src/hotspot/os_cpu/linux_aarch64/os_linux_aarch64.cpp
changeset 47216 71c04702a3d5
parent 46644 a5813fb66270
child 47765 b7c7428eaab9
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/os_cpu/linux_aarch64/os_linux_aarch64.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,725 @@
+/*
+ * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+// no precompiled headers
+#include "asm/macroAssembler.hpp"
+#include "classfile/classLoader.hpp"
+#include "classfile/systemDictionary.hpp"
+#include "classfile/vmSymbols.hpp"
+#include "code/codeCache.hpp"
+#include "code/icBuffer.hpp"
+#include "code/vtableStubs.hpp"
+#include "code/nativeInst.hpp"
+#include "interpreter/interpreter.hpp"
+#include "jvm_linux.h"
+#include "memory/allocation.inline.hpp"
+#include "os_share_linux.hpp"
+#include "prims/jniFastGetField.hpp"
+#include "prims/jvm.h"
+#include "prims/jvm_misc.hpp"
+#include "runtime/arguments.hpp"
+#include "runtime/extendedPC.hpp"
+#include "runtime/frame.inline.hpp"
+#include "runtime/interfaceSupport.hpp"
+#include "runtime/java.hpp"
+#include "runtime/javaCalls.hpp"
+#include "runtime/mutexLocker.hpp"
+#include "runtime/osThread.hpp"
+#include "runtime/sharedRuntime.hpp"
+#include "runtime/stubRoutines.hpp"
+#include "runtime/thread.inline.hpp"
+#include "runtime/timer.hpp"
+#include "utilities/events.hpp"
+#include "utilities/vmError.hpp"
+#ifdef BUILTIN_SIM
+#include "../../../../../../simulator/simulator.hpp"
+#endif
+
+// put OS-includes here
+# include <sys/types.h>
+# include <sys/mman.h>
+# include <pthread.h>
+# include <signal.h>
+# include <errno.h>
+# include <dlfcn.h>
+# include <stdlib.h>
+# include <stdio.h>
+# include <unistd.h>
+# include <sys/resource.h>
+# include <pthread.h>
+# include <sys/stat.h>
+# include <sys/time.h>
+# include <sys/utsname.h>
+# include <sys/socket.h>
+# include <sys/wait.h>
+# include <pwd.h>
+# include <poll.h>
+# include <ucontext.h>
+# include <fpu_control.h>
+
+#ifdef BUILTIN_SIM
+#define REG_SP REG_RSP
+#define REG_PC REG_RIP
+#define REG_FP REG_RBP
+#define SPELL_REG_SP "rsp"
+#define SPELL_REG_FP "rbp"
+#else
+#define REG_FP 29
+#define REG_LR 30
+
+#define SPELL_REG_SP "sp"
+#define SPELL_REG_FP "x29"
+#endif
+
+address os::current_stack_pointer() {
+  register void *esp __asm__ (SPELL_REG_SP);
+  return (address) esp;
+}
+
+char* os::non_memory_address_word() {
+  // Must never look like an address returned by reserve_memory,
+  // even in its subfields (as defined by the CPU immediate fields,
+  // if the CPU splits constants across multiple instructions).
+
+  return (char*) 0xffffffffffff;
+}
+
+void os::initialize_thread(Thread *thr) {
+}
+
+address os::Linux::ucontext_get_pc(const ucontext_t * uc) {
+#ifdef BUILTIN_SIM
+  return (address)uc->uc_mcontext.gregs[REG_PC];
+#else
+  return (address)uc->uc_mcontext.pc;
+#endif
+}
+
+void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
+#ifdef BUILTIN_SIM
+  uc->uc_mcontext.gregs[REG_PC] = (intptr_t)pc;
+#else
+  uc->uc_mcontext.pc = (intptr_t)pc;
+#endif
+}
+
+intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
+#ifdef BUILTIN_SIM
+  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
+#else
+  return (intptr_t*)uc->uc_mcontext.sp;
+#endif
+}
+
+intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
+#ifdef BUILTIN_SIM
+  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
+#else
+  return (intptr_t*)uc->uc_mcontext.regs[REG_FP];
+#endif
+}
+
+// For Forte Analyzer AsyncGetCallTrace profiling support - thread
+// is currently interrupted by SIGPROF.
+// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
+// frames. Currently we don't do that on Linux, so it's the same as
+// os::fetch_frame_from_context().
+ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
+  const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
+
+  assert(thread != NULL, "just checking");
+  assert(ret_sp != NULL, "just checking");
+  assert(ret_fp != NULL, "just checking");
+
+  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
+}
+
+ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
+                    intptr_t** ret_sp, intptr_t** ret_fp) {
+
+  ExtendedPC  epc;
+  const ucontext_t* uc = (const ucontext_t*)ucVoid;
+
+  if (uc != NULL) {
+    epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
+    if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
+    if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
+  } else {
+    // construct empty ExtendedPC for return value checking
+    epc = ExtendedPC(NULL);
+    if (ret_sp) *ret_sp = (intptr_t *)NULL;
+    if (ret_fp) *ret_fp = (intptr_t *)NULL;
+  }
+
+  return epc;
+}
+
+frame os::fetch_frame_from_context(const void* ucVoid) {
+  intptr_t* sp;
+  intptr_t* fp;
+  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
+  return frame(sp, fp, epc.pc());
+}
+
+bool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
+  address pc = (address) os::Linux::ucontext_get_pc(uc);
+  if (Interpreter::contains(pc)) {
+    // interpreter performs stack banging after the fixed frame header has
+    // been generated while the compilers perform it before. To maintain
+    // semantic consistency between interpreted and compiled frames, the
+    // method returns the Java sender of the current frame.
+    *fr = os::fetch_frame_from_context(uc);
+    if (!fr->is_first_java_frame()) {
+      assert(fr->safe_for_sender(thread), "Safety check");
+      *fr = fr->java_sender();
+    }
+  } else {
+    // more complex code with compiled code
+    assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
+    CodeBlob* cb = CodeCache::find_blob(pc);
+    if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
+      // Not sure where the pc points to, fallback to default
+      // stack overflow handling
+      return false;
+    } else {
+      // In compiled code, the stack banging is performed before LR
+      // has been saved in the frame.  LR is live, and SP and FP
+      // belong to the caller.
+      intptr_t* fp = os::Linux::ucontext_get_fp(uc);
+      intptr_t* sp = os::Linux::ucontext_get_sp(uc);
+      address pc = (address)(uc->uc_mcontext.regs[REG_LR]
+                         - NativeInstruction::instruction_size);
+      *fr = frame(sp, fp, pc);
+      if (!fr->is_java_frame()) {
+        assert(fr->safe_for_sender(thread), "Safety check");
+        assert(!fr->is_first_frame(), "Safety check");
+        *fr = fr->java_sender();
+      }
+    }
+  }
+  assert(fr->is_java_frame(), "Safety check");
+  return true;
+}
+
+// By default, gcc always saves frame pointer rfp on this stack. This
+// may get turned off by -fomit-frame-pointer.
+frame os::get_sender_for_C_frame(frame* fr) {
+#ifdef BUILTIN_SIM
+  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
+#else
+  return frame(fr->link(), fr->link(), fr->sender_pc());
+#endif
+}
+
+intptr_t* _get_previous_fp() {
+  register intptr_t **ebp __asm__ (SPELL_REG_FP);
+  return (intptr_t*) *ebp;   // we want what it points to.
+}
+
+
+frame os::current_frame() {
+  intptr_t* fp = _get_previous_fp();
+  frame myframe((intptr_t*)os::current_stack_pointer(),
+                (intptr_t*)fp,
+                CAST_FROM_FN_PTR(address, os::current_frame));
+  if (os::is_first_C_frame(&myframe)) {
+    // stack is not walkable
+    return frame();
+  } else {
+    return os::get_sender_for_C_frame(&myframe);
+  }
+}
+
+// Utility functions
+
+// From IA32 System Programming Guide
+enum {
+  trap_page_fault = 0xE
+};
+
+#ifdef BUILTIN_SIM
+extern "C" void Fetch32PFI () ;
+extern "C" void Fetch32Resume () ;
+extern "C" void FetchNPFI () ;
+extern "C" void FetchNResume () ;
+#endif
+
+extern "C" JNIEXPORT int
+JVM_handle_linux_signal(int sig,
+                        siginfo_t* info,
+                        void* ucVoid,
+                        int abort_if_unrecognized) {
+  ucontext_t* uc = (ucontext_t*) ucVoid;
+
+  Thread* t = Thread::current_or_null_safe();
+
+  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
+  // (no destructors can be run)
+  os::ThreadCrashProtection::check_crash_protection(sig, t);
+
+  SignalHandlerMark shm(t);
+
+  // Note: it's not uncommon that JNI code uses signal/sigset to install
+  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
+  // or have a SIGILL handler when detecting CPU type). When that happens,
+  // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
+  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
+  // that do not require siginfo/ucontext first.
