src/hotspot/os/linux/os_linux.cpp
changeset 47216 71c04702a3d5
parent 47106 bed18a111b90
child 47524 97569cf468f4
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/os/linux/os_linux.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,5999 @@
+/*
+ * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+// no precompiled headers
+#include "classfile/classLoader.hpp"
+#include "classfile/systemDictionary.hpp"
+#include "classfile/vmSymbols.hpp"
+#include "code/icBuffer.hpp"
+#include "code/vtableStubs.hpp"
+#include "compiler/compileBroker.hpp"
+#include "compiler/disassembler.hpp"
+#include "interpreter/interpreter.hpp"
+#include "jvm_linux.h"
+#include "logging/log.hpp"
+#include "memory/allocation.inline.hpp"
+#include "memory/filemap.hpp"
+#include "oops/oop.inline.hpp"
+#include "os_linux.inline.hpp"
+#include "os_share_linux.hpp"
+#include "prims/jniFastGetField.hpp"
+#include "prims/jvm.h"
+#include "prims/jvm_misc.hpp"
+#include "runtime/arguments.hpp"
+#include "runtime/atomic.hpp"
+#include "runtime/extendedPC.hpp"
+#include "runtime/globals.hpp"
+#include "runtime/interfaceSupport.hpp"
+#include "runtime/init.hpp"
+#include "runtime/java.hpp"
+#include "runtime/javaCalls.hpp"
+#include "runtime/mutexLocker.hpp"
+#include "runtime/objectMonitor.hpp"
+#include "runtime/orderAccess.inline.hpp"
+#include "runtime/osThread.hpp"
+#include "runtime/perfMemory.hpp"
+#include "runtime/sharedRuntime.hpp"
+#include "runtime/statSampler.hpp"
+#include "runtime/stubRoutines.hpp"
+#include "runtime/thread.inline.hpp"
+#include "runtime/threadCritical.hpp"
+#include "runtime/timer.hpp"
+#include "semaphore_posix.hpp"
+#include "services/attachListener.hpp"
+#include "services/memTracker.hpp"
+#include "services/runtimeService.hpp"
+#include "utilities/align.hpp"
+#include "utilities/decoder.hpp"
+#include "utilities/defaultStream.hpp"
+#include "utilities/events.hpp"
+#include "utilities/elfFile.hpp"
+#include "utilities/growableArray.hpp"
+#include "utilities/macros.hpp"
+#include "utilities/vmError.hpp"
+
+// put OS-includes here
+# include <sys/types.h>
+# include <sys/mman.h>
+# include <sys/stat.h>
+# include <sys/select.h>
+# include <pthread.h>
+# include <signal.h>
+# include <errno.h>
+# include <dlfcn.h>
+# include <stdio.h>
+# include <unistd.h>
+# include <sys/resource.h>
+# include <pthread.h>
+# include <sys/stat.h>
+# include <sys/time.h>
+# include <sys/times.h>
+# include <sys/utsname.h>
+# include <sys/socket.h>
+# include <sys/wait.h>
+# include <pwd.h>
+# include <poll.h>
+# include <semaphore.h>
+# include <fcntl.h>
+# include <string.h>
+# include <syscall.h>
+# include <sys/sysinfo.h>
+# include <gnu/libc-version.h>
+# include <sys/ipc.h>
+# include <sys/shm.h>
+# include <link.h>
+# include <stdint.h>
+# include <inttypes.h>
+# include <sys/ioctl.h>
+
+#ifndef _GNU_SOURCE
+  #define _GNU_SOURCE
+  #include <sched.h>
+  #undef _GNU_SOURCE
+#else
+  #include <sched.h>
+#endif
+
+// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
+// getrusage() is prepared to handle the associated failure.
+#ifndef RUSAGE_THREAD
+  #define RUSAGE_THREAD   (1)               /* only the calling thread */
+#endif
+
+#define MAX_PATH    (2 * K)
+
+#define MAX_SECS 100000000
+
+// for timer info max values which include all bits
+#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
+
+#define LARGEPAGES_BIT (1 << 6)
+////////////////////////////////////////////////////////////////////////////////
+// global variables
+julong os::Linux::_physical_memory = 0;
+
+address   os::Linux::_initial_thread_stack_bottom = NULL;
+uintptr_t os::Linux::_initial_thread_stack_size   = 0;
+
+int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
+int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
+int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
+Mutex* os::Linux::_createThread_lock = NULL;
+pthread_t os::Linux::_main_thread;
+int os::Linux::_page_size = -1;
+bool os::Linux::_supports_fast_thread_cpu_time = false;
+uint32_t os::Linux::_os_version = 0;
+const char * os::Linux::_glibc_version = NULL;
+const char * os::Linux::_libpthread_version = NULL;
+
+static jlong initial_time_count=0;
+
+static int clock_tics_per_sec = 100;
+
+// For diagnostics to print a message once. see run_periodic_checks
+static sigset_t check_signal_done;
+static bool check_signals = true;
+
+// Signal number used to suspend/resume a thread
+
+// do not use any signal number less than SIGSEGV, see 4355769
+static int SR_signum = SIGUSR2;
+sigset_t SR_sigset;
+
+// utility functions
+
+static int SR_initialize();
+
+julong os::available_memory() {
+  return Linux::available_memory();
+}
+
+julong os::Linux::available_memory() {
+  // values in struct sysinfo are "unsigned long"
+  struct sysinfo si;
+  sysinfo(&si);
+
+  return (julong)si.freeram * si.mem_unit;
+}
+
+julong os::physical_memory() {
+  return Linux::physical_memory();
+}
+
+// Return true if user is running as root.
+
+bool os::have_special_privileges() {
+  static bool init = false;
+  static bool privileges = false;
+  if (!init) {
+    privileges = (getuid() != geteuid()) || (getgid() != getegid());
+    init = true;
+  }
+  return privileges;
+}
+
+
+#ifndef SYS_gettid
+// i386: 224, ia64: 1105, amd64: 186, sparc 143
+  #ifdef __ia64__
+    #define SYS_gettid 1105
+  #else
+    #ifdef __i386__
+      #define SYS_gettid 224
+    #else
+      #ifdef __amd64__
+        #define SYS_gettid 186
+      #else
+        #ifdef __sparc__
+          #define SYS_gettid 143
+        #else
+          #error define gettid for the arch
+        #endif
+      #endif
+    #endif
+  #endif
+#endif
+
+
+// pid_t gettid()
+//
+// Returns the kernel thread id of the currently running thread. Kernel
+// thread id is used to access /proc.
+pid_t os::Linux::gettid() {
+  int rslt = syscall(SYS_gettid);
+  assert(rslt != -1, "must be."); // old linuxthreads implementation?
+  return (pid_t)rslt;
+}
+
+// Most versions of linux have a bug where the number of processors are
+// determined by looking at the /proc file system.  In a chroot environment,
+// the system call returns 1.  This causes the VM to act as if it is
+// a single processor and elide locking (see is_MP() call).
+static bool unsafe_chroot_detected = false;
+static const char *unstable_chroot_error = "/proc file system not found.\n"
+                     "Java may be unstable running multithreaded in a chroot "
+                     "environment on Linux when /proc filesystem is not mounted.";
+
+void os::Linux::initialize_system_info() {
+  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
+  if (processor_count() == 1) {
+    pid_t pid = os::Linux::gettid();
+    char fname[32];
+    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
+    FILE *fp = fopen(fname, "r");
+    if (fp == NULL) {
+      unsafe_chroot_detected = true;
+    } else {
+      fclose(fp);
+    }
+  }
+  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
+  assert(processor_count() > 0, "linux error");
+}
+
+void os::init_system_properties_values() {
+  // The next steps are taken in the product version:
+  //
+  // Obtain the JAVA_HOME value from the location of libjvm.so.
+  // This library should be located at:
+  // <JAVA_HOME>/lib/{client|server}/libjvm.so.
+  //
+  // If "/jre/lib/" appears at the right place in the path, then we
+  // assume libjvm.so is installed in a JDK and we use this path.
+  //
+  // Otherwise exit with message: "Could not create the Java virtual machine."
+  //
+  // The following extra steps are taken in the debugging version:
+  //
+  // If "/jre/lib/" does NOT appear at the right place in the path
+  // instead of exit check for $JAVA_HOME environment variable.
+  //
+  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
+  // then we append a fake suffix "hotspot/libjvm.so" to this path so
+  // it looks like libjvm.so is installed there
+  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
+  //
+  // Otherwise exit.
+  //
+  // Important note: if the location of libjvm.so changes this
+  // code needs to be changed accordingly.
+
+  // See ld(1):
+  //      The linker uses the following search paths to locate required
+  //      shared libraries:
+  //        1: ...
+  //        ...
+  //        7: The default directories, normally /lib and /usr/lib.
+#if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
+  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
+#else
+  #define DEFAULT_LIBPATH "/lib:/usr/lib"
+#endif
+
+// Base path of extensions installed on the system.
+#define SYS_EXT_DIR     "/usr/java/packages"
+#define EXTENSIONS_DIR  "/lib/ext"
+
+  // Buffer that fits several sprintfs.
+  // Note that the space for the colon and the trailing null are provided
+  // by the nulls included by the sizeof operator.
+  const size_t bufsize =
+    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
+         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
+  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
+
+  // sysclasspath, java_home, dll_dir
+  {
+    char *pslash;
+    os::jvm_path(buf, bufsize);
+
+    // Found the full path to libjvm.so.
+    // Now cut the path to <java_home>/jre if we can.
+    pslash = strrchr(buf, '/');
+    if (pslash != NULL) {
+      *pslash = '\0';            // Get rid of /libjvm.so.
+    }
+    pslash = strrchr(buf, '/');
+    if (pslash != NULL) {
+      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
+    }
+    Arguments::set_dll_dir(buf);
+
+    if (pslash != NULL) {
+      pslash = strrchr(buf, '/');
+      if (pslash != NULL) {
+        *pslash = '\0';        // Get rid of /lib.
+      }
+    }
+    Arguments::set_java_home(buf);
+    set_boot_path('/', ':');
+  }
+
+  // Where to look for native libraries.
+  //
+  // Note: Due to a legacy implementation, most of the library path
+  // is set in the launcher. This was to accomodate linking restrictions
+  // on legacy Linux implementations (which are no longer supported).
+  // Eventually, all the library path setting will be done here.
+  //
+  // However, to prevent the proliferation of improperly built native
+  // libraries, the new path component /usr/java/packages is added here.
+  // Eventually, all the library path setting will be done here.
+  {
+    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
+    // should always exist (until the legacy problem cited above is
+    // addressed).
+    const char *v = ::getenv("LD_LIBRARY_PATH");
+    const char *v_colon = ":";
+    if (v == NULL) { v = ""; v_colon = ""; }
+    // That's +1 for the colon and +1 for the trailing '\0'.
+    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
+                                                     strlen(v) + 1 +
+                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
+                                                     mtInternal);
+    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
+    Arguments::set_library_path(ld_library_path);
+    FREE_C_HEAP_ARRAY(char, ld_library_path);
+  }
+
+  // Extensions directories.
+  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
+  Arguments::set_ext_dirs(buf);
+
+  FREE_C_HEAP_ARRAY(char, buf);
+
+#undef DEFAULT_LIBPATH
+#undef SYS_EXT_DIR
+#undef EXTENSIONS_DIR
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// breakpoint support
+
+void os::breakpoint() {
+  BREAKPOINT;
+}
+
+extern "C" void breakpoint() {
+  // use debugger to set breakpoint here
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// signal support
+
+debug_only(static bool signal_sets_initialized = false);
+static sigset_t unblocked_sigs, vm_sigs;
+
+bool os::Linux::is_sig_ignored(int sig) {
+  struct sigaction oact;
+  sigaction(sig, (struct sigaction*)NULL, &oact);
+  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
+                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
+  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
+    return true;
+  } else {
+    return false;
+  }
+}
+
+void os::Linux::signal_sets_init() {
+  // Should also have an assertion stating we are still single-threaded.
+  assert(!signal_sets_initialized, "Already initialized");
+  // Fill in signals that are necessarily unblocked for all threads in
+  // the VM. Currently, we unblock the following signals:
+  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
+  //                         by -Xrs (=ReduceSignalUsage));
+  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
+  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
+  // the dispositions or masks wrt these signals.
+  // Programs embedding the VM that want to use the above signals for their
+  // own purposes must, at this time, use the "-Xrs" option to prevent
+  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
+  // (See bug 4345157, and other related bugs).
+  // In reality, though, unblocking these signals is really a nop, since
+  // these signals are not blocked by default.
+  sigemptyset(&unblocked_sigs);
+  sigaddset(&unblocked_sigs, SIGILL);
+  sigaddset(&unblocked_sigs, SIGSEGV);
+  sigaddset(&unblocked_sigs, SIGBUS);
+  sigaddset(&unblocked_sigs, SIGFPE);
+#if defined(PPC64)
+  sigaddset(&unblocked_sigs, SIGTRAP);
+#endif
+  sigaddset(&unblocked_sigs, SR_signum);
+
+  if (!ReduceSignalUsage) {
+    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
+      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
+    }
+    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
+      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
+    }
+    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
+      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
+    }
+  }
+  // Fill in signals that are blocked by all but the VM thread.
+  sigemptyset(&vm_sigs);
+  if (!ReduceSignalUsage) {
+    sigaddset(&vm_sigs, BREAK_SIGNAL);
+  }
+  debug_only(signal_sets_initialized = true);
+
+}
+
+// These are signals that are unblocked while a thread is running Java.
+// (For some reason, they get blocked by default.)
+sigset_t* os::Linux::unblocked_signals() {
+  assert(signal_sets_initialized, "Not initialized");
+  return &unblocked_sigs;
+}
+
+// These are the signals that are blocked while a (non-VM) thread is
+// running Java. Only the VM thread handles these signals.
+sigset_t* os::Linux::vm_signals() {
+  assert(signal_sets_initialized, "Not initialized");
+  return &vm_sigs;
+}
+
+void os::Linux::hotspot_sigmask(Thread* thread) {
+
+  //Save caller's signal mask before setting VM signal mask
+  sigset_t caller_sigmask;
+  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
+
+  OSThread* osthread = thread->osthread();
+  osthread->set_caller_sigmask(caller_sigmask);
+
+  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
+
+  if (!ReduceSignalUsage) {
+    if (thread->is_VM_thread()) {
+      // Only the VM thread handles BREAK_SIGNAL ...
+      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
+    } else {
+      // ... all other threads block BREAK_SIGNAL
+      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
+    }
+  }
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// detecting pthread library
+
+void os::Linux::libpthread_init() {
+  // Save glibc and pthread version strings.
+#if !defined(_CS_GNU_LIBC_VERSION) || \
+    !defined(_CS_GNU_LIBPTHREAD_VERSION)
+  #error "glibc too old (< 2.3.2)"
+#endif
+
+  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
+  assert(n > 0, "cannot retrieve glibc version");
+  char *str = (char *)malloc(n, mtInternal);
+  confstr(_CS_GNU_LIBC_VERSION, str, n);
+  os::Linux::set_glibc_version(str);
+
+  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
+  assert(n > 0, "cannot retrieve pthread version");
+  str = (char *)malloc(n, mtInternal);
+  confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
+  os::Linux::set_libpthread_version(str);
+}
+
+/////////////////////////////////////////////////////////////////////////////
+// thread stack expansion
+
+// os::Linux::manually_expand_stack() takes care of expanding the thread
+// stack. Note that this is normally not needed: pthread stacks allocate
+// thread stack using mmap() without MAP_NORESERVE, so the stack is already
+// committed. Therefore it is not necessary to expand the stack manually.
+//
+// Manually expanding the stack was historically needed on LinuxThreads
+// thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
+// it is kept to deal with very rare corner cases:
+//
+// For one, user may run the VM on an own implementation of threads
+// whose stacks are - like the old LinuxThreads - implemented using
+// mmap(MAP_GROWSDOWN).
+//
+// Also, this coding may be needed if the VM is running on the primordial
+// thread. Normally we avoid running on the primordial thread; however,
+// user may still invoke the VM on the primordial thread.
+//
+// The following historical comment describes the details about running
+// on a thread stack allocated with mmap(MAP_GROWSDOWN):
+
+
+// Force Linux kernel to expand current thread stack. If "bottom" is close
+// to the stack guard, caller should block all signals.
+//
+// MAP_GROWSDOWN:
+//   A special mmap() flag that is used to implement thread stacks. It tells
+//   kernel that the memory region should extend downwards when needed. This
+//   allows early versions of LinuxThreads to only mmap the first few pages
+//   when creating a new thread. Linux kernel will automatically expand thread
+//   stack as needed (on page faults).
+//
+//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
+//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
+//   region, it's hard to tell if the fault is due to a legitimate stack
+//   access or because of reading/writing non-exist memory (e.g. buffer
+//   overrun). As a rule, if the fault happens below current stack pointer,
+//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
+//   application (see Linux kernel fault.c).
+//
+//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
+//   stack overflow detection.
+//
+//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
+//   not use MAP_GROWSDOWN.
+//
+// To get around the problem and allow stack banging on Linux, we need to
+// manually expand thread stack after receiving the SIGSEGV.
+//
+// There are two ways to expand thread stack to address "bottom", we used
+// both of them in JVM before 1.5:
+//   1. adjust stack pointer first so that it is below "bottom", and then
+//      touch "bottom"
+//   2. mmap() the page in question
+//
+// Now alternate signal stack is gone, it's harder to use 2. For instance,
+// if current sp is already near the lower end of page 101, and we need to
+// call mmap() to map page 100, it is possible that part of the mmap() frame
+// will be placed in page 100. When page 100 is mapped, it is zero-filled.
+// That will destroy the mmap() frame and cause VM to crash.
+//
+// The following code works by adjusting sp first, then accessing the "bottom"
+// page to force a page fault. Linux kernel will then automatically expand the
+// stack mapping.
+//
+// _expand_stack_to() assumes its frame size is less than page size, which
+// should always be true if the function is not inlined.
+
+static void NOINLINE _expand_stack_to(address bottom) {
+  address sp;
+  size_t size;
+  volatile char *p;
+
+  // Adjust bottom to point to the largest address within the same page, it
+  // gives us a one-page buffer if alloca() allocates slightly more memory.
+  bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
+  bottom += os::Linux::page_size() - 1;
+
+  // sp might be slightly above current stack pointer; if that's the case, we
+  // will alloca() a little more space than necessary, which is OK. Don't use
+  // os::current_stack_pointer(), as its result can be slightly below current
+  // stack pointer, causing us to not alloca enough to reach "bottom".
+  sp = (address)&sp;
+
+  if (sp > bottom) {
+    size = sp - bottom;
+    p = (volatile char *)alloca(size);
+    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
+    p[0] = '\0';
+  }
+}
+
+bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
+  assert(t!=NULL, "just checking");
+  assert(t->osthread()->expanding_stack(), "expand should be set");
+  assert(t->stack_base() != NULL, "stack_base was not initialized");
+
+  if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
+    sigset_t mask_all, old_sigset;
+    sigfillset(&mask_all);
+    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
+    _expand_stack_to(addr);
+    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
+    return true;
+  }
+  return false;
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// create new thread
+
+// Thread start routine for all newly created threads
+static void *thread_native_entry(Thread *thread) {
+  // Try to randomize the cache line index of hot stack frames.
+  // This helps when threads of the same stack traces evict each other's
+  // cache lines. The threads can be either from the same JVM instance, or
+  // from different JVM instances. The benefit is especially true for
+  // processors with hyperthreading technology.
+  static int counter = 0;
+  int pid = os::current_process_id();
+  alloca(((pid ^ counter++) & 7) * 128);
+
+  thread->initialize_thread_current();
+
+  OSThread* osthread = thread->osthread();
+  Monitor* sync = osthread->startThread_lock();
+
+  osthread->set_thread_id(os::current_thread_id());
+
+  log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
+    os::current_thread_id(), (uintx) pthread_self());
+
+  if (UseNUMA) {
+    int lgrp_id = os::numa_get_group_id();
+    if (lgrp_id != -1) {
+      thread->set_lgrp_id(lgrp_id);
+    }
+  }
+  // initialize signal mask for this thread
+  os::Linux::hotspot_sigmask(thread);
+
+  // initialize floating point control register
+  os::Linux::init_thread_fpu_state();
+
+  // handshaking with parent thread
+  {
+    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
+
+    // notify parent thread
+    osthread->set_state(INITIALIZED);
+    sync->notify_all();
+
+    // wait until os::start_thread()
+    while (osthread->get_state() == INITIALIZED) {
+      sync->wait(Mutex::_no_safepoint_check_flag);
+    }
+  }
+
+  // call one more level start routine
+  thread->run();
+
+  log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
+    os::current_thread_id(), (uintx) pthread_self());
+
+  // If a thread has not deleted itself ("delete this") as part of its
+  // termination sequence, we have to ensure thread-local-storage is
+  // cleared before we actually terminate. No threads should ever be
+  // deleted asynchronously with respect to their termination.
+  if (Thread::current_or_null_safe() != NULL) {
+    assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
+    thread->clear_thread_current();
+  }
+
+  return 0;
+}
+
+bool os::create_thread(Thread* thread, ThreadType thr_type,
+                       size_t req_stack_size) {
+  assert(thread->osthread() == NULL, "caller responsible");
+
+  // Allocate the OSThread object
+  OSThread* osthread = new OSThread(NULL, NULL);
+  if (osthread == NULL) {
+    return false;
+  }
+
+  // set the correct thread state
+  osthread->set_thread_type(thr_type);
+
+  // Initial state is ALLOCATED but not INITIALIZED
+  osthread->set_state(ALLOCATED);
+
+  thread->set_osthread(osthread);
+
+  // init thread attributes
+  pthread_attr_t attr;
+  pthread_attr_init(&attr);
+  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
+
+  // Calculate stack size if it's not specified by caller.
