src/hotspot/os/posix/os_posix.cpp
changeset 47216 71c04702a3d5
parent 47093 5ee2be48e45e
child 47604 a5abbaac6165
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/os/posix/os_posix.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,1977 @@
+/*
+ * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "utilities/globalDefinitions.hpp"
+#include "prims/jvm.h"
+#include "runtime/frame.inline.hpp"
+#include "runtime/interfaceSupport.hpp"
+#include "runtime/os.hpp"
+#include "utilities/align.hpp"
+#include "utilities/macros.hpp"
+#include "utilities/vmError.hpp"
+
+#ifndef __APPLE__
+// POSIX unamed semaphores are not supported on OS X.
+#include "semaphore_posix.hpp"
+#endif
+
+#include <dlfcn.h>
+#include <pthread.h>
+#include <semaphore.h>
+#include <signal.h>
+#include <sys/resource.h>
+#include <sys/utsname.h>
+#include <time.h>
+#include <unistd.h>
+
+// Todo: provide a os::get_max_process_id() or similar. Number of processes
+// may have been configured, can be read more accurately from proc fs etc.
+#ifndef MAX_PID
+#define MAX_PID INT_MAX
+#endif
+#define IS_VALID_PID(p) (p > 0 && p < MAX_PID)
+
+// Check core dump limit and report possible place where core can be found
+void os::check_dump_limit(char* buffer, size_t bufferSize) {
+  if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
+    jio_snprintf(buffer, bufferSize, "CreateCoredumpOnCrash is disabled from command line");
+    VMError::record_coredump_status(buffer, false);
+    return;
+  }
+
+  int n;
+  struct rlimit rlim;
+  bool success;
+
+  char core_path[PATH_MAX];
+  n = get_core_path(core_path, PATH_MAX);
+
+  if (n <= 0) {
+    jio_snprintf(buffer, bufferSize, "core.%d (may not exist)", current_process_id());
+    success = true;
+#ifdef LINUX
+  } else if (core_path[0] == '"') { // redirect to user process
+    jio_snprintf(buffer, bufferSize, "Core dumps may be processed with %s", core_path);
+    success = true;
+#endif
+  } else if (getrlimit(RLIMIT_CORE, &rlim) != 0) {
+    jio_snprintf(buffer, bufferSize, "%s (may not exist)", core_path);
+    success = true;
+  } else {
+    switch(rlim.rlim_cur) {
+      case RLIM_INFINITY:
+        jio_snprintf(buffer, bufferSize, "%s", core_path);
+        success = true;
+        break;
+      case 0:
+        jio_snprintf(buffer, bufferSize, "Core dumps have been disabled. To enable core dumping, try \"ulimit -c unlimited\" before starting Java again");
+        success = false;
+        break;
+      default:
+        jio_snprintf(buffer, bufferSize, "%s (max size " UINT64_FORMAT " kB). To ensure a full core dump, try \"ulimit -c unlimited\" before starting Java again", core_path, uint64_t(rlim.rlim_cur) / 1024);
+        success = true;
+        break;
+    }
+  }
+
+  VMError::record_coredump_status(buffer, success);
+}
+
+int os::get_native_stack(address* stack, int frames, int toSkip) {
+  int frame_idx = 0;
+  int num_of_frames;  // number of frames captured
+  frame fr = os::current_frame();
+  while (fr.pc() && frame_idx < frames) {
+    if (toSkip > 0) {
+      toSkip --;
+    } else {
+      stack[frame_idx ++] = fr.pc();
+    }
+    if (fr.fp() == NULL || fr.cb() != NULL ||
+        fr.sender_pc() == NULL || os::is_first_C_frame(&fr)) break;
+
+    if (fr.sender_pc() && !os::is_first_C_frame(&fr)) {
+      fr = os::get_sender_for_C_frame(&fr);
+    } else {
+      break;
+    }
+  }
+  num_of_frames = frame_idx;
+  for (; frame_idx < frames; frame_idx ++) {
+    stack[frame_idx] = NULL;
+  }
+
+  return num_of_frames;
+}
+
+
+bool os::unsetenv(const char* name) {
+  assert(name != NULL, "Null pointer");
+  return (::unsetenv(name) == 0);
+}
+
+int os::get_last_error() {
+  return errno;
+}
+
+bool os::is_debugger_attached() {
+  // not implemented
+  return false;
+}
+
+void os::wait_for_keypress_at_exit(void) {
+  // don't do anything on posix platforms
+  return;
+}
+
+// Multiple threads can race in this code, and can remap over each other with MAP_FIXED,
+// so on posix, unmap the section at the start and at the end of the chunk that we mapped
+// rather than unmapping and remapping the whole chunk to get requested alignment.
+char* os::reserve_memory_aligned(size_t size, size_t alignment) {
+  assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
+      "Alignment must be a multiple of allocation granularity (page size)");
+  assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
+
+  size_t extra_size = size + alignment;
+  assert(extra_size >= size, "overflow, size is too large to allow alignment");
+
+  char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
+
+  if (extra_base == NULL) {
+    return NULL;
+  }
+
+  // Do manual alignment
+  char* aligned_base = align_up(extra_base, alignment);
+
+  // [  |                                       |  ]
+  // ^ extra_base
+  //    ^ extra_base + begin_offset == aligned_base
+  //     extra_base + begin_offset + size       ^
+  //                       extra_base + extra_size ^
+  // |<>| == begin_offset
+  //                              end_offset == |<>|
+  size_t begin_offset = aligned_base - extra_base;
+  size_t end_offset = (extra_base + extra_size) - (aligned_base + size);
+
+  if (begin_offset > 0) {
+      os::release_memory(extra_base, begin_offset);
+  }
+
+  if (end_offset > 0) {
+      os::release_memory(extra_base + begin_offset + size, end_offset);
+  }
+
+  return aligned_base;
+}
+
+int os::log_vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
+    return vsnprintf(buf, len, fmt, args);
+}
+
+int os::get_fileno(FILE* fp) {
+  return NOT_AIX(::)fileno(fp);
+}
+
+struct tm* os::gmtime_pd(const time_t* clock, struct tm*  res) {
+  return gmtime_r(clock, res);
+}
+
+void os::Posix::print_load_average(outputStream* st) {
+  st->print("load average:");
+  double loadavg[3];
+  os::loadavg(loadavg, 3);
+  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
+  st->cr();
+}
+
+void os::Posix::print_rlimit_info(outputStream* st) {
+  st->print("rlimit:");
+  struct rlimit rlim;
+
+  st->print(" STACK ");
+  getrlimit(RLIMIT_STACK, &rlim);
+  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
+  else st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024);
+
+  st->print(", CORE ");
+  getrlimit(RLIMIT_CORE, &rlim);
+  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
+  else st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024);
+
+  // Isn't there on solaris
+#if defined(AIX)
+  st->print(", NPROC ");
+  st->print("%d", sysconf(_SC_CHILD_MAX));
+#elif !defined(SOLARIS)
+  st->print(", NPROC ");
+  getrlimit(RLIMIT_NPROC, &rlim);
+  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
+  else st->print(UINT64_FORMAT, uint64_t(rlim.rlim_cur));
+#endif
+
+  st->print(", NOFILE ");
+  getrlimit(RLIMIT_NOFILE, &rlim);
+  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
+  else st->print(UINT64_FORMAT, uint64_t(rlim.rlim_cur));
+
+  st->print(", AS ");
+  getrlimit(RLIMIT_AS, &rlim);
+  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
+  else st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024);
+
+  st->print(", DATA ");
+  getrlimit(RLIMIT_DATA, &rlim);
+  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
+  else st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024);
+
+  st->print(", FSIZE ");
+  getrlimit(RLIMIT_FSIZE, &rlim);
+  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
+  else st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024);
+
+  st->cr();
+}
+
+void os::Posix::print_uname_info(outputStream* st) {
+  // kernel
+  st->print("uname:");
+  struct utsname name;
+  uname(&name);
+  st->print("%s ", name.sysname);
+#ifdef ASSERT
+  st->print("%s ", name.nodename);
+#endif
+  st->print("%s ", name.release);
+  st->print("%s ", name.version);
+  st->print("%s", name.machine);
+  st->cr();
+}
+
+bool os::get_host_name(char* buf, size_t buflen) {
+  struct utsname name;
+  uname(&name);
+  jio_snprintf(buf, buflen, "%s", name.nodename);
+  return true;
+}
+
+bool os::has_allocatable_memory_limit(julong* limit) {
+  struct rlimit rlim;
+  int getrlimit_res = getrlimit(RLIMIT_AS, &rlim);
+  // if there was an error when calling getrlimit, assume that there is no limitation
+  // on virtual memory.
+  bool result;
+  if ((getrlimit_res != 0) || (rlim.rlim_cur == RLIM_INFINITY)) {
+    result = false;
+  } else {
+    *limit = (julong)rlim.rlim_cur;
+    result = true;
+  }
+#ifdef _LP64
+  return result;
+#else
+  // arbitrary virtual space limit for 32 bit Unices found by testing. If
+  // getrlimit above returned a limit, bound it with this limit. Otherwise
+  // directly use it.
+  const julong max_virtual_limit = (julong)3800*M;
+  if (result) {
+    *limit = MIN2(*limit, max_virtual_limit);
+  } else {
+    *limit = max_virtual_limit;
+  }
+
+  // bound by actually allocatable memory. The algorithm uses two bounds, an
+  // upper and a lower limit. The upper limit is the current highest amount of
+  // memory that could not be allocated, the lower limit is the current highest
+  // amount of memory that could be allocated.
