src/hotspot/cpu/x86/sharedRuntime_x86_32.cpp
changeset 47216 71c04702a3d5
parent 46727 6e4a84748e2c
child 48557 2e867226b914
child 48807 fd8ccb37fce9
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/cpu/x86/sharedRuntime_x86_32.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,3133 @@
+/*
+ * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "asm/macroAssembler.hpp"
+#include "asm/macroAssembler.inline.hpp"
+#include "code/debugInfoRec.hpp"
+#include "code/icBuffer.hpp"
+#include "code/vtableStubs.hpp"
+#include "interpreter/interpreter.hpp"
+#include "logging/log.hpp"
+#include "memory/resourceArea.hpp"
+#include "oops/compiledICHolder.hpp"
+#include "runtime/sharedRuntime.hpp"
+#include "runtime/vframeArray.hpp"
+#include "utilities/align.hpp"
+#include "vmreg_x86.inline.hpp"
+#ifdef COMPILER1
+#include "c1/c1_Runtime1.hpp"
+#endif
+#ifdef COMPILER2
+#include "opto/runtime.hpp"
+#endif
+#include "vm_version_x86.hpp"
+
+#define __ masm->
+
+const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
+
+class RegisterSaver {
+  // Capture info about frame layout
+#define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
+  enum layout {
+                fpu_state_off = 0,
+                fpu_state_end = fpu_state_off+FPUStateSizeInWords,
+                st0_off, st0H_off,
+                st1_off, st1H_off,
+                st2_off, st2H_off,
+                st3_off, st3H_off,
+                st4_off, st4H_off,
+                st5_off, st5H_off,
+                st6_off, st6H_off,
+                st7_off, st7H_off,
+                xmm_off,
+                DEF_XMM_OFFS(0),
+                DEF_XMM_OFFS(1),
+                DEF_XMM_OFFS(2),
+                DEF_XMM_OFFS(3),
+                DEF_XMM_OFFS(4),
+                DEF_XMM_OFFS(5),
+                DEF_XMM_OFFS(6),
+                DEF_XMM_OFFS(7),
+                flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word
+                rdi_off,
+                rsi_off,
+                ignore_off,  // extra copy of rbp,
+                rsp_off,
+                rbx_off,
+                rdx_off,
+                rcx_off,
+                rax_off,
+                // The frame sender code expects that rbp will be in the "natural" place and
+                // will override any oopMap setting for it. We must therefore force the layout
+                // so that it agrees with the frame sender code.
+                rbp_off,
+                return_off,      // slot for return address
+                reg_save_size };
+  enum { FPU_regs_live = flags_off - fpu_state_end };
+
+  public:
+
+  static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
+                                     int* total_frame_words, bool verify_fpu = true, bool save_vectors = false);
+  static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
+
+  static int rax_offset() { return rax_off; }
+  static int rbx_offset() { return rbx_off; }
+
+  // Offsets into the register save area
+  // Used by deoptimization when it is managing result register
+  // values on its own
+
+  static int raxOffset(void) { return rax_off; }
+  static int rdxOffset(void) { return rdx_off; }
+  static int rbxOffset(void) { return rbx_off; }
+  static int xmm0Offset(void) { return xmm0_off; }
+  // This really returns a slot in the fp save area, which one is not important
+  static int fpResultOffset(void) { return st0_off; }
+
+  // During deoptimization only the result register need to be restored
+  // all the other values have already been extracted.
+
+  static void restore_result_registers(MacroAssembler* masm);
+
+};
+
+OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
+                                           int* total_frame_words, bool verify_fpu, bool save_vectors) {
+  int num_xmm_regs = XMMRegisterImpl::number_of_registers;
+  int ymm_bytes = num_xmm_regs * 16;
+  int zmm_bytes = num_xmm_regs * 32;
+#ifdef COMPILER2
+  if (save_vectors) {
+    assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
+    assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
+    // Save upper half of YMM registers
+    int vect_bytes = ymm_bytes;
+    if (UseAVX > 2) {
+      // Save upper half of ZMM registers as well
+      vect_bytes += zmm_bytes;
+    }
+    additional_frame_words += vect_bytes / wordSize;
+  }
+#else
+  assert(!save_vectors, "vectors are generated only by C2");
+#endif
+  int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
+  int frame_words = frame_size_in_bytes / wordSize;
+  *total_frame_words = frame_words;
+
+  assert(FPUStateSizeInWords == 27, "update stack layout");
+
+  // save registers, fpu state, and flags
+  // We assume caller has already has return address slot on the stack
+  // We push epb twice in this sequence because we want the real rbp,
+  // to be under the return like a normal enter and we want to use pusha
+  // We push by hand instead of pusing push
+  __ enter();
+  __ pusha();
+  __ pushf();
+  __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space
+  __ push_FPU_state();          // Save FPU state & init
+
+  if (verify_fpu) {
+    // Some stubs may have non standard FPU control word settings so
+    // only check and reset the value when it required to be the
+    // standard value.  The safepoint blob in particular can be used
+    // in methods which are using the 24 bit control word for
+    // optimized float math.
+
+#ifdef ASSERT
+    // Make sure the control word has the expected value
+    Label ok;
+    __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
+    __ jccb(Assembler::equal, ok);
+    __ stop("corrupted control word detected");
+    __ bind(ok);
+#endif
+
+    // Reset the control word to guard against exceptions being unmasked
+    // since fstp_d can cause FPU stack underflow exceptions.  Write it
+    // into the on stack copy and then reload that to make sure that the
+    // current and future values are correct.
