
+            // Check for who defines this operand & add edge if needed
+            fprintf(fp,"  if(tmp%d != NULL)\n", exp_pos);
+            fprintf(fp,"    n%d->add_req(tmp%d);\n", cnt, exp_pos);
+          }
+        }
+        else {
+          // Use operand name to get an index into instruction component list
+          // ins = (InstructForm *) _globalNames[new_id];
+          exp_pos = node->operand_position_format(opid);
+          assert(exp_pos != -1, "Bad expand rule");
+          if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
+            // For the add_req calls below to work correctly they need
+            // to added in the same order that a match would add them.
+            // This means that they would need to be in the order of
+            // the components list instead of the formal parameters.
+            // This is a sort of hidden invariant that previously
+            // wasn't checked and could lead to incorrectly
+            // constructed nodes.
+            syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
+                       node->_ident, new_inst->_ident);
+          }
+          prev_pos = exp_pos;
+
+          new_pos = new_inst->operand_position(parameter,Component::USE);
+          if (new_pos != -1) {
+            // Copy the operand from the ExpandNode to the new node
+            fprintf(fp,"  n%d->set_opnd_array(%d, opnd_array(%d)->clone()); // %s\n",
+                    cnt, new_pos, exp_pos, opid);
+            // For each operand add appropriate input edges by looking at tmp's
+            fprintf(fp,"  if(tmp%d == this) {\n", exp_pos);
+            // Grab corresponding edges from ExpandNode and insert them here
+            fprintf(fp,"    for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
+            fprintf(fp,"      n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
+            fprintf(fp,"    }\n");
+            fprintf(fp,"  }\n");
+            // This value is generated by one of the new instructions
+            fprintf(fp,"  else n%d->add_req(tmp%d);\n", cnt, exp_pos);
+          }
+        }
+
+        // Update the DAG tmp's for values defined by this instruction
+        int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
+        Effect *eform = (Effect *)new_inst->_effects[parameter];
+        // If this operand is a definition in either an effects rule
+        // or a match rule
+        if((eform) && (is_def(eform->_use_def))) {
+          // Update the temp associated with this operand
+          fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
+        }
+        else if( new_def_pos != -1 ) {
+          // Instruction defines a value but user did not declare it
+          // in the 'effect' clause
+          fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
+        }
+      } // done iterating over a new instruction's operands
+
+      // Fix number of operands, as we do not generate redundant ones.
+      // The matcher generates some redundant operands, which are removed
+      // in the expand function (of the node we generate here). We don't
+      // generate the redundant operands here, so set the correct _num_opnds.
+      if (expand_instruction->num_opnds() != expand_instruction->num_unique_opnds()) {
+        fprintf(fp, "  n%d->_num_opnds = %d; // Only unique opnds generated.\n",
+                cnt, expand_instruction->num_unique_opnds());
+      }
+
+      // Invoke Expand() for the newly created instruction.
+      fprintf(fp,"  result = n%d->Expand( state, proj_list, mem );\n", cnt);
+      assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
+    } // done iterating over new instructions
+    fprintf(fp,"\n");
+  } // done generating expand rule
+
+  // Generate projections for instruction's additional DEFs and KILLs
+  if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
+    // Get string representing the MachNode that projections point at
+    const char *machNode = "this";
+    // Generate the projections
+    fprintf(fp,"  // Add projection edges for additional defs or kills\n");
+
+    // Examine each component to see if it is a DEF or KILL
+    node->_components.reset();
+    // Skip the first component, if already handled as (SET dst (...))
+    Component *comp = NULL;
+    // For kills, the choice of projection numbers is arbitrary
+    int proj_no = 1;
+    bool declared_def  = false;
+    bool declared_kill = false;
+
+    while ((comp = node->_components.iter()) != NULL) {
+      // Lookup register class associated with operand type
+      Form *form = (Form*)_globalNames[comp->_type];
+      assert(form, "component type must be a defined form");
+      OperandForm *op = form->is_operand();
+
+      if (comp->is(Component::TEMP) ||
+          comp->is(Component::TEMP_DEF)) {
+        fprintf(fp, "  // TEMP %s\n", comp->_name);
+        if (!declared_def) {
+          // Define the variable "def" to hold new MachProjNodes
+          fprintf(fp, "  MachTempNode *def;\n");
+          declared_def = true;
+        }
+        if (op && op->_interface && op->_interface->is_RegInterface()) {
+          fprintf(fp,"  def = new MachTempNode(state->MachOperGenerator(%s));\n",
+                  machOperEnum(op->_ident));
+          fprintf(fp,"  add_req(def);\n");
+          // The operand for TEMP is already constructed during
+          // this mach node construction, see buildMachNode().
+          //
+          // int idx  = node->operand_position_format(comp->_name);
+          // fprintf(fp,"  set_opnd_array(%d, state->MachOperGenerator(%s));\n",
+          //         idx, machOperEnum(op->_ident));
+        } else {
+          assert(false, "can't have temps which aren't registers");
+        }
+      } else if (comp->isa(Component::KILL)) {
+        fprintf(fp, "  // DEF/KILL %s\n", comp->_name);
+
+        if (!declared_kill) {
+          // Define the variable "kill" to hold new MachProjNodes
+          fprintf(fp, "  MachProjNode *kill;\n");
+          declared_kill = true;
+        }
+
+        assert(op, "Support additional KILLS for base operands");
+        const char *regmask    = reg_mask(*op);
+        const char *ideal_type = op->ideal_type(_globalNames, _register);
+
+        if (!op->is_bound_register()) {
+          syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
+                     node->_ident, comp->_type, comp->_name);
+        }
+
+        fprintf(fp,"  kill = ");
+        fprintf(fp,"new MachProjNode( %s, %d, (%s), Op_%s );\n",
+                machNode, proj_no++, regmask, ideal_type);
+        fprintf(fp,"  proj_list.push(kill);\n");
+      }
+    }
+  }
+
+  if( !node->expands() && node->_matrule != NULL ) {
+    // Remove duplicated operands and inputs which use the same name.
+    // Search through match operands for the same name usage.
+    // The matcher generates these non-unique operands. If the node
+    // was constructed by an expand rule, there are no unique operands.
+    uint cur_num_opnds = node->num_opnds();
+    if (cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds()) {
+      Component *comp = NULL;
+      fprintf(fp, "  // Remove duplicated operands and inputs which use the same name.\n");
+      fprintf(fp, "  if (num_opnds() == %d) {\n", cur_num_opnds);
+      // Build mapping from num_edges to local variables
+      fprintf(fp,"    unsigned num0 = 0;\n");
+      for (i = 1; i < cur_num_opnds; i++) {
+        fprintf(fp,"    unsigned num%d = opnd_array(%d)->num_edges();", i, i);
+        fprintf(fp, " \t// %s\n", node->opnd_ident(i));
+      }
+      // Build a mapping from operand index to input edges
+      fprintf(fp,"    unsigned idx0 = oper_input_base();\n");
+      for (i = 0; i < cur_num_opnds; i++) {
+        fprintf(fp,"    unsigned idx%d = idx%d + num%d;\n", i+1, i, i);
+      }
+
+      uint new_num_opnds = 1;
+      node->_components.reset();
+      // Skip first unique operands.
+      for (i = 1; i < cur_num_opnds; i++) {
+        comp = node->_components.iter();
+        if (i != node->unique_opnds_idx(i)) {
+          break;
+        }
+        new_num_opnds++;
+      }
+      // Replace not unique operands with next unique operands.
+      for ( ; i < cur_num_opnds; i++) {
+        comp = node->_components.iter();
+        uint j = node->unique_opnds_idx(i);
+        // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
+        if (j != node->unique_opnds_idx(j)) {
+          fprintf(fp,"    set_opnd_array(%d, opnd_array(%d)->clone()); // %s\n",
+                  new_num_opnds, i, comp->_name);
+          // Delete not unique edges here.
+          fprintf(fp,"    for (unsigned i = 0; i < num%d; i++) {\n", i);
+          fprintf(fp,"      set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
+          fprintf(fp,"    }\n");
+          fprintf(fp,"    num%d = num%d;\n", new_num_opnds, i);
+          fprintf(fp,"    idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
+          new_num_opnds++;
+        }
+      }
+      // Delete the rest of edges.
+      fprintf(fp,"    for (int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
+      fprintf(fp,"      del_req(i);\n");
+      fprintf(fp,"    }\n");
+      fprintf(fp,"    _num_opnds = %d;\n", new_num_opnds);
+      assert(new_num_opnds == node->num_unique_opnds(), "what?");
+      fprintf(fp, "  } else {\n");
+      fprintf(fp, "    assert(_num_opnds == %d, \"There should be either %d or %d operands.\");\n",
+                  new_num_opnds, new_num_opnds, cur_num_opnds);
+      fprintf(fp, "  }\n");
+    }
+  }
+
+  // If the node is a MachConstantNode, insert the MachConstantBaseNode edge.
+  // NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input).
+  // There are nodes that don't use $constantablebase, but still require that it
+  // is an input to the node. Example: divF_reg_immN, Repl32B_imm on x86_64.
+  if (node->is_mach_constant() || node->needs_constant_base()) {
+    if (node->is_ideal_call() != Form::invalid_type &&
+        node->is_ideal_call() != Form::JAVA_LEAF) {
+      fprintf(fp, "  // MachConstantBaseNode added in matcher.\n");
+      _needs_clone_jvms = true;
+    } else {
+      fprintf(fp, "  add_req(C->mach_constant_base_node());\n");
+    }
+  }
+
+  fprintf(fp, "\n");
+  if (node->expands()) {
+    fprintf(fp, "  return result;\n");
+  } else {
+    fprintf(fp, "  return this;\n");
+  }
+  fprintf(fp, "}\n");
+  fprintf(fp, "\n");
+}
+
+
+//------------------------------Emit Routines----------------------------------
+// Special classes and routines for defining node emit routines which output
+// target specific instruction object encodings.
+// Define the ___Node::emit() routine
+//
+// (1) void  ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
+// (2)   // ...  encoding defined by user
+// (3)
+// (4) }
+//
+
+class DefineEmitState {
+private:
+  enum reloc_format { RELOC_NONE        = -1,
+                      RELOC_IMMEDIATE   =  0,
+                      RELOC_DISP        =  1,
+                      RELOC_CALL_DISP   =  2 };
+  enum literal_status{ LITERAL_NOT_SEEN  = 0,
+                       LITERAL_SEEN      = 1,
+                       LITERAL_ACCESSED  = 2,
+                       LITERAL_OUTPUT    = 3 };
+  // Temporaries that describe current operand
+  bool          _cleared;
+  OpClassForm  *_opclass;
+  OperandForm  *_operand;
+  int           _operand_idx;
+  const char   *_local_name;
+  const char   *_operand_name;
+  bool          _doing_disp;
+  bool          _doing_constant;
+  Form::DataType _constant_type;
+  DefineEmitState::literal_status _constant_status;
+  DefineEmitState::literal_status _reg_status;
+  bool          _doing_emit8;
+  bool          _doing_emit_d32;
+  bool          _doing_emit_d16;
+  bool          _doing_emit_hi;
+  bool          _doing_emit_lo;
+  bool          _may_reloc;
+  reloc_format  _reloc_form;
+  const char *  _reloc_type;
+  bool          _processing_noninput;
+
+  NameList      _strings_to_emit;
+
+  // Stable state, set by constructor
+  ArchDesc     &_AD;
+  FILE         *_fp;
+  EncClass     &_encoding;
+  InsEncode    &_ins_encode;
+  InstructForm &_inst;
+
+public:
+  DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
+                  InsEncode &ins_encode, InstructForm &inst)
+    : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
+      clear();
+  }
+
+  void clear() {
+    _cleared       = true;
+    _opclass       = NULL;
+    _operand       = NULL;
+    _operand_idx   = 0;
+    _local_name    = "";
+    _operand_name  = "";
+    _doing_disp    = false;
+    _doing_constant= false;
+    _constant_type = Form::none;
+    _constant_status = LITERAL_NOT_SEEN;
+    _reg_status      = LITERAL_NOT_SEEN;
+    _doing_emit8   = false;
+    _doing_emit_d32= false;
+    _doing_emit_d16= false;
+    _doing_emit_hi = false;
+    _doing_emit_lo = false;
+    _may_reloc     = false;
+    _reloc_form    = RELOC_NONE;
+    _reloc_type    = AdlcVMDeps::none_reloc_type();
+    _strings_to_emit.clear();
+  }
+
+  // Track necessary state when identifying a replacement variable
+  // @arg rep_var: The formal parameter of the encoding.