+  // The algorithm iteratively refines the result by halving the difference
+  // between these limits, updating either the upper limit (if that value could
+  // not be allocated) or the lower limit (if the that value could be allocated)
+  // until the difference between these limits is "small".
+
+  // the minimum amount of memory we care about allocating.
+  const julong min_allocation_size = M;
+
+  julong upper_limit = *limit;
+
+  // first check a few trivial cases
+  if (is_allocatable(upper_limit) || (upper_limit <= min_allocation_size)) {
+    *limit = upper_limit;
+  } else if (!is_allocatable(min_allocation_size)) {
+    // we found that not even min_allocation_size is allocatable. Return it
+    // anyway. There is no point to search for a better value any more.
+    *limit = min_allocation_size;
+  } else {
+    // perform the binary search.
+    julong lower_limit = min_allocation_size;
+    while ((upper_limit - lower_limit) > min_allocation_size) {
+      julong temp_limit = ((upper_limit - lower_limit) / 2) + lower_limit;
+      temp_limit = align_down(temp_limit, min_allocation_size);
+      if (is_allocatable(temp_limit)) {
+        lower_limit = temp_limit;
+      } else {
+        upper_limit = temp_limit;
+      }
+    }
+    *limit = lower_limit;
+  }
+  return true;
+#endif
+}
+
+const char* os::get_current_directory(char *buf, size_t buflen) {
+  return getcwd(buf, buflen);
+}
+
+FILE* os::open(int fd, const char* mode) {
+  return ::fdopen(fd, mode);
+}
+
+void os::flockfile(FILE* fp) {
+  ::flockfile(fp);
+}
+
+void os::funlockfile(FILE* fp) {
+  ::funlockfile(fp);
+}
+
+// Builds a platform dependent Agent_OnLoad_<lib_name> function name
+// which is used to find statically linked in agents.
+// Parameters:
+//            sym_name: Symbol in library we are looking for
+//            lib_name: Name of library to look in, NULL for shared libs.
+//            is_absolute_path == true if lib_name is absolute path to agent
+//                                     such as "/a/b/libL.so"
+//            == false if only the base name of the library is passed in
+//               such as "L"
+char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
+                                    bool is_absolute_path) {
+  char *agent_entry_name;
+  size_t len;
+  size_t name_len;
+  size_t prefix_len = strlen(JNI_LIB_PREFIX);
+  size_t suffix_len = strlen(JNI_LIB_SUFFIX);
+  const char *start;
+
+  if (lib_name != NULL) {
+    name_len = strlen(lib_name);
+    if (is_absolute_path) {
+      // Need to strip path, prefix and suffix
+      if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
+        lib_name = ++start;
+      }
+      if (strlen(lib_name) <= (prefix_len + suffix_len)) {
+        return NULL;
+      }
+      lib_name += prefix_len;
+      name_len = strlen(lib_name) - suffix_len;
+    }
+  }
+  len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
+  agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
+  if (agent_entry_name == NULL) {
+    return NULL;
+  }
+  strcpy(agent_entry_name, sym_name);
+  if (lib_name != NULL) {
+    strcat(agent_entry_name, "_");
+    strncat(agent_entry_name, lib_name, name_len);
+  }
+  return agent_entry_name;
+}
+
+int os::sleep(Thread* thread, jlong millis, bool interruptible) {
+  assert(thread == Thread::current(),  "thread consistency check");
+
+  ParkEvent * const slp = thread->_SleepEvent ;
+  slp->reset() ;
+  OrderAccess::fence() ;
+
+  if (interruptible) {
+    jlong prevtime = javaTimeNanos();
+
+    for (;;) {
+      if (os::is_interrupted(thread, true)) {
+        return OS_INTRPT;
+      }
+
+      jlong newtime = javaTimeNanos();
+
+      if (newtime - prevtime < 0) {
+        // time moving backwards, should only happen if no monotonic clock
+        // not a guarantee() because JVM should not abort on kernel/glibc bugs
+        assert(!os::supports_monotonic_clock(), "unexpected time moving backwards detected in os::sleep(interruptible)");
+      } else {
+        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
+      }
+
+      if (millis <= 0) {
+        return OS_OK;
+      }
+
+      prevtime = newtime;
+
+      {
+        assert(thread->is_Java_thread(), "sanity check");
+        JavaThread *jt = (JavaThread *) thread;
+        ThreadBlockInVM tbivm(jt);
+        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
+
+        jt->set_suspend_equivalent();
+        // cleared by handle_special_suspend_equivalent_condition() or
+        // java_suspend_self() via check_and_wait_while_suspended()
+
+        slp->park(millis);
+
+        // were we externally suspended while we were waiting?
+        jt->check_and_wait_while_suspended();
+      }
+    }
+  } else {
+    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
+    jlong prevtime = javaTimeNanos();
+
+    for (;;) {
+      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
+      // the 1st iteration ...
+      jlong newtime = javaTimeNanos();
+
+      if (newtime - prevtime < 0) {
+        // time moving backwards, should only happen if no monotonic clock
+        // not a guarantee() because JVM should not abort on kernel/glibc bugs
+        assert(!os::supports_monotonic_clock(), "unexpected time moving backwards detected on os::sleep(!interruptible)");
+      } else {
+        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
+      }
+
+      if (millis <= 0) break ;
+
+      prevtime = newtime;
+      slp->park(millis);
+    }
+    return OS_OK ;
+  }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// interrupt support
+
+void os::interrupt(Thread* thread) {
+  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
+    "possibility of dangling Thread pointer");
+
+  OSThread* osthread = thread->osthread();
+
+  if (!osthread->interrupted()) {
+    osthread->set_interrupted(true);
+    // More than one thread can get here with the same value of osthread,
+    // resulting in multiple notifications.  We do, however, want the store
+    // to interrupted() to be visible to other threads before we execute unpark().
+    OrderAccess::fence();
+    ParkEvent * const slp = thread->_SleepEvent ;
+    if (slp != NULL) slp->unpark() ;
+  }
+
+  // For JSR166. Unpark even if interrupt status already was set
+  if (thread->is_Java_thread())
+    ((JavaThread*)thread)->parker()->unpark();
+
+  ParkEvent * ev = thread->_ParkEvent ;
+  if (ev != NULL) ev->unpark() ;
+
+}
+
+bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
+  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
+    "possibility of dangling Thread pointer");
+
+  OSThread* osthread = thread->osthread();
+
+  bool interrupted = osthread->interrupted();
+
+  // NOTE that since there is no "lock" around the interrupt and
+  // is_interrupted operations, there is the possibility that the
+  // interrupted flag (in osThread) will be "false" but that the
+  // low-level events will be in the signaled state. This is
+  // intentional. The effect of this is that Object.wait() and
+  // LockSupport.park() will appear to have a spurious wakeup, which
+  // is allowed and not harmful, and the possibility is so rare that
+  // it is not worth the added complexity to add yet another lock.
+  // For the sleep event an explicit reset is performed on entry
+  // to os::sleep, so there is no early return. It has also been
+  // recommended not to put the interrupted flag into the "event"
+  // structure because it hides the issue.
+  if (interrupted && clear_interrupted) {
+    osthread->set_interrupted(false);
+    // consider thread->_SleepEvent->reset() ... optional optimization
+  }
+
+  return interrupted;
+}
+
+
+
+static const struct {
+  int sig; const char* name;
+}
+ g_signal_info[] =
+  {
+  {  SIGABRT,     "SIGABRT" },
+#ifdef SIGAIO
+  {  SIGAIO,      "SIGAIO" },
+#endif
+  {  SIGALRM,     "SIGALRM" },
+#ifdef SIGALRM1
+  {  SIGALRM1,    "SIGALRM1" },
+#endif
+  {  SIGBUS,      "SIGBUS" },
+#ifdef SIGCANCEL
+  {  SIGCANCEL,   "SIGCANCEL" },
+#endif
+  {  SIGCHLD,     "SIGCHLD" },
+#ifdef SIGCLD
+  {  SIGCLD,      "SIGCLD" },
+#endif
+  {  SIGCONT,     "SIGCONT" },
+#ifdef SIGCPUFAIL
+  {  SIGCPUFAIL,  "SIGCPUFAIL" },
+#endif
+#ifdef SIGDANGER
+  {  SIGDANGER,   "SIGDANGER" },
+#endif
+#ifdef SIGDIL
+  {  SIGDIL,      "SIGDIL" },
+#endif
+#ifdef SIGEMT
+  {  SIGEMT,      "SIGEMT" },
+#endif
+  {  SIGFPE,      "SIGFPE" },
+#ifdef SIGFREEZE
+  {  SIGFREEZE,   "SIGFREEZE" },
+#endif
+#ifdef SIGGFAULT
+  {  SIGGFAULT,   "SIGGFAULT" },
+#endif
+#ifdef SIGGRANT
+  {  SIGGRANT,    "SIGGRANT" },
+#endif
+  {  SIGHUP,      "SIGHUP" },
+  {  SIGILL,      "SIGILL" },
+  {  SIGINT,      "SIGINT" },
+#ifdef SIGIO
+  {  SIGIO,       "SIGIO" },
+#endif
+#ifdef SIGIOINT
+  {  SIGIOINT,    "SIGIOINT" },
+#endif
+#ifdef SIGIOT
+// SIGIOT is there for BSD compatibility, but on most Unices just a
+// synonym for SIGABRT. The result should be "SIGABRT", not
+// "SIGIOT".