+  size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
+  // In the Linux NPTL pthread implementation the guard size mechanism
+  // is not implemented properly. The posix standard requires adding
+  // the size of the guard pages to the stack size, instead Linux
+  // takes the space out of 'stacksize'. Thus we adapt the requested
+  // stack_size by the size of the guard pages to mimick proper
+  // behaviour. However, be careful not to end up with a size
+  // of zero due to overflow. Don't add the guard page in that case.
+  size_t guard_size = os::Linux::default_guard_size(thr_type);
+  if (stack_size <= SIZE_MAX - guard_size) {
+    stack_size += guard_size;
+  }
+  assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
+
+  int status = pthread_attr_setstacksize(&attr, stack_size);
+  assert_status(status == 0, status, "pthread_attr_setstacksize");
+
+  // Configure glibc guard page.
+  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
+
+  ThreadState state;
+
+  {
+    pthread_t tid;
+    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
+
+    char buf[64];
+    if (ret == 0) {
+      log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
+        (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
+    } else {
+      log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
+        os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
+    }
+
+    pthread_attr_destroy(&attr);
+
+    if (ret != 0) {
+      // Need to clean up stuff we've allocated so far
+      thread->set_osthread(NULL);
+      delete osthread;
+      return false;
+    }
+
+    // Store pthread info into the OSThread
+    osthread->set_pthread_id(tid);
+
+    // Wait until child thread is either initialized or aborted
+    {
+      Monitor* sync_with_child = osthread->startThread_lock();
+      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
+      while ((state = osthread->get_state()) == ALLOCATED) {
+        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
+      }
+    }
+  }
+
+  // Aborted due to thread limit being reached
+  if (state == ZOMBIE) {
+    thread->set_osthread(NULL);
+    delete osthread;
+    return false;
+  }
+
+  // The thread is returned suspended (in state INITIALIZED),
+  // and is started higher up in the call chain
+  assert(state == INITIALIZED, "race condition");
+  return true;
+}
+
+/////////////////////////////////////////////////////////////////////////////
+// attach existing thread
+
+// bootstrap the main thread
+bool os::create_main_thread(JavaThread* thread) {
+  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
+  return create_attached_thread(thread);
+}
+
+bool os::create_attached_thread(JavaThread* thread) {
+#ifdef ASSERT
+  thread->verify_not_published();
+#endif
+
+  // Allocate the OSThread object
+  OSThread* osthread = new OSThread(NULL, NULL);
+
+  if (osthread == NULL) {
+    return false;
+  }
+
+  // Store pthread info into the OSThread
+  osthread->set_thread_id(os::Linux::gettid());
+  osthread->set_pthread_id(::pthread_self());
+
+  // initialize floating point control register
+  os::Linux::init_thread_fpu_state();
+
+  // Initial thread state is RUNNABLE
+  osthread->set_state(RUNNABLE);
+
+  thread->set_osthread(osthread);
+
+  if (UseNUMA) {
+    int lgrp_id = os::numa_get_group_id();
+    if (lgrp_id != -1) {
+      thread->set_lgrp_id(lgrp_id);
+    }
+  }
+
+  if (os::Linux::is_initial_thread()) {
+    // If current thread is initial thread, its stack is mapped on demand,
+    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
+    // the entire stack region to avoid SEGV in stack banging.
+    // It is also useful to get around the heap-stack-gap problem on SuSE
+    // kernel (see 4821821 for details). We first expand stack to the top
+    // of yellow zone, then enable stack yellow zone (order is significant,
+    // enabling yellow zone first will crash JVM on SuSE Linux), so there
+    // is no gap between the last two virtual memory regions.
+
+    JavaThread *jt = (JavaThread *)thread;
+    address addr = jt->stack_reserved_zone_base();
+    assert(addr != NULL, "initialization problem?");
+    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
+
+    osthread->set_expanding_stack();
+    os::Linux::manually_expand_stack(jt, addr);
+    osthread->clear_expanding_stack();
+  }
+
+  // initialize signal mask for this thread
+  // and save the caller's signal mask
+  os::Linux::hotspot_sigmask(thread);
+
+  log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
+    os::current_thread_id(), (uintx) pthread_self());
+
+  return true;
+}
+
+void os::pd_start_thread(Thread* thread) {
+  OSThread * osthread = thread->osthread();
+  assert(osthread->get_state() != INITIALIZED, "just checking");
+  Monitor* sync_with_child = osthread->startThread_lock();
+  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
+  sync_with_child->notify();
+}
+
+// Free Linux resources related to the OSThread
+void os::free_thread(OSThread* osthread) {
+  assert(osthread != NULL, "osthread not set");
+
+  // We are told to free resources of the argument thread,
+  // but we can only really operate on the current thread.
+  assert(Thread::current()->osthread() == osthread,
+         "os::free_thread but not current thread");
+
+#ifdef ASSERT
+  sigset_t current;
+  sigemptyset(&current);
+  pthread_sigmask(SIG_SETMASK, NULL, &current);
+  assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
+#endif
+
+  // Restore caller's signal mask
+  sigset_t sigmask = osthread->caller_sigmask();
+  pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
+
+  delete osthread;
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// initial thread
+
+// Check if current thread is the initial thread, similar to Solaris thr_main.
+bool os::Linux::is_initial_thread(void) {
+  char dummy;
+  // If called before init complete, thread stack bottom will be null.
+  // Can be called if fatal error occurs before initialization.
+  if (initial_thread_stack_bottom() == NULL) return false;
+  assert(initial_thread_stack_bottom() != NULL &&
+         initial_thread_stack_size()   != 0,
+         "os::init did not locate initial thread's stack region");
+  if ((address)&dummy >= initial_thread_stack_bottom() &&
+      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
+    return true;
+  } else {
+    return false;
+  }
+}
+
+// Find the virtual memory area that contains addr
+static bool find_vma(address addr, address* vma_low, address* vma_high) {
+  FILE *fp = fopen("/proc/self/maps", "r");
+  if (fp) {
+    address low, high;
+    while (!feof(fp)) {
+      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
+        if (low <= addr && addr < high) {
+          if (vma_low)  *vma_low  = low;
+          if (vma_high) *vma_high = high;
+          fclose(fp);
+          return true;
+        }
+      }
+      for (;;) {
+        int ch = fgetc(fp);
+        if (ch == EOF || ch == (int)'\n') break;
+      }
+    }
+    fclose(fp);
+  }
+  return false;
+}
+
+// Locate initial thread stack. This special handling of initial thread stack
+// is needed because pthread_getattr_np() on most (all?) Linux distros returns
+// bogus value for the primordial process thread. While the launcher has created
+// the VM in a new thread since JDK 6, we still have to allow for the use of the
+// JNI invocation API from a primordial thread.
+void os::Linux::capture_initial_stack(size_t max_size) {
+
+  // max_size is either 0 (which means accept OS default for thread stacks) or
+  // a user-specified value known to be at least the minimum needed. If we
+  // are actually on the primordial thread we can make it appear that we have a
+  // smaller max_size stack by inserting the guard pages at that location. But we
+  // cannot do anything to emulate a larger stack than what has been provided by
+  // the OS or threading library. In fact if we try to use a stack greater than
+  // what is set by rlimit then we will crash the hosting process.
+
+  // Maximum stack size is the easy part, get it from RLIMIT_STACK.
+  // If this is "unlimited" then it will be a huge value.
+  struct rlimit rlim;
+  getrlimit(RLIMIT_STACK, &rlim);
+  size_t stack_size = rlim.rlim_cur;
+
+  // 6308388: a bug in ld.so will relocate its own .data section to the
+  //   lower end of primordial stack; reduce ulimit -s value a little bit
+  //   so we won't install guard page on ld.so's data section.
+  stack_size -= 2 * page_size();
+
+  // Try to figure out where the stack base (top) is. This is harder.
+  //
+  // When an application is started, glibc saves the initial stack pointer in
+  // a global variable "__libc_stack_end", which is then used by system
+  // libraries. __libc_stack_end should be pretty close to stack top. The
+  // variable is available since the very early days. However, because it is
+  // a private interface, it could disappear in the future.
+  //
+  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
+  // to __libc_stack_end, it is very close to stack top, but isn't the real
+  // stack top. Note that /proc may not exist if VM is running as a chroot
+  // program, so reading /proc/<pid>/stat could fail. Also the contents of
+  // /proc/<pid>/stat could change in the future (though unlikely).
+  //
+  // We try __libc_stack_end first. If that doesn't work, look for
+  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
+  // as a hint, which should work well in most cases.
+
+  uintptr_t stack_start;
+
+  // try __libc_stack_end first
+  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
+  if (p && *p) {
+    stack_start = *p;
+  } else {
+    // see if we can get the start_stack field from /proc/self/stat
+    FILE *fp;
+    int pid;
+    char state;
+    int ppid;
+    int pgrp;
+    int session;
+    int nr;
+    int tpgrp;
+    unsigned long flags;
+    unsigned long minflt;
+    unsigned long cminflt;
+    unsigned long majflt;
+    unsigned long cmajflt;
+    unsigned long utime;
+    unsigned long stime;
+    long cutime;
+    long cstime;
+    long prio;
+    long nice;
+    long junk;
+    long it_real;
+    uintptr_t start;
+    uintptr_t vsize;
+    intptr_t rss;
+    uintptr_t rsslim;
+    uintptr_t scodes;
+    uintptr_t ecode;
+    int i;
+
+    // Figure what the primordial thread stack base is. Code is inspired
+    // by email from Hans Boehm. /proc/self/stat begins with current pid,
+    // followed by command name surrounded by parentheses, state, etc.
+    char stat[2048];
+    int statlen;
+
+    fp = fopen("/proc/self/stat", "r");
+    if (fp) {
+      statlen = fread(stat, 1, 2047, fp);
+      stat[statlen] = '\0';
+      fclose(fp);
+
+      // Skip pid and the command string. Note that we could be dealing with
+      // weird command names, e.g. user could decide to rename java launcher
+      // to "java 1.4.2 :)", then the stat file would look like
+      //                1234 (java 1.4.2 :)) R ... ...
+      // We don't really need to know the command string, just find the last
+      // occurrence of ")" and then start parsing from there. See bug 4726580.
+      char * s = strrchr(stat, ')');
+
+      i = 0;
+      if (s) {
+        // Skip blank chars
+        do { s++; } while (s && isspace(*s));
+
+#define _UFM UINTX_FORMAT
+#define _DFM INTX_FORMAT
+
+        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
+        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
+        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
+                   &state,          // 3  %c
+                   &ppid,           // 4  %d
+                   &pgrp,           // 5  %d
+                   &session,        // 6  %d
+                   &nr,             // 7  %d
+                   &tpgrp,          // 8  %d
+                   &flags,          // 9  %lu
+                   &minflt,         // 10 %lu
+                   &cminflt,        // 11 %lu
+                   &majflt,         // 12 %lu
+                   &cmajflt,        // 13 %lu
+                   &utime,          // 14 %lu
+                   &stime,          // 15 %lu
+                   &cutime,         // 16 %ld
+                   &cstime,         // 17 %ld
+                   &prio,           // 18 %ld
+                   &nice,           // 19 %ld
+                   &junk,           // 20 %ld
+                   &it_real,        // 21 %ld
+                   &start,          // 22 UINTX_FORMAT
+                   &vsize,          // 23 UINTX_FORMAT
+                   &rss,            // 24 INTX_FORMAT
+                   &rsslim,         // 25 UINTX_FORMAT
+                   &scodes,         // 26 UINTX_FORMAT
+                   &ecode,          // 27 UINTX_FORMAT
+                   &stack_start);   // 28 UINTX_FORMAT
+      }
+
+#undef _UFM
+#undef _DFM
+
+      if (i != 28 - 2) {
+        assert(false, "Bad conversion from /proc/self/stat");
+        // product mode - assume we are the initial thread, good luck in the
+        // embedded case.
+        warning("Can't detect initial thread stack location - bad conversion");
+        stack_start = (uintptr_t) &rlim;
+      }
+    } else {
+      // For some reason we can't open /proc/self/stat (for example, running on
+      // FreeBSD with a Linux emulator, or inside chroot), this should work for
+      // most cases, so don't abort:
+      warning("Can't detect initial thread stack location - no /proc/self/stat");
+      stack_start = (uintptr_t) &rlim;
+    }
+  }
+
+  // Now we have a pointer (stack_start) very close to the stack top, the
+  // next thing to do is to figure out the exact location of stack top. We
+  // can find out the virtual memory area that contains stack_start by
+  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
+  // and its upper limit is the real stack top. (again, this would fail if
+  // running inside chroot, because /proc may not exist.)
+
+  uintptr_t stack_top;
+  address low, high;
+  if (find_vma((address)stack_start, &low, &high)) {
+    // success, "high" is the true stack top. (ignore "low", because initial
+    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
+    stack_top = (uintptr_t)high;
+  } else {
+    // failed, likely because /proc/self/maps does not exist
+    warning("Can't detect initial thread stack location - find_vma failed");
+    // best effort: stack_start is normally within a few pages below the real
+    // stack top, use it as stack top, and reduce stack size so we won't put
+    // guard page outside stack.
+    stack_top = stack_start;
+    stack_size -= 16 * page_size();
+  }
+
+  // stack_top could be partially down the page so align it
+  stack_top = align_up(stack_top, page_size());
+
+  // Allowed stack value is minimum of max_size and what we derived from rlimit
+  if (max_size > 0) {
+    _initial_thread_stack_size = MIN2(max_size, stack_size);
+  } else {
+    // Accept the rlimit max, but if stack is unlimited then it will be huge, so
+    // clamp it at 8MB as we do on Solaris
+    _initial_thread_stack_size = MIN2(stack_size, 8*M);
+  }
+  _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
+  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
+
+  assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
+
+  if (log_is_enabled(Info, os, thread)) {
+    // See if we seem to be on primordial process thread
+    bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
+                      uintptr_t(&rlim) < stack_top;
+
+    log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
+                         SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
+                         primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
+                         stack_top, intptr_t(_initial_thread_stack_bottom));
+  }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// time support
+
+// Time since start-up in seconds to a fine granularity.
+// Used by VMSelfDestructTimer and the MemProfiler.
+double os::elapsedTime() {
+
+  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
+}
+
+jlong os::elapsed_counter() {
+  return javaTimeNanos() - initial_time_count;
+}
+
+jlong os::elapsed_frequency() {
+  return NANOSECS_PER_SEC; // nanosecond resolution
+}
+
+bool os::supports_vtime() { return true; }
+bool os::enable_vtime()   { return false; }
+bool os::vtime_enabled()  { return false; }
+
+double os::elapsedVTime() {
+  struct rusage usage;
+  int retval = getrusage(RUSAGE_THREAD, &usage);
+  if (retval == 0) {
+    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
+  } else {
+    // better than nothing, but not much
+    return elapsedTime();
+  }
+}
+
+jlong os::javaTimeMillis() {
+  timeval time;
+  int status = gettimeofday(&time, NULL);
+  assert(status != -1, "linux error");
+  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
+}
+
+void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
+  timeval time;
+  int status = gettimeofday(&time, NULL);
+  assert(status != -1, "linux error");
+  seconds = jlong(time.tv_sec);
+  nanos = jlong(time.tv_usec) * 1000;
+}
+
+
+#ifndef CLOCK_MONOTONIC
+  #define CLOCK_MONOTONIC (1)
+#endif
+
+void os::Linux::clock_init() {
+  // we do dlopen's in this particular order due to bug in linux
+  // dynamical loader (see 6348968) leading to crash on exit
+  void* handle = dlopen("librt.so.1", RTLD_LAZY);
+  if (handle == NULL) {
+    handle = dlopen("librt.so", RTLD_LAZY);
+  }
+
+  if (handle) {
+    int (*clock_getres_func)(clockid_t, struct timespec*) =
+           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
+    int (*clock_gettime_func)(clockid_t, struct timespec*) =
+           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
+    if (clock_getres_func && clock_gettime_func) {
+      // See if monotonic clock is supported by the kernel. Note that some
+      // early implementations simply return kernel jiffies (updated every
+      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
+      // for nano time (though the monotonic property is still nice to have).
+      // It's fixed in newer kernels, however clock_getres() still returns
+      // 1/HZ. We check if clock_getres() works, but will ignore its reported
+      // resolution for now. Hopefully as people move to new kernels, this
+      // won't be a problem.
+      struct timespec res;
+      struct timespec tp;
+      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
+          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
+        // yes, monotonic clock is supported
+        _clock_gettime = clock_gettime_func;
+        return;
+      } else {
+        // close librt if there is no monotonic clock
+        dlclose(handle);
+      }
+    }
+  }
+  warning("No monotonic clock was available - timed services may " \
+          "be adversely affected if the time-of-day clock changes");
+}
+
+#ifndef SYS_clock_getres
+  #if defined(X86) || defined(PPC64) || defined(S390)
+    #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
+    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
+  #else
+    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
+    #define sys_clock_getres(x,y)  -1
+  #endif
+#else
+  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
+#endif
+
+void os::Linux::fast_thread_clock_init() {
+  if (!UseLinuxPosixThreadCPUClocks) {
+    return;
+  }
+  clockid_t clockid;
+  struct timespec tp;
+  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
+      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
+
+  // Switch to using fast clocks for thread cpu time if
+  // the sys_clock_getres() returns 0 error code.
+  // Note, that some kernels may support the current thread
+  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
+  // returned by the pthread_getcpuclockid().
+  // If the fast Posix clocks are supported then the sys_clock_getres()
+  // must return at least tp.tv_sec == 0 which means a resolution
+  // better than 1 sec. This is extra check for reliability.
+
+  if (pthread_getcpuclockid_func &&
+      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
+      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
+    _supports_fast_thread_cpu_time = true;
+    _pthread_getcpuclockid = pthread_getcpuclockid_func;
+  }
+}
+
+jlong os::javaTimeNanos() {
+  if (os::supports_monotonic_clock()) {
+    struct timespec tp;
+    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
+    assert(status == 0, "gettime error");
+    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
+    return result;
+  } else {
+    timeval time;
+    int status = gettimeofday(&time, NULL);
+    assert(status != -1, "linux error");
+    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
+    return 1000 * usecs;
+  }
+}
+
+void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
+  if (os::supports_monotonic_clock()) {
+    info_ptr->max_value = ALL_64_BITS;
+
+    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
+    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
+    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
+  } else {
+    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
+    info_ptr->max_value = ALL_64_BITS;
+
+    // gettimeofday is a real time clock so it skips
+    info_ptr->may_skip_backward = true;
+    info_ptr->may_skip_forward = true;
+  }
+
+  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
+}
+
+// Return the real, user, and system times in seconds from an
+// arbitrary fixed point in the past.
+bool os::getTimesSecs(double* process_real_time,
+                      double* process_user_time,
+                      double* process_system_time) {
+  struct tms ticks;
+  clock_t real_ticks = times(&ticks);
+
+  if (real_ticks == (clock_t) (-1)) {
+    return false;
+  } else {
+    double ticks_per_second = (double) clock_tics_per_sec;
+    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
+    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
+    *process_real_time = ((double) real_ticks) / ticks_per_second;
+
+    return true;
+  }
+}
+
+
+char * os::local_time_string(char *buf, size_t buflen) {
+  struct tm t;
+  time_t long_time;
+  time(&long_time);
+  localtime_r(&long_time, &t);
+  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
+               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
+               t.tm_hour, t.tm_min, t.tm_sec);
+  return buf;
+}
+
+struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
+  return localtime_r(clock, res);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// runtime exit support
+
+// Note: os::shutdown() might be called very early during initialization, or
+// called from signal handler. Before adding something to os::shutdown(), make
+// sure it is async-safe and can handle partially initialized VM.
+void os::shutdown() {
+
+  // allow PerfMemory to attempt cleanup of any persistent resources
+  perfMemory_exit();
+
+  // needs to remove object in file system
+  AttachListener::abort();
+
+  // flush buffered output, finish log files
+  ostream_abort();
+
+  // Check for abort hook
+  abort_hook_t abort_hook = Arguments::abort_hook();
+  if (abort_hook != NULL) {
+    abort_hook();
+  }
+
+}
+
+// Note: os::abort() might be called very early during initialization, or
+// called from signal handler. Before adding something to os::abort(), make
+// sure it is async-safe and can handle partially initialized VM.
+void os::abort(bool dump_core, void* siginfo, const void* context) {
+  os::shutdown();
+  if (dump_core) {
+#ifndef PRODUCT
+    fdStream out(defaultStream::output_fd());
+    out.print_raw("Current thread is ");
+    char buf[16];
+    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
+    out.print_raw_cr(buf);
+    out.print_raw_cr("Dumping core ...");
+#endif
+    ::abort(); // dump core
+  }
+
+  ::exit(1);
+}
+
+// Die immediately, no exit hook, no abort hook, no cleanup.
+void os::die() {
+  ::abort();
+}
+
+
+// This method is a copy of JDK's sysGetLastErrorString
+// from src/solaris/hpi/src/system_md.c
+
+size_t os::lasterror(char *buf, size_t len) {
+  if (errno == 0)  return 0;
+
+  const char *s = os::strerror(errno);
+  size_t n = ::strlen(s);
+  if (n >= len) {
+    n = len - 1;
+  }
+  ::strncpy(buf, s, n);
+  buf[n] = '\0';
+  return n;
+}
+
+// thread_id is kernel thread id (similar to Solaris LWP id)
+intx os::current_thread_id() { return os::Linux::gettid(); }
+int os::current_process_id() {
+  return ::getpid();
+}
+
+// DLL functions
+
+const char* os::dll_file_extension() { return ".so"; }
+
+// This must be hard coded because it's the system's temporary
+// directory not the java application's temp directory, ala java.io.tmpdir.