+  void update_state(const char *rep_var) {
+    // A replacement variable or one of its subfields
+    // Obtain replacement variable from list
+    if ( (*rep_var) != '$' ) {
+      // A replacement variable, '$' prefix
+      // check_rep_var( rep_var );
+      if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
+        // No state needed.
+        assert( _opclass == NULL,
+                "'primary', 'secondary' and 'tertiary' don't follow operand.");
+      }
+      else if ((strcmp(rep_var, "constanttablebase") == 0) ||
+               (strcmp(rep_var, "constantoffset")    == 0) ||
+               (strcmp(rep_var, "constantaddress")   == 0)) {
+        if (!(_inst.is_mach_constant() || _inst.needs_constant_base())) {
+          _AD.syntax_err(_encoding._linenum,
+                         "Replacement variable %s not allowed in instruct %s (only in MachConstantNode or MachCall).\n",
+                         rep_var, _encoding._name);
+        }
+      }
+      else {
+        // Lookup its position in (formal) parameter list of encoding
+        int   param_no  = _encoding.rep_var_index(rep_var);
+        if ( param_no == -1 ) {
+          _AD.syntax_err( _encoding._linenum,
+                          "Replacement variable %s not found in enc_class %s.\n",
+                          rep_var, _encoding._name);
+        }
+
+        // Lookup the corresponding ins_encode parameter
+        // This is the argument (actual parameter) to the encoding.
+        const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
+        if (inst_rep_var == NULL) {
+          _AD.syntax_err( _ins_encode._linenum,
+                          "Parameter %s not passed to enc_class %s from instruct %s.\n",
+                          rep_var, _encoding._name, _inst._ident);
+        }
+
+        // Check if instruction's actual parameter is a local name in the instruction
+        const Form  *local     = _inst._localNames[inst_rep_var];
+        OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
+        // Note: assert removed to allow constant and symbolic parameters
+        // assert( opc, "replacement variable was not found in local names");
+        // Lookup the index position iff the replacement variable is a localName
+        int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
+
+        if ( idx != -1 ) {
+          // This is a local in the instruction
+          // Update local state info.
+          _opclass        = opc;
+          _operand_idx    = idx;
+          _local_name     = rep_var;
+          _operand_name   = inst_rep_var;
+
+          // !!!!!
+          // Do not support consecutive operands.
+          assert( _operand == NULL, "Unimplemented()");
+          _operand = opc->is_operand();
+        }
+        else if( ADLParser::is_literal_constant(inst_rep_var) ) {
+          // Instruction provided a constant expression
+          // Check later that encoding specifies $$$constant to resolve as constant
+          _constant_status   = LITERAL_SEEN;
+        }
+        else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
+          // Instruction provided an opcode: "primary", "secondary", "tertiary"
+          // Check later that encoding specifies $$$constant to resolve as constant
+          _constant_status   = LITERAL_SEEN;
+        }
+        else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
+          // Instruction provided a literal register name for this parameter
+          // Check that encoding specifies $$$reg to resolve.as register.
+          _reg_status        = LITERAL_SEEN;
+        }
+        else {
+          // Check for unimplemented functionality before hard failure
+          assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
+          assert( false, "ShouldNotReachHere()");
+        }
+      } // done checking which operand this is.
+    } else {
+      //
+      // A subfield variable, '$$' prefix
+      // Check for fields that may require relocation information.
+      // Then check that literal register parameters are accessed with 'reg' or 'constant'
+      //
+      if ( strcmp(rep_var,"$disp") == 0 ) {
+        _doing_disp = true;
+        assert( _opclass, "Must use operand or operand class before '$disp'");
+        if( _operand == NULL ) {
+          // Only have an operand class, generate run-time check for relocation
+          _may_reloc    = true;
+          _reloc_form   = RELOC_DISP;
+          _reloc_type   = AdlcVMDeps::oop_reloc_type();
+        } else {
+          // Do precise check on operand: is it a ConP or not
+          //
+          // Check interface for value of displacement
+          assert( ( _operand->_interface != NULL ),
+                  "$disp can only follow memory interface operand");
+          MemInterface *mem_interface= _operand->_interface->is_MemInterface();
+          assert( mem_interface != NULL,
+                  "$disp can only follow memory interface operand");
+          const char *disp = mem_interface->_disp;
+
+          if( disp != NULL && (*disp == '$') ) {
+            // MemInterface::disp contains a replacement variable,
+            // Check if this matches a ConP
+            //
+            // Lookup replacement variable, in operand's component list
+            const char *rep_var_name = disp + 1; // Skip '$'
+            const Component *comp = _operand->_components.search(rep_var_name);
+            assert( comp != NULL,"Replacement variable not found in components");
+            const char      *type = comp->_type;
+            // Lookup operand form for replacement variable's type
+            const Form *form = _AD.globalNames()[type];
+            assert( form != NULL, "Replacement variable's type not found");
+            OperandForm *op = form->is_operand();
+            assert( op, "Attempting to emit a non-register or non-constant");
+            // Check if this is a constant
+            if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
+              // Check which constant this name maps to: _c0, _c1, ..., _cn
+              // const int idx = _operand.constant_position(_AD.globalNames(), comp);
+              // assert( idx != -1, "Constant component not found in operand");
+              Form::DataType dtype = op->is_base_constant(_AD.globalNames());
+              if ( dtype == Form::idealP ) {
+                _may_reloc    = true;
+                // No longer true that idealP is always an oop
+                _reloc_form   = RELOC_DISP;
+                _reloc_type   = AdlcVMDeps::oop_reloc_type();
+              }
+            }
+
+            else if( _operand->is_user_name_for_sReg() != Form::none ) {
+              // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
+              assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
+              _may_reloc   = false;
+            } else {
+              assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
+            }
+          }
+        } // finished with precise check of operand for relocation.
+      } // finished with subfield variable
+      else if ( strcmp(rep_var,"$constant") == 0 ) {
+        _doing_constant = true;
+        if ( _constant_status == LITERAL_NOT_SEEN ) {
+          // Check operand for type of constant
+          assert( _operand, "Must use operand before '$$constant'");
+          Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
+          _constant_type = dtype;
+          if ( dtype == Form::idealP ) {
+            _may_reloc    = true;
+            // No longer true that idealP is always an oop
+            // // _must_reloc   = true;
+            _reloc_form   = RELOC_IMMEDIATE;
+            _reloc_type   = AdlcVMDeps::oop_reloc_type();
+          } else {
+            // No relocation information needed
+          }
+        } else {
+          // User-provided literals may not require relocation information !!!!!
+          assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
+        }
+      }
+      else if ( strcmp(rep_var,"$label") == 0 ) {
+        // Calls containing labels require relocation
+        if ( _inst.is_ideal_call() )  {
+          _may_reloc    = true;
+          // !!!!! !!!!!
+          _reloc_type   = AdlcVMDeps::none_reloc_type();
+        }
+      }
+
+      // literal register parameter must be accessed as a 'reg' field.
+      if ( _reg_status != LITERAL_NOT_SEEN ) {
+        assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
+        if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
+          _reg_status  = LITERAL_ACCESSED;
+        } else {
+          _AD.syntax_err(_encoding._linenum,
+                         "Invalid access to literal register parameter '%s' in %s.\n",
+                         rep_var, _encoding._name);
+          assert( false, "invalid access to literal register parameter");
+        }
+      }
+      // literal constant parameters must be accessed as a 'constant' field
+      if (_constant_status != LITERAL_NOT_SEEN) {
+        assert(_constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
+        if (strcmp(rep_var,"$constant") == 0) {
+          _constant_status = LITERAL_ACCESSED;
+        } else {
+          _AD.syntax_err(_encoding._linenum,
+                         "Invalid access to literal constant parameter '%s' in %s.\n",
+                         rep_var, _encoding._name);
+        }
+      }
+    } // end replacement and/or subfield
+
+  }
+
+  void add_rep_var(const char *rep_var) {
+    // Handle subfield and replacement variables.
+    if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
+      // Check for emit prefix, '$$emit32'
+      assert( _cleared, "Can not nest $$$emit32");
+      if ( strcmp(rep_var,"$$emit32") == 0 ) {
+        _doing_emit_d32 = true;
+      }
+      else if ( strcmp(rep_var,"$$emit16") == 0 ) {
+        _doing_emit_d16 = true;
+      }
+      else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
+        _doing_emit_hi  = true;
+      }
+      else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
+        _doing_emit_lo  = true;
+      }
+      else if ( strcmp(rep_var,"$$emit8") == 0 ) {
+        _doing_emit8    = true;
+      }
+      else {
+        _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
+        assert( false, "fatal();");
+      }
+    }
+    else {
+      // Update state for replacement variables
+      update_state( rep_var );
+      _strings_to_emit.addName(rep_var);
+    }
+    _cleared  = false;
+  }
+
+  void emit_replacement() {
+    // A replacement variable or one of its subfields
+    // Obtain replacement variable from list
+    // const char *ec_rep_var = encoding->_rep_vars.iter();
+    const char *rep_var;
+    _strings_to_emit.reset();
+    while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
+
+      if ( (*rep_var) == '$' ) {
+        // A subfield variable, '$$' prefix
+        emit_field( rep_var );
+      } else {
+        if (_strings_to_emit.peek() != NULL &&
+            strcmp(_strings_to_emit.peek(), "$Address") == 0) {
+          fprintf(_fp, "Address::make_raw(");
+
+          emit_rep_var( rep_var );
+          fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);
+
+          _reg_status = LITERAL_ACCESSED;
+          emit_rep_var( rep_var );
+          fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);
+
+          _reg_status = LITERAL_ACCESSED;
+          emit_rep_var( rep_var );
+          fprintf(_fp,"->scale(), ");
+
+          _reg_status = LITERAL_ACCESSED;
+          emit_rep_var( rep_var );
+          Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
+          if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
+            fprintf(_fp,"->disp(ra_,this,0), ");
+          } else {
+            fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
+          }
+
+          _reg_status = LITERAL_ACCESSED;
+          emit_rep_var( rep_var );
+          fprintf(_fp,"->disp_reloc())");
+
+          // skip trailing $Address
+          _strings_to_emit.iter();
+        } else {
+          // A replacement variable, '$' prefix
+          const char* next = _strings_to_emit.peek();
+          const char* next2 = _strings_to_emit.peek(2);
+          if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
+              (strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
+            // handle $rev_var$$base$$Register and $rev_var$$index$$Register by
+            // producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
+            fprintf(_fp, "as_Register(");
+            // emit the operand reference
+            emit_rep_var( rep_var );
+            rep_var = _strings_to_emit.iter();
+            assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
+            // handle base or index
+            emit_field(rep_var);
+            rep_var = _strings_to_emit.iter();
+            assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
+            // close up the parens
+            fprintf(_fp, ")");
+          } else {
+            emit_rep_var( rep_var );
+          }
+        }
+      } // end replacement and/or subfield
+    }
+  }
+
+  void emit_reloc_type(const char* type) {
+    fprintf(_fp, "%s", type)
+      ;
+  }
+
+
+  void emit() {
+    //
+    //   "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
+    //
+    // Emit the function name when generating an emit function
+    if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
+      const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
+      // In general, relocatable isn't known at compiler compile time.
+      // Check results of prior scan
+      if ( ! _may_reloc ) {
+        // Definitely don't need relocation information
+        fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
+        emit_replacement(); fprintf(_fp, ")");
+      }
+      else {
+        // Emit RUNTIME CHECK to see if value needs relocation info
+        // If emitting a relocatable address, use 'emit_d32_reloc'
+        const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
+        assert( (_doing_disp || _doing_constant)
+                && !(_doing_disp && _doing_constant),
+                "Must be emitting either a displacement or a constant");
+        fprintf(_fp,"\n");
+        fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n",
+                _operand_idx, disp_constant);
+        fprintf(_fp,"  ");
+        fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo );
+        emit_replacement();             fprintf(_fp,", ");
+        fprintf(_fp,"opnd_array(%d)->%s_reloc(), ",
+                _operand_idx, disp_constant);
+        fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
+        fprintf(_fp,"\n");
+        fprintf(_fp,"} else {\n");
+        fprintf(_fp,"  emit_%s(cbuf, ", d32_hi_lo);
+        emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
+      }
+    }
+    else if ( _doing_emit_d16 ) {
+      // Relocation of 16-bit values is not supported
+      fprintf(_fp,"emit_d16(cbuf, ");
+      emit_replacement(); fprintf(_fp, ")");
+      // No relocation done for 16-bit values
+    }
+    else if ( _doing_emit8 ) {
+      // Relocation of 8-bit values is not supported
+      fprintf(_fp,"emit_d8(cbuf, ");
+      emit_replacement(); fprintf(_fp, ")");
+      // No relocation done for 8-bit values
+    }
+    else {
+      // Not an emit# command, just output the replacement string.