+    __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
+  }
+
+  __ frstor(Address(rsp, 0));
+  if (!verify_fpu) {
+    // Set the control word so that exceptions are masked for the
+    // following code.
+    __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
+  }
+
+  int off = st0_off;
+  int delta = st1_off - off;
+
+  // Save the FPU registers in de-opt-able form
+  for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) {
+    __ fstp_d(Address(rsp, off*wordSize));
+    off += delta;
+  }
+
+  off = xmm0_off;
+  delta = xmm1_off - off;
+  if(UseSSE == 1) {
+    // Save the XMM state
+    for (int n = 0; n < num_xmm_regs; n++) {
+      __ movflt(Address(rsp, off*wordSize), as_XMMRegister(n));
+      off += delta;
+    }
+  } else if(UseSSE >= 2) {
+    // Save whole 128bit (16 bytes) XMM registers
+    for (int n = 0; n < num_xmm_regs; n++) {
+      __ movdqu(Address(rsp, off*wordSize), as_XMMRegister(n));
+      off += delta;
+    }
+  }
+
+  if (save_vectors) {
+    __ subptr(rsp, ymm_bytes);
+    // Save upper half of YMM registers
+    for (int n = 0; n < num_xmm_regs; n++) {
+      __ vextractf128_high(Address(rsp, n*16), as_XMMRegister(n));
+    }
+    if (UseAVX > 2) {
+      __ subptr(rsp, zmm_bytes);
+      // Save upper half of ZMM registers
+      for (int n = 0; n < num_xmm_regs; n++) {
+        __ vextractf64x4_high(Address(rsp, n*32), as_XMMRegister(n));
+      }
+    }
+  }
+  __ vzeroupper();
+
+  // Set an oopmap for the call site.  This oopmap will map all
+  // oop-registers and debug-info registers as callee-saved.  This
+  // will allow deoptimization at this safepoint to find all possible
+  // debug-info recordings, as well as let GC find all oops.
+
+  OopMapSet *oop_maps = new OopMapSet();
+  OopMap* map =  new OopMap( frame_words, 0 );
+
+#define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
+#define NEXTREG(x) (x)->as_VMReg()->next()
+
+  map->set_callee_saved(STACK_OFFSET(rax_off), rax->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(rcx_off), rcx->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(rdx_off), rdx->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(rbx_off), rbx->as_VMReg());
+  // rbp, location is known implicitly, no oopMap
+  map->set_callee_saved(STACK_OFFSET(rsi_off), rsi->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(rdi_off), rdi->as_VMReg());
+  // %%% This is really a waste but we'll keep things as they were for now for the upper component
+  off = st0_off;
+  delta = st1_off - off;
+  for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) {
+    FloatRegister freg_name = as_FloatRegister(n);
+    map->set_callee_saved(STACK_OFFSET(off), freg_name->as_VMReg());
+    map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(freg_name));
+    off += delta;
+  }
+  off = xmm0_off;
+  delta = xmm1_off - off;
+  for (int n = 0; n < num_xmm_regs; n++) {
+    XMMRegister xmm_name = as_XMMRegister(n);
+    map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
+    map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(xmm_name));
+    off += delta;
+  }
+#undef NEXTREG
+#undef STACK_OFFSET
+
+  return map;
+}
+
+void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
+  int num_xmm_regs = XMMRegisterImpl::number_of_registers;
+  int ymm_bytes = num_xmm_regs * 16;
+  int zmm_bytes = num_xmm_regs * 32;
+  // Recover XMM & FPU state
+  int additional_frame_bytes = 0;
+#ifdef COMPILER2
+  if (restore_vectors) {
+    assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
+    assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
+    // Save upper half of YMM registers
+    additional_frame_bytes = ymm_bytes;
+    if (UseAVX > 2) {
+      // Save upper half of ZMM registers as well
+      additional_frame_bytes += zmm_bytes;
+    }
+  }
+#else
+  assert(!restore_vectors, "vectors are generated only by C2");
+#endif
+
+  int off = xmm0_off;
+  int delta = xmm1_off - off;
+
+  __ vzeroupper();
+
+  if (UseSSE == 1) {
+    // Restore XMM registers
+    assert(additional_frame_bytes == 0, "");
+    for (int n = 0; n < num_xmm_regs; n++) {
+      __ movflt(as_XMMRegister(n), Address(rsp, off*wordSize));
+      off += delta;
+    }
+  } else if (UseSSE >= 2) {
+    // Restore whole 128bit (16 bytes) XMM registers. Do this before restoring YMM and
+    // ZMM because the movdqu instruction zeros the upper part of the XMM register.
+    for (int n = 0; n < num_xmm_regs; n++) {
+      __ movdqu(as_XMMRegister(n), Address(rsp, off*wordSize+additional_frame_bytes));
+      off += delta;
+    }
+  }
+
+  if (restore_vectors) {
+    if (UseAVX > 2) {
+      // Restore upper half of ZMM registers.
+      for (int n = 0; n < num_xmm_regs; n++) {
+        __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, n*32));
+      }
+      __ addptr(rsp, zmm_bytes);
+    }
+    // Restore upper half of YMM registers.
