src/hotspot/os_cpu/linux_s390/os_linux_s390.cpp
changeset 47216 71c04702a3d5
parent 46644 a5813fb66270
child 47586 07ad034e0c29
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/os_cpu/linux_s390/os_linux_s390.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,625 @@
+/*
+ * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2016 SAP SE. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+// This file is organized as os_linux_x86.cpp.
+
+// no precompiled headers
+#include "asm/assembler.inline.hpp"
+#include "classfile/classLoader.hpp"
+#include "classfile/systemDictionary.hpp"
+#include "classfile/vmSymbols.hpp"
+#include "code/icBuffer.hpp"
+#include "code/nativeInst.hpp"
+#include "code/vtableStubs.hpp"
+#include "compiler/disassembler.hpp"
+#include "interpreter/interpreter.hpp"
+#include "jvm_linux.h"
+#include "memory/allocation.inline.hpp"
+#include "nativeInst_s390.hpp"
+#include "os_share_linux.hpp"
+#include "prims/jniFastGetField.hpp"
+#include "prims/jvm.h"
+#include "prims/jvm_misc.hpp"
+#include "runtime/arguments.hpp"
+#include "runtime/extendedPC.hpp"
+#include "runtime/frame.inline.hpp"
+#include "runtime/interfaceSupport.hpp"
+#include "runtime/java.hpp"
+#include "runtime/javaCalls.hpp"
+#include "runtime/mutexLocker.hpp"
+#include "runtime/osThread.hpp"
+#include "runtime/sharedRuntime.hpp"
+#include "runtime/stubRoutines.hpp"
+#include "runtime/thread.inline.hpp"
+#include "runtime/timer.hpp"
+#include "utilities/events.hpp"
+#include "utilities/vmError.hpp"
+
+// put OS-includes here
+# include <sys/types.h>
+# include <sys/mman.h>
+# include <pthread.h>
+# include <signal.h>
+# include <errno.h>
+# include <dlfcn.h>
+# include <stdlib.h>
+# include <stdio.h>
+# include <unistd.h>
+# include <sys/resource.h>
+# include <pthread.h>
+# include <sys/stat.h>
+# include <sys/time.h>
+# include <sys/utsname.h>
+# include <sys/socket.h>
+# include <sys/wait.h>
+# include <pwd.h>
+# include <poll.h>
+# include <ucontext.h>
+
+address os::current_stack_pointer() {
+  intptr_t* csp;
+
+  // Inline assembly for `z_lgr regno(csp), Z_SP' (Z_SP = Z_R15):
+  __asm__ __volatile__ ("lgr %0, 15":"=r"(csp):);
+
+  assert(((uint64_t)csp & (frame::alignment_in_bytes-1)) == 0, "SP must be aligned");
+  return (address) csp;
+}
+
+char* os::non_memory_address_word() {
+  // Must never look like an address returned by reserve_memory,
+  // even in its subfields (as defined by the CPU immediate fields,
+  // if the CPU splits constants across multiple instructions).
+  return (char*) -1;
+}
+
+// OS specific thread initialization.
+void os::initialize_thread(Thread* thread) { }
+
+// Frame information (pc, sp, fp) retrieved via ucontext
+// always looks like a C-frame according to the frame
+// conventions in frame_s390.hpp.
+address os::Linux::ucontext_get_pc(const ucontext_t * uc) {
+  return (address)uc->uc_mcontext.psw.addr;
+}
+
+void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
+  uc->uc_mcontext.psw.addr = (unsigned long)pc;
+}
+
+intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
+  return (intptr_t*)uc->uc_mcontext.gregs[15/*REG_SP*/];
+}
+
+intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
+  return NULL;
+}
+
+ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
+                    intptr_t** ret_sp, intptr_t** ret_fp) {
+
+  ExtendedPC  epc;
+  const ucontext_t* uc = (const ucontext_t*)ucVoid;
+
+  if (uc != NULL) {
+    epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
+    if (ret_sp) { *ret_sp = os::Linux::ucontext_get_sp(uc); }
+    if (ret_fp) { *ret_fp = os::Linux::ucontext_get_fp(uc); }
+  } else {
+    // Construct empty ExtendedPC for return value checking.