+      emit_replacement();
+    }
+
+    // Get ready for next state collection.
+    clear();
+  }
+
+private:
+
+  // recognizes names which represent MacroAssembler register types
+  // and return the conversion function to build them from OptoReg
+  const char* reg_conversion(const char* rep_var) {
+    if (strcmp(rep_var,"$Register") == 0)      return "as_Register";
+    if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
+#if defined(IA32) || defined(AMD64)
+    if (strcmp(rep_var,"$XMMRegister") == 0)   return "as_XMMRegister";
+#endif
+    if (strcmp(rep_var,"$CondRegister") == 0)  return "as_ConditionRegister";
+    return NULL;
+  }
+
+  void emit_field(const char *rep_var) {
+    const char* reg_convert = reg_conversion(rep_var);
+
+    // A subfield variable, '$$subfield'
+    if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
+      // $reg form or the $Register MacroAssembler type conversions
+      assert( _operand_idx != -1,
+              "Must use this subfield after operand");
+      if( _reg_status == LITERAL_NOT_SEEN ) {
+        if (_processing_noninput) {
+          const Form  *local     = _inst._localNames[_operand_name];
+          OperandForm *oper      = local->is_operand();
+          const RegDef* first = oper->get_RegClass()->find_first_elem();
+          if (reg_convert != NULL) {
+            fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
+          } else {
+            fprintf(_fp, "%s_enc", first->_regname);
+          }
+        } else {
+          fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
+          // Add parameter for index position, if not result operand
+          if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
+          fprintf(_fp,")");
+          fprintf(_fp, "/* %s */", _operand_name);
+        }
+      } else {
+        assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
+        // Register literal has already been sent to output file, nothing more needed
+      }
+    }
+    else if ( strcmp(rep_var,"$base") == 0 ) {
+      assert( _operand_idx != -1,
+              "Must use this subfield after operand");
+      assert( ! _may_reloc, "UnImplemented()");
+      fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
+    }
+    else if ( strcmp(rep_var,"$index") == 0 ) {
+      assert( _operand_idx != -1,
+              "Must use this subfield after operand");
+      assert( ! _may_reloc, "UnImplemented()");
+      fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
+    }
+    else if ( strcmp(rep_var,"$scale") == 0 ) {
+      assert( ! _may_reloc, "UnImplemented()");
+      fprintf(_fp,"->scale()");
+    }
+    else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
+      assert( ! _may_reloc, "UnImplemented()");
+      fprintf(_fp,"->ccode()");
+    }
+    else if ( strcmp(rep_var,"$constant") == 0 ) {
+      if( _constant_status == LITERAL_NOT_SEEN ) {
+        if ( _constant_type == Form::idealD ) {
+          fprintf(_fp,"->constantD()");
+        } else if ( _constant_type == Form::idealF ) {
+          fprintf(_fp,"->constantF()");
+        } else if ( _constant_type == Form::idealL ) {
+          fprintf(_fp,"->constantL()");
+        } else {
+          fprintf(_fp,"->constant()");
+        }
+      } else {
+        assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
+        // Constant literal has already been sent to output file, nothing more needed
+      }
+    }
+    else if ( strcmp(rep_var,"$disp") == 0 ) {
+      Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
+      if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
+        fprintf(_fp,"->disp(ra_,this,0)");
+      } else {
+        fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
+      }
+    }
+    else if ( strcmp(rep_var,"$label") == 0 ) {
+      fprintf(_fp,"->label()");
+    }
+    else if ( strcmp(rep_var,"$method") == 0 ) {
+      fprintf(_fp,"->method()");
+    }
+    else {
+      printf("emit_field: %s\n",rep_var);
+      globalAD->syntax_err(_inst._linenum, "Unknown replacement variable %s in format statement of %s.",
+                           rep_var, _inst._ident);
+      assert( false, "UnImplemented()");
+    }
+  }
+
+
+  void emit_rep_var(const char *rep_var) {
+    _processing_noninput = false;
+    // A replacement variable, originally '$'
+    if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
+      if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
+        // Missing opcode
+        _AD.syntax_err( _inst._linenum,
+                        "Missing $%s opcode definition in %s, used by encoding %s\n",
+                        rep_var, _inst._ident, _encoding._name);
+      }
+    }
+    else if (strcmp(rep_var, "constanttablebase") == 0) {
+      fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))");
+    }
+    else if (strcmp(rep_var, "constantoffset") == 0) {
+      fprintf(_fp, "constant_offset()");
+    }
+    else if (strcmp(rep_var, "constantaddress") == 0) {
+      fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())");
+    }
+    else {
+      // Lookup its position in parameter list
+      int   param_no  = _encoding.rep_var_index(rep_var);
+      if ( param_no == -1 ) {
+        _AD.syntax_err( _encoding._linenum,
+                        "Replacement variable %s not found in enc_class %s.\n",
+                        rep_var, _encoding._name);
+      }
+      // Lookup the corresponding ins_encode parameter
+      const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
+
+      // Check if instruction's actual parameter is a local name in the instruction
+      const Form  *local     = _inst._localNames[inst_rep_var];
+      OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
+      // Note: assert removed to allow constant and symbolic parameters
+      // assert( opc, "replacement variable was not found in local names");
+      // Lookup the index position iff the replacement variable is a localName
+      int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
+      if( idx != -1 ) {
+        if (_inst.is_noninput_operand(idx)) {
+          // This operand isn't a normal input so printing it is done
+          // specially.
+          _processing_noninput = true;
+        } else {
+          // Output the emit code for this operand
+          fprintf(_fp,"opnd_array(%d)",idx);
+        }
+        assert( _operand == opc->is_operand(),
+                "Previous emit $operand does not match current");
+      }
+      else if( ADLParser::is_literal_constant(inst_rep_var) ) {
+        // else check if it is a constant expression
+        // Removed following assert to allow primitive C types as arguments to encodings
+        // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
+        fprintf(_fp,"(%s)", inst_rep_var);
+        _constant_status = LITERAL_OUTPUT;
+      }
+      else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
+        // else check if "primary", "secondary", "tertiary"
+        assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
+        if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
+          // Missing opcode
+          _AD.syntax_err( _inst._linenum,
+                          "Missing $%s opcode definition in %s\n",
+                          rep_var, _inst._ident);
+
+        }
+        _constant_status = LITERAL_OUTPUT;
+      }
+      else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
+        // Instruction provided a literal register name for this parameter
+        // Check that encoding specifies $$$reg to resolve.as register.
+        assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
+        fprintf(_fp,"(%s_enc)", inst_rep_var);
+        _reg_status = LITERAL_OUTPUT;
+      }
+      else {
+        // Check for unimplemented functionality before hard failure
+        assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
+        assert( false, "ShouldNotReachHere()");
+      }
+      // all done
+    }
+  }
+
+};  // end class DefineEmitState
+
+
+void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
+
+  //(1)
+  // Output instruction's emit prototype
+  fprintf(fp,"uint %sNode::size(PhaseRegAlloc *ra_) const {\n",
+          inst._ident);
+
+  fprintf(fp, "  assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
+
+  //(2)
+  // Print the size
+  fprintf(fp, "  return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
+
+  // (3) and (4)
+  fprintf(fp,"}\n\n");
+}
+
+// Emit postalloc expand function.
+void ArchDesc::define_postalloc_expand(FILE *fp, InstructForm &inst) {
+  InsEncode *ins_encode = inst._insencode;
+
+  // Output instruction's postalloc_expand prototype.
+  fprintf(fp, "void  %sNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {\n",
+          inst._ident);
+
+  assert((_encode != NULL) && (ins_encode != NULL), "You must define an encode section.");
+
+  // Output each operand's offset into the array of registers.
+  inst.index_temps(fp, _globalNames);
+
+  // Output variables "unsigned idx_<par_name>", Node *n_<par_name> and "MachOpnd *op_<par_name>"
+  // for each parameter <par_name> specified in the encoding.
+  ins_encode->reset();
+  const char *ec_name = ins_encode->encode_class_iter();
+  assert(ec_name != NULL, "Postalloc expand must specify an encoding.");
+
+  EncClass *encoding = _encode->encClass(ec_name);
+  if (encoding == NULL) {
+    fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
+    abort();
+  }
+  if (ins_encode->current_encoding_num_args() != encoding->num_args()) {
+    globalAD->syntax_err(ins_encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
+                         inst._ident, ins_encode->current_encoding_num_args(),
+                         ec_name, encoding->num_args());
+  }
+
+  fprintf(fp, "  // Access to ins and operands for postalloc expand.\n");
+  const int buflen = 2000;
+  char idxbuf[buflen]; char *ib = idxbuf; idxbuf[0] = '\0';
+  char nbuf  [buflen]; char *nb = nbuf;   nbuf[0]   = '\0';
+  char opbuf [buflen]; char *ob = opbuf;  opbuf[0]  = '\0';
+
+  encoding->_parameter_type.reset();
+  encoding->_parameter_name.reset();
+  const char *type = encoding->_parameter_type.iter();
+  const char *name = encoding->_parameter_name.iter();
+  int param_no = 0;
+  for (; (type != NULL) && (name != NULL);
+       (type = encoding->_parameter_type.iter()), (name = encoding->_parameter_name.iter())) {
+    const char* arg_name = ins_encode->rep_var_name(inst, param_no);
+    int idx = inst.operand_position_format(arg_name);
+    if (strcmp(arg_name, "constanttablebase") == 0) {
+      ib += sprintf(ib, "  unsigned idx_%-5s = mach_constant_base_node_input(); \t// %s, \t%s\n",
+                    name, type, arg_name);
+      nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
+      // There is no operand for the constanttablebase.
+    } else if (inst.is_noninput_operand(idx)) {
+      globalAD->syntax_err(inst._linenum,
+                           "In %s: you can not pass the non-input %s to a postalloc expand encoding.\n",
+                           inst._ident, arg_name);
+    } else {
+      ib += sprintf(ib, "  unsigned idx_%-5s = idx%d; \t// %s, \t%s\n",
+                    name, idx, type, arg_name);
+      nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
+      ob += sprintf(ob, "  %sOper *op_%s = (%sOper *)opnd_array(%d);\n", type, name, type, idx);
+    }
+    param_no++;
+  }
+  assert(ib < &idxbuf[buflen-1] && nb < &nbuf[buflen-1] && ob < &opbuf[buflen-1], "buffer overflow");
+
+  fprintf(fp, "%s", idxbuf);
+  fprintf(fp, "  Node    *n_region  = lookup(0);\n");
+  fprintf(fp, "%s%s", nbuf, opbuf);
+  fprintf(fp, "  Compile *C = ra_->C;\n");
+
+  // Output this instruction's encodings.
+  fprintf(fp, "  {");
+  const char *ec_code    = NULL;
+  const char *ec_rep_var = NULL;
+  assert(encoding == _encode->encClass(ec_name), "");
+
+  DefineEmitState pending(fp, *this, *encoding, *ins_encode, inst);
+  encoding->_code.reset();
+  encoding->_rep_vars.reset();
+  // Process list of user-defined strings,
+  // and occurrences of replacement variables.
+  // Replacement Vars are pushed into a list and then output.
+  while ((ec_code = encoding->_code.iter()) != NULL) {
+    if (! encoding->_code.is_signal(ec_code)) {
+      // Emit pending code.
+      pending.emit();
+      pending.clear();
+      // Emit this code section.
+      fprintf(fp, "%s", ec_code);
+    } else {
+      // A replacement variable or one of its subfields.
+      // Obtain replacement variable from list.
+      ec_rep_var = encoding->_rep_vars.iter();
+      pending.add_rep_var(ec_rep_var);
+    }
+  }
+  // Emit pending code.
+  pending.emit();
+  pending.clear();
+  fprintf(fp, "  }\n");
+
+  fprintf(fp, "}\n\n");
+
+  ec_name = ins_encode->encode_class_iter();
+  assert(ec_name == NULL, "Postalloc expand may only have one encoding.");
+}
+
+// defineEmit -----------------------------------------------------------------
+void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) {
+  InsEncode* encode = inst._insencode;
+
+  // (1)
+  // Output instruction's emit prototype
+  fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident);
+
+  // If user did not define an encode section,
+  // provide stub that does not generate any machine code.