+    for (int n = 0; n < num_xmm_regs; n++) {
+      __ vinsertf128_high(as_XMMRegister(n), Address(rsp, n*16));
+    }
+    __ addptr(rsp, ymm_bytes);
+  }
+
+  __ pop_FPU_state();
+  __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers
+
+  __ popf();
+  __ popa();
+  // Get the rbp, described implicitly by the frame sender code (no oopMap)
+  __ pop(rbp);
+}
+
+void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
+
+  // Just restore result register. Only used by deoptimization. By
+  // now any callee save register that needs to be restore to a c2
+  // caller of the deoptee has been extracted into the vframeArray
+  // and will be stuffed into the c2i adapter we create for later
+  // restoration so only result registers need to be restored here.
+  //
+
+  __ frstor(Address(rsp, 0));      // Restore fpu state
+
+  // Recover XMM & FPU state
+  if( UseSSE == 1 ) {
+    __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
+  } else if( UseSSE >= 2 ) {
+    __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
+  }
+  __ movptr(rax, Address(rsp, rax_off*wordSize));
+  __ movptr(rdx, Address(rsp, rdx_off*wordSize));
+  // Pop all of the register save are off the stack except the return address
+  __ addptr(rsp, return_off * wordSize);
+}
+
+// Is vector's size (in bytes) bigger than a size saved by default?
+// 16 bytes XMM registers are saved by default using SSE2 movdqu instructions.
+// Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated.
+bool SharedRuntime::is_wide_vector(int size) {
+  return size > 16;
+}
+
+size_t SharedRuntime::trampoline_size() {
+  return 16;
+}
+
+void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
+  __ jump(RuntimeAddress(destination));
+}
+
+// The java_calling_convention describes stack locations as ideal slots on
+// a frame with no abi restrictions. Since we must observe abi restrictions
+// (like the placement of the register window) the slots must be biased by
+// the following value.
+static int reg2offset_in(VMReg r) {
+  // Account for saved rbp, and return address
+  // This should really be in_preserve_stack_slots
+  return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
+}
+
+static int reg2offset_out(VMReg r) {
+  return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
+}
+
+// ---------------------------------------------------------------------------
+// Read the array of BasicTypes from a signature, and compute where the
+// arguments should go.  Values in the VMRegPair regs array refer to 4-byte
+// quantities.  Values less than SharedInfo::stack0 are registers, those above
+// refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
+// as framesizes are fixed.
+// VMRegImpl::stack0 refers to the first slot 0(sp).
+// and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
+// up to RegisterImpl::number_of_registers) are the 32-bit
+// integer registers.
+
+// Pass first two oop/int args in registers ECX and EDX.
+// Pass first two float/double args in registers XMM0 and XMM1.
+// Doubles have precedence, so if you pass a mix of floats and doubles
+// the doubles will grab the registers before the floats will.
+
+// Note: the INPUTS in sig_bt are in units of Java argument words, which are
+// either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
+// units regardless of build. Of course for i486 there is no 64 bit build
+
+
+// ---------------------------------------------------------------------------
+// The compiled Java calling convention.
+// Pass first two oop/int args in registers ECX and EDX.
+// Pass first two float/double args in registers XMM0 and XMM1.
+// Doubles have precedence, so if you pass a mix of floats and doubles
+// the doubles will grab the registers before the floats will.
+int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
+                                           VMRegPair *regs,
+                                           int total_args_passed,
+                                           int is_outgoing) {
+  uint    stack = 0;          // Starting stack position for args on stack
+
+
+  // Pass first two oop/int args in registers ECX and EDX.
+  uint reg_arg0 = 9999;
+  uint reg_arg1 = 9999;
+
+  // Pass first two float/double args in registers XMM0 and XMM1.
+  // Doubles have precedence, so if you pass a mix of floats and doubles
+  // the doubles will grab the registers before the floats will.
+  // CNC - TURNED OFF FOR non-SSE.
+  //       On Intel we have to round all doubles (and most floats) at
+  //       call sites by storing to the stack in any case.
+  // UseSSE=0 ==> Don't Use ==> 9999+0
+  // UseSSE=1 ==> Floats only ==> 9999+1
+  // UseSSE>=2 ==> Floats or doubles ==> 9999+2
+  enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
+  uint fargs = (UseSSE>=2) ? 2 : UseSSE;
+  uint freg_arg0 = 9999+fargs;
+  uint freg_arg1 = 9999+fargs;
+
+  // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
+  int i;
+  for( i = 0; i < total_args_passed; i++) {
+    if( sig_bt[i] == T_DOUBLE ) {
+      // first 2 doubles go in registers
+      if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
+      else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
+      else // Else double is passed low on the stack to be aligned.
+        stack += 2;
+    } else if( sig_bt[i] == T_LONG ) {
+      stack += 2;
+    }
+  }
+  int dstack = 0;             // Separate counter for placing doubles
+
+  // Now pick where all else goes.