+#if (SIGIOT != SIGABRT )
+  {  SIGIOT,      "SIGIOT" },
+#endif
+#endif
+#ifdef SIGKAP
+  {  SIGKAP,      "SIGKAP" },
+#endif
+  {  SIGKILL,     "SIGKILL" },
+#ifdef SIGLOST
+  {  SIGLOST,     "SIGLOST" },
+#endif
+#ifdef SIGLWP
+  {  SIGLWP,      "SIGLWP" },
+#endif
+#ifdef SIGLWPTIMER
+  {  SIGLWPTIMER, "SIGLWPTIMER" },
+#endif
+#ifdef SIGMIGRATE
+  {  SIGMIGRATE,  "SIGMIGRATE" },
+#endif
+#ifdef SIGMSG
+  {  SIGMSG,      "SIGMSG" },
+#endif
+  {  SIGPIPE,     "SIGPIPE" },
+#ifdef SIGPOLL
+  {  SIGPOLL,     "SIGPOLL" },
+#endif
+#ifdef SIGPRE
+  {  SIGPRE,      "SIGPRE" },
+#endif
+  {  SIGPROF,     "SIGPROF" },
+#ifdef SIGPTY
+  {  SIGPTY,      "SIGPTY" },
+#endif
+#ifdef SIGPWR
+  {  SIGPWR,      "SIGPWR" },
+#endif
+  {  SIGQUIT,     "SIGQUIT" },
+#ifdef SIGRECONFIG
+  {  SIGRECONFIG, "SIGRECONFIG" },
+#endif
+#ifdef SIGRECOVERY
+  {  SIGRECOVERY, "SIGRECOVERY" },
+#endif
+#ifdef SIGRESERVE
+  {  SIGRESERVE,  "SIGRESERVE" },
+#endif
+#ifdef SIGRETRACT
+  {  SIGRETRACT,  "SIGRETRACT" },
+#endif
+#ifdef SIGSAK
+  {  SIGSAK,      "SIGSAK" },
+#endif
+  {  SIGSEGV,     "SIGSEGV" },
+#ifdef SIGSOUND
+  {  SIGSOUND,    "SIGSOUND" },
+#endif
+#ifdef SIGSTKFLT
+  {  SIGSTKFLT,    "SIGSTKFLT" },
+#endif
+  {  SIGSTOP,     "SIGSTOP" },
+  {  SIGSYS,      "SIGSYS" },
+#ifdef SIGSYSERROR
+  {  SIGSYSERROR, "SIGSYSERROR" },
+#endif
+#ifdef SIGTALRM
+  {  SIGTALRM,    "SIGTALRM" },
+#endif
+  {  SIGTERM,     "SIGTERM" },
+#ifdef SIGTHAW
+  {  SIGTHAW,     "SIGTHAW" },
+#endif
+  {  SIGTRAP,     "SIGTRAP" },
+#ifdef SIGTSTP
+  {  SIGTSTP,     "SIGTSTP" },
+#endif
+  {  SIGTTIN,     "SIGTTIN" },
+  {  SIGTTOU,     "SIGTTOU" },
+#ifdef SIGURG
+  {  SIGURG,      "SIGURG" },
+#endif
+  {  SIGUSR1,     "SIGUSR1" },
+  {  SIGUSR2,     "SIGUSR2" },
+#ifdef SIGVIRT
+  {  SIGVIRT,     "SIGVIRT" },
+#endif
+  {  SIGVTALRM,   "SIGVTALRM" },
+#ifdef SIGWAITING
+  {  SIGWAITING,  "SIGWAITING" },
+#endif
+#ifdef SIGWINCH
+  {  SIGWINCH,    "SIGWINCH" },
+#endif
+#ifdef SIGWINDOW
+  {  SIGWINDOW,   "SIGWINDOW" },
+#endif
+  {  SIGXCPU,     "SIGXCPU" },
+  {  SIGXFSZ,     "SIGXFSZ" },
+#ifdef SIGXRES
+  {  SIGXRES,     "SIGXRES" },
+#endif
+  { -1, NULL }
+};
+
+// Returned string is a constant. For unknown signals "UNKNOWN" is returned.
+const char* os::Posix::get_signal_name(int sig, char* out, size_t outlen) {
+
+  const char* ret = NULL;
+
+#ifdef SIGRTMIN
+  if (sig >= SIGRTMIN && sig <= SIGRTMAX) {
+    if (sig == SIGRTMIN) {
+      ret = "SIGRTMIN";
+    } else if (sig == SIGRTMAX) {
+      ret = "SIGRTMAX";
+    } else {
+      jio_snprintf(out, outlen, "SIGRTMIN+%d", sig - SIGRTMIN);
+      return out;
+    }
+  }
+#endif
+
+  if (sig > 0) {
+    for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
+      if (g_signal_info[idx].sig == sig) {
+        ret = g_signal_info[idx].name;
+        break;
+      }
+    }
+  }
+
+  if (!ret) {
+    if (!is_valid_signal(sig)) {
+      ret = "INVALID";
+    } else {
+      ret = "UNKNOWN";
+    }
+  }
+
+  if (out && outlen > 0) {
+    strncpy(out, ret, outlen);
+    out[outlen - 1] = '\0';
+  }
+  return out;
+}
+
+int os::Posix::get_signal_number(const char* signal_name) {
+  char tmp[30];
+  const char* s = signal_name;
+  if (s[0] != 'S' || s[1] != 'I' || s[2] != 'G') {
+    jio_snprintf(tmp, sizeof(tmp), "SIG%s", signal_name);
+    s = tmp;
+  }
+  for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
+    if (strcmp(g_signal_info[idx].name, s) == 0) {
+      return g_signal_info[idx].sig;
+    }
+  }
+  return -1;
+}
+
+int os::get_signal_number(const char* signal_name) {
+  return os::Posix::get_signal_number(signal_name);
+}
+
+// Returns true if signal number is valid.
+bool os::Posix::is_valid_signal(int sig) {
+  // MacOS not really POSIX compliant: sigaddset does not return
+  // an error for invalid signal numbers. However, MacOS does not
+  // support real time signals and simply seems to have just 33
+  // signals with no holes in the signal range.
+#ifdef __APPLE__
+  return sig >= 1 && sig < NSIG;
+#else
+  // Use sigaddset to check for signal validity.
+  sigset_t set;
+  sigemptyset(&set);
+  if (sigaddset(&set, sig) == -1 && errno == EINVAL) {
+    return false;
+  }
+  return true;
+#endif
+}
+
+// Returns:
+// NULL for an invalid signal number
+// "SIG<num>" for a valid but unknown signal number
+// signal name otherwise.
+const char* os::exception_name(int sig, char* buf, size_t size) {
+  if (!os::Posix::is_valid_signal(sig)) {
+    return NULL;
+  }
+  const char* const name = os::Posix::get_signal_name(sig, buf, size);
+  if (strcmp(name, "UNKNOWN") == 0) {
+    jio_snprintf(buf, size, "SIG%d", sig);
+  }
+  return buf;
+}
+
+#define NUM_IMPORTANT_SIGS 32
+// Returns one-line short description of a signal set in a user provided buffer.
+const char* os::Posix::describe_signal_set_short(const sigset_t* set, char* buffer, size_t buf_size) {
+  assert(buf_size == (NUM_IMPORTANT_SIGS + 1), "wrong buffer size");
+  // Note: for shortness, just print out the first 32. That should
+  // cover most of the useful ones, apart from realtime signals.
+  for (int sig = 1; sig <= NUM_IMPORTANT_SIGS; sig++) {
+    const int rc = sigismember(set, sig);
+    if (rc == -1 && errno == EINVAL) {
+      buffer[sig-1] = '?';
+    } else {
+      buffer[sig-1] = rc == 0 ? '0' : '1';
+    }
+  }
+  buffer[NUM_IMPORTANT_SIGS] = 0;
+  return buffer;
+}
+
+// Prints one-line description of a signal set.
+void os::Posix::print_signal_set_short(outputStream* st, const sigset_t* set) {
+  char buf[NUM_IMPORTANT_SIGS + 1];
+  os::Posix::describe_signal_set_short(set, buf, sizeof(buf));
+  st->print("%s", buf);
+}
+
+// Writes one-line description of a combination of sigaction.sa_flags into a user
+// provided buffer. Returns that buffer.
+const char* os::Posix::describe_sa_flags(int flags, char* buffer, size_t size) {
+  char* p = buffer;
+  size_t remaining = size;
+  bool first = true;
+  int idx = 0;
+
+  assert(buffer, "invalid argument");
+
+  if (size == 0) {
+    return buffer;
+  }
+
+  strncpy(buffer, "none", size);
+
+  const struct {
+    // NB: i is an unsigned int here because SA_RESETHAND is on some
+    // systems 0x80000000, which is implicitly unsigned.  Assignining
+    // it to an int field would be an overflow in unsigned-to-signed
+    // conversion.