+  if( (_encode == NULL) || (encode == NULL) ) {
+    fprintf(fp, "  // User did not define an encode section.\n");
+    fprintf(fp, "}\n");
+    return;
+  }
+
+  // Save current instruction's starting address (helps with relocation).
+  fprintf(fp, "  cbuf.set_insts_mark();\n");
+
+  // For MachConstantNodes which are ideal jump nodes, fill the jump table.
+  if (inst.is_mach_constant() && inst.is_ideal_jump()) {
+    fprintf(fp, "  ra_->C->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n");
+  }
+
+  // Output each operand's offset into the array of registers.
+  inst.index_temps(fp, _globalNames);
+
+  // Output this instruction's encodings
+  const char *ec_name;
+  bool        user_defined = false;
+  encode->reset();
+  while ((ec_name = encode->encode_class_iter()) != NULL) {
+    fprintf(fp, "  {\n");
+    // Output user-defined encoding
+    user_defined           = true;
+
+    const char *ec_code    = NULL;
+    const char *ec_rep_var = NULL;
+    EncClass   *encoding   = _encode->encClass(ec_name);
+    if (encoding == NULL) {
+      fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
+      abort();
+    }
+
+    if (encode->current_encoding_num_args() != encoding->num_args()) {
+      globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
+                           inst._ident, encode->current_encoding_num_args(),
+                           ec_name, encoding->num_args());
+    }
+
+    DefineEmitState pending(fp, *this, *encoding, *encode, inst);
+    encoding->_code.reset();
+    encoding->_rep_vars.reset();
+    // Process list of user-defined strings,
+    // and occurrences of replacement variables.
+    // Replacement Vars are pushed into a list and then output
+    while ((ec_code = encoding->_code.iter()) != NULL) {
+      if (!encoding->_code.is_signal(ec_code)) {
+        // Emit pending code
+        pending.emit();
+        pending.clear();
+        // Emit this code section
+        fprintf(fp, "%s", ec_code);
+      } else {
+        // A replacement variable or one of its subfields
+        // Obtain replacement variable from list
+        ec_rep_var  = encoding->_rep_vars.iter();
+        pending.add_rep_var(ec_rep_var);
+      }
+    }
+    // Emit pending code
+    pending.emit();
+    pending.clear();
+    fprintf(fp, "  }\n");
+  } // end while instruction's encodings
+
+  // Check if user stated which encoding to user
+  if ( user_defined == false ) {
+    fprintf(fp, "  // User did not define which encode class to use.\n");
+  }
+
+  // (3) and (4)
+  fprintf(fp, "}\n\n");
+}
+
+// defineEvalConstant ---------------------------------------------------------
+void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) {
+  InsEncode* encode = inst._constant;
+
+  // (1)
+  // Output instruction's emit prototype
+  fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident);
+
+  // For ideal jump nodes, add a jump-table entry.
+  if (inst.is_ideal_jump()) {
+    fprintf(fp, "  _constant = C->constant_table().add_jump_table(this);\n");
+  }
+
+  // If user did not define an encode section,
+  // provide stub that does not generate any machine code.
+  if ((_encode == NULL) || (encode == NULL)) {
+    fprintf(fp, "  // User did not define an encode section.\n");
+    fprintf(fp, "}\n");
+    return;
+  }
+
+  // Output this instruction's encodings
+  const char *ec_name;
+  bool        user_defined = false;
+  encode->reset();
+  while ((ec_name = encode->encode_class_iter()) != NULL) {
+    fprintf(fp, "  {\n");
+    // Output user-defined encoding
+    user_defined           = true;
+
+    const char *ec_code    = NULL;
+    const char *ec_rep_var = NULL;
+    EncClass   *encoding   = _encode->encClass(ec_name);
+    if (encoding == NULL) {
+      fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
+      abort();
+    }
+
+    if (encode->current_encoding_num_args() != encoding->num_args()) {
+      globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
+                           inst._ident, encode->current_encoding_num_args(),
+                           ec_name, encoding->num_args());
+    }
+
+    DefineEmitState pending(fp, *this, *encoding, *encode, inst);
+    encoding->_code.reset();
+    encoding->_rep_vars.reset();
+    // Process list of user-defined strings,
+    // and occurrences of replacement variables.
+    // Replacement Vars are pushed into a list and then output
+    while ((ec_code = encoding->_code.iter()) != NULL) {
+      if (!encoding->_code.is_signal(ec_code)) {
+        // Emit pending code
+        pending.emit();
+        pending.clear();
+        // Emit this code section
+        fprintf(fp, "%s", ec_code);
+      } else {
+        // A replacement variable or one of its subfields
+        // Obtain replacement variable from list
+        ec_rep_var  = encoding->_rep_vars.iter();
+        pending.add_rep_var(ec_rep_var);
+      }
+    }
+    // Emit pending code
+    pending.emit();
+    pending.clear();
+    fprintf(fp, "  }\n");
+  } // end while instruction's encodings
+
+  // Check if user stated which encoding to user
+  if (user_defined == false) {
+    fprintf(fp, "  // User did not define which encode class to use.\n");
+  }
+
+  // (3) and (4)
+  fprintf(fp, "}\n");
+}
+
+// ---------------------------------------------------------------------------
+//--------Utilities to build MachOper and MachNode derived Classes------------
+// ---------------------------------------------------------------------------
+
+//------------------------------Utilities to build Operand Classes------------
+static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
+  uint num_edges = oper.num_edges(globals);
+  if( num_edges != 0 ) {
+    // Method header
+    fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
+            oper._ident);
+
+    // Assert that the index is in range.
+    fprintf(fp, "  assert(0 <= index && index < %d, \"index out of range\");\n",
+            num_edges);
+
+    // Figure out if all RegMasks are the same.
+    const char* first_reg_class = oper.in_reg_class(0, globals);
+    bool all_same = true;
+    assert(first_reg_class != NULL, "did not find register mask");
+
+    for (uint index = 1; all_same && index < num_edges; index++) {
+      const char* some_reg_class = oper.in_reg_class(index, globals);
+      assert(some_reg_class != NULL, "did not find register mask");
+      if (strcmp(first_reg_class, some_reg_class) != 0) {
+        all_same = false;
+      }
+    }
+
+    if (all_same) {
+      // Return the sole RegMask.
+      if (strcmp(first_reg_class, "stack_slots") == 0) {
+        fprintf(fp,"  return &(Compile::current()->FIRST_STACK_mask());\n");
+      } else {
+        const char* first_reg_class_to_upper = toUpper(first_reg_class);
+        fprintf(fp,"  return &%s_mask();\n", first_reg_class_to_upper);
+        delete[] first_reg_class_to_upper;
+      }
+    } else {
+      // Build a switch statement to return the desired mask.
+      fprintf(fp,"  switch (index) {\n");
+
+      for (uint index = 0; index < num_edges; index++) {
+        const char *reg_class = oper.in_reg_class(index, globals);
+        assert(reg_class != NULL, "did not find register mask");
+        if( !strcmp(reg_class, "stack_slots") ) {
+          fprintf(fp, "  case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
+        } else {
+          const char* reg_class_to_upper = toUpper(reg_class);
+          fprintf(fp, "  case %d: return &%s_mask();\n", index, reg_class_to_upper);
+          delete[] reg_class_to_upper;
+        }
+      }
+      fprintf(fp,"  }\n");
+      fprintf(fp,"  ShouldNotReachHere();\n");
+      fprintf(fp,"  return NULL;\n");
+    }
+
+    // Method close
+    fprintf(fp, "}\n\n");
+  }
+}
+
+// generate code to create a clone for a class derived from MachOper
+//
+// (0)  MachOper  *MachOperXOper::clone() const {
+// (1)    return new MachXOper( _ccode, _c0, _c1, ..., _cn);
+// (2)  }
+//
+static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
+  fprintf(fp,"MachOper *%sOper::clone() const {\n", oper._ident);
+  // Check for constants that need to be copied over
+  const int  num_consts    = oper.num_consts(globalNames);
+  const bool is_ideal_bool = oper.is_ideal_bool();
+  if( (num_consts > 0) ) {
+    fprintf(fp,"  return new %sOper(", oper._ident);
+    // generate parameters for constants
+    int i = 0;
+    fprintf(fp,"_c%d", i);
+    for( i = 1; i < num_consts; ++i) {
+      fprintf(fp,", _c%d", i);
+    }
+    // finish line (1)
+    fprintf(fp,");\n");
+  }
+  else {
+    assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
+    fprintf(fp,"  return new %sOper();\n", oper._ident);
+  }
+  // finish method
+  fprintf(fp,"}\n");
+}
+
+// Helper functions for bug 4796752, abstracted with minimal modification
+// from define_oper_interface()
+OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
+  OperandForm *op = NULL;
+  // Check for replacement variable
+  if( *encoding == '$' ) {
+    // Replacement variable
+    const char *rep_var = encoding + 1;
+    // Lookup replacement variable, rep_var, in operand's component list
+    const Component *comp = oper._components.search(rep_var);
+    assert( comp != NULL, "Replacement variable not found in components");
+    // Lookup operand form for replacement variable's type
+    const char      *type = comp->_type;
+    Form            *form = (Form*)globals[type];
+    assert( form != NULL, "Replacement variable's type not found");
+    op = form->is_operand();
+    assert( op, "Attempting to emit a non-register or non-constant");
+  }
+
+  return op;
+}
+
+int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
+  int idx = -1;
+  // Check for replacement variable
+  if( *encoding == '$' ) {
+    // Replacement variable
+    const char *rep_var = encoding + 1;
+    // Lookup replacement variable, rep_var, in operand's component list
+    const Component *comp = oper._components.search(rep_var);
+    assert( comp != NULL, "Replacement variable not found in components");
+    // Lookup operand form for replacement variable's type
+    const char      *type = comp->_type;
+    Form            *form = (Form*)globals[type];
+    assert( form != NULL, "Replacement variable's type not found");
+    OperandForm *op = form->is_operand();
+    assert( op, "Attempting to emit a non-register or non-constant");
+    // Check that this is a constant and find constant's index:
+    if (op->_matrule && op->_matrule->is_base_constant(globals)) {
+      idx  = oper.constant_position(globals, comp);
+    }
+  }
+
+  return idx;
+}
+
+bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
+  bool is_regI = false;
+
+  OperandForm *op = rep_var_to_operand(encoding, oper, globals);
+  if( op != NULL ) {
+    // Check that this is a register
+    if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
+      // Register
+      const char* ideal  = op->ideal_type(globals);
+      is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
+    }
+  }
+
+  return is_regI;
+}
+
+bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
+  bool is_conP = false;
+
+  OperandForm *op = rep_var_to_operand(encoding, oper, globals);
+  if( op != NULL ) {
+    // Check that this is a constant pointer
+    if (op->_matrule && op->_matrule->is_base_constant(globals)) {
+      // Constant
+      Form::DataType dtype = op->is_base_constant(globals);
+      is_conP = (dtype == Form::idealP);
+    }
+  }
+
+  return is_conP;
+}
+
+
+// Define a MachOper interface methods
+void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
+                                     const char *name, const char *encoding) {
+  bool emit_position = false;
+  int position = -1;
+
+  fprintf(fp,"  virtual int            %s", name);
+  // Generate access method for base, index, scale, disp, ...
+  if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
+    fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
+    emit_position = true;
+  } else if ( (strcmp(name,"disp") == 0) ) {
+    fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
+  } else {
+    fprintf(fp, "() const {\n");
+  }
+
+  // Check for hexadecimal value OR replacement variable
+  if( *encoding == '$' ) {
+    // Replacement variable
+    const char *rep_var = encoding + 1;
+    fprintf(fp,"    // Replacement variable: %s\n", encoding+1);
+    // Lookup replacement variable, rep_var, in operand's component list
+    const Component *comp = oper._components.search(rep_var);
+    assert( comp != NULL, "Replacement variable not found in components");
+    // Lookup operand form for replacement variable's type
+    const char      *type = comp->_type;
+    Form            *form = (Form*)globals[type];
+    assert( form != NULL, "Replacement variable's type not found");
+    OperandForm *op = form->is_operand();
+    assert( op, "Attempting to emit a non-register or non-constant");
+    // Check that this is a register or a constant and generate code:
+    if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
+      // Register
+      int idx_offset = oper.register_position( globals, rep_var);
+      position = idx_offset;
+      fprintf(fp,"    return (int)ra_->get_encode(node->in(idx");
+      if ( idx_offset > 0 ) fprintf(fp,                      "+%d",idx_offset);
+      fprintf(fp,"));\n");
+    } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
+      // StackSlot for an sReg comes either from input node or from self, when idx==0
+      fprintf(fp,"    if( idx != 0 ) {\n");
+      fprintf(fp,"      // Access stack offset (register number) for input operand\n");
+      fprintf(fp,"      return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
+      fprintf(fp,"    }\n");
+      fprintf(fp,"    // Access stack offset (register number) from myself\n");
+      fprintf(fp,"    return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
+    } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
+      // Constant
+      // Check which constant this name maps to: _c0, _c1, ..., _cn
+      const int idx = oper.constant_position(globals, comp);
+      assert( idx != -1, "Constant component not found in operand");
+      // Output code for this constant, type dependent.