+  for( i = 0; i < total_args_passed; i++) {
+    // From the type and the argument number (count) compute the location
+    switch( sig_bt[i] ) {
+    case T_SHORT:
+    case T_CHAR:
+    case T_BYTE:
+    case T_BOOLEAN:
+    case T_INT:
+    case T_ARRAY:
+    case T_OBJECT:
+    case T_ADDRESS:
+      if( reg_arg0 == 9999 )  {
+        reg_arg0 = i;
+        regs[i].set1(rcx->as_VMReg());
+      } else if( reg_arg1 == 9999 )  {
+        reg_arg1 = i;
+        regs[i].set1(rdx->as_VMReg());
+      } else {
+        regs[i].set1(VMRegImpl::stack2reg(stack++));
+      }
+      break;
+    case T_FLOAT:
+      if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
+        freg_arg0 = i;
+        regs[i].set1(xmm0->as_VMReg());
+      } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
+        freg_arg1 = i;
+        regs[i].set1(xmm1->as_VMReg());
+      } else {
+        regs[i].set1(VMRegImpl::stack2reg(stack++));
+      }
+      break;
+    case T_LONG:
+      assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
+      regs[i].set2(VMRegImpl::stack2reg(dstack));
+      dstack += 2;
+      break;
+    case T_DOUBLE:
+      assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
+      if( freg_arg0 == (uint)i ) {
+        regs[i].set2(xmm0->as_VMReg());
+      } else if( freg_arg1 == (uint)i ) {
+        regs[i].set2(xmm1->as_VMReg());
+      } else {
+        regs[i].set2(VMRegImpl::stack2reg(dstack));
+        dstack += 2;
+      }
+      break;
+    case T_VOID: regs[i].set_bad(); break;
+      break;
+    default:
+      ShouldNotReachHere();
+      break;
+    }
+  }
+
+  // return value can be odd number of VMRegImpl stack slots make multiple of 2
+  return align_up(stack, 2);
+}
+
+// Patch the callers callsite with entry to compiled code if it exists.
+static void patch_callers_callsite(MacroAssembler *masm) {
+  Label L;
+  __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
+  __ jcc(Assembler::equal, L);
+  // Schedule the branch target address early.
+  // Call into the VM to patch the caller, then jump to compiled callee
+  // rax, isn't live so capture return address while we easily can
+  __ movptr(rax, Address(rsp, 0));
+  __ pusha();
+  __ pushf();
+
+  if (UseSSE == 1) {
+    __ subptr(rsp, 2*wordSize);
+    __ movflt(Address(rsp, 0), xmm0);
+    __ movflt(Address(rsp, wordSize), xmm1);
+  }
+  if (UseSSE >= 2) {
+    __ subptr(rsp, 4*wordSize);
+    __ movdbl(Address(rsp, 0), xmm0);
+    __ movdbl(Address(rsp, 2*wordSize), xmm1);
+  }
+#ifdef COMPILER2
+  // C2 may leave the stack dirty if not in SSE2+ mode
+  if (UseSSE >= 2) {
+    __ verify_FPU(0, "c2i transition should have clean FPU stack");
+  } else {
+    __ empty_FPU_stack();
+  }
+#endif /* COMPILER2 */
+
+  // VM needs caller's callsite
+  __ push(rax);
+  // VM needs target method
+  __ push(rbx);
+  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
+  __ addptr(rsp, 2*wordSize);
+
+  if (UseSSE == 1) {
+    __ movflt(xmm0, Address(rsp, 0));
+    __ movflt(xmm1, Address(rsp, wordSize));
+    __ addptr(rsp, 2*wordSize);
+  }
+  if (UseSSE >= 2) {
+    __ movdbl(xmm0, Address(rsp, 0));
+    __ movdbl(xmm1, Address(rsp, 2*wordSize));
+    __ addptr(rsp, 4*wordSize);
+  }
+
+  __ popf();
+  __ popa();
+  __ bind(L);
+}
+
+
+static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
+  int next_off = st_off - Interpreter::stackElementSize;
+  __ movdbl(Address(rsp, next_off), r);
+}
+
+static void gen_c2i_adapter(MacroAssembler *masm,
+                            int total_args_passed,
+                            int comp_args_on_stack,
+                            const BasicType *sig_bt,
+                            const VMRegPair *regs,
+                            Label& skip_fixup) {
+  // Before we get into the guts of the C2I adapter, see if we should be here
+  // at all.  We've come from compiled code and are attempting to jump to the
+  // interpreter, which means the caller made a static call to get here
+  // (vcalls always get a compiled target if there is one).  Check for a
+  // compiled target.  If there is one, we need to patch the caller's call.
+  patch_callers_callsite(masm);
+
+  __ bind(skip_fixup);
+
+#ifdef COMPILER2
+  // C2 may leave the stack dirty if not in SSE2+ mode
+  if (UseSSE >= 2) {
+    __ verify_FPU(0, "c2i transition should have clean FPU stack");
+  } else {
+    __ empty_FPU_stack();
+  }
+#endif /* COMPILER2 */
+
+  // Since all args are passed on the stack, total_args_passed * interpreter_
+  // stack_element_size  is the
+  // space we need.
+  int extraspace = total_args_passed * Interpreter::stackElementSize;
+
+  // Get return address
+  __ pop(rax);
+
+  // set senderSP value
+  __ movptr(rsi, rsp);
+
+  __ subptr(rsp, extraspace);
+
+  // Now write the args into the outgoing interpreter space
+  for (int i = 0; i < total_args_passed; i++) {
+    if (sig_bt[i] == T_VOID) {
+      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
+      continue;
+    }
+
+    // st_off points to lowest address on stack.