+    unsigned int i;
+    const char* s;
+  } flaginfo [] = {
+    { SA_NOCLDSTOP, "SA_NOCLDSTOP" },
+    { SA_ONSTACK,   "SA_ONSTACK"   },
+    { SA_RESETHAND, "SA_RESETHAND" },
+    { SA_RESTART,   "SA_RESTART"   },
+    { SA_SIGINFO,   "SA_SIGINFO"   },
+    { SA_NOCLDWAIT, "SA_NOCLDWAIT" },
+    { SA_NODEFER,   "SA_NODEFER"   },
+#ifdef AIX
+    { SA_ONSTACK,   "SA_ONSTACK"   },
+    { SA_OLDSTYLE,  "SA_OLDSTYLE"  },
+#endif
+    { 0, NULL }
+  };
+
+  for (idx = 0; flaginfo[idx].s && remaining > 1; idx++) {
+    if (flags & flaginfo[idx].i) {
+      if (first) {
+        jio_snprintf(p, remaining, "%s", flaginfo[idx].s);
+        first = false;
+      } else {
+        jio_snprintf(p, remaining, "|%s", flaginfo[idx].s);
+      }
+      const size_t len = strlen(p);
+      p += len;
+      remaining -= len;
+    }
+  }
+
+  buffer[size - 1] = '\0';
+
+  return buffer;
+}
+
+// Prints one-line description of a combination of sigaction.sa_flags.
+void os::Posix::print_sa_flags(outputStream* st, int flags) {
+  char buffer[0x100];
+  os::Posix::describe_sa_flags(flags, buffer, sizeof(buffer));
+  st->print("%s", buffer);
+}
+
+// Helper function for os::Posix::print_siginfo_...():
+// return a textual description for signal code.
+struct enum_sigcode_desc_t {
+  const char* s_name;
+  const char* s_desc;
+};
+
+static bool get_signal_code_description(const siginfo_t* si, enum_sigcode_desc_t* out) {
+
+  const struct {
+    int sig; int code; const char* s_code; const char* s_desc;
+  } t1 [] = {
+    { SIGILL,  ILL_ILLOPC,   "ILL_ILLOPC",   "Illegal opcode." },
+    { SIGILL,  ILL_ILLOPN,   "ILL_ILLOPN",   "Illegal operand." },
+    { SIGILL,  ILL_ILLADR,   "ILL_ILLADR",   "Illegal addressing mode." },
+    { SIGILL,  ILL_ILLTRP,   "ILL_ILLTRP",   "Illegal trap." },
+    { SIGILL,  ILL_PRVOPC,   "ILL_PRVOPC",   "Privileged opcode." },
+    { SIGILL,  ILL_PRVREG,   "ILL_PRVREG",   "Privileged register." },
+    { SIGILL,  ILL_COPROC,   "ILL_COPROC",   "Coprocessor error." },
+    { SIGILL,  ILL_BADSTK,   "ILL_BADSTK",   "Internal stack error." },
+#if defined(IA64) && defined(LINUX)
+    { SIGILL,  ILL_BADIADDR, "ILL_BADIADDR", "Unimplemented instruction address" },
+    { SIGILL,  ILL_BREAK,    "ILL_BREAK",    "Application Break instruction" },
+#endif
+    { SIGFPE,  FPE_INTDIV,   "FPE_INTDIV",   "Integer divide by zero." },
+    { SIGFPE,  FPE_INTOVF,   "FPE_INTOVF",   "Integer overflow." },
+    { SIGFPE,  FPE_FLTDIV,   "FPE_FLTDIV",   "Floating-point divide by zero." },
+    { SIGFPE,  FPE_FLTOVF,   "FPE_FLTOVF",   "Floating-point overflow." },
+    { SIGFPE,  FPE_FLTUND,   "FPE_FLTUND",   "Floating-point underflow." },
+    { SIGFPE,  FPE_FLTRES,   "FPE_FLTRES",   "Floating-point inexact result." },
+    { SIGFPE,  FPE_FLTINV,   "FPE_FLTINV",   "Invalid floating-point operation." },
+    { SIGFPE,  FPE_FLTSUB,   "FPE_FLTSUB",   "Subscript out of range." },
+    { SIGSEGV, SEGV_MAPERR,  "SEGV_MAPERR",  "Address not mapped to object." },
+    { SIGSEGV, SEGV_ACCERR,  "SEGV_ACCERR",  "Invalid permissions for mapped object." },
+#ifdef AIX
+    // no explanation found what keyerr would be
+    { SIGSEGV, SEGV_KEYERR,  "SEGV_KEYERR",  "key error" },
+#endif
+#if defined(IA64) && !defined(AIX)
+    { SIGSEGV, SEGV_PSTKOVF, "SEGV_PSTKOVF", "Paragraph stack overflow" },
+#endif
+#if defined(__sparc) && defined(SOLARIS)
+// define Solaris Sparc M7 ADI SEGV signals
+#if !defined(SEGV_ACCADI)
+#define SEGV_ACCADI 3
+#endif
+    { SIGSEGV, SEGV_ACCADI,  "SEGV_ACCADI",  "ADI not enabled for mapped object." },
+#if !defined(SEGV_ACCDERR)
+#define SEGV_ACCDERR 4
+#endif
+    { SIGSEGV, SEGV_ACCDERR, "SEGV_ACCDERR", "ADI disrupting exception." },
+#if !defined(SEGV_ACCPERR)
+#define SEGV_ACCPERR 5
+#endif
+    { SIGSEGV, SEGV_ACCPERR, "SEGV_ACCPERR", "ADI precise exception." },
+#endif // defined(__sparc) && defined(SOLARIS)
+    { SIGBUS,  BUS_ADRALN,   "BUS_ADRALN",   "Invalid address alignment." },
+    { SIGBUS,  BUS_ADRERR,   "BUS_ADRERR",   "Nonexistent physical address." },
+    { SIGBUS,  BUS_OBJERR,   "BUS_OBJERR",   "Object-specific hardware error." },
+    { SIGTRAP, TRAP_BRKPT,   "TRAP_BRKPT",   "Process breakpoint." },
+    { SIGTRAP, TRAP_TRACE,   "TRAP_TRACE",   "Process trace trap." },
+    { SIGCHLD, CLD_EXITED,   "CLD_EXITED",   "Child has exited." },
+    { SIGCHLD, CLD_KILLED,   "CLD_KILLED",   "Child has terminated abnormally and did not create a core file." },
+    { SIGCHLD, CLD_DUMPED,   "CLD_DUMPED",   "Child has terminated abnormally and created a core file." },
+    { SIGCHLD, CLD_TRAPPED,  "CLD_TRAPPED",  "Traced child has trapped." },
+    { SIGCHLD, CLD_STOPPED,  "CLD_STOPPED",  "Child has stopped." },
+    { SIGCHLD, CLD_CONTINUED,"CLD_CONTINUED","Stopped child has continued." },
+#ifdef SIGPOLL
+    { SIGPOLL, POLL_OUT,     "POLL_OUT",     "Output buffers available." },
+    { SIGPOLL, POLL_MSG,     "POLL_MSG",     "Input message available." },
+    { SIGPOLL, POLL_ERR,     "POLL_ERR",     "I/O error." },
+    { SIGPOLL, POLL_PRI,     "POLL_PRI",     "High priority input available." },
+    { SIGPOLL, POLL_HUP,     "POLL_HUP",     "Device disconnected. [Option End]" },
+#endif
+    { -1, -1, NULL, NULL }
+  };
+
+  // Codes valid in any signal context.
+  const struct {
+    int code; const char* s_code; const char* s_desc;
+  } t2 [] = {
+    { SI_USER,      "SI_USER",     "Signal sent by kill()." },
+    { SI_QUEUE,     "SI_QUEUE",    "Signal sent by the sigqueue()." },
+    { SI_TIMER,     "SI_TIMER",    "Signal generated by expiration of a timer set by timer_settime()." },
+    { SI_ASYNCIO,   "SI_ASYNCIO",  "Signal generated by completion of an asynchronous I/O request." },
+    { SI_MESGQ,     "SI_MESGQ",    "Signal generated by arrival of a message on an empty message queue." },
+    // Linux specific
+#ifdef SI_TKILL
+    { SI_TKILL,     "SI_TKILL",    "Signal sent by tkill (pthread_kill)" },
+#endif
+#ifdef SI_DETHREAD
+    { SI_DETHREAD,  "SI_DETHREAD", "Signal sent by execve() killing subsidiary threads" },
+#endif
+#ifdef SI_KERNEL
+    { SI_KERNEL,    "SI_KERNEL",   "Signal sent by kernel." },
+#endif
+#ifdef SI_SIGIO
+    { SI_SIGIO,     "SI_SIGIO",    "Signal sent by queued SIGIO" },
+#endif
+
+#ifdef AIX
+    { SI_UNDEFINED, "SI_UNDEFINED","siginfo contains partial information" },
+    { SI_EMPTY,     "SI_EMPTY",    "siginfo contains no useful information" },
+#endif
+
+#ifdef __sun
+    { SI_NOINFO,    "SI_NOINFO",   "No signal information" },
+    { SI_RCTL,      "SI_RCTL",     "kernel generated signal via rctl action" },
+    { SI_LWP,       "SI_LWP",      "Signal sent via lwp_kill" },
+#endif
+
+    { -1, NULL, NULL }
+  };
+
+  const char* s_code = NULL;
+  const char* s_desc = NULL;
+
+  for (int i = 0; t1[i].sig != -1; i ++) {
+    if (t1[i].sig == si->si_signo && t1[i].code == si->si_code) {
+      s_code = t1[i].s_code;
+      s_desc = t1[i].s_desc;
+      break;
+    }
+  }
+
+  if (s_code == NULL) {
+    for (int i = 0; t2[i].s_code != NULL; i ++) {
+      if (t2[i].code == si->si_code) {
+        s_code = t2[i].s_code;
+        s_desc = t2[i].s_desc;
+      }
+    }
+  }
+
+  if (s_code == NULL) {
+    out->s_name = "unknown";
+    out->s_desc = "unknown";
+    return false;
+  }
+
+  out->s_name = s_code;
+  out->s_desc = s_desc;
+
+  return true;
+}
+
+void os::print_siginfo(outputStream* os, const void* si0) {
+
+  const siginfo_t* const si = (const siginfo_t*) si0;
+
+  char buf[20];
+  os->print("siginfo:");
+
+  if (!si) {
+    os->print(" <null>");
+    return;
+  }
+
+  const int sig = si->si_signo;
+
+  os->print(" si_signo: %d (%s)", sig, os::Posix::get_signal_name(sig, buf, sizeof(buf)));
+
+  enum_sigcode_desc_t ed;
+  get_signal_code_description(si, &ed);
+  os->print(", si_code: %d (%s)", si->si_code, ed.s_name);
+
+  if (si->si_errno) {
+    os->print(", si_errno: %d", si->si_errno);
+  }
+
+  // Output additional information depending on the signal code.
