--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/adlc/dict2.cpp Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,356 @@
+/*
+ * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+// Dictionaries - An Abstract Data Type
+
+#include "adlc.hpp"
+
+// #include "dict.hpp"
+
+
+//------------------------------data-----------------------------------------
+// String hash tables
+#define MAXID 20
+static char initflag = 0; // True after 1st initialization
+static char shft[MAXID + 1] = {1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7};
+static short xsum[MAXID];
+
+//------------------------------bucket---------------------------------------
+class bucket {
+public:
+ int _cnt, _max; // Size of bucket
+ const void **_keyvals; // Array of keys and values
+};
+
+//------------------------------Dict-----------------------------------------
+// The dictionary is kept has a hash table. The hash table is a even power
+// of two, for nice modulo operations. Each bucket in the hash table points
+// to a linear list of key-value pairs; each key & value is just a (void *).
+// The list starts with a count. A hash lookup finds the list head, then a
+// simple linear scan finds the key. If the table gets too full, it's
+// doubled in size; the total amount of EXTRA times all hash functions are
+// computed for the doubling is no more than the current size - thus the
+// doubling in size costs no more than a constant factor in speed.
+Dict::Dict(CmpKey initcmp, Hash inithash) : _hash(inithash), _cmp(initcmp), _arena(NULL) {
+ init();
+}
+
+Dict::Dict(CmpKey initcmp, Hash inithash, Arena *arena) : _hash(inithash), _cmp(initcmp), _arena(arena) {
+ init();
+}
+
+void Dict::init() {
+ int i;
+
+ // Precompute table of null character hashes
+ if (!initflag) { // Not initializated yet?
+ xsum[0] = (short) ((1 << shft[0]) + 1); // Initialize
+ for( i = 1; i < MAXID; i++) {
+ xsum[i] = (short) ((1 << shft[i]) + 1 + xsum[i-1]);
+ }
+ initflag = 1; // Never again
+ }
+
+ _size = 16; // Size is a power of 2
+ _cnt = 0; // Dictionary is empty
+ _bin = (bucket*)_arena->Amalloc_4(sizeof(bucket) * _size);
+ memset(_bin, 0, sizeof(bucket) * _size);
+}
+
+//------------------------------~Dict------------------------------------------
+// Delete an existing dictionary.
+Dict::~Dict() {
+}
+
+//------------------------------Clear----------------------------------------
+// Zap to empty; ready for re-use
+void Dict::Clear() {
+ _cnt = 0; // Empty contents
+ for( int i=0; i<_size; i++ )
+ _bin[i]._cnt = 0; // Empty buckets, but leave allocated
+ // Leave _size & _bin alone, under the assumption that dictionary will
+ // grow to this size again.
+}
+
+//------------------------------doubhash---------------------------------------
+// Double hash table size. If can't do so, just suffer. If can, then run
+// thru old hash table, moving things to new table. Note that since hash
+// table doubled, exactly 1 new bit is exposed in the mask - so everything
+// in the old table ends up on 1 of two lists in the new table; a hi and a
+// lo list depending on the value of the bit.
+void Dict::doubhash(void) {
+ int oldsize = _size;
+ _size <<= 1; // Double in size
+ _bin = (bucket*)_arena->Arealloc( _bin, sizeof(bucket)*oldsize, sizeof(bucket)*_size );
+ memset( &_bin[oldsize], 0, oldsize*sizeof(bucket) );
+ // Rehash things to spread into new table
+ for( int i=0; i < oldsize; i++) { // For complete OLD table do
+ bucket *b = &_bin[i]; // Handy shortcut for _bin[i]
+ if( !b->_keyvals ) continue; // Skip empties fast
+
+ bucket *nb = &_bin[i+oldsize]; // New bucket shortcut
+ int j = b->_max; // Trim new bucket to nearest power of 2
+ while( j > b->_cnt ) j >>= 1; // above old bucket _cnt
+ if( !j ) j = 1; // Handle zero-sized buckets
+ nb->_max = j<<1;
+ // Allocate worst case space for key-value pairs
+ nb->_keyvals = (const void**)_arena->Amalloc_4( sizeof(void *)*nb->_max*2 );
+ int nbcnt = 0;
+
+ for( j=0; j<b->_cnt; j++ ) { // Rehash all keys in this bucket
+ const void *key = b->_keyvals[j+j];
+ if( (_hash( key ) & (_size-1)) != i ) { // Moving to hi bucket?
+ nb->_keyvals[nbcnt+nbcnt] = key;
+ nb->_keyvals[nbcnt+nbcnt+1] = b->_keyvals[j+j+1];
+ nb->_cnt = nbcnt = nbcnt+1;
+ b->_cnt--; // Remove key/value from lo bucket
+ b->_keyvals[j+j ] = b->_keyvals[b->_cnt+b->_cnt ];
+ b->_keyvals[j+j+1] = b->_keyvals[b->_cnt+b->_cnt+1];
+ j--; // Hash compacted element also
+ }
+ } // End of for all key-value pairs in bucket
+ } // End of for all buckets
+
+
+}
+
+//------------------------------Dict-----------------------------------------
+// Deep copy a dictionary.