+    int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
+    int next_off = st_off - Interpreter::stackElementSize;
+
+    // Say 4 args:
+    // i   st_off
+    // 0   12 T_LONG
+    // 1    8 T_VOID
+    // 2    4 T_OBJECT
+    // 3    0 T_BOOL
+    VMReg r_1 = regs[i].first();
+    VMReg r_2 = regs[i].second();
+    if (!r_1->is_valid()) {
+      assert(!r_2->is_valid(), "");
+      continue;
+    }
+
+    if (r_1->is_stack()) {
+      // memory to memory use fpu stack top
+      int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
+
+      if (!r_2->is_valid()) {
+        __ movl(rdi, Address(rsp, ld_off));
+        __ movptr(Address(rsp, st_off), rdi);
+      } else {
+
+        // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
+        // st_off == MSW, st_off-wordSize == LSW
+
+        __ movptr(rdi, Address(rsp, ld_off));
+        __ movptr(Address(rsp, next_off), rdi);
+#ifndef _LP64
+        __ movptr(rdi, Address(rsp, ld_off + wordSize));
+        __ movptr(Address(rsp, st_off), rdi);
+#else
+#ifdef ASSERT
+        // Overwrite the unused slot with known junk
+        __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
+        __ movptr(Address(rsp, st_off), rax);
+#endif /* ASSERT */
+#endif // _LP64
+      }
+    } else if (r_1->is_Register()) {
+      Register r = r_1->as_Register();
+      if (!r_2->is_valid()) {
+        __ movl(Address(rsp, st_off), r);
+      } else {
+        // long/double in gpr
+        NOT_LP64(ShouldNotReachHere());
+        // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
+        // T_DOUBLE and T_LONG use two slots in the interpreter
+        if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
+          // long/double in gpr
+#ifdef ASSERT
+          // Overwrite the unused slot with known junk
+          LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
+          __ movptr(Address(rsp, st_off), rax);
+#endif /* ASSERT */
+          __ movptr(Address(rsp, next_off), r);
+        } else {
+          __ movptr(Address(rsp, st_off), r);
+        }
+      }
+    } else {
+      assert(r_1->is_XMMRegister(), "");
+      if (!r_2->is_valid()) {
+        __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
+      } else {
+        assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
+        move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
+      }
+    }
+  }
+
+  // Schedule the branch target address early.
+  __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
+  // And repush original return address
+  __ push(rax);
+  __ jmp(rcx);
+}
+
+
+static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
+  int next_val_off = ld_off - Interpreter::stackElementSize;
+  __ movdbl(r, Address(saved_sp, next_val_off));
+}
+
+static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
+                        address code_start, address code_end,
+                        Label& L_ok) {
+  Label L_fail;
+  __ lea(temp_reg, ExternalAddress(code_start));
+  __ cmpptr(pc_reg, temp_reg);
+  __ jcc(Assembler::belowEqual, L_fail);
+  __ lea(temp_reg, ExternalAddress(code_end));
+  __ cmpptr(pc_reg, temp_reg);
+  __ jcc(Assembler::below, L_ok);
+  __ bind(L_fail);
+}
+
+void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
+                                    int total_args_passed,
+                                    int comp_args_on_stack,
+                                    const BasicType *sig_bt,
+                                    const VMRegPair *regs) {
+  // Note: rsi contains the senderSP on entry. We must preserve it since
+  // we may do a i2c -> c2i transition if we lose a race where compiled
+  // code goes non-entrant while we get args ready.
+
+  // Adapters can be frameless because they do not require the caller
+  // to perform additional cleanup work, such as correcting the stack pointer.
+  // An i2c adapter is frameless because the *caller* frame, which is interpreted,
+  // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
+  // even if a callee has modified the stack pointer.
+  // A c2i adapter is frameless because the *callee* frame, which is interpreted,
+  // routinely repairs its caller's stack pointer (from sender_sp, which is set
+  // up via the senderSP register).
+  // In other words, if *either* the caller or callee is interpreted, we can
+  // get the stack pointer repaired after a call.
+  // This is why c2i and i2c adapters cannot be indefinitely composed.
+  // In particular, if a c2i adapter were to somehow call an i2c adapter,
+  // both caller and callee would be compiled methods, and neither would
+  // clean up the stack pointer changes performed by the two adapters.
+  // If this happens, control eventually transfers back to the compiled
+  // caller, but with an uncorrected stack, causing delayed havoc.
+
+  // Pick up the return address
+  __ movptr(rax, Address(rsp, 0));
+
+  if (VerifyAdapterCalls &&
+      (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
+    // So, let's test for cascading c2i/i2c adapters right now.
+    //  assert(Interpreter::contains($return_addr) ||
+    //         StubRoutines::contains($return_addr),
+    //         "i2c adapter must return to an interpreter frame");
+    __ block_comment("verify_i2c { ");
+    Label L_ok;
+    if (Interpreter::code() != NULL)
+      range_check(masm, rax, rdi,
+                  Interpreter::code()->code_start(), Interpreter::code()->code_end(),
+                  L_ok);
+    if (StubRoutines::code1() != NULL)
+      range_check(masm, rax, rdi,
+                  StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
+                  L_ok);
+    if (StubRoutines::code2() != NULL)
+      range_check(masm, rax, rdi,
+                  StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
+                  L_ok);
+    const char* msg = "i2c adapter must return to an interpreter frame";
+    __ block_comment(msg);
+    __ stop(msg);
+    __ bind(L_ok);
+    __ block_comment("} verify_i2ce ");
+  }
+
+  // Must preserve original SP for loading incoming arguments because
+  // we need to align the outgoing SP for compiled code.
+  __ movptr(rdi, rsp);
+
+  // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
+  // in registers, we will occasionally have no stack args.
+  int comp_words_on_stack = 0;
+  if (comp_args_on_stack) {
+    // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
+    // registers are below.  By subtracting stack0, we either get a negative
+    // number (all values in registers) or the maximum stack slot accessed.
+    // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
+    // Convert 4-byte stack slots to words.