+    epc = ExtendedPC(NULL);
+    if (ret_sp) { *ret_sp = (intptr_t *)NULL; }
+    if (ret_fp) { *ret_fp = (intptr_t *)NULL; }
+  }
+
+  return epc;
+}
+
+frame os::fetch_frame_from_context(const void* ucVoid) {
+  intptr_t* sp;
+  intptr_t* fp;
+  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
+  return frame(sp, epc.pc());
+}
+
+bool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
+  address pc = (address) os::Linux::ucontext_get_pc(uc);
+  if (Interpreter::contains(pc)) {
+    // Interpreter performs stack banging after the fixed frame header has
+    // been generated while the compilers perform it before. To maintain
+    // semantic consistency between interpreted and compiled frames, the
+    // method returns the Java sender of the current frame.
+    *fr = os::fetch_frame_from_context(uc);
+    if (!fr->is_first_java_frame()) {
+      assert(fr->safe_for_sender(thread), "Safety check");
+      *fr = fr->java_sender();
+    }
+  } else {
+    // More complex code with compiled code.
+    assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
+    CodeBlob* cb = CodeCache::find_blob(pc);
+    if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
+      // Not sure where the pc points to, fallback to default
+      // stack overflow handling. In compiled code, we bang before
+      // the frame is complete.
+      return false;
+    } else {
+      intptr_t* fp = os::Linux::ucontext_get_fp(uc);
+      intptr_t* sp = os::Linux::ucontext_get_sp(uc);
+      *fr = frame(sp, (address)*sp);
+      if (!fr->is_java_frame()) {
+        assert(fr->safe_for_sender(thread), "Safety check");
+        assert(!fr->is_first_frame(), "Safety check");
+        *fr = fr->java_sender();
+      }
+    }
+  }
+  assert(fr->is_java_frame(), "Safety check");
+  return true;
+}
+
+frame os::get_sender_for_C_frame(frame* fr) {
+  if (*fr->sp() == 0) {
+    // fr is the last C frame.
+    return frame();
+  }
+
+  // If its not one of our frames, the return pc is saved at gpr14
+  // stack slot. The call_stub stores the return_pc to the stack slot
+  // of gpr10.
+  if ((Interpreter::code() != NULL && Interpreter::contains(fr->pc())) ||
+      (CodeCache::contains(fr->pc()) && !StubRoutines::contains(fr->pc()))) {
+    return frame(fr->sender_sp(), fr->sender_pc());
+  } else {
+    if (StubRoutines::contains(fr->pc())) {
+      StubCodeDesc* desc = StubCodeDesc::desc_for(fr->pc());
+      if (desc && !strcmp(desc->name(),"call_stub")) {
+        return frame(fr->sender_sp(), fr->callstub_sender_pc());
+      } else {
+        return frame(fr->sender_sp(), fr->sender_pc());
+      }
+    } else {
+      return frame(fr->sender_sp(), fr->native_sender_pc());
+    }
+  }
+}
+
+frame os::current_frame() {
+  // Expected to return the stack pointer of this method.
+  // But if inlined, returns the stack pointer of our caller!
+  intptr_t* csp = (intptr_t*) *((intptr_t*) os::current_stack_pointer());
+  assert (csp != NULL, "sp should not be NULL");
+  // Pass a dummy pc. This way we don't have to load it from the
+  // stack, since we don't know in which slot we can find it.
+  frame topframe(csp, (address)0x8);
+  if (os::is_first_C_frame(&topframe)) {
+    // Stack is not walkable.
+    return frame();
+  } else {
+    frame senderFrame = os::get_sender_for_C_frame(&topframe);
+    assert(senderFrame.pc() != NULL, "Sender pc should not be NULL");
+    // Return sender of sender of current topframe which hopefully
+    // both have pc != NULL.
+#ifdef _NMT_NOINLINE_   // Is set in slowdebug builds.
+    // Current_stack_pointer is not inlined, we must pop one more frame.