+
+  // Note: Many implementations lump si_addr, si_pid, si_uid etc. together as unions,
+  // so it depends on the context which member to use. For synchronous error signals,
+  // we print si_addr, unless the signal was sent by another process or thread, in
+  // which case we print out pid or tid of the sender.
+  if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
+    const pid_t pid = si->si_pid;
+    os->print(", si_pid: %ld", (long) pid);
+    if (IS_VALID_PID(pid)) {
+      const pid_t me = getpid();
+      if (me == pid) {
+        os->print(" (current process)");
+      }
+    } else {
+      os->print(" (invalid)");
+    }
+    os->print(", si_uid: %ld", (long) si->si_uid);
+    if (sig == SIGCHLD) {
+      os->print(", si_status: %d", si->si_status);
+    }
+  } else if (sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
+             sig == SIGTRAP || sig == SIGFPE) {
+    os->print(", si_addr: " PTR_FORMAT, p2i(si->si_addr));
+#ifdef SIGPOLL
+  } else if (sig == SIGPOLL) {
+    os->print(", si_band: %ld", si->si_band);
+#endif
+  }
+
+}
+
+int os::Posix::unblock_thread_signal_mask(const sigset_t *set) {
+  return pthread_sigmask(SIG_UNBLOCK, set, NULL);
+}
+
+address os::Posix::ucontext_get_pc(const ucontext_t* ctx) {
+#if defined(AIX)
+   return Aix::ucontext_get_pc(ctx);
+#elif defined(BSD)
+   return Bsd::ucontext_get_pc(ctx);
+#elif defined(LINUX)
+   return Linux::ucontext_get_pc(ctx);
+#elif defined(SOLARIS)
+   return Solaris::ucontext_get_pc(ctx);
+#else
+   VMError::report_and_die("unimplemented ucontext_get_pc");
+#endif
+}
+
+void os::Posix::ucontext_set_pc(ucontext_t* ctx, address pc) {
+#if defined(AIX)
+   Aix::ucontext_set_pc(ctx, pc);
+#elif defined(BSD)
+   Bsd::ucontext_set_pc(ctx, pc);
+#elif defined(LINUX)
+   Linux::ucontext_set_pc(ctx, pc);
+#elif defined(SOLARIS)
+   Solaris::ucontext_set_pc(ctx, pc);
+#else
+   VMError::report_and_die("unimplemented ucontext_get_pc");
+#endif
+}
+
+char* os::Posix::describe_pthread_attr(char* buf, size_t buflen, const pthread_attr_t* attr) {
+  size_t stack_size = 0;
+  size_t guard_size = 0;
+  int detachstate = 0;
+  pthread_attr_getstacksize(attr, &stack_size);
+  pthread_attr_getguardsize(attr, &guard_size);
+  // Work around linux NPTL implementation error, see also os::create_thread() in os_linux.cpp.
+  LINUX_ONLY(stack_size -= guard_size);
+  pthread_attr_getdetachstate(attr, &detachstate);
+  jio_snprintf(buf, buflen, "stacksize: " SIZE_FORMAT "k, guardsize: " SIZE_FORMAT "k, %s",
+    stack_size / 1024, guard_size / 1024,
+    (detachstate == PTHREAD_CREATE_DETACHED ? "detached" : "joinable"));
+  return buf;
+}
+
+char* os::Posix::realpath(const char* filename, char* outbuf, size_t outbuflen) {
+
+  if (filename == NULL || outbuf == NULL || outbuflen < 1) {
+    assert(false, "os::Posix::realpath: invalid arguments.");
+    errno = EINVAL;
+    return NULL;
+  }
+
+  char* result = NULL;
+
+  // This assumes platform realpath() is implemented according to POSIX.1-2008.
+  // POSIX.1-2008 allows to specify NULL for the output buffer, in which case
+  // output buffer is dynamically allocated and must be ::free()'d by the caller.
+  char* p = ::realpath(filename, NULL);
+  if (p != NULL) {
+    if (strlen(p) < outbuflen) {
+      strcpy(outbuf, p);
+      result = outbuf;
+    } else {
+      errno = ENAMETOOLONG;
+    }
+    ::free(p); // *not* os::free
+  } else {
+    // Fallback for platforms struggling with modern Posix standards (AIX 5.3, 6.1). If realpath
+    // returns EINVAL, this may indicate that realpath is not POSIX.1-2008 compatible and
+    // that it complains about the NULL we handed down as user buffer.
+    // In this case, use the user provided buffer but at least check whether realpath caused
+    // a memory overwrite.
+    if (errno == EINVAL) {
+      outbuf[outbuflen - 1] = '\0';
+      p = ::realpath(filename, outbuf);
+      if (p != NULL) {
+        guarantee(outbuf[outbuflen - 1] == '\0', "realpath buffer overwrite detected.");
+        result = p;
+      }
+    }
+  }
+  return result;
+
+}
+
+
+// Check minimum allowable stack sizes for thread creation and to initialize
+// the java system classes, including StackOverflowError - depends on page
+// size.
+// The space needed for frames during startup is platform dependent. It
+// depends on word size, platform calling conventions, C frame layout and
+// interpreter/C1/C2 design decisions. Therefore this is given in a
+// platform (os/cpu) dependent constant.
+// To this, space for guard mechanisms is added, which depends on the
+// page size which again depends on the concrete system the VM is running
+// on. Space for libc guard pages is not included in this size.
+jint os::Posix::set_minimum_stack_sizes() {
+  size_t os_min_stack_allowed = SOLARIS_ONLY(thr_min_stack()) NOT_SOLARIS(PTHREAD_STACK_MIN);
+
+  _java_thread_min_stack_allowed = _java_thread_min_stack_allowed +
+                                   JavaThread::stack_guard_zone_size() +
+                                   JavaThread::stack_shadow_zone_size();
+
+  _java_thread_min_stack_allowed = align_up(_java_thread_min_stack_allowed, vm_page_size());
+  _java_thread_min_stack_allowed = MAX2(_java_thread_min_stack_allowed, os_min_stack_allowed);
+
+  size_t stack_size_in_bytes = ThreadStackSize * K;
+  if (stack_size_in_bytes != 0 &&
+      stack_size_in_bytes < _java_thread_min_stack_allowed) {
+    // The '-Xss' and '-XX:ThreadStackSize=N' options both set
+    // ThreadStackSize so we go with "Java thread stack size" instead
+    // of "ThreadStackSize" to be more friendly.
+    tty->print_cr("\nThe Java thread stack size specified is too small. "
+                  "Specify at least " SIZE_FORMAT "k",
+                  _java_thread_min_stack_allowed / K);
+    return JNI_ERR;
+  }
+
+  // Make the stack size a multiple of the page size so that
+  // the yellow/red zones can be guarded.
+  JavaThread::set_stack_size_at_create(align_up(stack_size_in_bytes, vm_page_size()));
+
+  // Reminder: a compiler thread is a Java thread.