+const char* os::get_temp_directory() { return "/tmp"; }
+
+static bool file_exists(const char* filename) {
+  struct stat statbuf;
+  if (filename == NULL || strlen(filename) == 0) {
+    return false;
+  }
+  return os::stat(filename, &statbuf) == 0;
+}
+
+// check if addr is inside libjvm.so
+bool os::address_is_in_vm(address addr) {
+  static address libjvm_base_addr;
+  Dl_info dlinfo;
+
+  if (libjvm_base_addr == NULL) {
+    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
+      libjvm_base_addr = (address)dlinfo.dli_fbase;
+    }
+    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
+  }
+
+  if (dladdr((void *)addr, &dlinfo) != 0) {
+    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
+  }
+
+  return false;
+}
+
+bool os::dll_address_to_function_name(address addr, char *buf,
+                                      int buflen, int *offset,
+                                      bool demangle) {
+  // buf is not optional, but offset is optional
+  assert(buf != NULL, "sanity check");
+
+  Dl_info dlinfo;
+
+  if (dladdr((void*)addr, &dlinfo) != 0) {
+    // see if we have a matching symbol
+    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
+      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
+        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
+      }
+      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
+      return true;
+    }
+    // no matching symbol so try for just file info
+    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
+      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
+                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
+        return true;
+      }
+    }
+  }
+
+  buf[0] = '\0';
+  if (offset != NULL) *offset = -1;
+  return false;
+}
+
+struct _address_to_library_name {
+  address addr;          // input : memory address
+  size_t  buflen;        //         size of fname
+  char*   fname;         // output: library name
+  address base;          //         library base addr
+};
+
+static int address_to_library_name_callback(struct dl_phdr_info *info,
+                                            size_t size, void *data) {
+  int i;
+  bool found = false;
+  address libbase = NULL;
+  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
+
+  // iterate through all loadable segments
+  for (i = 0; i < info->dlpi_phnum; i++) {
+    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
+    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
+      // base address of a library is the lowest address of its loaded
+      // segments.
+      if (libbase == NULL || libbase > segbase) {
+        libbase = segbase;
+      }
+      // see if 'addr' is within current segment
+      if (segbase <= d->addr &&
+          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
+        found = true;
+      }
+    }
+  }
+
+  // dlpi_name is NULL or empty if the ELF file is executable, return 0
+  // so dll_address_to_library_name() can fall through to use dladdr() which
+  // can figure out executable name from argv[0].
+  if (found && info->dlpi_name && info->dlpi_name[0]) {
+    d->base = libbase;
+    if (d->fname) {
+      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
+    }
+    return 1;
+  }
+  return 0;
+}
+
+bool os::dll_address_to_library_name(address addr, char* buf,
+                                     int buflen, int* offset) {
+  // buf is not optional, but offset is optional
+  assert(buf != NULL, "sanity check");
+
+  Dl_info dlinfo;
+  struct _address_to_library_name data;
+
+  // There is a bug in old glibc dladdr() implementation that it could resolve
+  // to wrong library name if the .so file has a base address != NULL. Here
+  // we iterate through the program headers of all loaded libraries to find
+  // out which library 'addr' really belongs to. This workaround can be
+  // removed once the minimum requirement for glibc is moved to 2.3.x.
+  data.addr = addr;
+  data.fname = buf;
+  data.buflen = buflen;
+  data.base = NULL;
+  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
+
+  if (rslt) {
+    // buf already contains library name
+    if (offset) *offset = addr - data.base;
+    return true;
+  }
+  if (dladdr((void*)addr, &dlinfo) != 0) {
+    if (dlinfo.dli_fname != NULL) {
+      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
+    }
+    if (dlinfo.dli_fbase != NULL && offset != NULL) {
+      *offset = addr - (address)dlinfo.dli_fbase;
+    }
+    return true;
+  }
+
+  buf[0] = '\0';
+  if (offset) *offset = -1;
+  return false;
+}
+
+// Loads .dll/.so and
+// in case of error it checks if .dll/.so was built for the
+// same architecture as Hotspot is running on
+
+
+// Remember the stack's state. The Linux dynamic linker will change
+// the stack to 'executable' at most once, so we must safepoint only once.
+bool os::Linux::_stack_is_executable = false;
+
+// VM operation that loads a library.  This is necessary if stack protection
+// of the Java stacks can be lost during loading the library.  If we
+// do not stop the Java threads, they can stack overflow before the stacks
+// are protected again.
+class VM_LinuxDllLoad: public VM_Operation {
+ private:
+  const char *_filename;
+  char *_ebuf;
+  int _ebuflen;
+  void *_lib;
+ public:
+  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
+    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
+  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
+  void doit() {
+    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
+    os::Linux::_stack_is_executable = true;
+  }
+  void* loaded_library() { return _lib; }
+};
+
+void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
+  void * result = NULL;
+  bool load_attempted = false;
+
+  // Check whether the library to load might change execution rights
+  // of the stack. If they are changed, the protection of the stack
+  // guard pages will be lost. We need a safepoint to fix this.
+  //
+  // See Linux man page execstack(8) for more info.
+  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
+    if (!ElfFile::specifies_noexecstack(filename)) {
+      if (!is_init_completed()) {
+        os::Linux::_stack_is_executable = true;
+        // This is OK - No Java threads have been created yet, and hence no
+        // stack guard pages to fix.
+        //
+        // This should happen only when you are building JDK7 using a very
+        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
+        //
+        // Dynamic loader will make all stacks executable after
+        // this function returns, and will not do that again.
+        assert(Threads::first() == NULL, "no Java threads should exist yet.");
+      } else {
+        warning("You have loaded library %s which might have disabled stack guard. "
+                "The VM will try to fix the stack guard now.\n"
+                "It's highly recommended that you fix the library with "
+                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
+                filename);
+
+        assert(Thread::current()->is_Java_thread(), "must be Java thread");
+        JavaThread *jt = JavaThread::current();
+        if (jt->thread_state() != _thread_in_native) {
+          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
+          // that requires ExecStack. Cannot enter safe point. Let's give up.
+          warning("Unable to fix stack guard. Giving up.");
+        } else {
+          if (!LoadExecStackDllInVMThread) {
+            // This is for the case where the DLL has an static
+            // constructor function that executes JNI code. We cannot
+            // load such DLLs in the VMThread.
+            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
+          }
+
+          ThreadInVMfromNative tiv(jt);
+          debug_only(VMNativeEntryWrapper vew;)
+
+          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
+          VMThread::execute(&op);
+          if (LoadExecStackDllInVMThread) {
+            result = op.loaded_library();
+          }
+          load_attempted = true;
+        }
+      }
+    }
+  }
+
+  if (!load_attempted) {
+    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
+  }
+
+  if (result != NULL) {
+    // Successful loading
+    return result;
+  }
+
+  Elf32_Ehdr elf_head;
+  int diag_msg_max_length=ebuflen-strlen(ebuf);
+  char* diag_msg_buf=ebuf+strlen(ebuf);
+
+  if (diag_msg_max_length==0) {
+    // No more space in ebuf for additional diagnostics message
+    return NULL;
+  }
+
+
+  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
+
+  if (file_descriptor < 0) {
+    // Can't open library, report dlerror() message
+    return NULL;
+  }
+
+  bool failed_to_read_elf_head=
+    (sizeof(elf_head)!=
+     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
+
+  ::close(file_descriptor);
+  if (failed_to_read_elf_head) {
+    // file i/o error - report dlerror() msg
+    return NULL;
+  }
+
+  typedef struct {
+    Elf32_Half    code;         // Actual value as defined in elf.h
+    Elf32_Half    compat_class; // Compatibility of archs at VM's sense
+    unsigned char elf_class;    // 32 or 64 bit
+    unsigned char endianess;    // MSB or LSB
+    char*         name;         // String representation
+  } arch_t;
+
+#ifndef EM_486
+  #define EM_486          6               /* Intel 80486 */
+#endif
+#ifndef EM_AARCH64
+  #define EM_AARCH64    183               /* ARM AARCH64 */
+#endif
+
+  static const arch_t arch_array[]={
+    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
+    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
+    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
+    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
+    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
+    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
+    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
+    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
+#if defined(VM_LITTLE_ENDIAN)
+    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
+    {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
+#else
+    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
+    {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
+#endif
+    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
+    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
+    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
+    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
+    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
+    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
+    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
+    {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
+  };
+
+#if  (defined IA32)
+  static  Elf32_Half running_arch_code=EM_386;
+#elif   (defined AMD64)
+  static  Elf32_Half running_arch_code=EM_X86_64;
+#elif  (defined IA64)
+  static  Elf32_Half running_arch_code=EM_IA_64;
+#elif  (defined __sparc) && (defined _LP64)
+  static  Elf32_Half running_arch_code=EM_SPARCV9;
+#elif  (defined __sparc) && (!defined _LP64)
+  static  Elf32_Half running_arch_code=EM_SPARC;
+#elif  (defined __powerpc64__)
+  static  Elf32_Half running_arch_code=EM_PPC64;
+#elif  (defined __powerpc__)
+  static  Elf32_Half running_arch_code=EM_PPC;
+#elif  (defined AARCH64)
+  static  Elf32_Half running_arch_code=EM_AARCH64;
+#elif  (defined ARM)
+  static  Elf32_Half running_arch_code=EM_ARM;
+#elif  (defined S390)
+  static  Elf32_Half running_arch_code=EM_S390;
+#elif  (defined ALPHA)
+  static  Elf32_Half running_arch_code=EM_ALPHA;
+#elif  (defined MIPSEL)
+  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
+#elif  (defined PARISC)
+  static  Elf32_Half running_arch_code=EM_PARISC;
+#elif  (defined MIPS)
+  static  Elf32_Half running_arch_code=EM_MIPS;
+#elif  (defined M68K)
+  static  Elf32_Half running_arch_code=EM_68K;
+#elif  (defined SH)
+  static  Elf32_Half running_arch_code=EM_SH;
+#else
+    #error Method os::dll_load requires that one of following is defined:\
+        AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
+#endif
+
+  // Identify compatability class for VM's architecture and library's architecture
+  // Obtain string descriptions for architectures
+
+  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
+  int running_arch_index=-1;
+
+  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
+    if (running_arch_code == arch_array[i].code) {
+      running_arch_index    = i;
+    }
+    if (lib_arch.code == arch_array[i].code) {
+      lib_arch.compat_class = arch_array[i].compat_class;
+      lib_arch.name         = arch_array[i].name;
+    }
+  }
+
+  assert(running_arch_index != -1,
+         "Didn't find running architecture code (running_arch_code) in arch_array");
+  if (running_arch_index == -1) {
+    // Even though running architecture detection failed
+    // we may still continue with reporting dlerror() message
+    return NULL;
+  }
+
+  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
+    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
+    return NULL;
+  }
+
+#ifndef S390
+  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
+    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
+    return NULL;
+  }
+#endif // !S390
+
+  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
+    if (lib_arch.name!=NULL) {
+      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
+                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
+                 lib_arch.name, arch_array[running_arch_index].name);
+    } else {
+      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
+                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
+                 lib_arch.code,
+                 arch_array[running_arch_index].name);
+    }
+  }
+
+  return NULL;
+}
+
+void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
+                                int ebuflen) {
+  void * result = ::dlopen(filename, RTLD_LAZY);
+  if (result == NULL) {
+    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
+    ebuf[ebuflen-1] = '\0';
+  }
+  return result;
+}
+
+void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
+                                       int ebuflen) {
+  void * result = NULL;
+  if (LoadExecStackDllInVMThread) {
+    result = dlopen_helper(filename, ebuf, ebuflen);
+  }
+
+  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
+  // library that requires an executable stack, or which does not have this
+  // stack attribute set, dlopen changes the stack attribute to executable. The
+  // read protection of the guard pages gets lost.
+  //
+  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
+  // may have been queued at the same time.
+
+  if (!_stack_is_executable) {
+    JavaThread *jt = Threads::first();
+
+    while (jt) {
+      if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
+          jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
+        if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
+          warning("Attempt to reguard stack yellow zone failed.");
+        }
+      }
+      jt = jt->next();
+    }
+  }
+
+  return result;
+}
+
+void* os::dll_lookup(void* handle, const char* name) {
+  void* res = dlsym(handle, name);
+  return res;
+}
+
+void* os::get_default_process_handle() {
+  return (void*)::dlopen(NULL, RTLD_LAZY);
+}
+
+static bool _print_ascii_file(const char* filename, outputStream* st) {
+  int fd = ::open(filename, O_RDONLY);
+  if (fd == -1) {
+    return false;
+  }
+
+  char buf[33];
+  int bytes;
+  buf[32] = '\0';
+  while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
+    st->print_raw(buf, bytes);
+  }
+
+  ::close(fd);
+
+  return true;
+}
+
+void os::print_dll_info(outputStream *st) {
+  st->print_cr("Dynamic libraries:");
+
+  char fname[32];
+  pid_t pid = os::Linux::gettid();
+
+  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
+
+  if (!_print_ascii_file(fname, st)) {
+    st->print("Can not get library information for pid = %d\n", pid);
+  }
+}
+
+int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
+  FILE *procmapsFile = NULL;
+
+  // Open the procfs maps file for the current process
+  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
+    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
+    char line[PATH_MAX + 100];
+
+    // Read line by line from 'file'
+    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
+      u8 base, top, offset, inode;
+      char permissions[5];
+      char device[6];
+      char name[PATH_MAX + 1];
+
+      // Parse fields from line
+      sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
+             &base, &top, permissions, &offset, device, &inode, name);
+
+      // Filter by device id '00:00' so that we only get file system mapped files.
+      if (strcmp(device, "00:00") != 0) {
+
+        // Call callback with the fields of interest
+        if(callback(name, (address)base, (address)top, param)) {
+          // Oops abort, callback aborted
+          fclose(procmapsFile);
+          return 1;
+        }
+      }
+    }
+    fclose(procmapsFile);
+  }
+  return 0;
+}
+
+void os::print_os_info_brief(outputStream* st) {
+  os::Linux::print_distro_info(st);
+
+  os::Posix::print_uname_info(st);
+
+  os::Linux::print_libversion_info(st);
+
+}
+
+void os::print_os_info(outputStream* st) {
+  st->print("OS:");
+
+  os::Linux::print_distro_info(st);
+
+  os::Posix::print_uname_info(st);
+
+  // Print warning if unsafe chroot environment detected
+  if (unsafe_chroot_detected) {
+    st->print("WARNING!! ");
+    st->print_cr("%s", unstable_chroot_error);
+  }
+
+  os::Linux::print_libversion_info(st);
+
+  os::Posix::print_rlimit_info(st);
+
+  os::Posix::print_load_average(st);
+
+  os::Linux::print_full_memory_info(st);
+}
+
+// Try to identify popular distros.
+// Most Linux distributions have a /etc/XXX-release file, which contains
+// the OS version string. Newer Linux distributions have a /etc/lsb-release
+// file that also contains the OS version string. Some have more than one
+// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
+// /etc/redhat-release.), so the order is important.
+// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
+// their own specific XXX-release file as well as a redhat-release file.
+// Because of this the XXX-release file needs to be searched for before the
+// redhat-release file.
+// Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
+// search for redhat-release / SuSE-release needs to be before lsb-release.
+// Since the lsb-release file is the new standard it needs to be searched
+// before the older style release files.
+// Searching system-release (Red Hat) and os-release (other Linuxes) are a
+// next to last resort.  The os-release file is a new standard that contains
+// distribution information and the system-release file seems to be an old
+// standard that has been replaced by the lsb-release and os-release files.
+// Searching for the debian_version file is the last resort.  It contains
+// an informative string like "6.0.6" or "wheezy/sid". Because of this
+// "Debian " is printed before the contents of the debian_version file.
+
+const char* distro_files[] = {
+  "/etc/oracle-release",
+  "/etc/mandriva-release",
+  "/etc/mandrake-release",
+  "/etc/sun-release",
+  "/etc/redhat-release",
+  "/etc/SuSE-release",
+  "/etc/lsb-release",
+  "/etc/turbolinux-release",
+  "/etc/gentoo-release",
+  "/etc/ltib-release",
+  "/etc/angstrom-version",
+  "/etc/system-release",
+  "/etc/os-release",
+  NULL };
+
+void os::Linux::print_distro_info(outputStream* st) {
+  for (int i = 0;; i++) {
+    const char* file = distro_files[i];
+    if (file == NULL) {
+      break;  // done
+    }
+    // If file prints, we found it.
+    if (_print_ascii_file(file, st)) {
+      return;
+    }
+  }
+
+  if (file_exists("/etc/debian_version")) {
+    st->print("Debian ");
+    _print_ascii_file("/etc/debian_version", st);
+  } else {
+    st->print("Linux");
+  }
+  st->cr();
+}
+
+static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
+  char buf[256];
+  while (fgets(buf, sizeof(buf), fp)) {
+    // Edit out extra stuff in expected format
+    if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
+      char* ptr = strstr(buf, "\"");  // the name is in quotes
+      if (ptr != NULL) {
+        ptr++; // go beyond first quote
+        char* nl = strchr(ptr, '\"');
+        if (nl != NULL) *nl = '\0';
+        strncpy(distro, ptr, length);
+      } else {
+        ptr = strstr(buf, "=");
+        ptr++; // go beyond equals then
+        char* nl = strchr(ptr, '\n');
+        if (nl != NULL) *nl = '\0';
+        strncpy(distro, ptr, length);
+      }
+      return;
+    } else if (get_first_line) {
+      char* nl = strchr(buf, '\n');
+      if (nl != NULL) *nl = '\0';
+      strncpy(distro, buf, length);
+      return;
+    }
+  }
+  // print last line and close
+  char* nl = strchr(buf, '\n');
+  if (nl != NULL) *nl = '\0';
+  strncpy(distro, buf, length);
+}
+
+static void parse_os_info(char* distro, size_t length, const char* file) {
+  FILE* fp = fopen(file, "r");
+  if (fp != NULL) {
+    // if suse format, print out first line
+    bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
+    parse_os_info_helper(fp, distro, length, get_first_line);
+    fclose(fp);
+  }
+}
+
+void os::get_summary_os_info(char* buf, size_t buflen) {
+  for (int i = 0;; i++) {
+    const char* file = distro_files[i];
+    if (file == NULL) {
+      break; // ran out of distro_files
+    }
+    if (file_exists(file)) {
+      parse_os_info(buf, buflen, file);
+      return;
+    }
+  }
+  // special case for debian
+  if (file_exists("/etc/debian_version")) {
+    strncpy(buf, "Debian ", buflen);
+    parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
+  } else {
+    strncpy(buf, "Linux", buflen);
+  }
+}
+
+void os::Linux::print_libversion_info(outputStream* st) {
+  // libc, pthread
+  st->print("libc:");
+  st->print("%s ", os::Linux::glibc_version());
+  st->print("%s ", os::Linux::libpthread_version());
+  st->cr();
+}
+
+void os::Linux::print_full_memory_info(outputStream* st) {
+  st->print("\n/proc/meminfo:\n");
+  _print_ascii_file("/proc/meminfo", st);
+  st->cr();
+}
+
+void os::print_memory_info(outputStream* st) {
+
+  st->print("Memory:");
+  st->print(" %dk page", os::vm_page_size()>>10);
+
+  // values in struct sysinfo are "unsigned long"
+  struct sysinfo si;
+  sysinfo(&si);
+
+  st->print(", physical " UINT64_FORMAT "k",
+            os::physical_memory() >> 10);
+  st->print("(" UINT64_FORMAT "k free)",
+            os::available_memory() >> 10);
+  st->print(", swap " UINT64_FORMAT "k",
+            ((jlong)si.totalswap * si.mem_unit) >> 10);
+  st->print("(" UINT64_FORMAT "k free)",
+            ((jlong)si.freeswap * si.mem_unit) >> 10);
+  st->cr();
+}
+
+// Print the first "model name" line and the first "flags" line
+// that we find and nothing more. We assume "model name" comes
+// before "flags" so if we find a second "model name", then the
+// "flags" field is considered missing.
+static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
+#if defined(IA32) || defined(AMD64)
+  // Other platforms have less repetitive cpuinfo files
+  FILE *fp = fopen("/proc/cpuinfo", "r");
+  if (fp) {
+    while (!feof(fp)) {
+      if (fgets(buf, buflen, fp)) {
+        // Assume model name comes before flags
+        bool model_name_printed = false;
+        if (strstr(buf, "model name") != NULL) {
+          if (!model_name_printed) {
+            st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
+            st->print_raw(buf);
+            model_name_printed = true;
+          } else {
+            // model name printed but not flags?  Odd, just return
+            fclose(fp);
+            return true;
+          }
+        }
+        // print the flags line too
+        if (strstr(buf, "flags") != NULL) {
+          st->print_raw(buf);
+          fclose(fp);
+          return true;
+        }
+      }
+    }
+    fclose(fp);
+  }
+#endif // x86 platforms
+  return false;
+}
+
+void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
+  // Only print the model name if the platform provides this as a summary
+  if (!print_model_name_and_flags(st, buf, buflen)) {
+    st->print("\n/proc/cpuinfo:\n");
+    if (!_print_ascii_file("/proc/cpuinfo", st)) {
+      st->print_cr("  <Not Available>");
+    }
+  }
+}
+
+#if defined(AMD64) || defined(IA32) || defined(X32)
+const char* search_string = "model name";
+#elif defined(M68K)
+const char* search_string = "CPU";
+#elif defined(PPC64)
+const char* search_string = "cpu";
+#elif defined(S390)
+const char* search_string = "processor";
+#elif defined(SPARC)
+const char* search_string = "cpu";
+#else
+const char* search_string = "Processor";
+#endif
+
+// Parses the cpuinfo file for string representing the model name.