+    frame tmp = os::get_sender_for_C_frame(&topframe);
+    return os::get_sender_for_C_frame(&tmp);
+#else
+    return os::get_sender_for_C_frame(&topframe);
+#endif
+  }
+}
+
+// Utility functions
+
+extern "C" JNIEXPORT int
+JVM_handle_linux_signal(int sig,
+                        siginfo_t* info,
+                        void* ucVoid,
+                        int abort_if_unrecognized) {
+  ucontext_t* uc = (ucontext_t*) ucVoid;
+
+  Thread* t = Thread::current_or_null_safe();
+
+  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
+  // (no destructors can be run).
+  os::ThreadCrashProtection::check_crash_protection(sig, t);
+
+  SignalHandlerMark shm(t);
+
+  // Note: it's not uncommon that JNI code uses signal/sigset to install
+  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
+  // or have a SIGILL handler when detecting CPU type). When that happens,
+  // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
+  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
+  // that do not require siginfo/ucontext first.
+
+  if (sig == SIGPIPE) {
+    if (os::Linux::chained_handler(sig, info, ucVoid)) {
+      return true;
+    } else {
+      if (PrintMiscellaneous && (WizardMode || Verbose)) {
+        warning("Ignoring SIGPIPE - see bug 4229104");
+      }
+      return true;
+    }
+  }
+
+  JavaThread* thread = NULL;
+  VMThread* vmthread = NULL;
+  if (os::Linux::signal_handlers_are_installed) {
+    if (t != NULL) {
+      if(t->is_Java_thread()) {
+        thread = (JavaThread*)t;
+      } else if(t->is_VM_thread()) {
+        vmthread = (VMThread *)t;
+      }
+    }
+  }
+
+  // Moved SafeFetch32 handling outside thread!=NULL conditional block to make
+  // it work if no associated JavaThread object exists.
+  if (uc) {
+    address const pc = os::Linux::ucontext_get_pc(uc);
+    if (pc && StubRoutines::is_safefetch_fault(pc)) {
+      os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
+      return true;
+    }
+  }
+
+  // Decide if this trap can be handled by a stub.
+  address stub    = NULL;
+  address pc      = NULL;  // Pc as retrieved from PSW. Usually points past failing instruction.
+  address trap_pc = NULL;  // Pc of the instruction causing the trap.
+
+  //%note os_trap_1
+  if (info != NULL && uc != NULL && thread != NULL) {
+    pc = os::Linux::ucontext_get_pc(uc);
+    if (TraceTraps) {
+      tty->print_cr("     pc at " INTPTR_FORMAT, p2i(pc));
+    }
+    if ((unsigned long)(pc - (address)info->si_addr) <= (unsigned long)Assembler::instr_maxlen() ) {
+      trap_pc = (address)info->si_addr;
+      if (TraceTraps) {
+        tty->print_cr("trap_pc at " INTPTR_FORMAT, p2i(trap_pc));
+      }
+    }
+
+    // Handle ALL stack overflow variations here
+    if (sig == SIGSEGV) {
+      address addr = (address)info->si_addr; // Address causing SIGSEGV, usually mem ref target.
+
+      // Check if fault address is within thread stack.
+      if (thread->on_local_stack(addr)) {
+        // stack overflow
+        if (thread->in_stack_yellow_reserved_zone(addr)) {
+          if (thread->thread_state() == _thread_in_Java) {
+            if (thread->in_stack_reserved_zone(addr)) {
+              frame fr;
+              if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) {
+                assert(fr.is_java_frame(), "Must be a Javac frame");
+                frame activation =
+                  SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
+                if (activation.sp() != NULL) {
+                  thread->disable_stack_reserved_zone();
+                  if (activation.is_interpreted_frame()) {
+                    thread->set_reserved_stack_activation((address)activation.fp());
+                  } else {
+                    thread->set_reserved_stack_activation((address)activation.unextended_sp());
+                  }
+                  return 1;
+                }
+              }
+            }
+            // Throw a stack overflow exception.
+            // Guard pages will be reenabled while unwinding the stack.