+  _compiler_thread_min_stack_allowed = _compiler_thread_min_stack_allowed +
+                                       JavaThread::stack_guard_zone_size() +
+                                       JavaThread::stack_shadow_zone_size();
+
+  _compiler_thread_min_stack_allowed = align_up(_compiler_thread_min_stack_allowed, vm_page_size());
+  _compiler_thread_min_stack_allowed = MAX2(_compiler_thread_min_stack_allowed, os_min_stack_allowed);
+
+  stack_size_in_bytes = CompilerThreadStackSize * K;
+  if (stack_size_in_bytes != 0 &&
+      stack_size_in_bytes < _compiler_thread_min_stack_allowed) {
+    tty->print_cr("\nThe CompilerThreadStackSize specified is too small. "
+                  "Specify at least " SIZE_FORMAT "k",
+                  _compiler_thread_min_stack_allowed / K);
+    return JNI_ERR;
+  }
+
+  _vm_internal_thread_min_stack_allowed = align_up(_vm_internal_thread_min_stack_allowed, vm_page_size());
+  _vm_internal_thread_min_stack_allowed = MAX2(_vm_internal_thread_min_stack_allowed, os_min_stack_allowed);
+
+  stack_size_in_bytes = VMThreadStackSize * K;
+  if (stack_size_in_bytes != 0 &&
+      stack_size_in_bytes < _vm_internal_thread_min_stack_allowed) {
+    tty->print_cr("\nThe VMThreadStackSize specified is too small. "
+                  "Specify at least " SIZE_FORMAT "k",
+                  _vm_internal_thread_min_stack_allowed / K);
+    return JNI_ERR;
+  }
+  return JNI_OK;
+}
+
+// Called when creating the thread.  The minimum stack sizes have already been calculated
+size_t os::Posix::get_initial_stack_size(ThreadType thr_type, size_t req_stack_size) {
+  size_t stack_size;
+  if (req_stack_size == 0) {
+    stack_size = default_stack_size(thr_type);
+  } else {
+    stack_size = req_stack_size;
+  }
+
+  switch (thr_type) {
+  case os::java_thread:
+    // Java threads use ThreadStackSize which default value can be
+    // changed with the flag -Xss
+    if (req_stack_size == 0 && JavaThread::stack_size_at_create() > 0) {
+      // no requested size and we have a more specific default value
+      stack_size = JavaThread::stack_size_at_create();
+    }
+    stack_size = MAX2(stack_size,
+                      _java_thread_min_stack_allowed);
+    break;
+  case os::compiler_thread:
+    if (req_stack_size == 0 && CompilerThreadStackSize > 0) {
+      // no requested size and we have a more specific default value
+      stack_size = (size_t)(CompilerThreadStackSize * K);
+    }
+    stack_size = MAX2(stack_size,
+                      _compiler_thread_min_stack_allowed);
+    break;
+  case os::vm_thread:
+  case os::pgc_thread:
+  case os::cgc_thread:
+  case os::watcher_thread:
+  default:  // presume the unknown thr_type is a VM internal
+    if (req_stack_size == 0 && VMThreadStackSize > 0) {
+      // no requested size and we have a more specific default value
+      stack_size = (size_t)(VMThreadStackSize * K);
+    }
+
+    stack_size = MAX2(stack_size,
+                      _vm_internal_thread_min_stack_allowed);
+    break;
+  }
+
+  // pthread_attr_setstacksize() may require that the size be rounded up to the OS page size.
+  // Be careful not to round up to 0. Align down in that case.
+  if (stack_size <= SIZE_MAX - vm_page_size()) {
+    stack_size = align_up(stack_size, vm_page_size());
+  } else {
+    stack_size = align_down(stack_size, vm_page_size());
+  }
+
+  return stack_size;
+}
+
+Thread* os::ThreadCrashProtection::_protected_thread = NULL;
+os::ThreadCrashProtection* os::ThreadCrashProtection::_crash_protection = NULL;
+volatile intptr_t os::ThreadCrashProtection::_crash_mux = 0;
+
+os::ThreadCrashProtection::ThreadCrashProtection() {
+}
+
+/*
+ * See the caveats for this class in os_posix.hpp
+ * Protects the callback call so that SIGSEGV / SIGBUS jumps back into this
+ * method and returns false. If none of the signals are raised, returns true.
+ * The callback is supposed to provide the method that should be protected.
+ */
+bool os::ThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
+  sigset_t saved_sig_mask;
+
+  Thread::muxAcquire(&_crash_mux, "CrashProtection");
+
+  _protected_thread = Thread::current_or_null();
+  assert(_protected_thread != NULL, "Cannot crash protect a NULL thread");
+
+  // we cannot rely on sigsetjmp/siglongjmp to save/restore the signal mask
+  // since on at least some systems (OS X) siglongjmp will restore the mask
+  // for the process, not the thread
+  pthread_sigmask(0, NULL, &saved_sig_mask);
+  if (sigsetjmp(_jmpbuf, 0) == 0) {
+    // make sure we can see in the signal handler that we have crash protection
+    // installed
+    _crash_protection = this;
+    cb.call();
+    // and clear the crash protection
+    _crash_protection = NULL;
+    _protected_thread = NULL;
+    Thread::muxRelease(&_crash_mux);
+    return true;
+  }
+  // this happens when we siglongjmp() back
+  pthread_sigmask(SIG_SETMASK, &saved_sig_mask, NULL);
+  _crash_protection = NULL;
+  _protected_thread = NULL;
+  Thread::muxRelease(&_crash_mux);
+  return false;
+}
+
+void os::ThreadCrashProtection::restore() {
+  assert(_crash_protection != NULL, "must have crash protection");
+  siglongjmp(_jmpbuf, 1);
+}
+
+void os::ThreadCrashProtection::check_crash_protection(int sig,
+    Thread* thread) {
+
+  if (thread != NULL &&
+      thread == _protected_thread &&
+      _crash_protection != NULL) {
+
+    if (sig == SIGSEGV || sig == SIGBUS) {
+      _crash_protection->restore();
+    }
+  }
+}
+
+#define check_with_errno(check_type, cond, msg)                             \
+  do {                                                                      \
+    int err = errno;                                                        \
+    check_type(cond, "%s; error='%s' (errno=%s)", msg, os::strerror(err),   \
+               os::errno_name(err));                                        \
+} while (false)
+
+#define assert_with_errno(cond, msg)    check_with_errno(assert, cond, msg)
+#define guarantee_with_errno(cond, msg) check_with_errno(guarantee, cond, msg)
+
+// POSIX unamed semaphores are not supported on OS X.
+#ifndef __APPLE__
+
+PosixSemaphore::PosixSemaphore(uint value) {
+  int ret = sem_init(&_semaphore, 0, value);
+
+  guarantee_with_errno(ret == 0, "Failed to initialize semaphore");
+}
+
+PosixSemaphore::~PosixSemaphore() {
+  sem_destroy(&_semaphore);
+}
+
+void PosixSemaphore::signal(uint count) {
+  for (uint i = 0; i < count; i++) {
+    int ret = sem_post(&_semaphore);
+
+    assert_with_errno(ret == 0, "sem_post failed");
+  }
+}
+
+void PosixSemaphore::wait() {
+  int ret;
+
+  do {
+    ret = sem_wait(&_semaphore);
+  } while (ret != 0 && errno == EINTR);
+
+  assert_with_errno(ret == 0, "sem_wait failed");
+}
+
+bool PosixSemaphore::trywait() {
+  int ret;
+
+  do {
+    ret = sem_trywait(&_semaphore);
+  } while (ret != 0 && errno == EINTR);
+
+  assert_with_errno(ret == 0 || errno == EAGAIN, "trywait failed");
+
+  return ret == 0;
+}
+
+bool PosixSemaphore::timedwait(struct timespec ts) {
+  while (true) {
+    int result = sem_timedwait(&_semaphore, &ts);
+    if (result == 0) {
+      return true;
+    } else if (errno == EINTR) {
+      continue;
+    } else if (errno == ETIMEDOUT) {
+      return false;
+    } else {
+      assert_with_errno(false, "timedwait failed");
+      return false;
+    }
+  }
+}
+
+#endif // __APPLE__
+
+
+// Shared pthread_mutex/cond based PlatformEvent implementation.
+// Not currently usable by Solaris.
+
+#ifndef SOLARIS
+
+// Shared condattr object for use with relative timed-waits. Will be associated
+// with CLOCK_MONOTONIC if available to avoid issues with time-of-day changes,
+// but otherwise whatever default is used by the platform - generally the
+// time-of-day clock.
+static pthread_condattr_t _condAttr[1];
+
+// Shared mutexattr to explicitly set the type to PTHREAD_MUTEX_NORMAL as not
+// all systems (e.g. FreeBSD) map the default to "normal".
+static pthread_mutexattr_t _mutexAttr[1];
+
+// common basic initialization that is always supported
+static void pthread_init_common(void) {
+  int status;
+  if ((status = pthread_condattr_init(_condAttr)) != 0) {
+    fatal("pthread_condattr_init: %s", os::strerror(status));
+  }
+  if ((status = pthread_mutexattr_init(_mutexAttr)) != 0) {
+    fatal("pthread_mutexattr_init: %s", os::strerror(status));
+  }
+  if ((status = pthread_mutexattr_settype(_mutexAttr, PTHREAD_MUTEX_NORMAL)) != 0) {
+    fatal("pthread_mutexattr_settype: %s", os::strerror(status));
+  }
+}
+
+// Not all POSIX types and API's are available on all notionally "posix"
+// platforms. If we have build-time support then we will check for actual
+// runtime support via dlopen/dlsym lookup. This allows for running on an
+// older OS version compared to the build platform. But if there is no
+// build time support then there cannot be any runtime support as we do not
+// know what the runtime types would be (for example clockid_t might be an
+// int or int64_t).
+//
+#ifdef SUPPORTS_CLOCK_MONOTONIC
+
+// This means we have clockid_t, clock_gettime et al and CLOCK_MONOTONIC
+
+static int (*_clock_gettime)(clockid_t, struct timespec *);
+static int (*_pthread_condattr_setclock)(pthread_condattr_t *, clockid_t);
+
+static bool _use_clock_monotonic_condattr;
+
+// Determine what POSIX API's are present and do appropriate
+// configuration.
+void os::Posix::init(void) {
+
+  // NOTE: no logging available when this is called. Put logging
+  // statements in init_2().
+
+  // Copied from os::Linux::clock_init(). The duplication is temporary.
+
+  // 1. Check for CLOCK_MONOTONIC support.
+
+  void* handle = NULL;
+
+  // For linux we need librt, for other OS we can find
+  // this function in regular libc.
+#ifdef NEEDS_LIBRT
+  // We do dlopen's in this particular order due to bug in linux
+  // dynamic loader (see 6348968) leading to crash on exit.