+      fprintf(fp,"    return (int)" );
+      oper.access_constant(fp, globals, (uint)idx /* , const_type */);
+      fprintf(fp,";\n");
+    } else {
+      assert( false, "Attempting to emit a non-register or non-constant");
+    }
+  }
+  else if( *encoding == '0' && *(encoding+1) == 'x' ) {
+    // Hex value
+    fprintf(fp,"    return %s;\n", encoding);
+  } else {
+    globalAD->syntax_err(oper._linenum, "In operand %s: Do not support this encode constant: '%s' for %s.",
+                         oper._ident, encoding, name);
+    assert( false, "Do not support octal or decimal encode constants");
+  }
+  fprintf(fp,"  }\n");
+
+  if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
+    fprintf(fp,"  virtual int            %s_position() const { return %d; }\n", name, position);
+    MemInterface *mem_interface = oper._interface->is_MemInterface();
+    const char *base = mem_interface->_base;
+    const char *disp = mem_interface->_disp;
+    if( emit_position && (strcmp(name,"base") == 0)
+        && base != NULL && is_regI(base, oper, globals)
+        && disp != NULL && is_conP(disp, oper, globals) ) {
+      // Found a memory access using a constant pointer for a displacement
+      // and a base register containing an integer offset.
+      // In this case the base and disp are reversed with respect to what
+      // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
+      // Provide a non-NULL return for disp_as_type() that will allow adr_type()
+      // to correctly compute the access type for alias analysis.
+      //
+      // See BugId 4796752, operand indOffset32X in i486.ad
+      int idx = rep_var_to_constant_index(disp, oper, globals);
+      fprintf(fp,"  virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
+    }
+  }
+}
+
+//
+// Construct the method to copy _idx, inputs and operands to new node.
+static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
+  fprintf(fp_cpp, "\n");
+  fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
+  fprintf(fp_cpp, "void MachNode::fill_new_machnode(MachNode* node) const {\n");
+  if( !used ) {
+    fprintf(fp_cpp, "  // This architecture does not have cisc or short branch instructions\n");
+    fprintf(fp_cpp, "  ShouldNotCallThis();\n");
+    fprintf(fp_cpp, "}\n");
+  } else {
+    // New node must use same node index for access through allocator's tables
+    fprintf(fp_cpp, "  // New node must use same node index\n");
+    fprintf(fp_cpp, "  node->set_idx( _idx );\n");
+    // Copy machine-independent inputs
+    fprintf(fp_cpp, "  // Copy machine-independent inputs\n");
+    fprintf(fp_cpp, "  for( uint j = 0; j < req(); j++ ) {\n");
+    fprintf(fp_cpp, "    node->add_req(in(j));\n");
+    fprintf(fp_cpp, "  }\n");
+    // Copy machine operands to new MachNode
+    fprintf(fp_cpp, "  // Copy my operands, except for cisc position\n");
+    fprintf(fp_cpp, "  int nopnds = num_opnds();\n");
+    fprintf(fp_cpp, "  assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
+    fprintf(fp_cpp, "  MachOper **to = node->_opnds;\n");
+    fprintf(fp_cpp, "  for( int i = 0; i < nopnds; i++ ) {\n");
+    fprintf(fp_cpp, "    if( i != cisc_operand() ) \n");
+    fprintf(fp_cpp, "      to[i] = _opnds[i]->clone();\n");
+    fprintf(fp_cpp, "  }\n");
+    fprintf(fp_cpp, "}\n");
+  }
+  fprintf(fp_cpp, "\n");
+}
+
+//------------------------------defineClasses----------------------------------
+// Define members of MachNode and MachOper classes based on
+// operand and instruction lists
+void ArchDesc::defineClasses(FILE *fp) {
+
+  // Define the contents of an array containing the machine register names
+  defineRegNames(fp, _register);
+  // Define an array containing the machine register encoding values
+  defineRegEncodes(fp, _register);
+  // Generate an enumeration of user-defined register classes
+  // and a list of register masks, one for each class.
+  // Only define the RegMask value objects in the expand file.
+  // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
+  declare_register_masks(_HPP_file._fp);
+  // build_register_masks(fp);
+  build_register_masks(_CPP_EXPAND_file._fp);
+  // Define the pipe_classes
+  build_pipe_classes(_CPP_PIPELINE_file._fp);
+
+  // Generate Machine Classes for each operand defined in AD file
+  fprintf(fp,"\n");
+  fprintf(fp,"\n");
+  fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
+  // Iterate through all operands
+  _operands.reset();
+  OperandForm *oper;
+  for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
+    // Ensure this is a machine-world instruction
+    if ( oper->ideal_only() ) continue;
+    // !!!!!
+    // The declaration of labelOper is in machine-independent file: machnode
+    if ( strcmp(oper->_ident,"label") == 0 ) {
+      defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
+
+      fprintf(fp,"MachOper  *%sOper::clone() const {\n", oper->_ident);
+      fprintf(fp,"  return  new %sOper(_label, _block_num);\n", oper->_ident);
+      fprintf(fp,"}\n");
+
+      fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
+              oper->_ident, machOperEnum(oper->_ident));
+      // // Currently all XXXOper::Hash() methods are identical (990820)
+      // define_hash(fp, oper->_ident);
+      // // Currently all XXXOper::Cmp() methods are identical (990820)
+      // define_cmp(fp, oper->_ident);
+      fprintf(fp,"\n");
+
+      continue;
+    }
+
+    // The declaration of methodOper is in machine-independent file: machnode
+    if ( strcmp(oper->_ident,"method") == 0 ) {
+      defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
+
+      fprintf(fp,"MachOper  *%sOper::clone() const {\n", oper->_ident);
+      fprintf(fp,"  return  new %sOper(_method);\n", oper->_ident);
+      fprintf(fp,"}\n");
+
+      fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
+              oper->_ident, machOperEnum(oper->_ident));
+      // // Currently all XXXOper::Hash() methods are identical (990820)
+      // define_hash(fp, oper->_ident);
+      // // Currently all XXXOper::Cmp() methods are identical (990820)
+      // define_cmp(fp, oper->_ident);
+      fprintf(fp,"\n");
+
+      continue;
+    }
+
+    defineIn_RegMask(fp, _globalNames, *oper);
+    defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
+    // // Currently all XXXOper::Hash() methods are identical (990820)
+    // define_hash(fp, oper->_ident);
+    // // Currently all XXXOper::Cmp() methods are identical (990820)
+    // define_cmp(fp, oper->_ident);
+
+    // side-call to generate output that used to be in the header file:
+    extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
+    gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
+
+  }
+
+
+  // Generate Machine Classes for each instruction defined in AD file
+  fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
+  // Output the definitions for out_RegMask() // & kill_RegMask()
+  _instructions.reset();
+  InstructForm *instr;
+  MachNodeForm *machnode;
+  for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
+    // Ensure this is a machine-world instruction
+    if ( instr->ideal_only() ) continue;
+
+    defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
+  }
+
+  bool used = false;
+  // Output the definitions for expand rules & peephole rules
+  _instructions.reset();
+  for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
+    // Ensure this is a machine-world instruction
+    if ( instr->ideal_only() ) continue;
+    // If there are multiple defs/kills, or an explicit expand rule, build rule
+    if( instr->expands() || instr->needs_projections() ||
+        instr->has_temps() ||
+        instr->is_mach_constant() ||
+        instr->needs_constant_base() ||
+        (instr->_matrule != NULL &&
+         instr->num_opnds() != instr->num_unique_opnds()) )
+      defineExpand(_CPP_EXPAND_file._fp, instr);
+    // If there is an explicit peephole rule, build it
+    if ( instr->peepholes() )
+      definePeephole(_CPP_PEEPHOLE_file._fp, instr);
+
+    // Output code to convert to the cisc version, if applicable
+    used |= instr->define_cisc_version(*this, fp);
+
+    // Output code to convert to the short branch version, if applicable
+    used |= instr->define_short_branch_methods(*this, fp);
+  }
+
+  // Construct the method called by cisc_version() to copy inputs and operands.
+  define_fill_new_machnode(used, fp);
+
+  // Output the definitions for labels
+  _instructions.reset();
+  while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
+    // Ensure this is a machine-world instruction
+    if ( instr->ideal_only() ) continue;
+
+    // Access the fields for operand Label
+    int label_position = instr->label_position();
+    if( label_position != -1 ) {
+      // Set the label
+      fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident);
+      fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
+              label_position );
+      fprintf(fp,"  oper->_label     = label;\n");
+      fprintf(fp,"  oper->_block_num = block_num;\n");
+      fprintf(fp,"}\n");
+      // Save the label
+      fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident);
+      fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
+              label_position );
+      fprintf(fp,"  *label = oper->_label;\n");
+      fprintf(fp,"  *block_num = oper->_block_num;\n");
+      fprintf(fp,"}\n");
+    }
+  }
+
+  // Output the definitions for methods
+  _instructions.reset();
+  while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
+    // Ensure this is a machine-world instruction
+    if ( instr->ideal_only() ) continue;
+
+    // Access the fields for operand Label
+    int method_position = instr->method_position();
+    if( method_position != -1 ) {
+      // Access the method's address
+      fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
+      fprintf(fp,"  ((methodOper*)opnd_array(%d))->_method = method;\n",
+              method_position );
+      fprintf(fp,"}\n");
+      fprintf(fp,"\n");
+    }
+  }
+
+  // Define this instruction's number of relocation entries, base is '0'
+  _instructions.reset();
+  while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
+    // Output the definition for number of relocation entries
+    uint reloc_size = instr->reloc(_globalNames);
+    if ( reloc_size != 0 ) {
+      fprintf(fp,"int %sNode::reloc() const {\n", instr->_ident);
+      fprintf(fp,"  return %d;\n", reloc_size);
+      fprintf(fp,"}\n");
+      fprintf(fp,"\n");
+    }
+  }
+  fprintf(fp,"\n");
+
+  // Output the definitions for code generation
+  //
+  // address  ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
+  //   // ...  encoding defined by user
+  //   return ptr;
+  // }
+  //
+  _instructions.reset();
+  for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
+    // Ensure this is a machine-world instruction
+    if ( instr->ideal_only() ) continue;
+
+    if (instr->_insencode) {
+      if (instr->postalloc_expands()) {
+        // Don't write this to _CPP_EXPAND_file, as the code generated calls C-code
+        // from code sections in ad file that is dumped to fp.
+        define_postalloc_expand(fp, *instr);
+      } else {
+        defineEmit(fp, *instr);
+      }
+    }
+    if (instr->is_mach_constant()) defineEvalConstant(fp, *instr);
+    if (instr->_size)              defineSize        (fp, *instr);
+
+    // side-call to generate output that used to be in the header file:
+    extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
+    gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
+  }
+
+  // Output the definitions for alias analysis
+  _instructions.reset();
+  for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
+    // Ensure this is a machine-world instruction
+    if ( instr->ideal_only() ) continue;
+
+    // Analyze machine instructions that either USE or DEF memory.