+            thread->disable_stack_yellow_reserved_zone();
+            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
+          } else {
+            // Thread was in the vm or native code. Return and try to finish.
+            thread->disable_stack_yellow_reserved_zone();
+            return 1;
+          }
+        } else if (thread->in_stack_red_zone(addr)) {
+          // Fatal red zone violation.  Disable the guard pages and fall through
+          // to handle_unexpected_exception way down below.
+          thread->disable_stack_red_zone();
+          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
+
+          // This is a likely cause, but hard to verify. Let's just print
+          // it as a hint.
+          tty->print_raw_cr("Please check if any of your loaded .so files has "
+                            "enabled executable stack (see man page execstack(8))");
+        } else {
+          // Accessing stack address below sp may cause SEGV if current
+          // thread has MAP_GROWSDOWN stack. This should only happen when
+          // current thread was created by user code with MAP_GROWSDOWN flag
+          // and then attached to VM. See notes in os_linux.cpp.
+          if (thread->osthread()->expanding_stack() == 0) {
+             thread->osthread()->set_expanding_stack();
+             if (os::Linux::manually_expand_stack(thread, addr)) {
+               thread->osthread()->clear_expanding_stack();
+               return 1;
+             }
+             thread->osthread()->clear_expanding_stack();
+          } else {
+             fatal("recursive segv. expanding stack.");
+          }
+        }
+      }
+    }
+
+    if (thread->thread_state() == _thread_in_Java) {
+      // Java thread running in Java code => find exception handler if any
+      // a fault inside compiled code, the interpreter, or a stub
+
+      // Handle signal from NativeJump::patch_verified_entry().
+      if (sig == SIGILL && nativeInstruction_at(pc)->is_sigill_zombie_not_entrant()) {
+        if (TraceTraps) {
+          tty->print_cr("trap: zombie_not_entrant (SIGILL)");
+        }
+        stub = SharedRuntime::get_handle_wrong_method_stub();
+      }
+
+      else if (sig == SIGSEGV &&
+               os::is_poll_address((address)info->si_addr)) {
+        if (TraceTraps) {
+          tty->print_cr("trap: safepoint_poll at " INTPTR_FORMAT " (SIGSEGV)", p2i(pc));
+        }
+        stub = SharedRuntime::get_poll_stub(pc);
+
+        // Info->si_addr only points to the page base address, so we
+        // must extract the real si_addr from the instruction and the
+        // ucontext.
+        assert(((NativeInstruction*)pc)->is_safepoint_poll(), "must be safepoint poll");
+        const address real_si_addr = ((NativeInstruction*)pc)->get_poll_address(uc);
+      }
+
+      // SIGTRAP-based implicit null check in compiled code.
+      else if ((sig == SIGFPE) &&
+               TrapBasedNullChecks &&
+               (trap_pc != NULL) &&
+               Assembler::is_sigtrap_zero_check(trap_pc)) {
+        if (TraceTraps) {
+          tty->print_cr("trap: NULL_CHECK at " INTPTR_FORMAT " (SIGFPE)", p2i(trap_pc));
+        }
+        stub = SharedRuntime::continuation_for_implicit_exception(thread, trap_pc, SharedRuntime::IMPLICIT_NULL);
+      }
+
+      else if (sig == SIGSEGV && ImplicitNullChecks &&
+               CodeCache::contains((void*) pc) &&
+               !MacroAssembler::needs_explicit_null_check((intptr_t) info->si_addr)) {
+        if (TraceTraps) {
+          tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", p2i(pc));
+        }
+        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
+      }
+
+      // SIGTRAP-based implicit range check in compiled code.
+      else if (sig == SIGFPE && TrapBasedRangeChecks &&
+               (trap_pc != NULL) &&
+               Assembler::is_sigtrap_range_check(trap_pc)) {
+        if (TraceTraps) {
+          tty->print_cr("trap: RANGE_CHECK at " INTPTR_FORMAT " (SIGFPE)", p2i(trap_pc));
+        }
+        stub = SharedRuntime::continuation_for_implicit_exception(thread, trap_pc, SharedRuntime::IMPLICIT_NULL);
+      }
+
+      else if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
+        stub = SharedRuntime::continuation_for_implicit_exception(thread, trap_pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
+      }
+
+      else if (sig == SIGBUS) {
+        // BugId 4454115: A read from a MappedByteBuffer can fault here if the
+        // underlying file has been truncated. Do not crash the VM in such a case.