+
+  if (sig == SIGPIPE || sig == SIGXFSZ) {
+    // allow chained handler to go first
+    if (os::Linux::chained_handler(sig, info, ucVoid)) {
+      return true;
+    } else {
+      // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
+      return true;
+    }
+  }
+
+  JavaThread* thread = NULL;
+  VMThread* vmthread = NULL;
+  if (os::Linux::signal_handlers_are_installed) {
+    if (t != NULL ){
+      if(t->is_Java_thread()) {
+        thread = (JavaThread*)t;
+      }
+      else if(t->is_VM_thread()){
+        vmthread = (VMThread *)t;
+      }
+    }
+  }
+/*
+  NOTE: does not seem to work on linux.
+  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
+    // can't decode this kind of signal
+    info = NULL;
+  } else {
+    assert(sig == info->si_signo, "bad siginfo");
+  }
+*/
+  // decide if this trap can be handled by a stub
+  address stub = NULL;
+
+  address pc          = NULL;
+
+  //%note os_trap_1
+  if (info != NULL && uc != NULL && thread != NULL) {
+    pc = (address) os::Linux::ucontext_get_pc(uc);
+
+#ifdef BUILTIN_SIM
+    if (pc == (address) Fetch32PFI) {
+       uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
+       return 1 ;
+    }
+    if (pc == (address) FetchNPFI) {
+       uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ;
+       return 1 ;
+    }
+#else
+    if (StubRoutines::is_safefetch_fault(pc)) {
+      os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
+      return 1;
+    }
+#endif
+
+    // Handle ALL stack overflow variations here
+    if (sig == SIGSEGV) {
+      address addr = (address) info->si_addr;
+
+      // check if fault address is within thread stack
+      if (thread->on_local_stack(addr)) {
+        // stack overflow
+        if (thread->in_stack_yellow_reserved_zone(addr)) {
+          thread->disable_stack_yellow_reserved_zone();
+          if (thread->thread_state() == _thread_in_Java) {
+            if (thread->in_stack_reserved_zone(addr)) {
+              frame fr;
+              if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) {
+                assert(fr.is_java_frame(), "Must be a Java frame");
+                frame activation =
+                  SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
+                if (activation.sp() != NULL) {
+                  thread->disable_stack_reserved_zone();
+                  if (activation.is_interpreted_frame()) {
+                    thread->set_reserved_stack_activation((address)(
+                      activation.fp() + frame::interpreter_frame_initial_sp_offset));
+                  } else {
+                    thread->set_reserved_stack_activation((address)activation.unextended_sp());
+                  }
+                  return 1;
+                }
+              }
+            }
+            // Throw a stack overflow exception.  Guard pages will be reenabled
+            // while unwinding the stack.
+            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
+          } else {
+            // Thread was in the vm or native code.  Return and try to finish.
+            return 1;
+          }
+        } else if (thread->in_stack_red_zone(addr)) {
+          // Fatal red zone violation.  Disable the guard pages and fall through
+          // to handle_unexpected_exception way down below.
+          thread->disable_stack_red_zone();
+          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
+
+          // This is a likely cause, but hard to verify. Let's just print
+          // it as a hint.
+          tty->print_raw_cr("Please check if any of your loaded .so files has "
+                            "enabled executable stack (see man page execstack(8))");
+        } else {
+          // Accessing stack address below sp may cause SEGV if current
+          // thread has MAP_GROWSDOWN stack. This should only happen when
+          // current thread was created by user code with MAP_GROWSDOWN flag
+          // and then attached to VM. See notes in os_linux.cpp.
+          if (thread->osthread()->expanding_stack() == 0) {
+             thread->osthread()->set_expanding_stack();
+             if (os::Linux::manually_expand_stack(thread, addr)) {
+               thread->osthread()->clear_expanding_stack();
+               return 1;
+             }
+             thread->osthread()->clear_expanding_stack();
+          } else {
+             fatal("recursive segv. expanding stack.");
+          }
+        }
+      }
+    }
+
+    if (thread->thread_state() == _thread_in_Java) {
+      // Java thread running in Java code => find exception handler if any
+      // a fault inside compiled code, the interpreter, or a stub
+
+      // Handle signal from NativeJump::patch_verified_entry().