+void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
+  FILE* fp = fopen("/proc/cpuinfo", "r");
+  if (fp != NULL) {
+    while (!feof(fp)) {
+      char buf[256];
+      if (fgets(buf, sizeof(buf), fp)) {
+        char* start = strstr(buf, search_string);
+        if (start != NULL) {
+          char *ptr = start + strlen(search_string);
+          char *end = buf + strlen(buf);
+          while (ptr != end) {
+             // skip whitespace and colon for the rest of the name.
+             if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
+               break;
+             }
+             ptr++;
+          }
+          if (ptr != end) {
+            // reasonable string, get rid of newline and keep the rest
+            char* nl = strchr(buf, '\n');
+            if (nl != NULL) *nl = '\0';
+            strncpy(cpuinfo, ptr, length);
+            fclose(fp);
+            return;
+          }
+        }
+      }
+    }
+    fclose(fp);
+  }
+  // cpuinfo not found or parsing failed, just print generic string.  The entire
+  // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
+#if   defined(AARCH64)
+  strncpy(cpuinfo, "AArch64", length);
+#elif defined(AMD64)
+  strncpy(cpuinfo, "x86_64", length);
+#elif defined(ARM)  // Order wrt. AARCH64 is relevant!
+  strncpy(cpuinfo, "ARM", length);
+#elif defined(IA32)
+  strncpy(cpuinfo, "x86_32", length);
+#elif defined(IA64)
+  strncpy(cpuinfo, "IA64", length);
+#elif defined(PPC)
+  strncpy(cpuinfo, "PPC64", length);
+#elif defined(S390)
+  strncpy(cpuinfo, "S390", length);
+#elif defined(SPARC)
+  strncpy(cpuinfo, "sparcv9", length);
+#elif defined(ZERO_LIBARCH)
+  strncpy(cpuinfo, ZERO_LIBARCH, length);
+#else
+  strncpy(cpuinfo, "unknown", length);
+#endif
+}
+
+static void print_signal_handler(outputStream* st, int sig,
+                                 char* buf, size_t buflen);
+
+void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
+  st->print_cr("Signal Handlers:");
+  print_signal_handler(st, SIGSEGV, buf, buflen);
+  print_signal_handler(st, SIGBUS , buf, buflen);
+  print_signal_handler(st, SIGFPE , buf, buflen);
+  print_signal_handler(st, SIGPIPE, buf, buflen);
+  print_signal_handler(st, SIGXFSZ, buf, buflen);
+  print_signal_handler(st, SIGILL , buf, buflen);
+  print_signal_handler(st, SR_signum, buf, buflen);
+  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
+  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
+  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
+  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
+#if defined(PPC64)
+  print_signal_handler(st, SIGTRAP, buf, buflen);
+#endif
+}
+
+static char saved_jvm_path[MAXPATHLEN] = {0};
+
+// Find the full path to the current module, libjvm.so
+void os::jvm_path(char *buf, jint buflen) {
+  // Error checking.
+  if (buflen < MAXPATHLEN) {
+    assert(false, "must use a large-enough buffer");
+    buf[0] = '\0';
+    return;
+  }
+  // Lazy resolve the path to current module.
+  if (saved_jvm_path[0] != 0) {
+    strcpy(buf, saved_jvm_path);
+    return;
+  }
+
+  char dli_fname[MAXPATHLEN];
+  bool ret = dll_address_to_library_name(
+                                         CAST_FROM_FN_PTR(address, os::jvm_path),
+                                         dli_fname, sizeof(dli_fname), NULL);
+  assert(ret, "cannot locate libjvm");
+  char *rp = NULL;
+  if (ret && dli_fname[0] != '\0') {
+    rp = os::Posix::realpath(dli_fname, buf, buflen);
+  }
+  if (rp == NULL) {
+    return;
+  }
+
+  if (Arguments::sun_java_launcher_is_altjvm()) {
+    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
+    // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
+    // If "/jre/lib/" appears at the right place in the string, then
+    // assume we are installed in a JDK and we're done. Otherwise, check
+    // for a JAVA_HOME environment variable and fix up the path so it
+    // looks like libjvm.so is installed there (append a fake suffix
+    // hotspot/libjvm.so).
+    const char *p = buf + strlen(buf) - 1;
+    for (int count = 0; p > buf && count < 5; ++count) {
+      for (--p; p > buf && *p != '/'; --p)
+        /* empty */ ;
+    }
+
+    if (strncmp(p, "/jre/lib/", 9) != 0) {
+      // Look for JAVA_HOME in the environment.
+      char* java_home_var = ::getenv("JAVA_HOME");
+      if (java_home_var != NULL && java_home_var[0] != 0) {
+        char* jrelib_p;
+        int len;
+
+        // Check the current module name "libjvm.so".
+        p = strrchr(buf, '/');
+        if (p == NULL) {
+          return;
+        }
+        assert(strstr(p, "/libjvm") == p, "invalid library name");
+
+        rp = os::Posix::realpath(java_home_var, buf, buflen);
+        if (rp == NULL) {
+          return;
+        }
+
+        // determine if this is a legacy image or modules image
+        // modules image doesn't have "jre" subdirectory
+        len = strlen(buf);
+        assert(len < buflen, "Ran out of buffer room");
+        jrelib_p = buf + len;
+        snprintf(jrelib_p, buflen-len, "/jre/lib");
+        if (0 != access(buf, F_OK)) {
+          snprintf(jrelib_p, buflen-len, "/lib");
+        }
+
+        if (0 == access(buf, F_OK)) {
+          // Use current module name "libjvm.so"
+          len = strlen(buf);
+          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
+        } else {
+          // Go back to path of .so
+          rp = os::Posix::realpath(dli_fname, buf, buflen);
+          if (rp == NULL) {
+            return;
+          }
+        }
+      }
+    }
+  }
+
+  strncpy(saved_jvm_path, buf, MAXPATHLEN);
+  saved_jvm_path[MAXPATHLEN - 1] = '\0';
+}
+
+void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
+  // no prefix required, not even "_"
+}
+
+void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
+  // no suffix required
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// sun.misc.Signal support
+
+static volatile jint sigint_count = 0;
+
+static void UserHandler(int sig, void *siginfo, void *context) {
+  // 4511530 - sem_post is serialized and handled by the manager thread. When
+  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
+  // don't want to flood the manager thread with sem_post requests.
+  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
+    return;
+  }
+
+  // Ctrl-C is pressed during error reporting, likely because the error
+  // handler fails to abort. Let VM die immediately.
+  if (sig == SIGINT && VMError::is_error_reported()) {
+    os::die();
+  }
+
+  os::signal_notify(sig);
+}
+
+void* os::user_handler() {
+  return CAST_FROM_FN_PTR(void*, UserHandler);
+}
+
+struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
+  struct timespec ts;
+  // Semaphore's are always associated with CLOCK_REALTIME
+  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
+  // see unpackTime for discussion on overflow checking
+  if (sec >= MAX_SECS) {
+    ts.tv_sec += MAX_SECS;
+    ts.tv_nsec = 0;
+  } else {
+    ts.tv_sec += sec;
+    ts.tv_nsec += nsec;
+    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
+      ts.tv_nsec -= NANOSECS_PER_SEC;
+      ++ts.tv_sec; // note: this must be <= max_secs
+    }
+  }
+
+  return ts;
+}
+
+extern "C" {
+  typedef void (*sa_handler_t)(int);
+  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
+}
+
+void* os::signal(int signal_number, void* handler) {
+  struct sigaction sigAct, oldSigAct;
+
+  sigfillset(&(sigAct.sa_mask));
+  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
+  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
+
+  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
+    // -1 means registration failed
+    return (void *)-1;
+  }
+
+  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
+}
+
+void os::signal_raise(int signal_number) {
+  ::raise(signal_number);
+}
+
+// The following code is moved from os.cpp for making this
+// code platform specific, which it is by its very nature.
+
+// Will be modified when max signal is changed to be dynamic
+int os::sigexitnum_pd() {
+  return NSIG;
+}
+
+// a counter for each possible signal value
+static volatile jint pending_signals[NSIG+1] = { 0 };
+
+// Linux(POSIX) specific hand shaking semaphore.
+static sem_t sig_sem;
+static PosixSemaphore sr_semaphore;
+
+void os::signal_init_pd() {
+  // Initialize signal structures
+  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
+
+  // Initialize signal semaphore
+  ::sem_init(&sig_sem, 0, 0);
+}
+
+void os::signal_notify(int sig) {
+  Atomic::inc(&pending_signals[sig]);
+  ::sem_post(&sig_sem);
+}
+
+static int check_pending_signals(bool wait) {
+  Atomic::store(0, &sigint_count);
+  for (;;) {
+    for (int i = 0; i < NSIG + 1; i++) {
+      jint n = pending_signals[i];
+      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
+        return i;
+      }
+    }
+    if (!wait) {
+      return -1;
+    }
+    JavaThread *thread = JavaThread::current();
+    ThreadBlockInVM tbivm(thread);
+
+    bool threadIsSuspended;
+    do {
+      thread->set_suspend_equivalent();
+      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
+      ::sem_wait(&sig_sem);
+
+      // were we externally suspended while we were waiting?
+      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
+      if (threadIsSuspended) {
+        // The semaphore has been incremented, but while we were waiting
+        // another thread suspended us. We don't want to continue running
+        // while suspended because that would surprise the thread that
+        // suspended us.
+        ::sem_post(&sig_sem);
+
+        thread->java_suspend_self();
+      }
+    } while (threadIsSuspended);
+  }
+}
+
+int os::signal_lookup() {
+  return check_pending_signals(false);
+}
+
+int os::signal_wait() {
+  return check_pending_signals(true);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Virtual Memory
+
+int os::vm_page_size() {
+  // Seems redundant as all get out
+  assert(os::Linux::page_size() != -1, "must call os::init");
+  return os::Linux::page_size();
+}
+
+// Solaris allocates memory by pages.
+int os::vm_allocation_granularity() {
+  assert(os::Linux::page_size() != -1, "must call os::init");
+  return os::Linux::page_size();
+}
+
+// Rationale behind this function:
+//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
+//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
+//  samples for JITted code. Here we create private executable mapping over the code cache
+//  and then we can use standard (well, almost, as mapping can change) way to provide
+//  info for the reporting script by storing timestamp and location of symbol
+void linux_wrap_code(char* base, size_t size) {
+  static volatile jint cnt = 0;
+
+  if (!UseOprofile) {
+    return;
+  }
+
+  char buf[PATH_MAX+1];
+  int num = Atomic::add(1, &cnt);
+
+  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
+           os::get_temp_directory(), os::current_process_id(), num);
+  unlink(buf);
+
+  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
+
+  if (fd != -1) {
+    off_t rv = ::lseek(fd, size-2, SEEK_SET);
+    if (rv != (off_t)-1) {
+      if (::write(fd, "", 1) == 1) {
+        mmap(base, size,
+             PROT_READ|PROT_WRITE|PROT_EXEC,
+             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
+      }
+    }
+    ::close(fd);
+    unlink(buf);
+  }
+}
+
+static bool recoverable_mmap_error(int err) {
+  // See if the error is one we can let the caller handle. This
+  // list of errno values comes from JBS-6843484. I can't find a
+  // Linux man page that documents this specific set of errno
+  // values so while this list currently matches Solaris, it may
+  // change as we gain experience with this failure mode.
+  switch (err) {
+  case EBADF:
+  case EINVAL:
+  case ENOTSUP:
+    // let the caller deal with these errors
+    return true;
+
+  default:
+    // Any remaining errors on this OS can cause our reserved mapping
+    // to be lost. That can cause confusion where different data
+    // structures think they have the same memory mapped. The worst
+    // scenario is if both the VM and a library think they have the
+    // same memory mapped.
+    return false;
+  }
+}
+
+static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
+                                    int err) {
+  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
+          ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
+          os::strerror(err), err);
+}
+
+static void warn_fail_commit_memory(char* addr, size_t size,
+                                    size_t alignment_hint, bool exec,
+                                    int err) {
+  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
+          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
+          alignment_hint, exec, os::strerror(err), err);
+}
+
+// NOTE: Linux kernel does not really reserve the pages for us.
+//       All it does is to check if there are enough free pages
+//       left at the time of mmap(). This could be a potential
+//       problem.
+int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
+  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
+  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
+                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
+  if (res != (uintptr_t) MAP_FAILED) {
+    if (UseNUMAInterleaving) {
+      numa_make_global(addr, size);
+    }
+    return 0;
+  }
+
+  int err = errno;  // save errno from mmap() call above
+
+  if (!recoverable_mmap_error(err)) {
+    warn_fail_commit_memory(addr, size, exec, err);
+    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
+  }
+
+  return err;
+}
+
+bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
+  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
+}
+
+void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
+                                  const char* mesg) {
+  assert(mesg != NULL, "mesg must be specified");
+  int err = os::Linux::commit_memory_impl(addr, size, exec);
+  if (err != 0) {
+    // the caller wants all commit errors to exit with the specified mesg:
+    warn_fail_commit_memory(addr, size, exec, err);
+    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
+  }
+}
+
+// Define MAP_HUGETLB here so we can build HotSpot on old systems.
+#ifndef MAP_HUGETLB
+  #define MAP_HUGETLB 0x40000
+#endif
+
+// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
+#ifndef MADV_HUGEPAGE
+  #define MADV_HUGEPAGE 14
+#endif
+
+int os::Linux::commit_memory_impl(char* addr, size_t size,
+                                  size_t alignment_hint, bool exec) {
+  int err = os::Linux::commit_memory_impl(addr, size, exec);
+  if (err == 0) {
+    realign_memory(addr, size, alignment_hint);
+  }
+  return err;
+}
+
+bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
+                          bool exec) {
+  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
+}
+
+void os::pd_commit_memory_or_exit(char* addr, size_t size,
+                                  size_t alignment_hint, bool exec,
+                                  const char* mesg) {
+  assert(mesg != NULL, "mesg must be specified");
+  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
+  if (err != 0) {
+    // the caller wants all commit errors to exit with the specified mesg:
+    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
+    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
+  }
+}
+
+void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
+  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
+    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
+    // be supported or the memory may already be backed by huge pages.
+    ::madvise(addr, bytes, MADV_HUGEPAGE);
+  }
+}
+
+void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
+  // This method works by doing an mmap over an existing mmaping and effectively discarding
+  // the existing pages. However it won't work for SHM-based large pages that cannot be
+  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
+  // small pages on top of the SHM segment. This method always works for small pages, so we
+  // allow that in any case.
+  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
+    commit_memory(addr, bytes, alignment_hint, !ExecMem);
+  }
+}
+
+void os::numa_make_global(char *addr, size_t bytes) {
+  Linux::numa_interleave_memory(addr, bytes);
+}
+
+// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
+// bind policy to MPOL_PREFERRED for the current thread.
+#define USE_MPOL_PREFERRED 0
+
+void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
+  // To make NUMA and large pages more robust when both enabled, we need to ease
+  // the requirements on where the memory should be allocated. MPOL_BIND is the
+  // default policy and it will force memory to be allocated on the specified
+  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
+  // the specified node, but will not force it. Using this policy will prevent
+  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
+  // free large pages.
+  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
+  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
+}
+
+bool os::numa_topology_changed() { return false; }
+
+size_t os::numa_get_groups_num() {
+  // Return just the number of nodes in which it's possible to allocate memory
+  // (in numa terminology, configured nodes).
+  return Linux::numa_num_configured_nodes();
+}
+
+int os::numa_get_group_id() {
+  int cpu_id = Linux::sched_getcpu();
+  if (cpu_id != -1) {
+    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
+    if (lgrp_id != -1) {
+      return lgrp_id;
+    }
+  }
+  return 0;
+}
+
+int os::Linux::get_existing_num_nodes() {
+  size_t node;
+  size_t highest_node_number = Linux::numa_max_node();
+  int num_nodes = 0;
+
+  // Get the total number of nodes in the system including nodes without memory.
+  for (node = 0; node <= highest_node_number; node++) {
+    if (isnode_in_existing_nodes(node)) {
+      num_nodes++;
+    }
+  }
+  return num_nodes;
+}
+
+size_t os::numa_get_leaf_groups(int *ids, size_t size) {
+  size_t highest_node_number = Linux::numa_max_node();
+  size_t i = 0;
+
+  // Map all node ids in which is possible to allocate memory. Also nodes are
+  // not always consecutively available, i.e. available from 0 to the highest
+  // node number.
+  for (size_t node = 0; node <= highest_node_number; node++) {
+    if (Linux::isnode_in_configured_nodes(node)) {
+      ids[i++] = node;
+    }
+  }
+  return i;
+}
+
+bool os::get_page_info(char *start, page_info* info) {
+  return false;
+}
+
+char *os::scan_pages(char *start, char* end, page_info* page_expected,
+                     page_info* page_found) {
+  return end;
+}
+
+
+int os::Linux::sched_getcpu_syscall(void) {
+  unsigned int cpu = 0;
+  int retval = -1;
+
+#if defined(IA32)
+  #ifndef SYS_getcpu
+    #define SYS_getcpu 318
+  #endif
+  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
+#elif defined(AMD64)
+// Unfortunately we have to bring all these macros here from vsyscall.h
+// to be able to compile on old linuxes.
+  #define __NR_vgetcpu 2
+  #define VSYSCALL_START (-10UL << 20)
+  #define VSYSCALL_SIZE 1024
+  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
+  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
+  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
+  retval = vgetcpu(&cpu, NULL, NULL);
+#endif
+
+  return (retval == -1) ? retval : cpu;
+}
+
+void os::Linux::sched_getcpu_init() {
+  // sched_getcpu() should be in libc.
+  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
+                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
+
+  // If it's not, try a direct syscall.
+  if (sched_getcpu() == -1) {
+    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
+                                    (void*)&sched_getcpu_syscall));
+  }
+}
+
+// Something to do with the numa-aware allocator needs these symbols
+extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
+extern "C" JNIEXPORT void numa_error(char *where) { }
+
+// Handle request to load libnuma symbol version 1.1 (API v1). If it fails
+// load symbol from base version instead.
+void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
+  void *f = dlvsym(handle, name, "libnuma_1.1");
+  if (f == NULL) {
+    f = dlsym(handle, name);
+  }
+  return f;
+}
+
+// Handle request to load libnuma symbol version 1.2 (API v2) only.
+// Return NULL if the symbol is not defined in this particular version.
+void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
+  return dlvsym(handle, name, "libnuma_1.2");
+}
+
+bool os::Linux::libnuma_init() {
+  if (sched_getcpu() != -1) { // Requires sched_getcpu() support
+    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
+    if (handle != NULL) {
+      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
+                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
+      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
+                                       libnuma_dlsym(handle, "numa_max_node")));
+      set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
+                                                   libnuma_dlsym(handle, "numa_num_configured_nodes")));
+      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
+                                        libnuma_dlsym(handle, "numa_available")));
+      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
+                                            libnuma_dlsym(handle, "numa_tonode_memory")));
+      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
+                                                libnuma_dlsym(handle, "numa_interleave_memory")));
+      set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
+                                                libnuma_v2_dlsym(handle, "numa_interleave_memory")));
+      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
+                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
+      set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
+                                               libnuma_dlsym(handle, "numa_bitmask_isbitset")));
+      set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
+                                       libnuma_dlsym(handle, "numa_distance")));
+
+      if (numa_available() != -1) {
+        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
+        set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
+        set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
+        // Create an index -> node mapping, since nodes are not always consecutive
+        _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
+        rebuild_nindex_to_node_map();
+        // Create a cpu -> node mapping
+        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
+        rebuild_cpu_to_node_map();
+        return true;
+      }
+    }
+  }
+  return false;
+}
+
+size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
+  // Creating guard page is very expensive. Java thread has HotSpot
+  // guard pages, only enable glibc guard page for non-Java threads.
+  // (Remember: compiler thread is a Java thread, too!)
+  return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
+}
+
+void os::Linux::rebuild_nindex_to_node_map() {
+  int highest_node_number = Linux::numa_max_node();
+
+  nindex_to_node()->clear();
+  for (int node = 0; node <= highest_node_number; node++) {
+    if (Linux::isnode_in_existing_nodes(node)) {
+      nindex_to_node()->append(node);
+    }
+  }
+}
+
+// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
+// The table is later used in get_node_by_cpu().
+void os::Linux::rebuild_cpu_to_node_map() {
+  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
+                              // in libnuma (possible values are starting from 16,
+                              // and continuing up with every other power of 2, but less
+                              // than the maximum number of CPUs supported by kernel), and
+                              // is a subject to change (in libnuma version 2 the requirements
+                              // are more reasonable) we'll just hardcode the number they use
+                              // in the library.
+  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
+
+  size_t cpu_num = processor_count();
+  size_t cpu_map_size = NCPUS / BitsPerCLong;
+  size_t cpu_map_valid_size =
+    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
+
+  cpu_to_node()->clear();
+  cpu_to_node()->at_grow(cpu_num - 1);
+
+  size_t node_num = get_existing_num_nodes();
+
+  int distance = 0;
+  int closest_distance = INT_MAX;
+  int closest_node = 0;
+  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
+  for (size_t i = 0; i < node_num; i++) {
+    // Check if node is configured (not a memory-less node). If it is not, find
+    // the closest configured node.
+    if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
+      closest_distance = INT_MAX;
+      // Check distance from all remaining nodes in the system. Ignore distance
+      // from itself and from another non-configured node.
+      for (size_t m = 0; m < node_num; m++) {
+        if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
+          distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
+          // If a closest node is found, update. There is always at least one
+          // configured node in the system so there is always at least one node
+          // close.
+          if (distance != 0 && distance < closest_distance) {
+            closest_distance = distance;
+            closest_node = nindex_to_node()->at(m);
+          }
+        }
+      }
+     } else {
+       // Current node is already a configured node.