+    int memory_operand = instr->memory_operand(_globalNames);
+    // Some guys kill all of memory
+    if ( instr->is_wide_memory_kill(_globalNames) ) {
+      memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
+    }
+
+    if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
+      if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
+        fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
+        fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
+      } else {
+        fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
+  }
+    }
+  }
+
+  // Get the length of the longest identifier
+  int max_ident_len = 0;
+  _instructions.reset();
+
+  for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
+    if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
+      int ident_len = (int)strlen(instr->_ident);
+      if( max_ident_len < ident_len )
+        max_ident_len = ident_len;
+    }
+  }
+
+  // Emit specifically for Node(s)
+  fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
+    max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
+  fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
+    max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
+  fprintf(_CPP_PIPELINE_file._fp, "\n");
+
+  fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
+    max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
+  fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
+    max_ident_len, "MachNode");
+  fprintf(_CPP_PIPELINE_file._fp, "\n");
+
+  // Output the definitions for machine node specific pipeline data
+  _machnodes.reset();
+
+  for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
+    fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
+      machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
+  }
+
+  fprintf(_CPP_PIPELINE_file._fp, "\n");
+
+  // Output the definitions for instruction pipeline static data references
+  _instructions.reset();
+
+  for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
+    if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
+      fprintf(_CPP_PIPELINE_file._fp, "\n");
+      fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
+        max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
+      fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
+        max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
+    }
+  }
+}
+
+
+// -------------------------------- maps ------------------------------------
+
+// Information needed to generate the ReduceOp mapping for the DFA
+class OutputReduceOp : public OutputMap {
+public:
+  OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
+    : OutputMap(hpp, cpp, globals, AD, "reduceOp") {};
+
+  void declaration() { fprintf(_hpp, "extern const int   reduceOp[];\n"); }
+  void definition()  { fprintf(_cpp, "const        int   reduceOp[] = {\n"); }
+  void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
+                       OutputMap::closing();
+  }
+  void map(OpClassForm &opc)  {
+    const char *reduce = opc._ident;
+    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
+    else          fprintf(_cpp, "  0");
+  }
+  void map(OperandForm &oper) {
+    // Most operands without match rules, e.g.  eFlagsReg, do not have a result operand
+    const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
+    // operand stackSlot does not have a match rule, but produces a stackSlot
+    if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
+    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
+    else          fprintf(_cpp, "  0");
+  }
+  void map(InstructForm &inst) {
+    const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
+    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
+    else          fprintf(_cpp, "  0");
+  }
+  void map(char         *reduce) {
+    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
+    else          fprintf(_cpp, "  0");
+  }
+};
+
+// Information needed to generate the LeftOp mapping for the DFA
+class OutputLeftOp : public OutputMap {
+public:
+  OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
+    : OutputMap(hpp, cpp, globals, AD, "leftOp") {};
+
+  void declaration() { fprintf(_hpp, "extern const int   leftOp[];\n"); }
+  void definition()  { fprintf(_cpp, "const        int   leftOp[] = {\n"); }
+  void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
+                       OutputMap::closing();
+  }
+  void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
+  void map(OperandForm &oper) {
+    const char *reduce = oper.reduce_left(_globals);
+    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
+    else          fprintf(_cpp, "  0");
+  }
+  void map(char        *name) {
+    const char *reduce = _AD.reduceLeft(name);
+    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
+    else          fprintf(_cpp, "  0");
+  }
+  void map(InstructForm &inst) {
+    const char *reduce = inst.reduce_left(_globals);
+    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
+    else          fprintf(_cpp, "  0");
+  }
+};
+
+
+// Information needed to generate the RightOp mapping for the DFA
+class OutputRightOp : public OutputMap {
+public:
+  OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
+    : OutputMap(hpp, cpp, globals, AD, "rightOp") {};
+
+  void declaration() { fprintf(_hpp, "extern const int   rightOp[];\n"); }
+  void definition()  { fprintf(_cpp, "const        int   rightOp[] = {\n"); }
+  void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
+                       OutputMap::closing();
+  }
+  void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
+  void map(OperandForm &oper) {
+    const char *reduce = oper.reduce_right(_globals);
+    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
+    else          fprintf(_cpp, "  0");
+  }
+  void map(char        *name) {
+    const char *reduce = _AD.reduceRight(name);
+    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
+    else          fprintf(_cpp, "  0");
+  }
+  void map(InstructForm &inst) {
+    const char *reduce = inst.reduce_right(_globals);
+    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
+    else          fprintf(_cpp, "  0");
+  }
+};
+
+
+// Information needed to generate the Rule names for the DFA
+class OutputRuleName : public OutputMap {
+public:
+  OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
+    : OutputMap(hpp, cpp, globals, AD, "ruleName") {};
+
+  void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
+  void definition()  { fprintf(_cpp, "const char        *ruleName[] = {\n"); }
+  void closing()     { fprintf(_cpp, "  \"invalid rule name\" // no trailing comma\n");
+                       OutputMap::closing();
+  }
+  void map(OpClassForm &opc)  { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(opc._ident) ); }
+  void map(OperandForm &oper) { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(oper._ident) ); }
+  void map(char        *name) { fprintf(_cpp, "  \"%s\"", name ? name : "0"); }
+  void map(InstructForm &inst){ fprintf(_cpp, "  \"%s\"", inst._ident ? inst._ident : "0"); }
+};
+
+
+// Information needed to generate the swallowed mapping for the DFA
+class OutputSwallowed : public OutputMap {
+public:
+  OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
+    : OutputMap(hpp, cpp, globals, AD, "swallowed") {};
+
+  void declaration() { fprintf(_hpp, "extern const bool  swallowed[];\n"); }
+  void definition()  { fprintf(_cpp, "const        bool  swallowed[] = {\n"); }
+  void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
+                       OutputMap::closing();
+  }
+  void map(OperandForm &oper) { // Generate the entry for this opcode
+    const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
+    fprintf(_cpp, "  %s", swallowed);
+  }
+  void map(OpClassForm &opc)  { fprintf(_cpp, "  false"); }
+  void map(char        *name) { fprintf(_cpp, "  false"); }
+  void map(InstructForm &inst){ fprintf(_cpp, "  false"); }
+};
+
+
+// Information needed to generate the decision array for instruction chain rule
+class OutputInstChainRule : public OutputMap {
+public:
+  OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
+    : OutputMap(hpp, cpp, globals, AD, "instruction_chain_rule") {};
+
+  void declaration() { fprintf(_hpp, "extern const bool  instruction_chain_rule[];\n"); }
+  void definition()  { fprintf(_cpp, "const        bool  instruction_chain_rule[] = {\n"); }
+  void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
+                       OutputMap::closing();
+  }
+  void map(OpClassForm &opc)   { fprintf(_cpp, "  false"); }
+  void map(OperandForm &oper)  { fprintf(_cpp, "  false"); }
+  void map(char        *name)  { fprintf(_cpp, "  false"); }
+  void map(InstructForm &inst) { // Check for simple chain rule
+    const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
+    fprintf(_cpp, "  %s", chain);
+  }
+};
+
+
+//---------------------------build_map------------------------------------
+// Build  mapping from enumeration for densely packed operands
+// TO result and child types.
+void ArchDesc::build_map(OutputMap &map) {
+  FILE         *fp_hpp = map.decl_file();
+  FILE         *fp_cpp = map.def_file();
+  int           idx    = 0;
+  OperandForm  *op;
+  OpClassForm  *opc;
+  InstructForm *inst;
+
+  // Construct this mapping
+  map.declaration();
+  fprintf(fp_cpp,"\n");
+  map.definition();
+
+  // Output the mapping for operands
+  map.record_position(OutputMap::BEGIN_OPERANDS, idx );
+  _operands.reset();
+  for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
+    // Ensure this is a machine-world instruction
+    if ( op->ideal_only() )  continue;
+
+    // Generate the entry for this opcode
+    fprintf(fp_cpp, "  /* %4d */", idx); map.map(*op); fprintf(fp_cpp, ",\n");
+    ++idx;
+  };
+  fprintf(fp_cpp, "  // last operand\n");
+
+  // Place all user-defined operand classes into the mapping
+  map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
+  _opclass.reset();
+  for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
+    fprintf(fp_cpp, "  /* %4d */", idx); map.map(*opc); fprintf(fp_cpp, ",\n");
+    ++idx;
+  };
+  fprintf(fp_cpp, "  // last operand class\n");
+
+  // Place all internally defined operands into the mapping
+  map.record_position(OutputMap::BEGIN_INTERNALS, idx );
+  _internalOpNames.reset();
+  char *name = NULL;
+  for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
+    fprintf(fp_cpp, "  /* %4d */", idx); map.map(name); fprintf(fp_cpp, ",\n");
+    ++idx;
+  };
+  fprintf(fp_cpp, "  // last internally defined operand\n");
+
+  // Place all user-defined instructions into the mapping
+  if( map.do_instructions() ) {
+    map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
+    // Output all simple instruction chain rules first
+    map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
+    {
+      _instructions.reset();
+      for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
+        // Ensure this is a machine-world instruction
+        if ( inst->ideal_only() )  continue;
+        if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
+        if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
+
+        fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
+        ++idx;
+      };
+      map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
+      _instructions.reset();
+      for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
+        // Ensure this is a machine-world instruction
+        if ( inst->ideal_only() )  continue;
+        if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
+        if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
+
+        fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
+        ++idx;
+      };
+      map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
+    }
+    // Output all instructions that are NOT simple chain rules
+    {
+      _instructions.reset();
+      for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
+        // Ensure this is a machine-world instruction
+        if ( inst->ideal_only() )  continue;
+        if ( inst->is_simple_chain_rule(_globalNames) ) continue;
+        if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
+
+        fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
+        ++idx;
+      };
+      map.record_position(OutputMap::END_REMATERIALIZE, idx );
+      _instructions.reset();
+      for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
+        // Ensure this is a machine-world instruction
+        if ( inst->ideal_only() )  continue;
+        if ( inst->is_simple_chain_rule(_globalNames) ) continue;
+        if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
+
+        fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
+        ++idx;
+      };
+    }
+    fprintf(fp_cpp, "  // last instruction\n");
+    map.record_position(OutputMap::END_INSTRUCTIONS, idx );
+  }
+  // Finish defining table
+  map.closing();
+};
+
+
+// Helper function for buildReduceMaps
+char reg_save_policy(const char *calling_convention) {
+  char callconv;
+
+  if      (!strcmp(calling_convention, "NS"))  callconv = 'N';
+  else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
+  else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
+  else if (!strcmp(calling_convention, "AS"))  callconv = 'A';
+  else                                         callconv = 'Z';
+
+  return callconv;
+}
+
+void ArchDesc::generate_needs_clone_jvms(FILE *fp_cpp) {
+  fprintf(fp_cpp, "bool Compile::needs_clone_jvms() { return %s; }\n\n",
+          _needs_clone_jvms ? "true" : "false");
+}
+
+//---------------------------generate_assertion_checks-------------------
+void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
+  fprintf(fp_cpp, "\n");
+
+  fprintf(fp_cpp, "#ifndef PRODUCT\n");
+  fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
+  globalDefs().print_asserts(fp_cpp);
+  fprintf(fp_cpp, "}\n");
+  fprintf(fp_cpp, "#endif\n");
+  fprintf(fp_cpp, "\n");
+}
+
+//---------------------------addSourceBlocks-----------------------------
+void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
+  if (_source.count() > 0)
+    _source.output(fp_cpp);
+
+  generate_adlc_verification(fp_cpp);
+}
+//---------------------------addHeaderBlocks-----------------------------
+void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
+  if (_header.count() > 0)
+    _header.output(fp_hpp);
+}
+//-------------------------addPreHeaderBlocks----------------------------
+void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
+  // Output #defines from definition block
+  globalDefs().print_defines(fp_hpp);
+
+  if (_pre_header.count() > 0)
+    _pre_header.output(fp_hpp);
+}
+
+//---------------------------buildReduceMaps-----------------------------
+// Build  mapping from enumeration for densely packed operands
+// TO result and child types.
+void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
+  RegDef       *rdef;
+  RegDef       *next;
+
+  // The emit bodies currently require functions defined in the source block.