+    comp_words_on_stack = align_up(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
+    // Round up to miminum stack alignment, in wordSize
+    comp_words_on_stack = align_up(comp_words_on_stack, 2);
+    __ subptr(rsp, comp_words_on_stack * wordSize);
+  }
+
+  // Align the outgoing SP
+  __ andptr(rsp, -(StackAlignmentInBytes));
+
+  // push the return address on the stack (note that pushing, rather
+  // than storing it, yields the correct frame alignment for the callee)
+  __ push(rax);
+
+  // Put saved SP in another register
+  const Register saved_sp = rax;
+  __ movptr(saved_sp, rdi);
+
+
+  // Will jump to the compiled code just as if compiled code was doing it.
+  // Pre-load the register-jump target early, to schedule it better.
+  __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
+
+  // Now generate the shuffle code.  Pick up all register args and move the
+  // rest through the floating point stack top.
+  for (int i = 0; i < total_args_passed; i++) {
+    if (sig_bt[i] == T_VOID) {
+      // Longs and doubles are passed in native word order, but misaligned
+      // in the 32-bit build.
+      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
+      continue;
+    }
+
+    // Pick up 0, 1 or 2 words from SP+offset.
+
+    assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
+            "scrambled load targets?");
+    // Load in argument order going down.
+    int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
+    // Point to interpreter value (vs. tag)
+    int next_off = ld_off - Interpreter::stackElementSize;
+    //
+    //
+    //
+    VMReg r_1 = regs[i].first();
+    VMReg r_2 = regs[i].second();
+    if (!r_1->is_valid()) {
+      assert(!r_2->is_valid(), "");
+      continue;
+    }
+    if (r_1->is_stack()) {
+      // Convert stack slot to an SP offset (+ wordSize to account for return address )
+      int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
+
+      // We can use rsi as a temp here because compiled code doesn't need rsi as an input
+      // and if we end up going thru a c2i because of a miss a reasonable value of rsi
+      // we be generated.
+      if (!r_2->is_valid()) {
+        // __ fld_s(Address(saved_sp, ld_off));
+        // __ fstp_s(Address(rsp, st_off));
+        __ movl(rsi, Address(saved_sp, ld_off));
+        __ movptr(Address(rsp, st_off), rsi);
+      } else {
+        // Interpreter local[n] == MSW, local[n+1] == LSW however locals
+        // are accessed as negative so LSW is at LOW address
+
+        // ld_off is MSW so get LSW
+        // st_off is LSW (i.e. reg.first())
+        // __ fld_d(Address(saved_sp, next_off));
+        // __ fstp_d(Address(rsp, st_off));
+        //
+        // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
+        // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
+        // So we must adjust where to pick up the data to match the interpreter.
+        //
+        // Interpreter local[n] == MSW, local[n+1] == LSW however locals
+        // are accessed as negative so LSW is at LOW address
+
+        // ld_off is MSW so get LSW
+        const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
+                           next_off : ld_off;
+        __ movptr(rsi, Address(saved_sp, offset));
+        __ movptr(Address(rsp, st_off), rsi);
+#ifndef _LP64
+        __ movptr(rsi, Address(saved_sp, ld_off));
+        __ movptr(Address(rsp, st_off + wordSize), rsi);
+#endif // _LP64
+      }
+    } else if (r_1->is_Register()) {  // Register argument
+      Register r = r_1->as_Register();
+      assert(r != rax, "must be different");
+      if (r_2->is_valid()) {
+        //
+        // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
+        // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
+        // So we must adjust where to pick up the data to match the interpreter.
+
+        const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
+                           next_off : ld_off;
+
+        // this can be a misaligned move
+        __ movptr(r, Address(saved_sp, offset));
+#ifndef _LP64
+        assert(r_2->as_Register() != rax, "need another temporary register");
+        // Remember r_1 is low address (and LSB on x86)
+        // So r_2 gets loaded from high address regardless of the platform
+        __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
+#endif // _LP64
+      } else {
+        __ movl(r, Address(saved_sp, ld_off));
+      }
+    } else {
+      assert(r_1->is_XMMRegister(), "");
+      if (!r_2->is_valid()) {
+        __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
+      } else {
+        move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
+      }
+    }
+  }
+
+  // 6243940 We might end up in handle_wrong_method if
+  // the callee is deoptimized as we race thru here. If that
+  // happens we don't want to take a safepoint because the
+  // caller frame will look interpreted and arguments are now
+  // "compiled" so it is much better to make this transition
+  // invisible to the stack walking code. Unfortunately if
+  // we try and find the callee by normal means a safepoint
+  // is possible. So we stash the desired callee in the thread
+  // and the vm will find there should this case occur.
+
+  __ get_thread(rax);
+  __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
+
+  // move Method* to rax, in case we end up in an c2i adapter.
+  // the c2i adapters expect Method* in rax, (c2) because c2's
+  // resolve stubs return the result (the method) in rax,.
+  // I'd love to fix this.
+  __ mov(rax, rbx);
+
+  __ jmp(rdi);
+}
+
+// ---------------------------------------------------------------
+AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
+                                                            int total_args_passed,
+                                                            int comp_args_on_stack,
+                                                            const BasicType *sig_bt,
+                                                            const VMRegPair *regs,
+                                                            AdapterFingerPrint* fingerprint) {
+  address i2c_entry = __ pc();
+
+  gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
+
+  // -------------------------------------------------------------------------
+  // Generate a C2I adapter.  On entry we know rbx, holds the Method* during calls
+  // to the interpreter.  The args start out packed in the compiled layout.  They
+  // need to be unpacked into the interpreter layout.  This will almost always
+  // require some stack space.  We grow the current (compiled) stack, then repack
+  // the args.  We  finally end in a jump to the generic interpreter entry point.