+       closest_node = nindex_to_node()->at(i);
+     }
+
+    // Get cpus from the original node and map them to the closest node. If node
+    // is a configured node (not a memory-less node), then original node and
+    // closest node are the same.
+    if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
+      for (size_t j = 0; j < cpu_map_valid_size; j++) {
+        if (cpu_map[j] != 0) {
+          for (size_t k = 0; k < BitsPerCLong; k++) {
+            if (cpu_map[j] & (1UL << k)) {
+              cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
+            }
+          }
+        }
+      }
+    }
+  }
+  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
+}
+
+int os::Linux::get_node_by_cpu(int cpu_id) {
+  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
+    return cpu_to_node()->at(cpu_id);
+  }
+  return -1;
+}
+
+GrowableArray<int>* os::Linux::_cpu_to_node;
+GrowableArray<int>* os::Linux::_nindex_to_node;
+os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
+os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
+os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
+os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
+os::Linux::numa_available_func_t os::Linux::_numa_available;
+os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
+os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
+os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
+os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
+os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
+os::Linux::numa_distance_func_t os::Linux::_numa_distance;
+unsigned long* os::Linux::_numa_all_nodes;
+struct bitmask* os::Linux::_numa_all_nodes_ptr;
+struct bitmask* os::Linux::_numa_nodes_ptr;
+
+bool os::pd_uncommit_memory(char* addr, size_t size) {
+  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
+                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
+  return res  != (uintptr_t) MAP_FAILED;
+}
+
+static address get_stack_commited_bottom(address bottom, size_t size) {
+  address nbot = bottom;
+  address ntop = bottom + size;
+
+  size_t page_sz = os::vm_page_size();
+  unsigned pages = size / page_sz;
+
+  unsigned char vec[1];
+  unsigned imin = 1, imax = pages + 1, imid;
+  int mincore_return_value = 0;
+
+  assert(imin <= imax, "Unexpected page size");
+
+  while (imin < imax) {
+    imid = (imax + imin) / 2;
+    nbot = ntop - (imid * page_sz);
+
+    // Use a trick with mincore to check whether the page is mapped or not.
+    // mincore sets vec to 1 if page resides in memory and to 0 if page
+    // is swapped output but if page we are asking for is unmapped
+    // it returns -1,ENOMEM
+    mincore_return_value = mincore(nbot, page_sz, vec);
+
+    if (mincore_return_value == -1) {
+      // Page is not mapped go up
+      // to find first mapped page
+      if (errno != EAGAIN) {
+        assert(errno == ENOMEM, "Unexpected mincore errno");
+        imax = imid;
+      }
+    } else {
+      // Page is mapped go down
+      // to find first not mapped page
+      imin = imid + 1;
+    }
+  }
+
+  nbot = nbot + page_sz;
+
+  // Adjust stack bottom one page up if last checked page is not mapped
+  if (mincore_return_value == -1) {
+    nbot = nbot + page_sz;
+  }
+
+  return nbot;
+}
+
+
+// Linux uses a growable mapping for the stack, and if the mapping for
+// the stack guard pages is not removed when we detach a thread the
+// stack cannot grow beyond the pages where the stack guard was
+// mapped.  If at some point later in the process the stack expands to
+// that point, the Linux kernel cannot expand the stack any further
+// because the guard pages are in the way, and a segfault occurs.
+//
+// However, it's essential not to split the stack region by unmapping
+// a region (leaving a hole) that's already part of the stack mapping,
+// so if the stack mapping has already grown beyond the guard pages at
+// the time we create them, we have to truncate the stack mapping.
+// So, we need to know the extent of the stack mapping when
+// create_stack_guard_pages() is called.
+
+// We only need this for stacks that are growable: at the time of
+// writing thread stacks don't use growable mappings (i.e. those
+// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
+// only applies to the main thread.
+
+// If the (growable) stack mapping already extends beyond the point
+// where we're going to put our guard pages, truncate the mapping at
+// that point by munmap()ping it.  This ensures that when we later
+// munmap() the guard pages we don't leave a hole in the stack
+// mapping. This only affects the main/initial thread
+
+bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
+  if (os::Linux::is_initial_thread()) {
+    // As we manually grow stack up to bottom inside create_attached_thread(),
+    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
+    // we don't need to do anything special.
+    // Check it first, before calling heavy function.
+    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
+    unsigned char vec[1];
+
+    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
+      // Fallback to slow path on all errors, including EAGAIN
+      stack_extent = (uintptr_t) get_stack_commited_bottom(
+                                                           os::Linux::initial_thread_stack_bottom(),
+                                                           (size_t)addr - stack_extent);
+    }
+
+    if (stack_extent < (uintptr_t)addr) {
+      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
+    }
+  }
+
+  return os::commit_memory(addr, size, !ExecMem);
+}
+
+// If this is a growable mapping, remove the guard pages entirely by
+// munmap()ping them.  If not, just call uncommit_memory(). This only
+// affects the main/initial thread, but guard against future OS changes
+// It's safe to always unmap guard pages for initial thread because we
+// always place it right after end of the mapped region
+
+bool os::remove_stack_guard_pages(char* addr, size_t size) {
+  uintptr_t stack_extent, stack_base;
+
+  if (os::Linux::is_initial_thread()) {
+    return ::munmap(addr, size) == 0;
+  }
+
+  return os::uncommit_memory(addr, size);
+}
+
+// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
+// at 'requested_addr'. If there are existing memory mappings at the same
+// location, however, they will be overwritten. If 'fixed' is false,
+// 'requested_addr' is only treated as a hint, the return value may or
+// may not start from the requested address. Unlike Linux mmap(), this
+// function returns NULL to indicate failure.
+static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
+  char * addr;
+  int flags;
+
+  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
+  if (fixed) {
+    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
+    flags |= MAP_FIXED;
+  }
+
+  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
+  // touch an uncommitted page. Otherwise, the read/write might
+  // succeed if we have enough swap space to back the physical page.
+  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
+                       flags, -1, 0);
+
+  return addr == MAP_FAILED ? NULL : addr;
+}
+
+// Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
+//   (req_addr != NULL) or with a given alignment.
+//  - bytes shall be a multiple of alignment.
+//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
+//  - alignment sets the alignment at which memory shall be allocated.
+//     It must be a multiple of allocation granularity.
+// Returns address of memory or NULL. If req_addr was not NULL, will only return
+//  req_addr or NULL.
+static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
+
+  size_t extra_size = bytes;
+  if (req_addr == NULL && alignment > 0) {
+    extra_size += alignment;
+  }
+
+  char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
+    MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
+    -1, 0);
+  if (start == MAP_FAILED) {
+    start = NULL;
+  } else {
+    if (req_addr != NULL) {
+      if (start != req_addr) {
+        ::munmap(start, extra_size);
+        start = NULL;
+      }
+    } else {
+      char* const start_aligned = align_up(start, alignment);
+      char* const end_aligned = start_aligned + bytes;
+      char* const end = start + extra_size;
+      if (start_aligned > start) {
+        ::munmap(start, start_aligned - start);
+      }
+      if (end_aligned < end) {
+        ::munmap(end_aligned, end - end_aligned);
+      }
+      start = start_aligned;
+    }
+  }
+  return start;
+}
+
+static int anon_munmap(char * addr, size_t size) {
+  return ::munmap(addr, size) == 0;
+}
+
+char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
+                            size_t alignment_hint) {
+  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
+}
+
+bool os::pd_release_memory(char* addr, size_t size) {
+  return anon_munmap(addr, size);
+}
+
+static bool linux_mprotect(char* addr, size_t size, int prot) {
+  // Linux wants the mprotect address argument to be page aligned.
+  char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
+
+  // According to SUSv3, mprotect() should only be used with mappings
+  // established by mmap(), and mmap() always maps whole pages. Unaligned
+  // 'addr' likely indicates problem in the VM (e.g. trying to change
+  // protection of malloc'ed or statically allocated memory). Check the
+  // caller if you hit this assert.
+  assert(addr == bottom, "sanity check");
+
+  size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
+  return ::mprotect(bottom, size, prot) == 0;
+}
+
+// Set protections specified
+bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
+                        bool is_committed) {
+  unsigned int p = 0;
+  switch (prot) {
+  case MEM_PROT_NONE: p = PROT_NONE; break;
+  case MEM_PROT_READ: p = PROT_READ; break;
+  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
+  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
+  default:
+    ShouldNotReachHere();
+  }
+  // is_committed is unused.
+  return linux_mprotect(addr, bytes, p);
+}
+
+bool os::guard_memory(char* addr, size_t size) {
+  return linux_mprotect(addr, size, PROT_NONE);
+}
+
+bool os::unguard_memory(char* addr, size_t size) {
+  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
+}
+
+bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
+                                                    size_t page_size) {
+  bool result = false;
+  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
+                 MAP_ANONYMOUS|MAP_PRIVATE,
+                 -1, 0);
+  if (p != MAP_FAILED) {
+    void *aligned_p = align_up(p, page_size);
+
+    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
+
+    munmap(p, page_size * 2);
+  }
+
+  if (warn && !result) {
+    warning("TransparentHugePages is not supported by the operating system.");
+  }
+
+  return result;
+}
+
+bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
+  bool result = false;
+  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
+                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
+                 -1, 0);
+
+  if (p != MAP_FAILED) {
+    // We don't know if this really is a huge page or not.
+    FILE *fp = fopen("/proc/self/maps", "r");
+    if (fp) {
+      while (!feof(fp)) {
+        char chars[257];
+        long x = 0;
+        if (fgets(chars, sizeof(chars), fp)) {
+          if (sscanf(chars, "%lx-%*x", &x) == 1
+              && x == (long)p) {
+            if (strstr (chars, "hugepage")) {
+              result = true;
+              break;
+            }
+          }
+        }
+      }
+      fclose(fp);
+    }
+    munmap(p, page_size);
+  }
+
+  if (warn && !result) {
+    warning("HugeTLBFS is not supported by the operating system.");
+  }
+
+  return result;
+}
+
+// Set the coredump_filter bits to include largepages in core dump (bit 6)
+//
+// From the coredump_filter documentation:
+//
+// - (bit 0) anonymous private memory
+// - (bit 1) anonymous shared memory
+// - (bit 2) file-backed private memory
+// - (bit 3) file-backed shared memory
+// - (bit 4) ELF header pages in file-backed private memory areas (it is
+//           effective only if the bit 2 is cleared)
+// - (bit 5) hugetlb private memory
+// - (bit 6) hugetlb shared memory
+//
+static void set_coredump_filter(void) {
+  FILE *f;
+  long cdm;
+
+  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
+    return;
+  }
+
+  if (fscanf(f, "%lx", &cdm) != 1) {
+    fclose(f);
+    return;
+  }
+
+  rewind(f);
+
+  if ((cdm & LARGEPAGES_BIT) == 0) {
+    cdm |= LARGEPAGES_BIT;
+    fprintf(f, "%#lx", cdm);
+  }
+
+  fclose(f);
+}
+
+// Large page support
+
+static size_t _large_page_size = 0;
+
+size_t os::Linux::find_large_page_size() {
+  size_t large_page_size = 0;
+
+  // large_page_size on Linux is used to round up heap size. x86 uses either
+  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
+  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
+  // page as large as 256M.
+  //
+  // Here we try to figure out page size by parsing /proc/meminfo and looking
+  // for a line with the following format:
+  //    Hugepagesize:     2048 kB
+  //
+  // If we can't determine the value (e.g. /proc is not mounted, or the text
+  // format has been changed), we'll use the largest page size supported by
+  // the processor.
+
+#ifndef ZERO
+  large_page_size =
+    AARCH64_ONLY(2 * M)
+    AMD64_ONLY(2 * M)
+    ARM32_ONLY(2 * M)
+    IA32_ONLY(4 * M)
+    IA64_ONLY(256 * M)
+    PPC_ONLY(4 * M)
+    S390_ONLY(1 * M)
+    SPARC_ONLY(4 * M);
+#endif // ZERO
+
+  FILE *fp = fopen("/proc/meminfo", "r");
+  if (fp) {
+    while (!feof(fp)) {
+      int x = 0;
+      char buf[16];
+      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
+        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
+          large_page_size = x * K;
+          break;
+        }
+      } else {
+        // skip to next line
+        for (;;) {
+          int ch = fgetc(fp);
+          if (ch == EOF || ch == (int)'\n') break;
+        }
+      }
+    }
+    fclose(fp);
+  }
+
+  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
+    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
+            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
+            proper_unit_for_byte_size(large_page_size));
+  }
+
+  return large_page_size;
+}
+
+size_t os::Linux::setup_large_page_size() {
+  _large_page_size = Linux::find_large_page_size();
+  const size_t default_page_size = (size_t)Linux::page_size();
+  if (_large_page_size > default_page_size) {
+    _page_sizes[0] = _large_page_size;
+    _page_sizes[1] = default_page_size;
+    _page_sizes[2] = 0;
+  }
+
+  return _large_page_size;
+}
+
+bool os::Linux::setup_large_page_type(size_t page_size) {
+  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
+      FLAG_IS_DEFAULT(UseSHM) &&
+      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
+
+    // The type of large pages has not been specified by the user.
+
+    // Try UseHugeTLBFS and then UseSHM.
+    UseHugeTLBFS = UseSHM = true;
+
+    // Don't try UseTransparentHugePages since there are known
+    // performance issues with it turned on. This might change in the future.
+    UseTransparentHugePages = false;
+  }
+
+  if (UseTransparentHugePages) {
+    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
+    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
+      UseHugeTLBFS = false;
+      UseSHM = false;
+      return true;
+    }
+    UseTransparentHugePages = false;
+  }
+
+  if (UseHugeTLBFS) {
+    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
+    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
+      UseSHM = false;
+      return true;
+    }
+    UseHugeTLBFS = false;
+  }
+
+  return UseSHM;
+}
+
+void os::large_page_init() {
+  if (!UseLargePages &&
+      !UseTransparentHugePages &&
+      !UseHugeTLBFS &&
+      !UseSHM) {
+    // Not using large pages.
+    return;
+  }
+
+  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
+    // The user explicitly turned off large pages.
+    // Ignore the rest of the large pages flags.
+    UseTransparentHugePages = false;
+    UseHugeTLBFS = false;
+    UseSHM = false;
+    return;
+  }
+
+  size_t large_page_size = Linux::setup_large_page_size();
+  UseLargePages          = Linux::setup_large_page_type(large_page_size);
+
+  set_coredump_filter();
+}
+
+#ifndef SHM_HUGETLB
+  #define SHM_HUGETLB 04000
+#endif
+
+#define shm_warning_format(format, ...)              \
+  do {                                               \
+    if (UseLargePages &&                             \
+        (!FLAG_IS_DEFAULT(UseLargePages) ||          \
+         !FLAG_IS_DEFAULT(UseSHM) ||                 \
+         !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
+      warning(format, __VA_ARGS__);                  \
+    }                                                \
+  } while (0)
+
+#define shm_warning(str) shm_warning_format("%s", str)
+
+#define shm_warning_with_errno(str)                \
+  do {                                             \
+    int err = errno;                               \
+    shm_warning_format(str " (error = %d)", err);  \
+  } while (0)
+
+static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
+  assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
+
+  if (!is_aligned(alignment, SHMLBA)) {
+    assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
+    return NULL;
+  }
+
+  // To ensure that we get 'alignment' aligned memory from shmat,
+  // we pre-reserve aligned virtual memory and then attach to that.
+
+  char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
+  if (pre_reserved_addr == NULL) {
+    // Couldn't pre-reserve aligned memory.
+    shm_warning("Failed to pre-reserve aligned memory for shmat.");
+    return NULL;
+  }
+
+  // SHM_REMAP is needed to allow shmat to map over an existing mapping.
+  char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
+
+  if ((intptr_t)addr == -1) {
+    int err = errno;
+    shm_warning_with_errno("Failed to attach shared memory.");
+
+    assert(err != EACCES, "Unexpected error");
+    assert(err != EIDRM,  "Unexpected error");
+    assert(err != EINVAL, "Unexpected error");
+
+    // Since we don't know if the kernel unmapped the pre-reserved memory area
+    // we can't unmap it, since that would potentially unmap memory that was
+    // mapped from other threads.
+    return NULL;
+  }
+
+  return addr;
+}
+
+static char* shmat_at_address(int shmid, char* req_addr) {
+  if (!is_aligned(req_addr, SHMLBA)) {
+    assert(false, "Requested address needs to be SHMLBA aligned");
+    return NULL;
+  }
+
+  char* addr = (char*)shmat(shmid, req_addr, 0);
+
+  if ((intptr_t)addr == -1) {
+    shm_warning_with_errno("Failed to attach shared memory.");
+    return NULL;
+  }
+
+  return addr;
+}
+
+static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
+  // If a req_addr has been provided, we assume that the caller has already aligned the address.
+  if (req_addr != NULL) {
+    assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
+    assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
+    return shmat_at_address(shmid, req_addr);
+  }
+
+  // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
+  // return large page size aligned memory addresses when req_addr == NULL.
+  // However, if the alignment is larger than the large page size, we have
+  // to manually ensure that the memory returned is 'alignment' aligned.
+  if (alignment > os::large_page_size()) {
+    assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
+    return shmat_with_alignment(shmid, bytes, alignment);
+  } else {
+    return shmat_at_address(shmid, NULL);
+  }
+}
+
+char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
+                                            char* req_addr, bool exec) {
+  // "exec" is passed in but not used.  Creating the shared image for
+  // the code cache doesn't have an SHM_X executable permission to check.
+  assert(UseLargePages && UseSHM, "only for SHM large pages");
+  assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
+  assert(is_aligned(req_addr, alignment), "Unaligned address");
+
+  if (!is_aligned(bytes, os::large_page_size())) {
+    return NULL; // Fallback to small pages.
+  }
+
+  // Create a large shared memory region to attach to based on size.
+  // Currently, size is the total size of the heap.
+  int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
+  if (shmid == -1) {
+    // Possible reasons for shmget failure:
+    // 1. shmmax is too small for Java heap.
+    //    > check shmmax value: cat /proc/sys/kernel/shmmax
+    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
+    // 2. not enough large page memory.
+    //    > check available large pages: cat /proc/meminfo
+    //    > increase amount of large pages:
+    //          echo new_value > /proc/sys/vm/nr_hugepages
+    //      Note 1: different Linux may use different name for this property,
+    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
+    //      Note 2: it's possible there's enough physical memory available but
+    //            they are so fragmented after a long run that they can't
+    //            coalesce into large pages. Try to reserve large pages when
+    //            the system is still "fresh".
+    shm_warning_with_errno("Failed to reserve shared memory.");
+    return NULL;
+  }
+
+  // Attach to the region.
+  char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
+
+  // Remove shmid. If shmat() is successful, the actual shared memory segment
+  // will be deleted when it's detached by shmdt() or when the process
+  // terminates. If shmat() is not successful this will remove the shared
+  // segment immediately.
+  shmctl(shmid, IPC_RMID, NULL);
+
+  return addr;
+}
+
+static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
+                                        int error) {
+  assert(error == ENOMEM, "Only expect to fail if no memory is available");
+
+  bool warn_on_failure = UseLargePages &&
+      (!FLAG_IS_DEFAULT(UseLargePages) ||
+       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
+       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
+
+  if (warn_on_failure) {
+    char msg[128];
+    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
+                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
+    warning("%s", msg);
+  }
+}
+
+char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
+                                                        char* req_addr,
+                                                        bool exec) {
+  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
+  assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
+  assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
+
+  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
+  char* addr = (char*)::mmap(req_addr, bytes, prot,
+                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
+                             -1, 0);
+
+  if (addr == MAP_FAILED) {
+    warn_on_large_pages_failure(req_addr, bytes, errno);
+    return NULL;
+  }
+
+  assert(is_aligned(addr, os::large_page_size()), "Must be");
+
+  return addr;
+}
+
+// Reserve memory using mmap(MAP_HUGETLB).
+//  - bytes shall be a multiple of alignment.
+//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
+//  - alignment sets the alignment at which memory shall be allocated.
+//     It must be a multiple of allocation granularity.
+// Returns address of memory or NULL. If req_addr was not NULL, will only return
+//  req_addr or NULL.
+char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
+                                                         size_t alignment,
+                                                         char* req_addr,
+                                                         bool exec) {
+  size_t large_page_size = os::large_page_size();
+  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
+
+  assert(is_aligned(req_addr, alignment), "Must be");
+  assert(is_aligned(bytes, alignment), "Must be");
+
+  // First reserve - but not commit - the address range in small pages.
+  char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
+
+  if (start == NULL) {
+    return NULL;
+  }
+
+  assert(is_aligned(start, alignment), "Must be");
+
+  char* end = start + bytes;
+
+  // Find the regions of the allocated chunk that can be promoted to large pages.
+  char* lp_start = align_up(start, large_page_size);
+  char* lp_end   = align_down(end, large_page_size);
+
+  size_t lp_bytes = lp_end - lp_start;
+
+  assert(is_aligned(lp_bytes, large_page_size), "Must be");
+
+  if (lp_bytes == 0) {
+    // The mapped region doesn't even span the start and the end of a large page.
+    // Fall back to allocate a non-special area.
+    ::munmap(start, end - start);
+    return NULL;
+  }
+
+  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
+
+  void* result;
+
+  // Commit small-paged leading area.
+  if (start != lp_start) {
+    result = ::mmap(start, lp_start - start, prot,
+                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
+                    -1, 0);
+    if (result == MAP_FAILED) {
+      ::munmap(lp_start, end - lp_start);
+      return NULL;
+    }
+  }
+
+  // Commit large-paged area.