+        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
+        CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
+        if (nm != NULL && nm->has_unsafe_access()) {
+          // We don't really need a stub here! Just set the pending exeption and
+          // continue at the next instruction after the faulting read. Returning
+          // garbage from this read is ok.
+          thread->set_pending_unsafe_access_error();
+          uc->uc_mcontext.psw.addr = ((unsigned long)pc) + Assembler::instr_len(pc);
+          return true;
+        }
+      }
+    }
+
+    else { // thread->thread_state() != _thread_in_Java
+      if (sig == SIGILL && VM_Version::is_determine_features_test_running()) {
+        // SIGILL must be caused by VM_Version::determine_features().
+        //*(int *) (pc-6)=0; // Patch instruction to 0 to indicate that it causes a SIGILL.
+                             // Flushing of icache is not necessary.
+        stub = pc; // Continue with next instruction.
+      } else if (thread->thread_state() == _thread_in_vm &&
+                 sig == SIGBUS && thread->doing_unsafe_access()) {
+        // We don't really need a stub here! Just set the pending exeption and
+        // continue at the next instruction after the faulting read. Returning
+        // garbage from this read is ok.
+        thread->set_pending_unsafe_access_error();
+        os::Linux::ucontext_set_pc(uc, pc + Assembler::instr_len(pc));
+        return true;
+      }
+    }
+
+    // Check to see if we caught the safepoint code in the
+    // process of write protecting the memory serialization page.
+    // It write enables the page immediately after protecting it
+    // so we can just return to retry the write.
+    // Info->si_addr need not be the exact address, it is only
+    // guaranteed to be on the same page as the address that caused
+    // the SIGSEGV.
+    if ((sig == SIGSEGV) &&
+        (os::get_memory_serialize_page() ==
+         (address)((uintptr_t)info->si_addr & ~(os::vm_page_size()-1)))) {
+      return true;
+    }
+  }
+
+  if (stub != NULL) {
+    // Save all thread context in case we need to restore it.
+    if (thread != NULL) thread->set_saved_exception_pc(pc);
+    os::Linux::ucontext_set_pc(uc, stub);
+    return true;
+  }
+
+  // signal-chaining
+  if (os::Linux::chained_handler(sig, info, ucVoid)) {
+    return true;
+  }
+
+  if (!abort_if_unrecognized) {
+    // caller wants another chance, so give it to him
+    return false;
+  }
+
+  if (pc == NULL && uc != NULL) {
+    pc = os::Linux::ucontext_get_pc(uc);
+  }
+
+  // unmask current signal
+  sigset_t newset;
+  sigemptyset(&newset);
+  sigaddset(&newset, sig);
+  sigprocmask(SIG_UNBLOCK, &newset, NULL);
+
+  // Hand down correct pc for SIGILL, SIGFPE. pc from context
+  // usually points to the instruction after the failing instruction.
+  // Note: this should be combined with the trap_pc handling above,
+  // because it handles the same issue.
+  if (sig == SIGILL || sig == SIGFPE) {
+    pc = (address) info->si_addr;
+  }
+
+  VMError::report_and_die(t, sig, pc, info, ucVoid);
+
+  ShouldNotReachHere();
+  return false;
+}
+
+void os::Linux::init_thread_fpu_state(void) {
+  // Nothing to do on z/Architecture.
+}
+
+int os::Linux::get_fpu_control_word(void) {
+  // Nothing to do on z/Architecture.
+  return 0;
+}
+
+void os::Linux::set_fpu_control_word(int fpu_control) {
+  // Nothing to do on z/Architecture.
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// thread stack
+
+// Minimum usable stack sizes required to get to user code. Space for
+// HotSpot guard pages is added later.