+      if ((sig == SIGILL || sig == SIGTRAP)
+          && nativeInstruction_at(pc)->is_sigill_zombie_not_entrant()) {
+        if (TraceTraps) {
+          tty->print_cr("trap: zombie_not_entrant (%s)", (sig == SIGTRAP) ? "SIGTRAP" : "SIGILL");
+        }
+        stub = SharedRuntime::get_handle_wrong_method_stub();
+      } else if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
+        stub = SharedRuntime::get_poll_stub(pc);
+      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
+        // BugId 4454115: A read from a MappedByteBuffer can fault
+        // here if the underlying file has been truncated.
+        // Do not crash the VM in such a case.
+        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
+        CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
+        if (nm != NULL && nm->has_unsafe_access()) {
+          address next_pc = pc + NativeCall::instruction_size;
+          stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
+        }
+      }
+      else
+
+      if (sig == SIGFPE  &&
+          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
+        stub =
+          SharedRuntime::
+          continuation_for_implicit_exception(thread,
+                                              pc,
+                                              SharedRuntime::
+                                              IMPLICIT_DIVIDE_BY_ZERO);
+      } else if (sig == SIGSEGV &&
+               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
+          // Determination of interpreter/vtable stub/compiled code null exception
+          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
+      }
+    } else if (thread->thread_state() == _thread_in_vm &&
+               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
+               thread->doing_unsafe_access()) {
+      address next_pc = pc + NativeCall::instruction_size;
+      stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
+    }
+
+    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
+    // and the heap gets shrunk before the field access.
+    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
+      address addr = JNI_FastGetField::find_slowcase_pc(pc);
+      if (addr != (address)-1) {
+        stub = addr;
+      }
+    }
+
+    // Check to see if we caught the safepoint code in the
+    // process of write protecting the memory serialization page.
+    // It write enables the page immediately after protecting it
+    // so we can just return to retry the write.
+    if ((sig == SIGSEGV) &&
+        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
+      // Block current thread until the memory serialize page permission restored.
+      os::block_on_serialize_page_trap();
+      return true;
+    }
+  }
+
+  if (stub != NULL) {
+    // save all thread context in case we need to restore it
+    if (thread != NULL) thread->set_saved_exception_pc(pc);
+
+    os::Linux::ucontext_set_pc(uc, stub);
+    return true;
+  }
+
+  // signal-chaining
+  if (os::Linux::chained_handler(sig, info, ucVoid)) {
+     return true;
+  }
+
+  if (!abort_if_unrecognized) {
+    // caller wants another chance, so give it to him
+    return false;
+  }
+
+  if (pc == NULL && uc != NULL) {
+    pc = os::Linux::ucontext_get_pc(uc);
+  }
+
+  // unmask current signal
+  sigset_t newset;
+  sigemptyset(&newset);
+  sigaddset(&newset, sig);
+  sigprocmask(SIG_UNBLOCK, &newset, NULL);
+
+  VMError::report_and_die(t, sig, pc, info, ucVoid);
+
+  ShouldNotReachHere();
+  return true; // Mute compiler
+}
+
+void os::Linux::init_thread_fpu_state(void) {
+}
+
+int os::Linux::get_fpu_control_word(void) {
+  return 0;
+}
+
+void os::Linux::set_fpu_control_word(int fpu_control) {
+}
+
+// Check that the linux kernel version is 2.4 or higher since earlier
+// versions do not support SSE without patches.
+bool os::supports_sse() {
+  return true;
+}
+
+bool os::is_allocatable(size_t bytes) {
+  return true;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// thread stack
+
+// Minimum usable stack sizes required to get to user code. Space for
+// HotSpot guard pages is added later.