+  handle = dlopen("librt.so.1", RTLD_LAZY);
+  if (handle == NULL) {
+    handle = dlopen("librt.so", RTLD_LAZY);
+  }
+#endif
+
+  if (handle == NULL) {
+    handle = RTLD_DEFAULT;
+  }
+
+  _clock_gettime = NULL;
+
+  int (*clock_getres_func)(clockid_t, struct timespec*) =
+    (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
+  int (*clock_gettime_func)(clockid_t, struct timespec*) =
+    (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
+  if (clock_getres_func != NULL && clock_gettime_func != NULL) {
+    // We assume that if both clock_gettime and clock_getres support
+    // CLOCK_MONOTONIC then the OS provides true high-res monotonic clock.
+    struct timespec res;
+    struct timespec tp;
+    if (clock_getres_func(CLOCK_MONOTONIC, &res) == 0 &&
+        clock_gettime_func(CLOCK_MONOTONIC, &tp) == 0) {
+      // Yes, monotonic clock is supported.
+      _clock_gettime = clock_gettime_func;
+    } else {
+#ifdef NEEDS_LIBRT
+      // Close librt if there is no monotonic clock.
+      if (handle != RTLD_DEFAULT) {
+        dlclose(handle);
+      }
+#endif
+    }
+  }
+
+  // 2. Check for pthread_condattr_setclock support.
+
+  _pthread_condattr_setclock = NULL;
+
+  // libpthread is already loaded.
+  int (*condattr_setclock_func)(pthread_condattr_t*, clockid_t) =
+    (int (*)(pthread_condattr_t*, clockid_t))dlsym(RTLD_DEFAULT,
+                                                   "pthread_condattr_setclock");
+  if (condattr_setclock_func != NULL) {
+    _pthread_condattr_setclock = condattr_setclock_func;
+  }
+
+  // Now do general initialization.
+
+  pthread_init_common();
+
+  int status;
+  if (_pthread_condattr_setclock != NULL && _clock_gettime != NULL) {
+    if ((status = _pthread_condattr_setclock(_condAttr, CLOCK_MONOTONIC)) != 0) {
+      if (status == EINVAL) {
+        _use_clock_monotonic_condattr = false;
+        warning("Unable to use monotonic clock with relative timed-waits" \
+                " - changes to the time-of-day clock may have adverse affects");
+      } else {
+        fatal("pthread_condattr_setclock: %s", os::strerror(status));
+      }
+    } else {
+      _use_clock_monotonic_condattr = true;
+    }
+  } else {
+    _use_clock_monotonic_condattr = false;
+  }
+}
+
+void os::Posix::init_2(void) {
+  log_info(os)("Use of CLOCK_MONOTONIC is%s supported",
+               (_clock_gettime != NULL ? "" : " not"));
+  log_info(os)("Use of pthread_condattr_setclock is%s supported",
+               (_pthread_condattr_setclock != NULL ? "" : " not"));
+  log_info(os)("Relative timed-wait using pthread_cond_timedwait is associated with %s",
+               _use_clock_monotonic_condattr ? "CLOCK_MONOTONIC" : "the default clock");
+}
+
+#else // !SUPPORTS_CLOCK_MONOTONIC
+
+void os::Posix::init(void) {
+  pthread_init_common();
+}
+
+void os::Posix::init_2(void) {
+  log_info(os)("Use of CLOCK_MONOTONIC is not supported");
+  log_info(os)("Use of pthread_condattr_setclock is not supported");
+  log_info(os)("Relative timed-wait using pthread_cond_timedwait is associated with the default clock");
+}
+
+#endif // SUPPORTS_CLOCK_MONOTONIC
+
+os::PlatformEvent::PlatformEvent() {
+  int status = pthread_cond_init(_cond, _condAttr);
+  assert_status(status == 0, status, "cond_init");
+  status = pthread_mutex_init(_mutex, _mutexAttr);
+  assert_status(status == 0, status, "mutex_init");
+  _event   = 0;
+  _nParked = 0;
+}
+
+// Utility to convert the given timeout to an absolute timespec
+// (based on the appropriate clock) to use with pthread_cond_timewait.
+// The clock queried here must be the clock used to manage the
+// timeout of the condition variable.
+//
+// The passed in timeout value is either a relative time in nanoseconds
+// or an absolute time in milliseconds. A relative timeout will be
+// associated with CLOCK_MONOTONIC if available; otherwise, or if absolute,
+// the default time-of-day clock will be used.
+
+// Given time is a 64-bit value and the time_t used in the timespec is
+// sometimes a signed-32-bit value we have to watch for overflow if times
+// way in the future are given. Further on Solaris versions
+// prior to 10 there is a restriction (see cond_timedwait) that the specified
+// number of seconds, in abstime, is less than current_time + 100000000.
+// As it will be over 20 years before "now + 100000000" will overflow we can
+// ignore overflow and just impose a hard-limit on seconds using the value
+// of "now + 100000000". This places a limit on the timeout of about 3.17
+// years from "now".
+//
+#define MAX_SECS 100000000
+
+// Calculate a new absolute time that is "timeout" nanoseconds from "now".
+// "unit" indicates the unit of "now_part_sec" (may be nanos or micros depending
+// on which clock is being used).
+static void calc_rel_time(timespec* abstime, jlong timeout, jlong now_sec,
+                          jlong now_part_sec, jlong unit) {
+  time_t max_secs = now_sec + MAX_SECS;
+
+  jlong seconds = timeout / NANOUNITS;
+  timeout %= NANOUNITS; // remaining nanos
+
+  if (seconds >= MAX_SECS) {
+    // More seconds than we can add, so pin to max_secs.
+    abstime->tv_sec = max_secs;
+    abstime->tv_nsec = 0;
+  } else {
+    abstime->tv_sec = now_sec  + seconds;
+    long nanos = (now_part_sec * (NANOUNITS / unit)) + timeout;
+    if (nanos >= NANOUNITS) { // overflow
+      abstime->tv_sec += 1;
+      nanos -= NANOUNITS;
+    }
+    abstime->tv_nsec = nanos;
+  }
+}
+
+// Unpack the given deadline in milliseconds since the epoch, into the given timespec.
+// The current time in seconds is also passed in to enforce an upper bound as discussed above.
+static void unpack_abs_time(timespec* abstime, jlong deadline, jlong now_sec) {
+  time_t max_secs = now_sec + MAX_SECS;
+
+  jlong seconds = deadline / MILLIUNITS;
+  jlong millis = deadline % MILLIUNITS;
+
+  if (seconds >= max_secs) {
+    // Absolute seconds exceeds allowed max, so pin to max_secs.
+    abstime->tv_sec = max_secs;
+    abstime->tv_nsec = 0;
+  } else {
+    abstime->tv_sec = seconds;
+    abstime->tv_nsec = millis * (NANOUNITS / MILLIUNITS);
+  }
+}
+
+static void to_abstime(timespec* abstime, jlong timeout, bool isAbsolute) {
+  DEBUG_ONLY(int max_secs = MAX_SECS;)
+
+  if (timeout < 0) {
+    timeout = 0;
+  }
+
+#ifdef SUPPORTS_CLOCK_MONOTONIC
+
+  if (_use_clock_monotonic_condattr && !isAbsolute) {
+    struct timespec now;
+    int status = _clock_gettime(CLOCK_MONOTONIC, &now);
+    assert_status(status == 0, status, "clock_gettime");
+    calc_rel_time(abstime, timeout, now.tv_sec, now.tv_nsec, NANOUNITS);
+    DEBUG_ONLY(max_secs += now.tv_sec;)
+  } else {
+
+#else
+
+  { // Match the block scope.
+
+#endif // SUPPORTS_CLOCK_MONOTONIC
+
+    // Time-of-day clock is all we can reliably use.
+    struct timeval now;
+    int status = gettimeofday(&now, NULL);
+    assert_status(status == 0, errno, "gettimeofday");
+    if (isAbsolute) {
+      unpack_abs_time(abstime, timeout, now.tv_sec);
+    } else {
+      calc_rel_time(abstime, timeout, now.tv_sec, now.tv_usec, MICROUNITS);
+    }
+    DEBUG_ONLY(max_secs += now.tv_sec;)
+  }
+
+  assert(abstime->tv_sec >= 0, "tv_sec < 0");
+  assert(abstime->tv_sec <= max_secs, "tv_sec > max_secs");
+  assert(abstime->tv_nsec >= 0, "tv_nsec < 0");
+  assert(abstime->tv_nsec < NANOUNITS, "tv_nsec >= NANOUNITS");
+}
+
+// PlatformEvent
+//
+// Assumption:
+//    Only one parker can exist on an event, which is why we allocate
+//    them per-thread. Multiple unparkers can coexist.
+//
+// _event serves as a restricted-range semaphore.
+//   -1 : thread is blocked, i.e. there is a waiter
+//    0 : neutral: thread is running or ready,
+//        could have been signaled after a wait started
+//    1 : signaled - thread is running or ready
+//
+//    Having three states allows for some detection of bad usage - see
+//    comments on unpark().
+
+void os::PlatformEvent::park() {       // AKA "down()"
+  // Transitions for _event:
+  //   -1 => -1 : illegal
+  //    1 =>  0 : pass - return immediately
+  //    0 => -1 : block; then set _event to 0 before returning
+
+  // Invariant: Only the thread associated with the PlatformEvent
+  // may call park().