+
+  // Build external declarations for mappings
+  fprintf(fp_hpp, "\n");
+  fprintf(fp_hpp, "extern const char  register_save_policy[];\n");
+  fprintf(fp_hpp, "extern const char  c_reg_save_policy[];\n");
+  fprintf(fp_hpp, "extern const int   register_save_type[];\n");
+  fprintf(fp_hpp, "\n");
+
+  // Construct Save-Policy array
+  fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
+  fprintf(fp_cpp, "const        char register_save_policy[] = {\n");
+  _register->reset_RegDefs();
+  for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
+    next              = _register->iter_RegDefs();
+    char policy       = reg_save_policy(rdef->_callconv);
+    const char *comma = (next != NULL) ? "," : " // no trailing comma";
+    fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
+  }
+  fprintf(fp_cpp, "};\n\n");
+
+  // Construct Native Save-Policy array
+  fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
+  fprintf(fp_cpp, "const        char c_reg_save_policy[] = {\n");
+  _register->reset_RegDefs();
+  for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
+    next        = _register->iter_RegDefs();
+    char policy = reg_save_policy(rdef->_c_conv);
+    const char *comma = (next != NULL) ? "," : " // no trailing comma";
+    fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
+  }
+  fprintf(fp_cpp, "};\n\n");
+
+  // Construct Register Save Type array
+  fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
+  fprintf(fp_cpp, "const        int register_save_type[] = {\n");
+  _register->reset_RegDefs();
+  for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
+    next = _register->iter_RegDefs();
+    const char *comma = (next != NULL) ? "," : " // no trailing comma";
+    fprintf(fp_cpp, "  %s%s\n", rdef->_idealtype, comma);
+  }
+  fprintf(fp_cpp, "};\n\n");
+
+  // Construct the table for reduceOp
+  OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
+  build_map(output_reduce_op);
+  // Construct the table for leftOp
+  OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
+  build_map(output_left_op);
+  // Construct the table for rightOp
+  OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
+  build_map(output_right_op);
+  // Construct the table of rule names
+  OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
+  build_map(output_rule_name);
+  // Construct the boolean table for subsumed operands
+  OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
+  build_map(output_swallowed);
+  // // // Preserve in case we decide to use this table instead of another
+  //// Construct the boolean table for instruction chain rules
+  //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
+  //build_map(output_inst_chain);
+
+}
+
+
+//---------------------------buildMachOperGenerator---------------------------
+
+// Recurse through match tree, building path through corresponding state tree,
+// Until we reach the constant we are looking for.
+static void path_to_constant(FILE *fp, FormDict &globals,
+                             MatchNode *mnode, uint idx) {
+  if ( ! mnode) return;
+
+  unsigned    position = 0;
+  const char *result   = NULL;
+  const char *name     = NULL;
+  const char *optype   = NULL;
+
+  // Base Case: access constant in ideal node linked to current state node
+  // Each type of constant has its own access function
+  if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
+       && mnode->base_operand(position, globals, result, name, optype) ) {
+    if (         strcmp(optype,"ConI") == 0 ) {
+      fprintf(fp, "_leaf->get_int()");
+    } else if ( (strcmp(optype,"ConP") == 0) ) {
+      fprintf(fp, "_leaf->bottom_type()->is_ptr()");
+    } else if ( (strcmp(optype,"ConN") == 0) ) {
+      fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
+    } else if ( (strcmp(optype,"ConNKlass") == 0) ) {
+      fprintf(fp, "_leaf->bottom_type()->is_narrowklass()");
+    } else if ( (strcmp(optype,"ConF") == 0) ) {
+      fprintf(fp, "_leaf->getf()");
+    } else if ( (strcmp(optype,"ConD") == 0) ) {
+      fprintf(fp, "_leaf->getd()");
+    } else if ( (strcmp(optype,"ConL") == 0) ) {
+      fprintf(fp, "_leaf->get_long()");
+    } else if ( (strcmp(optype,"Con")==0) ) {
+      // !!!!! - Update if adding a machine-independent constant type
+      fprintf(fp, "_leaf->get_int()");
+      assert( false, "Unsupported constant type, pointer or indefinite");
+    } else if ( (strcmp(optype,"Bool") == 0) ) {
+      fprintf(fp, "_leaf->as_Bool()->_test._test");
+    } else {
+      assert( false, "Unsupported constant type");
+    }
+    return;
+  }
+
+  // If constant is in left child, build path and recurse
+  uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
+  uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
+  if ( (mnode->_lChild) && (lConsts > idx) ) {
+    fprintf(fp, "_kids[0]->");
+    path_to_constant(fp, globals, mnode->_lChild, idx);
+    return;
+  }
+  // If constant is in right child, build path and recurse
+  if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
+    idx = idx - lConsts;
+    fprintf(fp, "_kids[1]->");
+    path_to_constant(fp, globals, mnode->_rChild, idx);
+    return;
+  }
+  assert( false, "ShouldNotReachHere()");
+}
+
+// Generate code that is executed when generating a specific Machine Operand
+static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
+                            OperandForm &op) {
+  const char *opName         = op._ident;
+  const char *opEnumName     = AD.machOperEnum(opName);
+  uint        num_consts     = op.num_consts(globalNames);
+
+  // Generate the case statement for this opcode
+  fprintf(fp, "  case %s:", opEnumName);
+  fprintf(fp, "\n    return new %sOper(", opName);
+  // Access parameters for constructor from the stat object
+  //
+  // Build access to condition code value
+  if ( (num_consts > 0) ) {
+    uint i = 0;
+    path_to_constant(fp, globalNames, op._matrule, i);
+    for ( i = 1; i < num_consts; ++i ) {
+      fprintf(fp, ", ");
+      path_to_constant(fp, globalNames, op._matrule, i);
+    }
+  }
+  fprintf(fp, " );\n");
+}
+
+
+// Build switch to invoke "new" MachNode or MachOper
+void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
+  int idx = 0;
+
+  // Build switch to invoke 'new' for a specific MachOper
+  fprintf(fp_cpp, "\n");
+  fprintf(fp_cpp, "\n");
+  fprintf(fp_cpp,
+          "//------------------------- MachOper Generator ---------------\n");
+  fprintf(fp_cpp,
+          "// A switch statement on the dense-packed user-defined type system\n"
+          "// that invokes 'new' on the corresponding class constructor.\n");
+  fprintf(fp_cpp, "\n");
+  fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
+  fprintf(fp_cpp, "(int opcode)");
+  fprintf(fp_cpp, "{\n");
+  fprintf(fp_cpp, "\n");
+  fprintf(fp_cpp, "  switch(opcode) {\n");
+
+  // Place all user-defined operands into the mapping
+  _operands.reset();
+  int  opIndex = 0;
+  OperandForm *op;
+  for( ; (op =  (OperandForm*)_operands.iter()) != NULL; ) {
+    // Ensure this is a machine-world instruction
+    if ( op->ideal_only() )  continue;
+
+    genMachOperCase(fp_cpp, _globalNames, *this, *op);
+  };
+
+  // Do not iterate over operand classes for the  operand generator!!!
+
+  // Place all internal operands into the mapping
+  _internalOpNames.reset();
+  const char *iopn;
+  for( ; (iopn =  _internalOpNames.iter()) != NULL; ) {
+    const char *opEnumName = machOperEnum(iopn);
+    // Generate the case statement for this opcode
+    fprintf(fp_cpp, "  case %s:", opEnumName);
+    fprintf(fp_cpp, "    return NULL;\n");
+  };
+
+  // Generate the default case for switch(opcode)
+  fprintf(fp_cpp, "  \n");
+  fprintf(fp_cpp, "  default:\n");
+  fprintf(fp_cpp, "    fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
+  fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
+  fprintf(fp_cpp, "    break;\n");
+  fprintf(fp_cpp, "  }\n");
+
+  // Generate the closing for method Matcher::MachOperGenerator
+  fprintf(fp_cpp, "  return NULL;\n");
+  fprintf(fp_cpp, "};\n");
+}
+
+
+//---------------------------buildMachNode-------------------------------------
+// Build a new MachNode, for MachNodeGenerator or cisc-spilling
+void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
+  const char *opType  = NULL;
+  const char *opClass = inst->_ident;
+
+  // Create the MachNode object
+  fprintf(fp_cpp, "%s %sNode *node = new %sNode();\n",indent, opClass,opClass);
+
+  if ( (inst->num_post_match_opnds() != 0) ) {
+    // Instruction that contains operands which are not in match rule.
+    //
+    // Check if the first post-match component may be an interesting def
+    bool           dont_care = false;
+    ComponentList &comp_list = inst->_components;
+    Component     *comp      = NULL;
+    comp_list.reset();
+    if ( comp_list.match_iter() != NULL )    dont_care = true;
+
+    // Insert operands that are not in match-rule.
+    // Only insert a DEF if the do_care flag is set
+    comp_list.reset();
+    while ( (comp = comp_list.post_match_iter()) ) {
+      // Check if we don't care about DEFs or KILLs that are not USEs
+      if ( dont_care && (! comp->isa(Component::USE)) ) {
+        continue;
+      }
+      dont_care = true;
+      // For each operand not in the match rule, call MachOperGenerator
+      // with the enum for the opcode that needs to be built.
+      ComponentList clist = inst->_components;
+      int         index  = clist.operand_position(comp->_name, comp->_usedef, inst);
+      const char *opcode = machOperEnum(comp->_type);
+      fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
+      fprintf(fp_cpp, "MachOperGenerator(%s));\n", opcode);
+      }
+  }
+  else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
+    // An instruction that chains from a constant!
+    // In this case, we need to subsume the constant into the node
+    // at operand position, oper_input_base().
+    //
+    // Fill in the constant
+    fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
+            inst->oper_input_base(_globalNames));
+    // #####
+    // Check for multiple constants and then fill them in.
+    // Just like MachOperGenerator
+    const char *opName = inst->_matrule->_rChild->_opType;
+    fprintf(fp_cpp, "new %sOper(", opName);
+    // Grab operand form
+    OperandForm *op = (_globalNames[opName])->is_operand();
+    // Look up the number of constants
+    uint num_consts = op->num_consts(_globalNames);
+    if ( (num_consts > 0) ) {
+      uint i = 0;
+      path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
+      for ( i = 1; i < num_consts; ++i ) {
+        fprintf(fp_cpp, ", ");
+        path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
+      }
+    }
+    fprintf(fp_cpp, " );\n");
+    // #####
+  }
+
+  // Fill in the bottom_type where requested
+  if (inst->captures_bottom_type(_globalNames)) {
+    if (strncmp("MachCall", inst->mach_base_class(_globalNames), strlen("MachCall"))) {
+      fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
+    }
+  }
+  if( inst->is_ideal_if() ) {
+    fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
+    fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
+  }
+  if( inst->is_ideal_fastlock() ) {
+    fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
+    fprintf(fp_cpp, "%s node->_rtm_counters = _leaf->as_FastLock()->rtm_counters();\n", indent);
+    fprintf(fp_cpp, "%s node->_stack_rtm_counters = _leaf->as_FastLock()->stack_rtm_counters();\n", indent);
+  }
+
+}
+
+//---------------------------declare_cisc_version------------------------------
+// Build CISC version of this instruction
+void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
+  if( AD.can_cisc_spill() ) {
+    InstructForm *inst_cisc = cisc_spill_alternate();
+    if (inst_cisc != NULL) {
+      fprintf(fp_hpp, "  virtual int            cisc_operand() const { return %d; }\n", cisc_spill_operand());
+      fprintf(fp_hpp, "  virtual MachNode      *cisc_version(int offset);\n");
+      fprintf(fp_hpp, "  virtual void           use_cisc_RegMask();\n");
+      fprintf(fp_hpp, "  virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
+    }
+  }
+}
+
+//---------------------------define_cisc_version-------------------------------
+// Build CISC version of this instruction
+bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
+  InstructForm *inst_cisc = this->cisc_spill_alternate();
+  if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
+    const char   *name      = inst_cisc->_ident;
+    assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
+    OperandForm *cisc_oper = AD.cisc_spill_operand();
+    assert( cisc_oper != NULL, "insanity check");
+    const char *cisc_oper_name  = cisc_oper->_ident;
+    assert( cisc_oper_name != NULL, "insanity check");
+    //
+    // Set the correct reg_mask_or_stack for the cisc operand
+    fprintf(fp_cpp, "\n");
+    fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
+    // Lookup the correct reg_mask_or_stack
+    const char *reg_mask_name = cisc_reg_mask_name();
+    fprintf(fp_cpp, "  _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
+    fprintf(fp_cpp, "}\n");
+    //
+    // Construct CISC version of this instruction
+    fprintf(fp_cpp, "\n");
+    fprintf(fp_cpp, "// Build CISC version of this instruction\n");
+    fprintf(fp_cpp, "MachNode *%sNode::cisc_version(int offset) {\n", this->_ident);
+    // Create the MachNode object
+    fprintf(fp_cpp, "  %sNode *node = new %sNode();\n", name, name);
+    // Fill in the bottom_type where requested
+    if ( this->captures_bottom_type(AD.globalNames()) ) {
+      fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
+    }
+
+    uint cur_num_opnds = num_opnds();
+    if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) {
+      fprintf(fp_cpp,"  node->_num_opnds = %d;\n", num_unique_opnds());
+    }
+
+    fprintf(fp_cpp, "\n");
+    fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
+    fprintf(fp_cpp, "  fill_new_machnode(node);\n");
+    // Construct operand to access [stack_pointer + offset]
+    fprintf(fp_cpp, "  // Construct operand to access [stack_pointer + offset]\n");
+    fprintf(fp_cpp, "  node->set_opnd_array(cisc_operand(), new %sOper(offset));\n", cisc_oper_name);
+    fprintf(fp_cpp, "\n");
+
+    // Return result and exit scope
+    fprintf(fp_cpp, "  return node;\n");
+    fprintf(fp_cpp, "}\n");
+    fprintf(fp_cpp, "\n");
+    return true;
+  }
+  return false;
+}
+
+//---------------------------declare_short_branch_methods----------------------
+// Build prototypes for short branch methods
+void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
+  if (has_short_branch_form()) {
+    fprintf(fp_hpp, "  virtual MachNode      *short_branch_version();\n");
+  }
+}
+
+//---------------------------define_short_branch_methods-----------------------
+// Build definitions for short branch methods
+bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) {
+  if (has_short_branch_form()) {
+    InstructForm *short_branch = short_branch_form();
+    const char   *name         = short_branch->_ident;
+
+    // Construct short_branch_version() method.