+size_t os::Posix::_compiler_thread_min_stack_allowed = 72 * K;
+size_t os::Posix::_java_thread_min_stack_allowed = 72 * K;
+size_t os::Posix::_vm_internal_thread_min_stack_allowed = 72 * K;
+
+// return default stack size for thr_type
+size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
+  // default stack size (compiler thread needs larger stack)
+  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
+  return s;
+}
+
+/////////////////////////////////////////////////////////////////////////////
+// helper functions for fatal error handler
+
+void os::print_context(outputStream *st, const void *context) {
+  if (context == NULL) return;
+
+  const ucontext_t *uc = (const ucontext_t*)context;
+  st->print_cr("Registers:");
+#ifdef BUILTIN_SIM
+  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
+  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
+  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
+  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
+  st->cr();
+  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
+  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
+  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
+  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
+  st->cr();
+  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
+  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
+  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
+  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
+  st->cr();
+  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
+  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
+  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
+  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
+  st->cr();
+  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
+  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
+  st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
+  st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
+  st->cr();
+  st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
+  st->cr();
+#else
+  for (int r = 0; r < 31; r++) {
+    st->print("R%-2d=", r);
+    print_location(st, uc->uc_mcontext.regs[r]);
+  }
+#endif
+  st->cr();
+
+  intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
+  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
+  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
+  st->cr();
+
+  // Note: it may be unsafe to inspect memory near pc. For example, pc may
+  // point to garbage if entry point in an nmethod is corrupted. Leave
+  // this at the end, and hope for the best.
+  address pc = os::Linux::ucontext_get_pc(uc);
+  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
+  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
+}
+
+void os::print_register_info(outputStream *st, const void *context) {
+  if (context == NULL) return;
+
+  const ucontext_t *uc = (const ucontext_t*)context;
+
+  st->print_cr("Register to memory mapping:");
+  st->cr();
+
+  // this is horrendously verbose but the layout of the registers in the
+  // context does not match how we defined our abstract Register set, so
+  // we can't just iterate through the gregs area
+
+  // this is only for the "general purpose" registers
+
+#ifdef BUILTIN_SIM
+  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
+  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
+  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
+  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
+  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
+  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
+  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
+  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
+  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
+  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
+  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
+  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
+  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
+  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
+  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
+  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
+#else
+  for (int r = 0; r < 31; r++)
+    st->print_cr(  "R%d=" INTPTR_FORMAT, r, (uintptr_t)uc->uc_mcontext.regs[r]);
+#endif
+  st->cr();
+}
+
+void os::setup_fpu() {
+}
+
+#ifndef PRODUCT
+void os::verify_stack_alignment() {
+  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
+}
+#endif
+
+int os::extra_bang_size_in_bytes() {
+  // AArch64 does not require the additional stack bang.
+  return 0;
+}
+
+extern "C" {
+  int SpinPause() {
+    return 0;
+  }
+
+  void _Copy_conjoint_jshorts_atomic(jshort* from, jshort* to, size_t count) {
+    if (from > to) {
+      jshort *end = from + count;
+      while (from < end)
+        *(to++) = *(from++);
+    }
+    else if (from < to) {
+      jshort *end = from;
+      from += count - 1;
+      to   += count - 1;
+      while (from >= end)
+        *(to--) = *(from--);
+    }
+  }
+  void _Copy_conjoint_jints_atomic(jint* from, jint* to, size_t count) {
+    if (from > to) {
+      jint *end = from + count;
+      while (from < end)
+        *(to++) = *(from++);
+    }
+    else if (from < to) {
+      jint *end = from;
+      from += count - 1;
+      to   += count - 1;
+      while (from >= end)
+        *(to--) = *(from--);
+    }
+  }
+  void _Copy_conjoint_jlongs_atomic(jlong* from, jlong* to, size_t count) {
+    if (from > to) {
+      jlong *end = from + count;
+      while (from < end)
+        os::atomic_copy64(from++, to++);
+    }
+    else if (from < to) {
+      jlong *end = from;
+      from += count - 1;
+      to   += count - 1;
+      while (from >= end)
+        os::atomic_copy64(from--, to--);
+    }
+  }
+
+  void _Copy_arrayof_conjoint_bytes(HeapWord* from,
+                                    HeapWord* to,
+                                    size_t    count) {
+    memmove(to, from, count);
+  }
+  void _Copy_arrayof_conjoint_jshorts(HeapWord* from,
+                                      HeapWord* to,
+                                      size_t    count) {
+    memmove(to, from, count * 2);
+  }
+  void _Copy_arrayof_conjoint_jints(HeapWord* from,
+                                    HeapWord* to,
+                                    size_t    count) {
+    memmove(to, from, count * 4);
+  }
+  void _Copy_arrayof_conjoint_jlongs(HeapWord* from,
+                                     HeapWord* to,
+                                     size_t    count) {
+    memmove(to, from, count * 8);
+  }
+};