+  assert(_nParked == 0, "invariant");
+
+  int v;
+
+  // atomically decrement _event
+  for (;;) {
+    v = _event;
+    if (Atomic::cmpxchg(v - 1, &_event, v) == v) break;
+  }
+  guarantee(v >= 0, "invariant");
+
+  if (v == 0) { // Do this the hard way by blocking ...
+    int status = pthread_mutex_lock(_mutex);
+    assert_status(status == 0, status, "mutex_lock");
+    guarantee(_nParked == 0, "invariant");
+    ++_nParked;
+    while (_event < 0) {
+      // OS-level "spurious wakeups" are ignored
+      status = pthread_cond_wait(_cond, _mutex);
+      assert_status(status == 0, status, "cond_wait");
+    }
+    --_nParked;
+
+    _event = 0;
+    status = pthread_mutex_unlock(_mutex);
+    assert_status(status == 0, status, "mutex_unlock");
+    // Paranoia to ensure our locked and lock-free paths interact
+    // correctly with each other.
+    OrderAccess::fence();
+  }
+  guarantee(_event >= 0, "invariant");
+}
+
+int os::PlatformEvent::park(jlong millis) {
+  // Transitions for _event:
+  //   -1 => -1 : illegal
+  //    1 =>  0 : pass - return immediately
+  //    0 => -1 : block; then set _event to 0 before returning
+
+  // Invariant: Only the thread associated with the Event/PlatformEvent
+  // may call park().
+  assert(_nParked == 0, "invariant");
+
+  int v;
+  // atomically decrement _event
+  for (;;) {
+    v = _event;
+    if (Atomic::cmpxchg(v - 1, &_event, v) == v) break;
+  }
+  guarantee(v >= 0, "invariant");
+
+  if (v == 0) { // Do this the hard way by blocking ...
+    struct timespec abst;
+    to_abstime(&abst, millis * (NANOUNITS / MILLIUNITS), false);
+
+    int ret = OS_TIMEOUT;
+    int status = pthread_mutex_lock(_mutex);
+    assert_status(status == 0, status, "mutex_lock");
+    guarantee(_nParked == 0, "invariant");
+    ++_nParked;
+
+    while (_event < 0) {
+      status = pthread_cond_timedwait(_cond, _mutex, &abst);
+      assert_status(status == 0 || status == ETIMEDOUT,
+                    status, "cond_timedwait");
+      // OS-level "spurious wakeups" are ignored unless the archaic
+      // FilterSpuriousWakeups is set false. That flag should be obsoleted.
+      if (!FilterSpuriousWakeups) break;
+      if (status == ETIMEDOUT) break;
+    }
+    --_nParked;
+
+    if (_event >= 0) {
+      ret = OS_OK;
+    }
+
+    _event = 0;
+    status = pthread_mutex_unlock(_mutex);
+    assert_status(status == 0, status, "mutex_unlock");
+    // Paranoia to ensure our locked and lock-free paths interact
+    // correctly with each other.
+    OrderAccess::fence();
+    return ret;
+  }
+  return OS_OK;
+}
+
+void os::PlatformEvent::unpark() {
+  // Transitions for _event:
+  //    0 => 1 : just return
+  //    1 => 1 : just return
+  //   -1 => either 0 or 1; must signal target thread
+  //         That is, we can safely transition _event from -1 to either
+  //         0 or 1.
+  // See also: "Semaphores in Plan 9" by Mullender & Cox
+  //
+  // Note: Forcing a transition from "-1" to "1" on an unpark() means
+  // that it will take two back-to-back park() calls for the owning
+  // thread to block. This has the benefit of forcing a spurious return
+  // from the first park() call after an unpark() call which will help
+  // shake out uses of park() and unpark() without checking state conditions
+  // properly. This spurious return doesn't manifest itself in any user code
+  // but only in the correctly written condition checking loops of ObjectMonitor,
+  // Mutex/Monitor, Thread::muxAcquire and os::sleep
+
+  if (Atomic::xchg(1, &_event) >= 0) return;
+
+  int status = pthread_mutex_lock(_mutex);
+  assert_status(status == 0, status, "mutex_lock");
+  int anyWaiters = _nParked;
+  assert(anyWaiters == 0 || anyWaiters == 1, "invariant");
+  status = pthread_mutex_unlock(_mutex);
+  assert_status(status == 0, status, "mutex_unlock");
+
+  // Note that we signal() *after* dropping the lock for "immortal" Events.
+  // This is safe and avoids a common class of futile wakeups.  In rare
+  // circumstances this can cause a thread to return prematurely from
+  // cond_{timed}wait() but the spurious wakeup is benign and the victim
+  // will simply re-test the condition and re-park itself.
+  // This provides particular benefit if the underlying platform does not
+  // provide wait morphing.
+
+  if (anyWaiters != 0) {
+    status = pthread_cond_signal(_cond);
+    assert_status(status == 0, status, "cond_signal");
+  }
+}
+
+// JSR166 support
+
+ os::PlatformParker::PlatformParker() {
+  int status;
+  status = pthread_cond_init(&_cond[REL_INDEX], _condAttr);
+  assert_status(status == 0, status, "cond_init rel");
+  status = pthread_cond_init(&_cond[ABS_INDEX], NULL);
+  assert_status(status == 0, status, "cond_init abs");
+  status = pthread_mutex_init(_mutex, _mutexAttr);
+  assert_status(status == 0, status, "mutex_init");
+  _cur_index = -1; // mark as unused
+}
+
+// Parker::park decrements count if > 0, else does a condvar wait.  Unpark
+// sets count to 1 and signals condvar.  Only one thread ever waits
+// on the condvar. Contention seen when trying to park implies that someone
+// is unparking you, so don't wait. And spurious returns are fine, so there
+// is no need to track notifications.
+
+void Parker::park(bool isAbsolute, jlong time) {
+
+  // Optional fast-path check:
+  // Return immediately if a permit is available.
+  // We depend on Atomic::xchg() having full barrier semantics
+  // since we are doing a lock-free update to _counter.
+  if (Atomic::xchg(0, &_counter) > 0) return;
+
+  Thread* thread = Thread::current();
+  assert(thread->is_Java_thread(), "Must be JavaThread");
+  JavaThread *jt = (JavaThread *)thread;
+
+  // Optional optimization -- avoid state transitions if there's
+  // an interrupt pending.
+  if (Thread::is_interrupted(thread, false)) {
+    return;
+  }
+
+  // Next, demultiplex/decode time arguments
+  struct timespec absTime;
+  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
+    return;
+  }
+  if (time > 0) {
+    to_abstime(&absTime, time, isAbsolute);
+  }
+
+  // Enter safepoint region
+  // Beware of deadlocks such as 6317397.
+  // The per-thread Parker:: mutex is a classic leaf-lock.
+  // In particular a thread must never block on the Threads_lock while
+  // holding the Parker:: mutex.  If safepoints are pending both the
+  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
+  ThreadBlockInVM tbivm(jt);
+
+  // Don't wait if cannot get lock since interference arises from
+  // unparking. Also re-check interrupt before trying wait.
+  if (Thread::is_interrupted(thread, false) ||
+      pthread_mutex_trylock(_mutex) != 0) {
+    return;
+  }
+
+  int status;
+  if (_counter > 0)  { // no wait needed
+    _counter = 0;
+    status = pthread_mutex_unlock(_mutex);
+    assert_status(status == 0, status, "invariant");
+    // Paranoia to ensure our locked and lock-free paths interact
+    // correctly with each other and Java-level accesses.
+    OrderAccess::fence();
+    return;
+  }
+
+  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
+  jt->set_suspend_equivalent();
+  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
+
+  assert(_cur_index == -1, "invariant");
+  if (time == 0) {
+    _cur_index = REL_INDEX; // arbitrary choice when not timed
+    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
+    assert_status(status == 0, status, "cond_timedwait");
+  }
+  else {
+    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
+    status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
+    assert_status(status == 0 || status == ETIMEDOUT,
+                  status, "cond_timedwait");
+  }
+  _cur_index = -1;
+
+  _counter = 0;
+  status = pthread_mutex_unlock(_mutex);
+  assert_status(status == 0, status, "invariant");
+  // Paranoia to ensure our locked and lock-free paths interact
+  // correctly with each other and Java-level accesses.
+  OrderAccess::fence();
+
+  // If externally suspended while waiting, re-suspend
+  if (jt->handle_special_suspend_equivalent_condition()) {
+    jt->java_suspend_self();
+  }
+}
+
+void Parker::unpark() {
+  int status = pthread_mutex_lock(_mutex);
+  assert_status(status == 0, status, "invariant");
+  const int s = _counter;
+  _counter = 1;
+  // must capture correct index before unlocking
+  int index = _cur_index;
+  status = pthread_mutex_unlock(_mutex);
+  assert_status(status == 0, status, "invariant");
+
+  // Note that we signal() *after* dropping the lock for "immortal" Events.
+  // This is safe and avoids a common class of futile wakeups.  In rare
+  // circumstances this can cause a thread to return prematurely from
+  // cond_{timed}wait() but the spurious wakeup is benign and the victim
+  // will simply re-test the condition and re-park itself.
+  // This provides particular benefit if the underlying platform does not
+  // provide wait morphing.
+
+  if (s < 1 && index != -1) {
+    // thread is definitely parked
+    status = pthread_cond_signal(&_cond[index]);
+    assert_status(status == 0, status, "invariant");
+  }
+}
+
+
+#endif // !SOLARIS