+  result = ::mmap(lp_start, lp_bytes, prot,
+                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
+                  -1, 0);
+  if (result == MAP_FAILED) {
+    warn_on_large_pages_failure(lp_start, lp_bytes, errno);
+    // If the mmap above fails, the large pages region will be unmapped and we
+    // have regions before and after with small pages. Release these regions.
+    //
+    // |  mapped  |  unmapped  |  mapped  |
+    // ^          ^            ^          ^
+    // start      lp_start     lp_end     end
+    //
+    ::munmap(start, lp_start - start);
+    ::munmap(lp_end, end - lp_end);
+    return NULL;
+  }
+
+  // Commit small-paged trailing area.
+  if (lp_end != end) {
+    result = ::mmap(lp_end, end - lp_end, prot,
+                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
+                    -1, 0);
+    if (result == MAP_FAILED) {
+      ::munmap(start, lp_end - start);
+      return NULL;
+    }
+  }
+
+  return start;
+}
+
+char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
+                                                   size_t alignment,
+                                                   char* req_addr,
+                                                   bool exec) {
+  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
+  assert(is_aligned(req_addr, alignment), "Must be");
+  assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
+  assert(is_power_of_2(os::large_page_size()), "Must be");
+  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
+
+  if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
+    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
+  } else {
+    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
+  }
+}
+
+char* os::reserve_memory_special(size_t bytes, size_t alignment,
+                                 char* req_addr, bool exec) {
+  assert(UseLargePages, "only for large pages");
+
+  char* addr;
+  if (UseSHM) {
+    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
+  } else {
+    assert(UseHugeTLBFS, "must be");
+    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
+  }
+
+  if (addr != NULL) {
+    if (UseNUMAInterleaving) {
+      numa_make_global(addr, bytes);
+    }
+
+    // The memory is committed
+    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
+  }
+
+  return addr;
+}
+
+bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
+  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
+  return shmdt(base) == 0;
+}
+
+bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
+  return pd_release_memory(base, bytes);
+}
+
+bool os::release_memory_special(char* base, size_t bytes) {
+  bool res;
+  if (MemTracker::tracking_level() > NMT_minimal) {
+    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
+    res = os::Linux::release_memory_special_impl(base, bytes);
+    if (res) {
+      tkr.record((address)base, bytes);
+    }
+
+  } else {
+    res = os::Linux::release_memory_special_impl(base, bytes);
+  }
+  return res;
+}
+
+bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
+  assert(UseLargePages, "only for large pages");
+  bool res;
+
+  if (UseSHM) {
+    res = os::Linux::release_memory_special_shm(base, bytes);
+  } else {
+    assert(UseHugeTLBFS, "must be");
+    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
+  }
+  return res;
+}
+
+size_t os::large_page_size() {
+  return _large_page_size;
+}
+
+// With SysV SHM the entire memory region must be allocated as shared
+// memory.
+// HugeTLBFS allows application to commit large page memory on demand.
+// However, when committing memory with HugeTLBFS fails, the region
+// that was supposed to be committed will lose the old reservation
+// and allow other threads to steal that memory region. Because of this
+// behavior we can't commit HugeTLBFS memory.
+bool os::can_commit_large_page_memory() {
+  return UseTransparentHugePages;
+}
+
+bool os::can_execute_large_page_memory() {
+  return UseTransparentHugePages || UseHugeTLBFS;
+}
+
+// Reserve memory at an arbitrary address, only if that area is
+// available (and not reserved for something else).
+
+char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
+  const int max_tries = 10;
+  char* base[max_tries];
+  size_t size[max_tries];
+  const size_t gap = 0x000000;
+
+  // Assert only that the size is a multiple of the page size, since
+  // that's all that mmap requires, and since that's all we really know
+  // about at this low abstraction level.  If we need higher alignment,
+  // we can either pass an alignment to this method or verify alignment
+  // in one of the methods further up the call chain.  See bug 5044738.
+  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
+
+  // Repeatedly allocate blocks until the block is allocated at the
+  // right spot.
+
+  // Linux mmap allows caller to pass an address as hint; give it a try first,
+  // if kernel honors the hint then we can return immediately.
+  char * addr = anon_mmap(requested_addr, bytes, false);
+  if (addr == requested_addr) {
+    return requested_addr;
+  }
+
+  if (addr != NULL) {
+    // mmap() is successful but it fails to reserve at the requested address
+    anon_munmap(addr, bytes);
+  }
+
+  int i;
+  for (i = 0; i < max_tries; ++i) {
+    base[i] = reserve_memory(bytes);
+
+    if (base[i] != NULL) {
+      // Is this the block we wanted?
+      if (base[i] == requested_addr) {
+        size[i] = bytes;
+        break;
+      }
+
+      // Does this overlap the block we wanted? Give back the overlapped
+      // parts and try again.
+
+      ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
+      if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
+        unmap_memory(base[i], top_overlap);
+        base[i] += top_overlap;
+        size[i] = bytes - top_overlap;
+      } else {
+        ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
+        if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
+          unmap_memory(requested_addr, bottom_overlap);
+          size[i] = bytes - bottom_overlap;
+        } else {
+          size[i] = bytes;
+        }
+      }
+    }
+  }
+
+  // Give back the unused reserved pieces.
+
+  for (int j = 0; j < i; ++j) {
+    if (base[j] != NULL) {
+      unmap_memory(base[j], size[j]);
+    }
+  }
+
+  if (i < max_tries) {
+    return requested_addr;
+  } else {
+    return NULL;
+  }
+}
+
+size_t os::read(int fd, void *buf, unsigned int nBytes) {
+  return ::read(fd, buf, nBytes);
+}
+
+size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
+  return ::pread(fd, buf, nBytes, offset);
+}
+
+// Short sleep, direct OS call.
+//
+// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
+// sched_yield(2) will actually give up the CPU:
+//
+//   * Alone on this pariticular CPU, keeps running.
+//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
+//     (pre 2.6.39).
+//
+// So calling this with 0 is an alternative.
+//
+void os::naked_short_sleep(jlong ms) {
+  struct timespec req;
+
+  assert(ms < 1000, "Un-interruptable sleep, short time use only");
+  req.tv_sec = 0;
+  if (ms > 0) {
+    req.tv_nsec = (ms % 1000) * 1000000;
+  } else {
+    req.tv_nsec = 1;
+  }
+
+  nanosleep(&req, NULL);
+
+  return;
+}
+
+// Sleep forever; naked call to OS-specific sleep; use with CAUTION
+void os::infinite_sleep() {
+  while (true) {    // sleep forever ...
+    ::sleep(100);   // ... 100 seconds at a time
+  }
+}
+
+// Used to convert frequent JVM_Yield() to nops
+bool os::dont_yield() {
+  return DontYieldALot;
+}
+
+void os::naked_yield() {
+  sched_yield();
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// thread priority support
+
+// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
+// only supports dynamic priority, static priority must be zero. For real-time
+// applications, Linux supports SCHED_RR which allows static priority (1-99).
+// However, for large multi-threaded applications, SCHED_RR is not only slower
+// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
+// of 5 runs - Sep 2005).
+//
+// The following code actually changes the niceness of kernel-thread/LWP. It
+// has an assumption that setpriority() only modifies one kernel-thread/LWP,
+// not the entire user process, and user level threads are 1:1 mapped to kernel
+// threads. It has always been the case, but could change in the future. For
+// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
+// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
+
+int os::java_to_os_priority[CriticalPriority + 1] = {
+  19,              // 0 Entry should never be used
+
+   4,              // 1 MinPriority
+   3,              // 2
+   2,              // 3
+
+   1,              // 4
+   0,              // 5 NormPriority
+  -1,              // 6
+
+  -2,              // 7
+  -3,              // 8
+  -4,              // 9 NearMaxPriority
+
+  -5,              // 10 MaxPriority
+
+  -5               // 11 CriticalPriority
+};
+
+static int prio_init() {
+  if (ThreadPriorityPolicy == 1) {
+    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
+    // if effective uid is not root. Perhaps, a more elegant way of doing
+    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
+    if (geteuid() != 0) {
+      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
+        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
+      }
+      ThreadPriorityPolicy = 0;
+    }
+  }
+  if (UseCriticalJavaThreadPriority) {
+    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
+  }
+  return 0;
+}
+
+OSReturn os::set_native_priority(Thread* thread, int newpri) {
+  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
+
+  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
+  return (ret == 0) ? OS_OK : OS_ERR;
+}
+
+OSReturn os::get_native_priority(const Thread* const thread,
+                                 int *priority_ptr) {
+  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
+    *priority_ptr = java_to_os_priority[NormPriority];
+    return OS_OK;
+  }
+
+  errno = 0;
+  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
+  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
+}
+
+// Hint to the underlying OS that a task switch would not be good.
+// Void return because it's a hint and can fail.
+void os::hint_no_preempt() {}
+
+////////////////////////////////////////////////////////////////////////////////
+// suspend/resume support
+
+//  The low-level signal-based suspend/resume support is a remnant from the
+//  old VM-suspension that used to be for java-suspension, safepoints etc,
+//  within hotspot. Currently used by JFR's OSThreadSampler
+//
+//  The remaining code is greatly simplified from the more general suspension
+//  code that used to be used.
+//
+//  The protocol is quite simple:
+//  - suspend:
+//      - sends a signal to the target thread
+//      - polls the suspend state of the osthread using a yield loop
+//      - target thread signal handler (SR_handler) sets suspend state
+//        and blocks in sigsuspend until continued
+//  - resume:
+//      - sets target osthread state to continue
+//      - sends signal to end the sigsuspend loop in the SR_handler
+//
+//  Note that the SR_lock plays no role in this suspend/resume protocol,
+//  but is checked for NULL in SR_handler as a thread termination indicator.
+//  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
+//
+//  Note that resume_clear_context() and suspend_save_context() are needed
+//  by SR_handler(), so that fetch_frame_from_ucontext() works,
+//  which in part is used by:
+//    - Forte Analyzer: AsyncGetCallTrace()
+//    - StackBanging: get_frame_at_stack_banging_point()
+
+static void resume_clear_context(OSThread *osthread) {
+  osthread->set_ucontext(NULL);
+  osthread->set_siginfo(NULL);
+}
+
+static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
+                                 ucontext_t* context) {
+  osthread->set_ucontext(context);
+  osthread->set_siginfo(siginfo);
+}
+
+// Handler function invoked when a thread's execution is suspended or
+// resumed. We have to be careful that only async-safe functions are
+// called here (Note: most pthread functions are not async safe and
+// should be avoided.)
+//
+// Note: sigwait() is a more natural fit than sigsuspend() from an
+// interface point of view, but sigwait() prevents the signal hander
+// from being run. libpthread would get very confused by not having
+// its signal handlers run and prevents sigwait()'s use with the
+// mutex granting granting signal.
+//
+// Currently only ever called on the VMThread and JavaThreads (PC sampling)
+//
+static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
+  // Save and restore errno to avoid confusing native code with EINTR
+  // after sigsuspend.
+  int old_errno = errno;
+
+  Thread* thread = Thread::current_or_null_safe();
+  assert(thread != NULL, "Missing current thread in SR_handler");
+
+  // On some systems we have seen signal delivery get "stuck" until the signal
+  // mask is changed as part of thread termination. Check that the current thread
+  // has not already terminated (via SR_lock()) - else the following assertion
+  // will fail because the thread is no longer a JavaThread as the ~JavaThread
+  // destructor has completed.
+
+  if (thread->SR_lock() == NULL) {
+    return;
+  }
+
+  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
+
+  OSThread* osthread = thread->osthread();
+
+  os::SuspendResume::State current = osthread->sr.state();
+  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
+    suspend_save_context(osthread, siginfo, context);
+
+    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
+    os::SuspendResume::State state = osthread->sr.suspended();
+    if (state == os::SuspendResume::SR_SUSPENDED) {
+      sigset_t suspend_set;  // signals for sigsuspend()
+      sigemptyset(&suspend_set);
+      // get current set of blocked signals and unblock resume signal
+      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
+      sigdelset(&suspend_set, SR_signum);
+
+      sr_semaphore.signal();
+      // wait here until we are resumed
+      while (1) {
+        sigsuspend(&suspend_set);
+
+        os::SuspendResume::State result = osthread->sr.running();
+        if (result == os::SuspendResume::SR_RUNNING) {
+          sr_semaphore.signal();
+          break;
+        }
+      }
+
+    } else if (state == os::SuspendResume::SR_RUNNING) {
+      // request was cancelled, continue
+    } else {
+      ShouldNotReachHere();
+    }
+
+    resume_clear_context(osthread);
+  } else if (current == os::SuspendResume::SR_RUNNING) {
+    // request was cancelled, continue
+  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
+    // ignore
+  } else {
+    // ignore
+  }
+
+  errno = old_errno;
+}
+
+static int SR_initialize() {
+  struct sigaction act;
+  char *s;
+
+  // Get signal number to use for suspend/resume
+  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
+    int sig = ::strtol(s, 0, 10);
+    if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
+        sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
+      SR_signum = sig;
+    } else {
+      warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
+              sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
+    }
+  }
+
+  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
+         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
+
+  sigemptyset(&SR_sigset);
+  sigaddset(&SR_sigset, SR_signum);
+
+  // Set up signal handler for suspend/resume
+  act.sa_flags = SA_RESTART|SA_SIGINFO;
+  act.sa_handler = (void (*)(int)) SR_handler;
+
+  // SR_signum is blocked by default.
+  // 4528190 - We also need to block pthread restart signal (32 on all
+  // supported Linux platforms). Note that LinuxThreads need to block
+  // this signal for all threads to work properly. So we don't have
+  // to use hard-coded signal number when setting up the mask.
+  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
+
+  if (sigaction(SR_signum, &act, 0) == -1) {
+    return -1;
+  }
+
+  // Save signal flag
+  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
+  return 0;
+}
+
+static int sr_notify(OSThread* osthread) {
+  int status = pthread_kill(osthread->pthread_id(), SR_signum);
+  assert_status(status == 0, status, "pthread_kill");
+  return status;
+}
+
+// "Randomly" selected value for how long we want to spin
+// before bailing out on suspending a thread, also how often
+// we send a signal to a thread we want to resume
+static const int RANDOMLY_LARGE_INTEGER = 1000000;
+static const int RANDOMLY_LARGE_INTEGER2 = 100;
+
+// returns true on success and false on error - really an error is fatal
+// but this seems the normal response to library errors
+static bool do_suspend(OSThread* osthread) {
+  assert(osthread->sr.is_running(), "thread should be running");
+  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
+
+  // mark as suspended and send signal
+  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
+    // failed to switch, state wasn't running?
+    ShouldNotReachHere();
+    return false;
+  }
+
+  if (sr_notify(osthread) != 0) {
+    ShouldNotReachHere();
+  }
+
+  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
+  while (true) {
+    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
+      break;
+    } else {
+      // timeout
+      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
+      if (cancelled == os::SuspendResume::SR_RUNNING) {
+        return false;
+      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
+        // make sure that we consume the signal on the semaphore as well
+        sr_semaphore.wait();
+        break;
+      } else {
+        ShouldNotReachHere();
+        return false;
+      }
+    }
+  }
+
+  guarantee(osthread->sr.is_suspended(), "Must be suspended");
+  return true;
+}
+
+static void do_resume(OSThread* osthread) {
+  assert(osthread->sr.is_suspended(), "thread should be suspended");
+  assert(!sr_semaphore.trywait(), "invalid semaphore state");
+
+  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
+    // failed to switch to WAKEUP_REQUEST
+    ShouldNotReachHere();
+    return;
+  }
+
+  while (true) {
+    if (sr_notify(osthread) == 0) {
+      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
+        if (osthread->sr.is_running()) {
+          return;
+        }
+      }
+    } else {
+      ShouldNotReachHere();
+    }
+  }
+
+  guarantee(osthread->sr.is_running(), "Must be running!");
+}
+
+///////////////////////////////////////////////////////////////////////////////////
+// signal handling (except suspend/resume)
+
+// This routine may be used by user applications as a "hook" to catch signals.
+// The user-defined signal handler must pass unrecognized signals to this
+// routine, and if it returns true (non-zero), then the signal handler must
+// return immediately.  If the flag "abort_if_unrecognized" is true, then this
+// routine will never retun false (zero), but instead will execute a VM panic
+// routine kill the process.
+//
+// If this routine returns false, it is OK to call it again.  This allows
+// the user-defined signal handler to perform checks either before or after
+// the VM performs its own checks.  Naturally, the user code would be making
+// a serious error if it tried to handle an exception (such as a null check
+// or breakpoint) that the VM was generating for its own correct operation.
+//
+// This routine may recognize any of the following kinds of signals:
+//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
+// It should be consulted by handlers for any of those signals.
+//
+// The caller of this routine must pass in the three arguments supplied
+// to the function referred to in the "sa_sigaction" (not the "sa_handler")
+// field of the structure passed to sigaction().  This routine assumes that
+// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
+//
+// Note that the VM will print warnings if it detects conflicting signal
+// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
+//
+extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
+                                                 siginfo_t* siginfo,
+                                                 void* ucontext,
+                                                 int abort_if_unrecognized);
+
+void signalHandler(int sig, siginfo_t* info, void* uc) {
+  assert(info != NULL && uc != NULL, "it must be old kernel");
+  int orig_errno = errno;  // Preserve errno value over signal handler.
+  JVM_handle_linux_signal(sig, info, uc, true);
+  errno = orig_errno;
+}
+
+
+// This boolean allows users to forward their own non-matching signals
+// to JVM_handle_linux_signal, harmlessly.
+bool os::Linux::signal_handlers_are_installed = false;
+
+// For signal-chaining
+struct sigaction sigact[NSIG];
+uint64_t sigs = 0;
+#if (64 < NSIG-1)
+#error "Not all signals can be encoded in sigs. Adapt its type!"
+#endif
+bool os::Linux::libjsig_is_loaded = false;
+typedef struct sigaction *(*get_signal_t)(int);
+get_signal_t os::Linux::get_signal_action = NULL;
+
+struct sigaction* os::Linux::get_chained_signal_action(int sig) {
+  struct sigaction *actp = NULL;
+
+  if (libjsig_is_loaded) {
+    // Retrieve the old signal handler from libjsig
+    actp = (*get_signal_action)(sig);
+  }
+  if (actp == NULL) {
+    // Retrieve the preinstalled signal handler from jvm
+    actp = get_preinstalled_handler(sig);
+  }
+
+  return actp;
+}
+
+static bool call_chained_handler(struct sigaction *actp, int sig,
+                                 siginfo_t *siginfo, void *context) {
+  // Call the old signal handler
+  if (actp->sa_handler == SIG_DFL) {
+    // It's more reasonable to let jvm treat it as an unexpected exception
+    // instead of taking the default action.
+    return false;
+  } else if (actp->sa_handler != SIG_IGN) {
+    if ((actp->sa_flags & SA_NODEFER) == 0) {
+      // automaticlly block the signal
+      sigaddset(&(actp->sa_mask), sig);
+    }
+
+    sa_handler_t hand = NULL;
+    sa_sigaction_t sa = NULL;
+    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
+    // retrieve the chained handler
+    if (siginfo_flag_set) {
+      sa = actp->sa_sigaction;
+    } else {
+      hand = actp->sa_handler;
+    }
+
+    if ((actp->sa_flags & SA_RESETHAND) != 0) {
+      actp->sa_handler = SIG_DFL;
+    }
+
+    // try to honor the signal mask
+    sigset_t oset;
+    sigemptyset(&oset);
+    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
+
+    // call into the chained handler
+    if (siginfo_flag_set) {
+      (*sa)(sig, siginfo, context);
+    } else {
+      (*hand)(sig);
+    }
+
+    // restore the signal mask
+    pthread_sigmask(SIG_SETMASK, &oset, NULL);
+  }
+  // Tell jvm's signal handler the signal is taken care of.
+  return true;
+}
+
+bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
+  bool chained = false;
+  // signal-chaining
+  if (UseSignalChaining) {
+    struct sigaction *actp = get_chained_signal_action(sig);
+    if (actp != NULL) {
+      chained = call_chained_handler(actp, sig, siginfo, context);
+    }
+  }
+  return chained;
+}
+
+struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
+  if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
+    return &sigact[sig];
+  }
+  return NULL;
+}
+
+void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
+  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
+  sigact[sig] = oldAct;
+  sigs |= (uint64_t)1 << (sig-1);
+}
+
+// for diagnostic
+int sigflags[NSIG];
+
+int os::Linux::get_our_sigflags(int sig) {
+  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
+  return sigflags[sig];
+}
+
+void os::Linux::set_our_sigflags(int sig, int flags) {
+  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
+  if (sig > 0 && sig < NSIG) {
+    sigflags[sig] = flags;
+  }
+}
+
+void os::Linux::set_signal_handler(int sig, bool set_installed) {
+  // Check for overwrite.
+  struct sigaction oldAct;
+  sigaction(sig, (struct sigaction*)NULL, &oldAct);
+
+  void* oldhand = oldAct.sa_sigaction
+                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
+                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
+  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
+      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
+      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
+    if (AllowUserSignalHandlers || !set_installed) {
+      // Do not overwrite; user takes responsibility to forward to us.
+      return;
+    } else if (UseSignalChaining) {
+      // save the old handler in jvm
+      save_preinstalled_handler(sig, oldAct);
+      // libjsig also interposes the sigaction() call below and saves the
+      // old sigaction on it own.
+    } else {
+      fatal("Encountered unexpected pre-existing sigaction handler "
+            "%#lx for signal %d.", (long)oldhand, sig);
+    }
+  }
+
+  struct sigaction sigAct;
+  sigfillset(&(sigAct.sa_mask));
+  sigAct.sa_handler = SIG_DFL;
+  if (!set_installed) {
+    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
+  } else {
+    sigAct.sa_sigaction = signalHandler;
+    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
+  }
+  // Save flags, which are set by ours
+  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
+  sigflags[sig] = sigAct.sa_flags;
+
+  int ret = sigaction(sig, &sigAct, &oldAct);
+  assert(ret == 0, "check");
+
+  void* oldhand2  = oldAct.sa_sigaction
+                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
+                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
+  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
+}
+
+// install signal handlers for signals that HotSpot needs to
+// handle in order to support Java-level exception handling.