+size_t os::Posix::_compiler_thread_min_stack_allowed = (52 DEBUG_ONLY(+ 32)) * K;
+size_t os::Posix::_java_thread_min_stack_allowed = (32 DEBUG_ONLY(+ 8)) * K;
+size_t os::Posix::_vm_internal_thread_min_stack_allowed = 32 * K;
+
+// Return default stack size for thr_type.
+size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
+  // Default stack size (compiler thread needs larger stack).
+  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1024 * K);
+  return s;
+}
+
+/////////////////////////////////////////////////////////////////////////////
+// helper functions for fatal error handler
+
+void os::print_context(outputStream *st, const void *context) {
+  if (context == NULL) return;
+
+  const ucontext_t* uc = (const ucontext_t*)context;
+
+  st->print_cr("Processor state:");
+  st->print_cr("----------------");
+  st->print_cr("        ip = " INTPTR_FORMAT " ", uc->uc_mcontext.psw.addr);
+  st->print_cr(" proc mask = " INTPTR_FORMAT " ", uc->uc_mcontext.psw.mask);
+  st->print_cr("   fpc reg = 0x%8.8x "          , uc->uc_mcontext.fpregs.fpc);
+  st->cr();
+
+  st->print_cr("General Purpose Registers:");
+  st->print_cr("--------------------------");
+  for( int i = 0; i < 16; i+=2 ) {
+    st->print("  r%-2d = " INTPTR_FORMAT "  " ,  i,   uc->uc_mcontext.gregs[i]);
+    st->print("  r%-2d = " INTPTR_FORMAT "  |",  i+1, uc->uc_mcontext.gregs[i+1]);
+    st->print("  r%-2d = %23.1ld  "           ,  i,   uc->uc_mcontext.gregs[i]);
+    st->print("  r%-2d = %23.1ld  "           ,  i+1, uc->uc_mcontext.gregs[i+1]);
+    st->cr();
+  }
+  st->cr();
+
+  st->print_cr("Access Registers:");
+  st->print_cr("-----------------");
+  for( int i = 0; i < 16; i+=2 ) {
+    st->print("  ar%-2d = 0x%8.8x  ", i,   uc->uc_mcontext.aregs[i]);
+    st->print("  ar%-2d = 0x%8.8x  ", i+1, uc->uc_mcontext.aregs[i+1]);
+    st->cr();
+  }
+  st->cr();
+
+  st->print_cr("Float Registers:");
+  st->print_cr("----------------");
+  for (int i = 0; i < 16; i += 2) {
+    st->print("  fr%-2d = " INTPTR_FORMAT "  " , i,   (int64_t)(uc->uc_mcontext.fpregs.fprs[i].d));
+    st->print("  fr%-2d = " INTPTR_FORMAT "  |", i+1, (int64_t)(uc->uc_mcontext.fpregs.fprs[i+1].d));
+    st->print("  fr%-2d = %23.15e  "           , i,   (uc->uc_mcontext.fpregs.fprs[i].d));
+    st->print("  fr%-2d = %23.15e  "           , i+1, (uc->uc_mcontext.fpregs.fprs[i+1].d));
+    st->cr();
+  }
+  st->cr();
+  st->cr();
+
+  intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
+  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
+  print_hex_dump(st, (address)sp, (address)(sp + 128), sizeof(intptr_t));
+  st->cr();
+
+  // Note: it may be unsafe to inspect memory near pc. For example, pc may
+  // point to garbage if entry point in an nmethod is corrupted. Leave
+  // this at the end, and hope for the best.
+  address pc = os::Linux::ucontext_get_pc(uc);
+  if (Verbose) { st->print_cr("pc at " PTR_FORMAT, p2i(pc)); }
+  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
+  print_hex_dump(st, pc-64, pc+64, /*intrsize=*/4);
+  st->cr();
+}
+
+void os::print_register_info(outputStream *st, const void *context) {
+  st->print("Not ported\n");
+}
+
+#ifndef PRODUCT
+void os::verify_stack_alignment() {
+}
+#endif
+
+int os::extra_bang_size_in_bytes() {
+  // z/Architecture does not require the additional stack bang.
+  return 0;
+}