+  // On exit from the interpreter, the interpreter will restore our SP (lest the
+  // compiled code, which relys solely on SP and not EBP, get sick).
+
+  address c2i_unverified_entry = __ pc();
+  Label skip_fixup;
+
+  Register holder = rax;
+  Register receiver = rcx;
+  Register temp = rbx;
+
+  {
+
+    Label missed;
+    __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
+    __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
+    __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
+    __ jcc(Assembler::notEqual, missed);
+    // Method might have been compiled since the call site was patched to
+    // interpreted if that is the case treat it as a miss so we can get
+    // the call site corrected.
+    __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
+    __ jcc(Assembler::equal, skip_fixup);
+
+    __ bind(missed);
+    __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
+  }
+
+  address c2i_entry = __ pc();
+
+  gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
+
+  __ flush();
+  return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
+}
+
+int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
+                                         VMRegPair *regs,
+                                         VMRegPair *regs2,
+                                         int total_args_passed) {
+  assert(regs2 == NULL, "not needed on x86");
+// We return the amount of VMRegImpl stack slots we need to reserve for all
+// the arguments NOT counting out_preserve_stack_slots.
+
+  uint    stack = 0;        // All arguments on stack
+
+  for( int i = 0; i < total_args_passed; i++) {
+    // From the type and the argument number (count) compute the location
+    switch( sig_bt[i] ) {
+    case T_BOOLEAN:
+    case T_CHAR:
+    case T_FLOAT:
+    case T_BYTE:
+    case T_SHORT:
+    case T_INT:
+    case T_OBJECT:
+    case T_ARRAY:
+    case T_ADDRESS:
+    case T_METADATA:
+      regs[i].set1(VMRegImpl::stack2reg(stack++));
+      break;
+    case T_LONG:
+    case T_DOUBLE: // The stack numbering is reversed from Java
+      // Since C arguments do not get reversed, the ordering for
+      // doubles on the stack must be opposite the Java convention
+      assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
+      regs[i].set2(VMRegImpl::stack2reg(stack));
+      stack += 2;
+      break;
+    case T_VOID: regs[i].set_bad(); break;
+    default:
+      ShouldNotReachHere();
+      break;
+    }
+  }
+  return stack;
+}
+
+// A simple move of integer like type
+static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
+  if (src.first()->is_stack()) {
+    if (dst.first()->is_stack()) {
+      // stack to stack
+      // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
+      // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
+      __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
+      __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
+    } else {
+      // stack to reg
+      __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
+    }
+  } else if (dst.first()->is_stack()) {
+    // reg to stack
+    // no need to sign extend on 64bit
+    __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
+  } else {
+    if (dst.first() != src.first()) {
+      __ mov(dst.first()->as_Register(), src.first()->as_Register());
+    }
+  }
+}
+
+// An oop arg. Must pass a handle not the oop itself
+static void object_move(MacroAssembler* masm,
+                        OopMap* map,
+                        int oop_handle_offset,
+                        int framesize_in_slots,
+                        VMRegPair src,
+                        VMRegPair dst,
+                        bool is_receiver,
+                        int* receiver_offset) {
+
+  // Because of the calling conventions we know that src can be a
+  // register or a stack location. dst can only be a stack location.
+
+  assert(dst.first()->is_stack(), "must be stack");
+  // must pass a handle. First figure out the location we use as a handle
+
+  if (src.first()->is_stack()) {
+    // Oop is already on the stack as an argument
+    Register rHandle = rax;
+    Label nil;
+    __ xorptr(rHandle, rHandle);
+    __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
+    __ jcc(Assembler::equal, nil);
+    __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
+    __ bind(nil);
+    __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
+
+    int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
+    map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
+    if (is_receiver) {
+      *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
+    }
+  } else {
+    // Oop is in an a register we must store it to the space we reserve
+    // on the stack for oop_handles
+    const Register rOop = src.first()->as_Register();
+    const Register rHandle = rax;
+    int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
+    int offset = oop_slot*VMRegImpl::stack_slot_size;
+    Label skip;
+    __ movptr(Address(rsp, offset), rOop);
+    map->set_oop(VMRegImpl::stack2reg(oop_slot));
+    __ xorptr(rHandle, rHandle);
+    __ cmpptr(rOop, (int32_t)NULL_WORD);
+    __ jcc(Assembler::equal, skip);
+    __ lea(rHandle, Address(rsp, offset));
+    __ bind(skip);
+    // Store the handle parameter
+    __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
+    if (is_receiver) {
+      *receiver_offset = offset;
+    }
+  }
+}
+
+// A float arg may have to do float reg int reg conversion
+static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
+  assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
+
+  // Because of the calling convention we know that src is either a stack location
+  // or an xmm register. dst can only be a stack location.
+
+  assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
+
+  if (src.first()->is_stack()) {
+    __ movl(rax, Address(rbp, reg2offset_in(src.first())));
+    __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
+  } else {
+    // reg to stack
+    __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
+  }
+}
+
+// A long move
+static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
+
+  // The only legal possibility for a long_move VMRegPair is:
+  // 1: two stack slots (possibly unaligned)
+  // as neither the java  or C calling convention will use registers
+  // for longs.