+
+void os::Linux::install_signal_handlers() {
+  if (!signal_handlers_are_installed) {
+    signal_handlers_are_installed = true;
+
+    // signal-chaining
+    typedef void (*signal_setting_t)();
+    signal_setting_t begin_signal_setting = NULL;
+    signal_setting_t end_signal_setting = NULL;
+    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
+                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
+    if (begin_signal_setting != NULL) {
+      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
+                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
+      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
+                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
+      libjsig_is_loaded = true;
+      assert(UseSignalChaining, "should enable signal-chaining");
+    }
+    if (libjsig_is_loaded) {
+      // Tell libjsig jvm is setting signal handlers
+      (*begin_signal_setting)();
+    }
+
+    set_signal_handler(SIGSEGV, true);
+    set_signal_handler(SIGPIPE, true);
+    set_signal_handler(SIGBUS, true);
+    set_signal_handler(SIGILL, true);
+    set_signal_handler(SIGFPE, true);
+#if defined(PPC64)
+    set_signal_handler(SIGTRAP, true);
+#endif
+    set_signal_handler(SIGXFSZ, true);
+
+    if (libjsig_is_loaded) {
+      // Tell libjsig jvm finishes setting signal handlers
+      (*end_signal_setting)();
+    }
+
+    // We don't activate signal checker if libjsig is in place, we trust ourselves
+    // and if UserSignalHandler is installed all bets are off.
+    // Log that signal checking is off only if -verbose:jni is specified.
+    if (CheckJNICalls) {
+      if (libjsig_is_loaded) {
+        if (PrintJNIResolving) {
+          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
+        }
+        check_signals = false;
+      }
+      if (AllowUserSignalHandlers) {
+        if (PrintJNIResolving) {
+          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
+        }
+        check_signals = false;
+      }
+    }
+  }
+}
+
+// This is the fastest way to get thread cpu time on Linux.
+// Returns cpu time (user+sys) for any thread, not only for current.
+// POSIX compliant clocks are implemented in the kernels 2.6.16+.
+// It might work on 2.6.10+ with a special kernel/glibc patch.
+// For reference, please, see IEEE Std 1003.1-2004:
+//   http://www.unix.org/single_unix_specification
+
+jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
+  struct timespec tp;
+  int rc = os::Linux::clock_gettime(clockid, &tp);
+  assert(rc == 0, "clock_gettime is expected to return 0 code");
+
+  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
+}
+
+void os::Linux::initialize_os_info() {
+  assert(_os_version == 0, "OS info already initialized");
+
+  struct utsname _uname;
+
+  uint32_t major;
+  uint32_t minor;
+  uint32_t fix;
+
+  int rc;
+
+  // Kernel version is unknown if
+  // verification below fails.
+  _os_version = 0x01000000;
+
+  rc = uname(&_uname);
+  if (rc != -1) {
+
+    rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
+    if (rc == 3) {
+
+      if (major < 256 && minor < 256 && fix < 256) {
+        // Kernel version format is as expected,
+        // set it overriding unknown state.
+        _os_version = (major << 16) |
+                      (minor << 8 ) |
+                      (fix   << 0 ) ;
+      }
+    }
+  }
+}
+
+uint32_t os::Linux::os_version() {
+  assert(_os_version != 0, "not initialized");
+  return _os_version & 0x00FFFFFF;
+}
+
+bool os::Linux::os_version_is_known() {
+  assert(_os_version != 0, "not initialized");
+  return _os_version & 0x01000000 ? false : true;
+}
+
+/////
+// glibc on Linux platform uses non-documented flag
+// to indicate, that some special sort of signal
+// trampoline is used.
+// We will never set this flag, and we should
+// ignore this flag in our diagnostic
+#ifdef SIGNIFICANT_SIGNAL_MASK
+  #undef SIGNIFICANT_SIGNAL_MASK
+#endif
+#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
+
+static const char* get_signal_handler_name(address handler,
+                                           char* buf, int buflen) {
+  int offset = 0;
+  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
+  if (found) {
+    // skip directory names
+    const char *p1, *p2;
+    p1 = buf;
+    size_t len = strlen(os::file_separator());
+    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
+    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
+  } else {
+    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
+  }
+  return buf;
+}
+
+static void print_signal_handler(outputStream* st, int sig,
+                                 char* buf, size_t buflen) {
+  struct sigaction sa;
+
+  sigaction(sig, NULL, &sa);
+
+  // See comment for SIGNIFICANT_SIGNAL_MASK define
+  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
+
+  st->print("%s: ", os::exception_name(sig, buf, buflen));
+
+  address handler = (sa.sa_flags & SA_SIGINFO)
+    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
+    : CAST_FROM_FN_PTR(address, sa.sa_handler);
+
+  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
+    st->print("SIG_DFL");
+  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
+    st->print("SIG_IGN");
+  } else {
+    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
+  }
+
+  st->print(", sa_mask[0]=");
+  os::Posix::print_signal_set_short(st, &sa.sa_mask);
+
+  address rh = VMError::get_resetted_sighandler(sig);
+  // May be, handler was resetted by VMError?
+  if (rh != NULL) {
+    handler = rh;
+    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
+  }
+
+  st->print(", sa_flags=");
+  os::Posix::print_sa_flags(st, sa.sa_flags);
+
+  // Check: is it our handler?
+  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
+      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
+    // It is our signal handler
+    // check for flags, reset system-used one!
+    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
+      st->print(
+                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
+                os::Linux::get_our_sigflags(sig));
+    }
+  }
+  st->cr();
+}
+
+
+#define DO_SIGNAL_CHECK(sig)                      \
+  do {                                            \
+    if (!sigismember(&check_signal_done, sig)) {  \
+      os::Linux::check_signal_handler(sig);       \
+    }                                             \
+  } while (0)
+
+// This method is a periodic task to check for misbehaving JNI applications
+// under CheckJNI, we can add any periodic checks here
+
+void os::run_periodic_checks() {
+  if (check_signals == false) return;
+
+  // SEGV and BUS if overridden could potentially prevent
+  // generation of hs*.log in the event of a crash, debugging
+  // such a case can be very challenging, so we absolutely
+  // check the following for a good measure:
+  DO_SIGNAL_CHECK(SIGSEGV);
+  DO_SIGNAL_CHECK(SIGILL);
+  DO_SIGNAL_CHECK(SIGFPE);
+  DO_SIGNAL_CHECK(SIGBUS);
+  DO_SIGNAL_CHECK(SIGPIPE);
+  DO_SIGNAL_CHECK(SIGXFSZ);
+#if defined(PPC64)
+  DO_SIGNAL_CHECK(SIGTRAP);
+#endif
+
+  // ReduceSignalUsage allows the user to override these handlers
+  // see comments at the very top and jvm_solaris.h
+  if (!ReduceSignalUsage) {
+    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
+    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
+    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
+    DO_SIGNAL_CHECK(BREAK_SIGNAL);
+  }
+
+  DO_SIGNAL_CHECK(SR_signum);
+}
+
+typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
+
+static os_sigaction_t os_sigaction = NULL;
+
+void os::Linux::check_signal_handler(int sig) {
+  char buf[O_BUFLEN];
+  address jvmHandler = NULL;
+
+
+  struct sigaction act;
+  if (os_sigaction == NULL) {
+    // only trust the default sigaction, in case it has been interposed
+    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
+    if (os_sigaction == NULL) return;
+  }
+
+  os_sigaction(sig, (struct sigaction*)NULL, &act);
+
+
+  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
+
+  address thisHandler = (act.sa_flags & SA_SIGINFO)
+    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
+    : CAST_FROM_FN_PTR(address, act.sa_handler);
+
+
+  switch (sig) {
+  case SIGSEGV:
+  case SIGBUS:
+  case SIGFPE:
+  case SIGPIPE:
+  case SIGILL:
+  case SIGXFSZ:
+    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
+    break;
+
+  case SHUTDOWN1_SIGNAL:
+  case SHUTDOWN2_SIGNAL:
+  case SHUTDOWN3_SIGNAL:
+  case BREAK_SIGNAL:
+    jvmHandler = (address)user_handler();
+    break;
+
+  default:
+    if (sig == SR_signum) {
+      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
+    } else {
+      return;
+    }
+    break;
+  }
+
+  if (thisHandler != jvmHandler) {
+    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
+    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
+    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
+    // No need to check this sig any longer
+    sigaddset(&check_signal_done, sig);
+    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
+    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
+      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
+                    exception_name(sig, buf, O_BUFLEN));
+    }
+  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
+    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
+    tty->print("expected:");
+    os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
+    tty->cr();
+    tty->print("  found:");
+    os::Posix::print_sa_flags(tty, act.sa_flags);
+    tty->cr();
+    // No need to check this sig any longer
+    sigaddset(&check_signal_done, sig);
+  }
+
+  // Dump all the signal
+  if (sigismember(&check_signal_done, sig)) {
+    print_signal_handlers(tty, buf, O_BUFLEN);
+  }
+}
+
+extern void report_error(char* file_name, int line_no, char* title,
+                         char* format, ...);
+
+// this is called _before_ the most of global arguments have been parsed
+void os::init(void) {
+  char dummy;   // used to get a guess on initial stack address
+//  first_hrtime = gethrtime();
+
+  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
+
+  init_random(1234567);
+
+  ThreadCritical::initialize();
+
+  Linux::set_page_size(sysconf(_SC_PAGESIZE));
+  if (Linux::page_size() == -1) {
+    fatal("os_linux.cpp: os::init: sysconf failed (%s)",
+          os::strerror(errno));
+  }
+  init_page_sizes((size_t) Linux::page_size());
+
+  Linux::initialize_system_info();
+
+  Linux::initialize_os_info();
+
+  // main_thread points to the aboriginal thread
+  Linux::_main_thread = pthread_self();
+
+  Linux::clock_init();
+  initial_time_count = javaTimeNanos();
+
+  // retrieve entry point for pthread_setname_np
+  Linux::_pthread_setname_np =
+    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
+
+  os::Posix::init();
+}
+
+// To install functions for atexit system call
+extern "C" {
+  static void perfMemory_exit_helper() {
+    perfMemory_exit();
+  }
+}
+
+// this is called _after_ the global arguments have been parsed
+jint os::init_2(void) {
+
+  os::Posix::init_2();
+
+  Linux::fast_thread_clock_init();
+
+  // Allocate a single page and mark it as readable for safepoint polling
+  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
+  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
+
+  os::set_polling_page(polling_page);
+  log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
+
+  if (!UseMembar) {
+    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
+    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
+    os::set_memory_serialize_page(mem_serialize_page);
+    log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
+  }
+
+  // initialize suspend/resume support - must do this before signal_sets_init()
+  if (SR_initialize() != 0) {
+    perror("SR_initialize failed");
+    return JNI_ERR;
+  }
+
+  Linux::signal_sets_init();
+  Linux::install_signal_handlers();
+
+  // Check and sets minimum stack sizes against command line options
+  if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
+    return JNI_ERR;
+  }
+  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
+
+#if defined(IA32)
+  workaround_expand_exec_shield_cs_limit();
+#endif
+
+  Linux::libpthread_init();
+  Linux::sched_getcpu_init();
+  log_info(os)("HotSpot is running with %s, %s",
+               Linux::glibc_version(), Linux::libpthread_version());
+
+  if (UseNUMA) {
+    if (!Linux::libnuma_init()) {
+      UseNUMA = false;
+    } else {
+      if ((Linux::numa_max_node() < 1)) {
+        // There's only one node(they start from 0), disable NUMA.
+        UseNUMA = false;
+      }
+    }
+    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
+    // we can make the adaptive lgrp chunk resizing work. If the user specified
+    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
+    // disable adaptive resizing.
+    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
+      if (FLAG_IS_DEFAULT(UseNUMA)) {
+        UseNUMA = false;
+      } else {
+        if (FLAG_IS_DEFAULT(UseLargePages) &&
+            FLAG_IS_DEFAULT(UseSHM) &&
+            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
+          UseLargePages = false;
+        } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
+          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
+          UseAdaptiveSizePolicy = false;
+          UseAdaptiveNUMAChunkSizing = false;
+        }
+      }
+    }
+    if (!UseNUMA && ForceNUMA) {
+      UseNUMA = true;
+    }
+  }
+
+  if (MaxFDLimit) {
+    // set the number of file descriptors to max. print out error
+    // if getrlimit/setrlimit fails but continue regardless.
+    struct rlimit nbr_files;
+    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
+    if (status != 0) {
+      log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
+    } else {
+      nbr_files.rlim_cur = nbr_files.rlim_max;
+      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
+      if (status != 0) {
+        log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
+      }
+    }
+  }
+
+  // Initialize lock used to serialize thread creation (see os::create_thread)
+  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
+
+  // at-exit methods are called in the reverse order of their registration.
+  // atexit functions are called on return from main or as a result of a
+  // call to exit(3C). There can be only 32 of these functions registered
+  // and atexit() does not set errno.
+
+  if (PerfAllowAtExitRegistration) {
+    // only register atexit functions if PerfAllowAtExitRegistration is set.
+    // atexit functions can be delayed until process exit time, which
+    // can be problematic for embedded VM situations. Embedded VMs should
+    // call DestroyJavaVM() to assure that VM resources are released.
+
+    // note: perfMemory_exit_helper atexit function may be removed in
+    // the future if the appropriate cleanup code can be added to the
+    // VM_Exit VMOperation's doit method.
+    if (atexit(perfMemory_exit_helper) != 0) {
+      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
+    }
+  }
+
+  // initialize thread priority policy
+  prio_init();
+
+  return JNI_OK;
+}
+
+// Mark the polling page as unreadable
+void os::make_polling_page_unreadable(void) {
+  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
+    fatal("Could not disable polling page");
+  }
+}
+
+// Mark the polling page as readable
+void os::make_polling_page_readable(void) {
+  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
+    fatal("Could not enable polling page");
+  }
+}
+
+// older glibc versions don't have this macro (which expands to
+// an optimized bit-counting function) so we have to roll our own
+#ifndef CPU_COUNT
+
+static int _cpu_count(const cpu_set_t* cpus) {
+  int count = 0;
+  // only look up to the number of configured processors
+  for (int i = 0; i < os::processor_count(); i++) {
+    if (CPU_ISSET(i, cpus)) {
+      count++;
+    }
+  }
+  return count;
+}
+
+#define CPU_COUNT(cpus) _cpu_count(cpus)
+
+#endif // CPU_COUNT
+
+// Get the current number of available processors for this process.
+// This value can change at any time during a process's lifetime.
+// sched_getaffinity gives an accurate answer as it accounts for cpusets.
+// If it appears there may be more than 1024 processors then we do a
+// dynamic check - see 6515172 for details.
+// If anything goes wrong we fallback to returning the number of online
+// processors - which can be greater than the number available to the process.
+int os::active_processor_count() {
+  cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
+  cpu_set_t* cpus_p = &cpus;
+  int cpus_size = sizeof(cpu_set_t);
+
+  int configured_cpus = processor_count();  // upper bound on available cpus
+  int cpu_count = 0;
+
+// old build platforms may not support dynamic cpu sets
+#ifdef CPU_ALLOC
+
+  // To enable easy testing of the dynamic path on different platforms we
+  // introduce a diagnostic flag: UseCpuAllocPath
+  if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
+    // kernel may use a mask bigger than cpu_set_t
+    log_trace(os)("active_processor_count: using dynamic path %s"
+                  "- configured processors: %d",
+                  UseCpuAllocPath ? "(forced) " : "",
+                  configured_cpus);
+    cpus_p = CPU_ALLOC(configured_cpus);
+    if (cpus_p != NULL) {
+      cpus_size = CPU_ALLOC_SIZE(configured_cpus);
+      // zero it just to be safe
+      CPU_ZERO_S(cpus_size, cpus_p);
+    }
+    else {
+       // failed to allocate so fallback to online cpus
+       int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
+       log_trace(os)("active_processor_count: "
+                     "CPU_ALLOC failed (%s) - using "
+                     "online processor count: %d",
+                     os::strerror(errno), online_cpus);
+       return online_cpus;
+    }
+  }
+  else {
+    log_trace(os)("active_processor_count: using static path - configured processors: %d",
+                  configured_cpus);
+  }
+#else // CPU_ALLOC
+// these stubs won't be executed
+#define CPU_COUNT_S(size, cpus) -1
+#define CPU_FREE(cpus)
+
+  log_trace(os)("active_processor_count: only static path available - configured processors: %d",
+                configured_cpus);
+#endif // CPU_ALLOC
+
+  // pid 0 means the current thread - which we have to assume represents the process
+  if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
+    if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
+      cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
+    }
+    else {
+      cpu_count = CPU_COUNT(cpus_p);
+    }
+    log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
+  }
+  else {
+    cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
+    warning("sched_getaffinity failed (%s)- using online processor count (%d) "
+            "which may exceed available processors", os::strerror(errno), cpu_count);
+  }
+
+  if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
+    CPU_FREE(cpus_p);
+  }
+
+  assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
+  return cpu_count;
+}
+
+void os::set_native_thread_name(const char *name) {
+  if (Linux::_pthread_setname_np) {
+    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
+    snprintf(buf, sizeof(buf), "%s", name);
+    buf[sizeof(buf) - 1] = '\0';
+    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
+    // ERANGE should not happen; all other errors should just be ignored.
+    assert(rc != ERANGE, "pthread_setname_np failed");
+  }
+}
+
+bool os::distribute_processes(uint length, uint* distribution) {
+  // Not yet implemented.
+  return false;
+}
+
+bool os::bind_to_processor(uint processor_id) {
+  // Not yet implemented.
+  return false;
+}
+
+///
+
+void os::SuspendedThreadTask::internal_do_task() {
+  if (do_suspend(_thread->osthread())) {
+    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
+    do_task(context);
+    do_resume(_thread->osthread());
+  }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// debug support
+
+bool os::find(address addr, outputStream* st) {
+  Dl_info dlinfo;
+  memset(&dlinfo, 0, sizeof(dlinfo));
+  if (dladdr(addr, &dlinfo) != 0) {
+    st->print(PTR_FORMAT ": ", p2i(addr));
+    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
+      st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
+                p2i(addr) - p2i(dlinfo.dli_saddr));
+    } else if (dlinfo.dli_fbase != NULL) {
+      st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
+    } else {
+      st->print("<absolute address>");
+    }
+    if (dlinfo.dli_fname != NULL) {
+      st->print(" in %s", dlinfo.dli_fname);
+    }
+    if (dlinfo.dli_fbase != NULL) {
+      st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
+    }
+    st->cr();
+
+    if (Verbose) {
+      // decode some bytes around the PC
+      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
+      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
+      address       lowest = (address) dlinfo.dli_sname;
+      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
+      if (begin < lowest)  begin = lowest;
+      Dl_info dlinfo2;
+      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
+          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
+        end = (address) dlinfo2.dli_saddr;
+      }
+      Disassembler::decode(begin, end, st);
+    }
+    return true;
+  }
+  return false;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// misc
+
+// This does not do anything on Linux. This is basically a hook for being
+// able to use structured exception handling (thread-local exception filters)
+// on, e.g., Win32.
+void
+os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
+                         JavaCallArguments* args, Thread* thread) {
+  f(value, method, args, thread);
+}
+
+void os::print_statistics() {
+}
+
+bool os::message_box(const char* title, const char* message) {
+  int i;
+  fdStream err(defaultStream::error_fd());
+  for (i = 0; i < 78; i++) err.print_raw("=");
+  err.cr();
+  err.print_raw_cr(title);
+  for (i = 0; i < 78; i++) err.print_raw("-");
+  err.cr();
+  err.print_raw_cr(message);
+  for (i = 0; i < 78; i++) err.print_raw("=");
+  err.cr();
+
+  char buf[16];
+  // Prevent process from exiting upon "read error" without consuming all CPU
+  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
+
+  return buf[0] == 'y' || buf[0] == 'Y';
+}
+
+int os::stat(const char *path, struct stat *sbuf) {
+  char pathbuf[MAX_PATH];
+  if (strlen(path) > MAX_PATH - 1) {
+    errno = ENAMETOOLONG;
+    return -1;
+  }
+  os::native_path(strcpy(pathbuf, path));
+  return ::stat(pathbuf, sbuf);
+}
+
+// Is a (classpath) directory empty?
+bool os::dir_is_empty(const char* path) {
+  DIR *dir = NULL;
+  struct dirent *ptr;
+
+  dir = opendir(path);
+  if (dir == NULL) return true;
+
+  // Scan the directory
+  bool result = true;
+  char buf[sizeof(struct dirent) + MAX_PATH];
+  while (result && (ptr = ::readdir(dir)) != NULL) {
+    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
+      result = false;
+    }
+  }
+  closedir(dir);
+  return result;
+}
+
+// This code originates from JDK's sysOpen and open64_w
+// from src/solaris/hpi/src/system_md.c
+
+int os::open(const char *path, int oflag, int mode) {
+  if (strlen(path) > MAX_PATH - 1) {
+    errno = ENAMETOOLONG;
+    return -1;
+  }
+
+  // All file descriptors that are opened in the Java process and not
+  // specifically destined for a subprocess should have the close-on-exec
+  // flag set.  If we don't set it, then careless 3rd party native code
+  // might fork and exec without closing all appropriate file descriptors
+  // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
+  // turn might:
+  //
+  // - cause end-of-file to fail to be detected on some file
+  //   descriptors, resulting in mysterious hangs, or
+  //
+  // - might cause an fopen in the subprocess to fail on a system
+  //   suffering from bug 1085341.