+    fprintf(fp_cpp, "// Build short branch version of this instruction\n");
+    fprintf(fp_cpp, "MachNode *%sNode::short_branch_version() {\n", this->_ident);
+    // Create the MachNode object
+    fprintf(fp_cpp, "  %sNode *node = new %sNode();\n", name, name);
+    if( is_ideal_if() ) {
+      fprintf(fp_cpp, "  node->_prob = _prob;\n");
+      fprintf(fp_cpp, "  node->_fcnt = _fcnt;\n");
+    }
+    // Fill in the bottom_type where requested
+    if ( this->captures_bottom_type(AD.globalNames()) ) {
+      fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
+    }
+
+    fprintf(fp_cpp, "\n");
+    // Short branch version must use same node index for access
+    // through allocator's tables
+    fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
+    fprintf(fp_cpp, "  fill_new_machnode(node);\n");
+
+    // Return result and exit scope
+    fprintf(fp_cpp, "  return node;\n");
+    fprintf(fp_cpp, "}\n");
+    fprintf(fp_cpp,"\n");
+    return true;
+  }
+  return false;
+}
+
+
+//---------------------------buildMachNodeGenerator----------------------------
+// Build switch to invoke appropriate "new" MachNode for an opcode
+void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
+
+  // Build switch to invoke 'new' for a specific MachNode
+  fprintf(fp_cpp, "\n");
+  fprintf(fp_cpp, "\n");
+  fprintf(fp_cpp,
+          "//------------------------- MachNode Generator ---------------\n");
+  fprintf(fp_cpp,
+          "// A switch statement on the dense-packed user-defined type system\n"
+          "// that invokes 'new' on the corresponding class constructor.\n");
+  fprintf(fp_cpp, "\n");
+  fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
+  fprintf(fp_cpp, "(int opcode)");
+  fprintf(fp_cpp, "{\n");
+  fprintf(fp_cpp, "  switch(opcode) {\n");
+
+  // Provide constructor for all user-defined instructions
+  _instructions.reset();
+  int  opIndex = operandFormCount();
+  InstructForm *inst;
+  for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
+    // Ensure that matrule is defined.
+    if ( inst->_matrule == NULL ) continue;
+
+    int         opcode  = opIndex++;
+    const char *opClass = inst->_ident;
+    char       *opType  = NULL;
+
+    // Generate the case statement for this instruction
+    fprintf(fp_cpp, "  case %s_rule:", opClass);
+
+    // Start local scope
+    fprintf(fp_cpp, " {\n");
+    // Generate code to construct the new MachNode
+    buildMachNode(fp_cpp, inst, "     ");
+    // Return result and exit scope
+    fprintf(fp_cpp, "      return node;\n");
+    fprintf(fp_cpp, "    }\n");
+  }
+
+  // Generate the default case for switch(opcode)
+  fprintf(fp_cpp, "  \n");
+  fprintf(fp_cpp, "  default:\n");
+  fprintf(fp_cpp, "    fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
+  fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
+  fprintf(fp_cpp, "    break;\n");
+  fprintf(fp_cpp, "  };\n");
+
+  // Generate the closing for method Matcher::MachNodeGenerator
+  fprintf(fp_cpp, "  return NULL;\n");
+  fprintf(fp_cpp, "}\n");
+}
+
+
+//---------------------------buildInstructMatchCheck--------------------------
+// Output the method to Matcher which checks whether or not a specific
+// instruction has a matching rule for the host architecture.
+void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
+  fprintf(fp_cpp, "\n\n");
+  fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
+  fprintf(fp_cpp, "  assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
+  fprintf(fp_cpp, "  return _hasMatchRule[opcode];\n");
+  fprintf(fp_cpp, "}\n\n");
+
+  fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
+  int i;
+  for (i = 0; i < _last_opcode - 1; i++) {
+    fprintf(fp_cpp, "    %-5s,  // %s\n",
+            _has_match_rule[i] ? "true" : "false",
+            NodeClassNames[i]);
+  }
+  fprintf(fp_cpp, "    %-5s   // %s\n",
+          _has_match_rule[i] ? "true" : "false",
+          NodeClassNames[i]);
+  fprintf(fp_cpp, "};\n");
+}
+
+//---------------------------buildFrameMethods---------------------------------
+// Output the methods to Matcher which specify frame behavior
+void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
+  fprintf(fp_cpp,"\n\n");
+  // Stack Direction
+  fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
+          _frame->_direction ? "true" : "false");
+  // Sync Stack Slots
+  fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
+          _frame->_sync_stack_slots);
+  // Java Stack Alignment
+  fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
+          _frame->_alignment);
+  // Java Return Address Location
+  fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
+  if (_frame->_return_addr_loc) {
+    fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
+            _frame->_return_addr);
+  }
+  else {
+    fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
+            _frame->_return_addr);
+  }
+  // Java Stack Slot Preservation
+  fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
+  fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
+  // Top Of Stack Slot Preservation, for both Java and C
+  fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
+  fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
+  // varargs C out slots killed
+  fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
+  fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
+  // Java Argument Position
+  fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
+  fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
+  fprintf(fp_cpp,"}\n\n");
+  // Native Argument Position
+  fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
+  fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
+  fprintf(fp_cpp,"}\n\n");
+  // Java Return Value Location
+  fprintf(fp_cpp,"OptoRegPair Matcher::return_value(uint ideal_reg, bool is_outgoing) {\n");
+  fprintf(fp_cpp,"%s\n", _frame->_return_value);
+  fprintf(fp_cpp,"}\n\n");
+  // Native Return Value Location
+  fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(uint ideal_reg, bool is_outgoing) {\n");
+  fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
+  fprintf(fp_cpp,"}\n\n");
+
+  // Inline Cache Register, mask definition, and encoding
+  fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
+  fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
+          _frame->_inline_cache_reg);
+  fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
+  fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
+
+  // Interpreter's Method Oop Register, mask definition, and encoding
+  fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
+  fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
+          _frame->_interpreter_method_oop_reg);
+  fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
+  fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
+
+  // Interpreter's Frame Pointer Register, mask definition, and encoding
+  fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
+  if (_frame->_interpreter_frame_pointer_reg == NULL)
+    fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
+  else
+    fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
+            _frame->_interpreter_frame_pointer_reg);
+
+  // Frame Pointer definition
+  /* CNC - I can not contemplate having a different frame pointer between
+     Java and native code; makes my head hurt to think about it.
+  fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
+  fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
+          _frame->_frame_pointer);
+  */
+  // (Native) Frame Pointer definition
+  fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
+  fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
+          _frame->_frame_pointer);
+
+  // Number of callee-save + always-save registers for calling convention
+  fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
+  fprintf(fp_cpp, "int  Matcher::number_of_saved_registers() {\n");
+  RegDef *rdef;
+  int nof_saved_registers = 0;
+  _register->reset_RegDefs();
+  while( (rdef = _register->iter_RegDefs()) != NULL ) {
+    if( !strcmp(rdef->_callconv, "SOE") ||  !strcmp(rdef->_callconv, "AS") )
+      ++nof_saved_registers;
+  }
+  fprintf(fp_cpp, "  return %d;\n", nof_saved_registers);
+  fprintf(fp_cpp, "};\n\n");
+}
+
+
+
+
+static int PrintAdlcCisc = 0;
+//---------------------------identify_cisc_spilling----------------------------
+// Get info for the CISC_oracle and MachNode::cisc_version()
+void ArchDesc::identify_cisc_spill_instructions() {
+
+  if (_frame == NULL)
+    return;
+
+  // Find the user-defined operand for cisc-spilling
+  if( _frame->_cisc_spilling_operand_name != NULL ) {
+    const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
+    OperandForm *oper = form ? form->is_operand() : NULL;
+    // Verify the user's suggestion
+    if( oper != NULL ) {
+      // Ensure that match field is defined.
+      if ( oper->_matrule != NULL )  {
+        MatchRule &mrule = *oper->_matrule;
+        if( strcmp(mrule._opType,"AddP") == 0 ) {
+          MatchNode *left = mrule._lChild;
+          MatchNode *right= mrule._rChild;
+          if( left != NULL && right != NULL ) {
+            const Form *left_op  = _globalNames[left->_opType]->is_operand();
+            const Form *right_op = _globalNames[right->_opType]->is_operand();
+            if(  (left_op != NULL && right_op != NULL)
+              && (left_op->interface_type(_globalNames) == Form::register_interface)
+              && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
+              // Successfully verified operand
+              set_cisc_spill_operand( oper );
+              if( _cisc_spill_debug ) {
+                fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
+             }
+            }
+          }
+        }
+      }
+    }
+  }
+
+  if( cisc_spill_operand() != NULL ) {
+    // N^2 comparison of instructions looking for a cisc-spilling version
+    _instructions.reset();
+    InstructForm *instr;
+    for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
+      // Ensure that match field is defined.
+      if ( instr->_matrule == NULL )  continue;
+
+      MatchRule &mrule = *instr->_matrule;
+      Predicate *pred  =  instr->build_predicate();
+
+      // Grab the machine type of the operand
+      const char *rootOp = instr->_ident;
+      mrule._machType    = rootOp;
+
+      // Find result type for match
+      const char *result = instr->reduce_result();
+
+      if( PrintAdlcCisc ) fprintf(stderr, "  new instruction %s \n", instr->_ident ? instr->_ident : " ");
+      bool  found_cisc_alternate = false;
+      _instructions.reset2();
+      InstructForm *instr2;
+      for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
+        // Ensure that match field is defined.
+        if( PrintAdlcCisc ) fprintf(stderr, "  instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
+        if ( instr2->_matrule != NULL
+            && (instr != instr2 )                // Skip self
+            && (instr2->reduce_result() != NULL) // want same result
+            && (strcmp(result, instr2->reduce_result()) == 0)) {
+          MatchRule &mrule2 = *instr2->_matrule;
+          Predicate *pred2  =  instr2->build_predicate();
+          found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
+        }
+      }
+    }
+  }
+}
+
+//---------------------------build_cisc_spilling-------------------------------
+// Get info for the CISC_oracle and MachNode::cisc_version()
+void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
+  // Output the table for cisc spilling
+  fprintf(fp_cpp, "//  The following instructions can cisc-spill\n");
+  _instructions.reset();
+  InstructForm *inst = NULL;
+  for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
+    // Ensure this is a machine-world instruction
+    if ( inst->ideal_only() )  continue;
+    const char *inst_name = inst->_ident;
+    int   operand   = inst->cisc_spill_operand();
+    if( operand != AdlcVMDeps::Not_cisc_spillable ) {
+      InstructForm *inst2 = inst->cisc_spill_alternate();
+      fprintf(fp_cpp, "//  %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
+    }
+  }
+  fprintf(fp_cpp, "\n\n");
+}
+
+//---------------------------identify_short_branches----------------------------
+// Get info for our short branch replacement oracle.
+void ArchDesc::identify_short_branches() {
+  // Walk over all instructions, checking to see if they match a short
+  // branching alternate.
+  _instructions.reset();
+  InstructForm *instr;
+  while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
+    // The instruction must have a match rule.
+    if (instr->_matrule != NULL &&
+        instr->is_short_branch()) {
+
+      _instructions.reset2();
+      InstructForm *instr2;
+      while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
+        instr2->check_branch_variant(*this, instr);
+      }
+    }
+  }
+}
+
+
+//---------------------------identify_unique_operands---------------------------
+// Identify unique operands.
+void ArchDesc::identify_unique_operands() {
+  // Walk over all instructions.
+  _instructions.reset();
+  InstructForm *instr;
+  while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
+    // Ensure this is a machine-world instruction
+    if (!instr->ideal_only()) {
+      instr->set_unique_opnds();
+    }
+  }
+}