+Dict::Dict( const Dict &d ) : _size(d._size), _cnt(d._cnt), _hash(d._hash),_cmp(d._cmp), _arena(d._arena) {
+ _bin = (bucket*)_arena->Amalloc_4(sizeof(bucket)*_size);
+ memcpy( _bin, d._bin, sizeof(bucket)*_size );
+ for( int i=0; i<_size; i++ ) {
+ if( !_bin[i]._keyvals ) continue;
+ _bin[i]._keyvals=(const void**)_arena->Amalloc_4( sizeof(void *)*_bin[i]._max*2);
+ memcpy( _bin[i]._keyvals, d._bin[i]._keyvals,_bin[i]._cnt*2*sizeof(void*));
+ }
+}
+
+//------------------------------Dict-----------------------------------------
+// Deep copy a dictionary.
+Dict &Dict::operator =( const Dict &d ) {
+ if( _size < d._size ) { // If must have more buckets
+ _arena = d._arena;
+ _bin = (bucket*)_arena->Arealloc( _bin, sizeof(bucket)*_size, sizeof(bucket)*d._size );
+ memset( &_bin[_size], 0, (d._size-_size)*sizeof(bucket) );
+ _size = d._size;
+ }
+ for( int i=0; i<_size; i++ ) // All buckets are empty
+ _bin[i]._cnt = 0; // But leave bucket allocations alone
+ _cnt = d._cnt;
+ *(Hash*)(&_hash) = d._hash;
+ *(CmpKey*)(&_cmp) = d._cmp;
+ for(int k=0; k<_size; k++ ) {
+ bucket *b = &d._bin[k]; // Shortcut to source bucket
+ for( int j=0; j<b->_cnt; j++ )
+ Insert( b->_keyvals[j+j], b->_keyvals[j+j+1] );
+ }
+ return *this;
+}
+
+//------------------------------Insert---------------------------------------
+// Insert or replace a key/value pair in the given dictionary. If the
+// dictionary is too full, it's size is doubled. The prior value being
+// replaced is returned (NULL if this is a 1st insertion of that key). If
+// an old value is found, it's swapped with the prior key-value pair on the
+// list. This moves a commonly searched-for value towards the list head.
+const void *Dict::Insert(const void *key, const void *val) {
+ int hash = _hash( key ); // Get hash key
+ int i = hash & (_size-1); // Get hash key, corrected for size
+ bucket *b = &_bin[i]; // Handy shortcut
+ for( int j=0; j<b->_cnt; j++ )
+ if( !_cmp(key,b->_keyvals[j+j]) ) {
+ const void *prior = b->_keyvals[j+j+1];
+ b->_keyvals[j+j ] = key; // Insert current key-value
+ b->_keyvals[j+j+1] = val;
+ return prior; // Return prior
+ }
+
+ if( ++_cnt > _size ) { // Hash table is full
+ doubhash(); // Grow whole table if too full
+ i = hash & (_size-1); // Rehash
+ b = &_bin[i]; // Handy shortcut
+ }
+ if( b->_cnt == b->_max ) { // Must grow bucket?
+ if( !b->_keyvals ) {
+ b->_max = 2; // Initial bucket size
+ b->_keyvals = (const void**)_arena->Amalloc_4( sizeof(void *)*b->_max*2 );
+ } else {
+ b->_keyvals = (const void**)_arena->Arealloc( b->_keyvals, sizeof(void *)*b->_max*2, sizeof(void *)*b->_max*4 );
+ b->_max <<= 1; // Double bucket
+ }
+ }
+ b->_keyvals[b->_cnt+b->_cnt ] = key;
+ b->_keyvals[b->_cnt+b->_cnt+1] = val;
+ b->_cnt++;
+ return NULL; // Nothing found prior
+}
+
+//------------------------------Delete---------------------------------------
+// Find & remove a value from dictionary. Return old value.
+const void *Dict::Delete(void *key) {
+ int i = _hash( key ) & (_size-1); // Get hash key, corrected for size
+ bucket *b = &_bin[i]; // Handy shortcut
+ for( int j=0; j<b->_cnt; j++ )
+ if( !_cmp(key,b->_keyvals[j+j]) ) {
+ const void *prior = b->_keyvals[j+j+1];
+ b->_cnt--; // Remove key/value from lo bucket
+ b->_keyvals[j+j ] = b->_keyvals[b->_cnt+b->_cnt ];
+ b->_keyvals[j+j+1] = b->_keyvals[b->_cnt+b->_cnt+1];
+ _cnt--; // One less thing in table
+ return prior;
+ }
+ return NULL;
+}
+
+//------------------------------FindDict-------------------------------------
+// Find a key-value pair in the given dictionary. If not found, return NULL.
+// If found, move key-value pair towards head of list.