+  //
+  // (Yes, the default setting of the close-on-exec flag is a Unix
+  // design flaw)
+  //
+  // See:
+  // 1085341: 32-bit stdio routines should support file descriptors >255
+  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
+  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
+  //
+  // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
+  // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
+  // because it saves a system call and removes a small window where the flag
+  // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
+  // and we fall back to using FD_CLOEXEC (see below).
+#ifdef O_CLOEXEC
+  oflag |= O_CLOEXEC;
+#endif
+
+  int fd = ::open64(path, oflag, mode);
+  if (fd == -1) return -1;
+
+  //If the open succeeded, the file might still be a directory
+  {
+    struct stat64 buf64;
+    int ret = ::fstat64(fd, &buf64);
+    int st_mode = buf64.st_mode;
+
+    if (ret != -1) {
+      if ((st_mode & S_IFMT) == S_IFDIR) {
+        errno = EISDIR;
+        ::close(fd);
+        return -1;
+      }
+    } else {
+      ::close(fd);
+      return -1;
+    }
+  }
+
+#ifdef FD_CLOEXEC
+  // Validate that the use of the O_CLOEXEC flag on open above worked.
+  // With recent kernels, we will perform this check exactly once.
+  static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
+  if (!O_CLOEXEC_is_known_to_work) {
+    int flags = ::fcntl(fd, F_GETFD);
+    if (flags != -1) {
+      if ((flags & FD_CLOEXEC) != 0)
+        O_CLOEXEC_is_known_to_work = 1;
+      else
+        ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
+    }
+  }
+#endif
+
+  return fd;
+}
+
+
+// create binary file, rewriting existing file if required
+int os::create_binary_file(const char* path, bool rewrite_existing) {
+  int oflags = O_WRONLY | O_CREAT;
+  if (!rewrite_existing) {
+    oflags |= O_EXCL;
+  }
+  return ::open64(path, oflags, S_IREAD | S_IWRITE);
+}
+
+// return current position of file pointer
+jlong os::current_file_offset(int fd) {
+  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
+}
+
+// move file pointer to the specified offset
+jlong os::seek_to_file_offset(int fd, jlong offset) {
+  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
+}
+
+// This code originates from JDK's sysAvailable
+// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
+
+int os::available(int fd, jlong *bytes) {
+  jlong cur, end;
+  int mode;
+  struct stat64 buf64;
+
+  if (::fstat64(fd, &buf64) >= 0) {
+    mode = buf64.st_mode;
+    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
+      int n;
+      if (::ioctl(fd, FIONREAD, &n) >= 0) {
+        *bytes = n;
+        return 1;
+      }
+    }
+  }
+  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
+    return 0;
+  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
+    return 0;
+  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
+    return 0;
+  }
+  *bytes = end - cur;
+  return 1;
+}
+
+// Map a block of memory.
+char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
+                        char *addr, size_t bytes, bool read_only,
+                        bool allow_exec) {
+  int prot;
+  int flags = MAP_PRIVATE;
+
+  if (read_only) {
+    prot = PROT_READ;
+  } else {
+    prot = PROT_READ | PROT_WRITE;
+  }
+
+  if (allow_exec) {
+    prot |= PROT_EXEC;
+  }
+
+  if (addr != NULL) {
+    flags |= MAP_FIXED;
+  }
+
+  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
+                                     fd, file_offset);
+  if (mapped_address == MAP_FAILED) {
+    return NULL;
+  }
+  return mapped_address;
+}
+
+
+// Remap a block of memory.
+char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
+                          char *addr, size_t bytes, bool read_only,
+                          bool allow_exec) {
+  // same as map_memory() on this OS
+  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
+                        allow_exec);
+}
+
+
+// Unmap a block of memory.
+bool os::pd_unmap_memory(char* addr, size_t bytes) {
+  return munmap(addr, bytes) == 0;
+}
+
+static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
+
+static clockid_t thread_cpu_clockid(Thread* thread) {
+  pthread_t tid = thread->osthread()->pthread_id();
+  clockid_t clockid;
+
+  // Get thread clockid
+  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
+  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
+  return clockid;
+}
+
+// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
+// are used by JVM M&M and JVMTI to get user+sys or user CPU time
+// of a thread.
+//
+// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
+// the fast estimate available on the platform.
+
+jlong os::current_thread_cpu_time() {
+  if (os::Linux::supports_fast_thread_cpu_time()) {
+    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
+  } else {
+    // return user + sys since the cost is the same
+    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
+  }
+}
+
+jlong os::thread_cpu_time(Thread* thread) {
+  // consistent with what current_thread_cpu_time() returns
+  if (os::Linux::supports_fast_thread_cpu_time()) {
+    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
+  } else {
+    return slow_thread_cpu_time(thread, true /* user + sys */);
+  }
+}
+
+jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
+  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
+    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
+  } else {
+    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
+  }
+}
+
+jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
+  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
+    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
+  } else {
+    return slow_thread_cpu_time(thread, user_sys_cpu_time);
+  }
+}
+
+//  -1 on error.
+static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
+  pid_t  tid = thread->osthread()->thread_id();
+  char *s;
+  char stat[2048];
+  int statlen;
+  char proc_name[64];
+  int count;
+  long sys_time, user_time;
+  char cdummy;
+  int idummy;
+  long ldummy;
+  FILE *fp;
+
+  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
+  fp = fopen(proc_name, "r");
+  if (fp == NULL) return -1;
+  statlen = fread(stat, 1, 2047, fp);
+  stat[statlen] = '\0';
+  fclose(fp);
+
+  // Skip pid and the command string. Note that we could be dealing with
+  // weird command names, e.g. user could decide to rename java launcher
+  // to "java 1.4.2 :)", then the stat file would look like
+  //                1234 (java 1.4.2 :)) R ... ...
+  // We don't really need to know the command string, just find the last
+  // occurrence of ")" and then start parsing from there. See bug 4726580.
+  s = strrchr(stat, ')');
+  if (s == NULL) return -1;
+
+  // Skip blank chars
+  do { s++; } while (s && isspace(*s));
+
+  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
+                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
+                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
+                 &user_time, &sys_time);
+  if (count != 13) return -1;
+  if (user_sys_cpu_time) {
+    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
+  } else {
+    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
+  }
+}
+
+void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
+  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
+  info_ptr->may_skip_backward = false;     // elapsed time not wall time
+  info_ptr->may_skip_forward = false;      // elapsed time not wall time
+  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
+}
+
+void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
+  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
+  info_ptr->may_skip_backward = false;     // elapsed time not wall time
+  info_ptr->may_skip_forward = false;      // elapsed time not wall time
+  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
+}
+
+bool os::is_thread_cpu_time_supported() {
+  return true;
+}
+
+// System loadavg support.  Returns -1 if load average cannot be obtained.
+// Linux doesn't yet have a (official) notion of processor sets,
+// so just return the system wide load average.
+int os::loadavg(double loadavg[], int nelem) {
+  return ::getloadavg(loadavg, nelem);
+}
+
+void os::pause() {
+  char filename[MAX_PATH];
+  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
+    jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
+  } else {
+    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
+  }
+
+  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
+  if (fd != -1) {
+    struct stat buf;
+    ::close(fd);
+    while (::stat(filename, &buf) == 0) {
+      (void)::poll(NULL, 0, 100);
+    }
+  } else {
+    jio_fprintf(stderr,
+                "Could not open pause file '%s', continuing immediately.\n", filename);
+  }
+}
+
+extern char** environ;
+
+// Run the specified command in a separate process. Return its exit value,
+// or -1 on failure (e.g. can't fork a new process).
+// Unlike system(), this function can be called from signal handler. It
+// doesn't block SIGINT et al.
+int os::fork_and_exec(char* cmd) {
+  const char * argv[4] = {"sh", "-c", cmd, NULL};
+
+  pid_t pid = fork();
+
+  if (pid < 0) {
+    // fork failed
+    return -1;
+
+  } else if (pid == 0) {
+    // child process
+
+    execve("/bin/sh", (char* const*)argv, environ);
+
+    // execve failed
+    _exit(-1);
+
+  } else  {
+    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
+    // care about the actual exit code, for now.
+
+    int status;
+
+    // Wait for the child process to exit.  This returns immediately if
+    // the child has already exited. */
+    while (waitpid(pid, &status, 0) < 0) {
+      switch (errno) {
+      case ECHILD: return 0;
+      case EINTR: break;
+      default: return -1;
+      }
+    }
+
+    if (WIFEXITED(status)) {
+      // The child exited normally; get its exit code.
+      return WEXITSTATUS(status);
+    } else if (WIFSIGNALED(status)) {
+      // The child exited because of a signal
+      // The best value to return is 0x80 + signal number,
+      // because that is what all Unix shells do, and because
+      // it allows callers to distinguish between process exit and
+      // process death by signal.
+      return 0x80 + WTERMSIG(status);
+    } else {
+      // Unknown exit code; pass it through
+      return status;
+    }
+  }
+}
+
+// is_headless_jre()
+//
+// Test for the existence of xawt/libmawt.so or libawt_xawt.so
+// in order to report if we are running in a headless jre
+//
+// Since JDK8 xawt/libmawt.so was moved into the same directory
+// as libawt.so, and renamed libawt_xawt.so
+//
+bool os::is_headless_jre() {
+  struct stat statbuf;
+  char buf[MAXPATHLEN];
+  char libmawtpath[MAXPATHLEN];
+  const char *xawtstr  = "/xawt/libmawt.so";
+  const char *new_xawtstr = "/libawt_xawt.so";
+  char *p;
+
+  // Get path to libjvm.so
+  os::jvm_path(buf, sizeof(buf));
+
+  // Get rid of libjvm.so
+  p = strrchr(buf, '/');
+  if (p == NULL) {
+    return false;
+  } else {
+    *p = '\0';
+  }
+
+  // Get rid of client or server
+  p = strrchr(buf, '/');
+  if (p == NULL) {
+    return false;
+  } else {
+    *p = '\0';
+  }
+
+  // check xawt/libmawt.so
+  strcpy(libmawtpath, buf);
+  strcat(libmawtpath, xawtstr);
+  if (::stat(libmawtpath, &statbuf) == 0) return false;
+
+  // check libawt_xawt.so
+  strcpy(libmawtpath, buf);
+  strcat(libmawtpath, new_xawtstr);
+  if (::stat(libmawtpath, &statbuf) == 0) return false;
+
+  return true;
+}
+
+// Get the default path to the core file
+// Returns the length of the string
+int os::get_core_path(char* buffer, size_t bufferSize) {
+  /*
+   * Max length of /proc/sys/kernel/core_pattern is 128 characters.
+   * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
+   */
+  const int core_pattern_len = 129;
+  char core_pattern[core_pattern_len] = {0};
+
+  int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
+  if (core_pattern_file == -1) {
+    return -1;
+  }
+
+  ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
+  ::close(core_pattern_file);
+  if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
+    return -1;
+  }
+  if (core_pattern[ret-1] == '\n') {
+    core_pattern[ret-1] = '\0';
+  } else {
+    core_pattern[ret] = '\0';
+  }
+
+  char *pid_pos = strstr(core_pattern, "%p");
+  int written;
+
+  if (core_pattern[0] == '/') {
+    written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
+  } else {
+    char cwd[PATH_MAX];
+
+    const char* p = get_current_directory(cwd, PATH_MAX);
+    if (p == NULL) {
+      return -1;
+    }
+
+    if (core_pattern[0] == '|') {
+      written = jio_snprintf(buffer, bufferSize,
+                             "\"%s\" (or dumping to %s/core.%d)",
+                             &core_pattern[1], p, current_process_id());
+    } else {
+      written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
+    }
+  }
+
+  if (written < 0) {
+    return -1;
+  }
+
+  if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
+    int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
+
+    if (core_uses_pid_file != -1) {
+      char core_uses_pid = 0;
+      ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
+      ::close(core_uses_pid_file);
+
+      if (core_uses_pid == '1') {
+        jio_snprintf(buffer + written, bufferSize - written,
+                                          ".%d", current_process_id());
+      }
+    }
+  }
+
+  return strlen(buffer);
+}
+
+bool os::start_debugging(char *buf, int buflen) {
+  int len = (int)strlen(buf);
+  char *p = &buf[len];
+
+  jio_snprintf(p, buflen-len,
+               "\n\n"
+               "Do you want to debug the problem?\n\n"
+               "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
+               "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
+               "Otherwise, press RETURN to abort...",
+               os::current_process_id(), os::current_process_id(),
+               os::current_thread_id(), os::current_thread_id());
+
+  bool yes = os::message_box("Unexpected Error", buf);
+
+  if (yes) {
+    // yes, user asked VM to launch debugger
+    jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
+                 os::current_process_id(), os::current_process_id());
+
+    os::fork_and_exec(buf);
+    yes = false;
+  }
+  return yes;
+}
+
+
+// Java/Compiler thread:
+//
+//   Low memory addresses
+// P0 +------------------------+
+//    |                        |\  Java thread created by VM does not have glibc
+//    |    glibc guard page    | - guard page, attached Java thread usually has
+//    |                        |/  1 glibc guard page.
+// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
+//    |                        |\
+//    |  HotSpot Guard Pages   | - red, yellow and reserved pages
+//    |                        |/
+//    +------------------------+ JavaThread::stack_reserved_zone_base()
+//    |                        |\
+//    |      Normal Stack      | -
+//    |                        |/
+// P2 +------------------------+ Thread::stack_base()
+//
+// Non-Java thread:
+//
+//   Low memory addresses
+// P0 +------------------------+
+//    |                        |\
+//    |  glibc guard page      | - usually 1 page
+//    |                        |/
+// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
+//    |                        |\
+//    |      Normal Stack      | -
+//    |                        |/
+// P2 +------------------------+ Thread::stack_base()
+//
+// ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
+//    returned from pthread_attr_getstack().
+// ** Due to NPTL implementation error, linux takes the glibc guard page out
+//    of the stack size given in pthread_attr. We work around this for
+//    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
+//
+#ifndef ZERO
+static void current_stack_region(address * bottom, size_t * size) {
+  if (os::Linux::is_initial_thread()) {
+    // initial thread needs special handling because pthread_getattr_np()
+    // may return bogus value.
+    *bottom = os::Linux::initial_thread_stack_bottom();
+    *size   = os::Linux::initial_thread_stack_size();
+  } else {
+    pthread_attr_t attr;
+
+    int rslt = pthread_getattr_np(pthread_self(), &attr);
+
+    // JVM needs to know exact stack location, abort if it fails
+    if (rslt != 0) {
+      if (rslt == ENOMEM) {
+        vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
+      } else {
+        fatal("pthread_getattr_np failed with error = %d", rslt);
+      }
+    }
+
+    if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
+      fatal("Cannot locate current stack attributes!");
+    }
+
+    // Work around NPTL stack guard error.
+    size_t guard_size = 0;
+    rslt = pthread_attr_getguardsize(&attr, &guard_size);
+    if (rslt != 0) {
+      fatal("pthread_attr_getguardsize failed with error = %d", rslt);
+    }
+    *bottom += guard_size;
+    *size   -= guard_size;
+
+    pthread_attr_destroy(&attr);
+
+  }
+  assert(os::current_stack_pointer() >= *bottom &&
+         os::current_stack_pointer() < *bottom + *size, "just checking");
+}
+
+address os::current_stack_base() {
+  address bottom;
+  size_t size;
+  current_stack_region(&bottom, &size);
+  return (bottom + size);
+}
+
+size_t os::current_stack_size() {
+  // This stack size includes the usable stack and HotSpot guard pages
+  // (for the threads that have Hotspot guard pages).
+  address bottom;
+  size_t size;
+  current_stack_region(&bottom, &size);
+  return size;
+}
+#endif
+
+static inline struct timespec get_mtime(const char* filename) {
+  struct stat st;
+  int ret = os::stat(filename, &st);
+  assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
+  return st.st_mtim;
+}
+
+int os::compare_file_modified_times(const char* file1, const char* file2) {
+  struct timespec filetime1 = get_mtime(file1);
+  struct timespec filetime2 = get_mtime(file2);
+  int diff = filetime1.tv_sec - filetime2.tv_sec;
+  if (diff == 0) {
+    return filetime1.tv_nsec - filetime2.tv_nsec;
+  }
+  return diff;
+}
+
+/////////////// Unit tests ///////////////
+
+#ifndef PRODUCT
+
+#define test_log(...)              \
+  do {                             \
+    if (VerboseInternalVMTests) {  \
+      tty->print_cr(__VA_ARGS__);  \
+      tty->flush();                \
+    }                              \
+  } while (false)
+
+class TestReserveMemorySpecial : AllStatic {
+ public:
+  static void small_page_write(void* addr, size_t size) {
+    size_t page_size = os::vm_page_size();
+
+    char* end = (char*)addr + size;
+    for (char* p = (char*)addr; p < end; p += page_size) {
+      *p = 1;
+    }
+  }
+
+  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
+    if (!UseHugeTLBFS) {
+      return;
+    }
+
+    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
+
+    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
+
+    if (addr != NULL) {
+      small_page_write(addr, size);
+
+      os::Linux::release_memory_special_huge_tlbfs(addr, size);
+    }
+  }
+
+  static void test_reserve_memory_special_huge_tlbfs_only() {
+    if (!UseHugeTLBFS) {
+      return;
+    }
+
+    size_t lp = os::large_page_size();
+
+    for (size_t size = lp; size <= lp * 10; size += lp) {
+      test_reserve_memory_special_huge_tlbfs_only(size);
+    }
+  }
+
+  static void test_reserve_memory_special_huge_tlbfs_mixed() {
+    size_t lp = os::large_page_size();
+    size_t ag = os::vm_allocation_granularity();
+
+    // sizes to test
+    const size_t sizes[] = {
+      lp, lp + ag, lp + lp / 2, lp * 2,
+      lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
+      lp * 10, lp * 10 + lp / 2
+    };
+    const int num_sizes = sizeof(sizes) / sizeof(size_t);
+
+    // For each size/alignment combination, we test three scenarios:
+    // 1) with req_addr == NULL
+    // 2) with a non-null req_addr at which we expect to successfully allocate
+    // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
+    //    expect the allocation to either fail or to ignore req_addr
+
+    // Pre-allocate two areas; they shall be as large as the largest allocation
+    //  and aligned to the largest alignment we will be testing.
+    const size_t mapping_size = sizes[num_sizes - 1] * 2;
+    char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
+      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
+      -1, 0);
+    assert(mapping1 != MAP_FAILED, "should work");
+
+    char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
+      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
+      -1, 0);
+    assert(mapping2 != MAP_FAILED, "should work");
+
+    // Unmap the first mapping, but leave the second mapping intact: the first
+    // mapping will serve as a value for a "good" req_addr (case 2). The second
+    // mapping, still intact, as "bad" req_addr (case 3).
+    ::munmap(mapping1, mapping_size);
+
+    // Case 1
+    test_log("%s, req_addr NULL:", __FUNCTION__);
+    test_log("size            align           result");
+
+    for (int i = 0; i < num_sizes; i++) {
+      const size_t size = sizes[i];
+      for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
+        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
+        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
+                 size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
+        if (p != NULL) {
+          assert(is_aligned(p, alignment), "must be");
+          small_page_write(p, size);
+          os::Linux::release_memory_special_huge_tlbfs(p, size);
+        }
+      }
+    }
+
+    // Case 2
+    test_log("%s, req_addr non-NULL:", __FUNCTION__);
+    test_log("size            align           req_addr         result");
+
+    for (int i = 0; i < num_sizes; i++) {
+      const size_t size = sizes[i];
+      for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
+        char* const req_addr = align_up(mapping1, alignment);
+        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
+        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
+                 size, alignment, p2i(req_addr), p2i(p),
+                 ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
+        if (p != NULL) {
+          assert(p == req_addr, "must be");
+          small_page_write(p, size);
+          os::Linux::release_memory_special_huge_tlbfs(p, size);
+        }
+      }
+    }
+
+    // Case 3
+    test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
+    test_log("size            align           req_addr         result");
+
+    for (int i = 0; i < num_sizes; i++) {
+      const size_t size = sizes[i];
+      for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
+        char* const req_addr = align_up(mapping2, alignment);
+        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
+        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
+                 size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
+        // as the area around req_addr contains already existing mappings, the API should always
+        // return NULL (as per contract, it cannot return another address)
+        assert(p == NULL, "must be");
+      }
+    }
+
+    ::munmap(mapping2, mapping_size);
+
+  }
+
+  static void test_reserve_memory_special_huge_tlbfs() {
+    if (!UseHugeTLBFS) {
+      return;
+    }
+
+    test_reserve_memory_special_huge_tlbfs_only();
+    test_reserve_memory_special_huge_tlbfs_mixed();
+  }
+
+  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
+    if (!UseSHM) {
+      return;
+    }
+
+    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
+
+    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
+
+    if (addr != NULL) {
+      assert(is_aligned(addr, alignment), "Check");
+      assert(is_aligned(addr, os::large_page_size()), "Check");
+
+      small_page_write(addr, size);
+
+      os::Linux::release_memory_special_shm(addr, size);
+    }
+  }
+
+  static void test_reserve_memory_special_shm() {
+    size_t lp = os::large_page_size();
+    size_t ag = os::vm_allocation_granularity();
+
+    for (size_t size = ag; size < lp * 3; size += ag) {
+      for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
+        test_reserve_memory_special_shm(size, alignment);
+      }
+    }
+  }
+
+  static void test() {
+    test_reserve_memory_special_huge_tlbfs();
+    test_reserve_memory_special_shm();
+  }
+};
+
+void TestReserveMemorySpecial_test() {
+  TestReserveMemorySpecial::test();
+}
+
+#endif