+const void *Dict::operator [](const void *key) const {
+ int i = _hash( key ) & (_size-1); // Get hash key, corrected for size
+ bucket *b = &_bin[i]; // Handy shortcut
+ for( int j=0; j<b->_cnt; j++ )
+ if( !_cmp(key,b->_keyvals[j+j]) )
+ return b->_keyvals[j+j+1];
+ return NULL;
+}
+
+//------------------------------CmpDict--------------------------------------
+// CmpDict compares two dictionaries; they must have the same keys (their
+// keys must match using CmpKey) and they must have the same values (pointer
+// comparison). If so 1 is returned, if not 0 is returned.
+int Dict::operator ==(const Dict &d2) const {
+ if( _cnt != d2._cnt ) return 0;
+ if( _hash != d2._hash ) return 0;
+ if( _cmp != d2._cmp ) return 0;
+ for( int i=0; i < _size; i++) { // For complete hash table do
+ bucket *b = &_bin[i]; // Handy shortcut
+ if( b->_cnt != d2._bin[i]._cnt ) return 0;
+ if( memcmp(b->_keyvals, d2._bin[i]._keyvals, b->_cnt*2*sizeof(void*) ) )
+ return 0; // Key-value pairs must match
+ }
+ return 1; // All match, is OK
+}
+
+
+//------------------------------print----------------------------------------
+static void printvoid(const void* x) { printf("%p", x); }
+void Dict::print() {
+ print(printvoid, printvoid);
+}
+void Dict::print(PrintKeyOrValue print_key, PrintKeyOrValue print_value) {
+ for( int i=0; i < _size; i++) { // For complete hash table do
+ bucket *b = &_bin[i]; // Handy shortcut
+ for( int j=0; j<b->_cnt; j++ ) {
+ print_key( b->_keyvals[j+j ]);
+ printf(" -> ");
+ print_value(b->_keyvals[j+j+1]);
+ printf("\n");
+ }
+ }
+}
+
+//------------------------------Hashing Functions----------------------------
+// Convert string to hash key. This algorithm implements a universal hash
+// function with the multipliers frozen (ok, so it's not universal). The
+// multipliers (and allowable characters) are all odd, so the resultant sum
+// is odd - guaranteed not divisible by any power of two, so the hash tables
+// can be any power of two with good results. Also, I choose multipliers
+// that have only 2 bits set (the low is always set to be odd) so
+// multiplication requires only shifts and adds. Characters are required to
+// be in the range 0-127 (I double & add 1 to force oddness). Keys are
+// limited to MAXID characters in length. Experimental evidence on 150K of
+// C text shows excellent spreading of values for any size hash table.
+int hashstr(const void *t) {
+ register char c, k = 0;
+ register int sum = 0;
+ register const char *s = (const char *)t;
+
+ while (((c = s[k]) != '\0') && (k < MAXID-1)) { // Get characters till nul
+ c = (char) ((c << 1) + 1); // Characters are always odd!
+ sum += c + (c << shft[k++]); // Universal hash function
+ }
+ assert(k < (MAXID), "Exceeded maximum name length");
+ return (int)((sum+xsum[k]) >> 1); // Hash key, un-modulo'd table size
+}
+
+//------------------------------hashptr--------------------------------------
+// Slimey cheap hash function; no guaranteed performance. Better than the
+// default for pointers, especially on MS-DOS machines.
+int hashptr(const void *key) {
+#ifdef __TURBOC__
+ return (int)((intptr_t)key >> 16);
+#else // __TURBOC__
+ return (int)((intptr_t)key >> 2);
+#endif
+}
+
+// Slimey cheap hash function; no guaranteed performance.
+int hashkey(const void *key) {
+ return (int)((intptr_t)key);
+}
+
+//------------------------------Key Comparator Functions---------------------
+int cmpstr(const void *k1, const void *k2) {
+ return strcmp((const char *)k1,(const char *)k2);
+}
+
+// Cheap key comparator.
+int cmpkey(const void *key1, const void *key2) {
+ if (key1 == key2) return 0;
+ intptr_t delta = (intptr_t)key1 - (intptr_t)key2;
+ if (delta > 0) return 1;
+ return -1;
+}
+
+//=============================================================================
+//------------------------------reset------------------------------------------
+// Create an iterator and initialize the first variables.
+void DictI::reset( const Dict *dict ) {
+ _d = dict; // The dictionary
+ _i = (int)-1; // Before the first bin
+ _j = 0; // Nothing left in the current bin
+ ++(*this); // Step to first real value
+}
+
+//------------------------------next-------------------------------------------
+// Find the next key-value pair in the dictionary, or return a NULL key and
+// value.
+void DictI::operator ++(void) {
+ if( _j-- ) { // Still working in current bin?
+ _key = _d->_bin[_i]._keyvals[_j+_j];
+ _value = _d->_bin[_i]._keyvals[_j+_j+1];
+ return;
+ }
+
+ while( ++_i < _d->_size ) { // Else scan for non-zero bucket
+ _j = _d->_bin[_i]._cnt;
+ if( !_j ) continue;
+ _j--;
+ _key = _d->_bin[_i]._keyvals[_j+_j];
+ _value = _d->_bin[_i]._keyvals[_j+_j+1];
+ return;
+ }
+ _key = _value = NULL;
+}