+
+  if (src.first()->is_stack() && dst.first()->is_stack()) {
+    assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
+    __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
+    NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
+    __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
+    NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+// A double move
+static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
+
+  // The only legal possibilities for a double_move VMRegPair are:
+  // The painful thing here is that like long_move a VMRegPair might be
+
+  // Because of the calling convention we know that src is either
+  //   1: a single physical register (xmm registers only)
+  //   2: two stack slots (possibly unaligned)
+  // dst can only be a pair of stack slots.
+
+  assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
+
+  if (src.first()->is_stack()) {
+    // source is all stack
+    __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
+    NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
+    __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
+    NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
+  } else {
+    // reg to stack
+    // No worries about stack alignment
+    __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
+  }
+}
+
+
+void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
+  // We always ignore the frame_slots arg and just use the space just below frame pointer
+  // which by this time is free to use
+  switch (ret_type) {
+  case T_FLOAT:
+    __ fstp_s(Address(rbp, -wordSize));
+    break;
+  case T_DOUBLE:
+    __ fstp_d(Address(rbp, -2*wordSize));
+    break;
+  case T_VOID:  break;
+  case T_LONG:
+    __ movptr(Address(rbp, -wordSize), rax);
+    NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
+    break;
+  default: {
+    __ movptr(Address(rbp, -wordSize), rax);
+    }
+  }
+}
+
+void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
+  // We always ignore the frame_slots arg and just use the space just below frame pointer
+  // which by this time is free to use
+  switch (ret_type) {
+  case T_FLOAT:
+    __ fld_s(Address(rbp, -wordSize));
+    break;
+  case T_DOUBLE:
+    __ fld_d(Address(rbp, -2*wordSize));
+    break;
+  case T_LONG:
+    __ movptr(rax, Address(rbp, -wordSize));
+    NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
+    break;
+  case T_VOID:  break;
+  default: {
+    __ movptr(rax, Address(rbp, -wordSize));
+    }
+  }
+}
+
+
+static void save_or_restore_arguments(MacroAssembler* masm,
+                                      const int stack_slots,
+                                      const int total_in_args,
+                                      const int arg_save_area,
+                                      OopMap* map,
+                                      VMRegPair* in_regs,
+                                      BasicType* in_sig_bt) {
+  // if map is non-NULL then the code should store the values,
+  // otherwise it should load them.
+  int handle_index = 0;
+  // Save down double word first
+  for ( int i = 0; i < total_in_args; i++) {
+    if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
+      int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
+      int offset = slot * VMRegImpl::stack_slot_size;
+      handle_index += 2;
+      assert(handle_index <= stack_slots, "overflow");
+      if (map != NULL) {
+        __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
+      } else {
+        __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
+      }
+    }
+    if (in_regs[i].first()->is_Register() && in_sig_bt[i] == T_LONG) {
+      int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
+      int offset = slot * VMRegImpl::stack_slot_size;
+      handle_index += 2;
+      assert(handle_index <= stack_slots, "overflow");
+      if (map != NULL) {
+        __ movl(Address(rsp, offset), in_regs[i].first()->as_Register());
+        if (in_regs[i].second()->is_Register()) {
+          __ movl(Address(rsp, offset + 4), in_regs[i].second()->as_Register());
+        }
+      } else {
+        __ movl(in_regs[i].first()->as_Register(), Address(rsp, offset));
+        if (in_regs[i].second()->is_Register()) {
+          __ movl(in_regs[i].second()->as_Register(), Address(rsp, offset + 4));
+        }
+      }
+    }
+  }
+  // Save or restore single word registers
+  for ( int i = 0; i < total_in_args; i++) {
+    if (in_regs[i].first()->is_Register()) {
+      int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
+      int offset = slot * VMRegImpl::stack_slot_size;
+      assert(handle_index <= stack_slots, "overflow");
+      if (in_sig_bt[i] == T_ARRAY && map != NULL) {
+        map->set_oop(VMRegImpl::stack2reg(slot));;
+      }
+
+      // Value is in an input register pass we must flush it to the stack
+      const Register reg = in_regs[i].first()->as_Register();
+      switch (in_sig_bt[i]) {
+        case T_ARRAY:
+          if (map != NULL) {
+            __ movptr(Address(rsp, offset), reg);
+          } else {
+            __ movptr(reg, Address(rsp, offset));
+          }
+          break;
+        case T_BOOLEAN:
+        case T_CHAR:
+        case T_BYTE:
+        case T_SHORT:
+        case T_INT:
+          if (map != NULL) {
+            __ movl(Address(rsp, offset), reg);
+          } else {
+            __ movl(reg, Address(rsp, offset));
+          }
+          break;
+        case T_OBJECT:
+        default: ShouldNotReachHere();
+      }
+    } else if (in_regs[i].first()->is_XMMRegister()) {
+      if (in_sig_bt[i] == T_FLOAT) {
+        int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
+        int offset = slot * VMRegImpl::stack_slot_size;
+        assert(handle_index <= stack_slots, "overflow");
+        if (map != NULL) {
+          __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
+        } else {
+          __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
+        }
+      }
+    } else if (in_regs[i].first()->is_stack()) {
+      if (in_sig_bt[i] == T_ARRAY && map != NULL) {
+        int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
+        map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
+      }
+    }
+  }
+}
+
+// Check GCLocker::needs_gc and enter the runtime if it's true.  This
+// keeps a new JNI critical region from starting until a GC has been
+// forced.  Save down any oops in registers and describe them in an
+// OopMap.
+static void check_needs_gc_for_critical_native(MacroAssembler* masm,
+                                               Register thread,
+                                               int stack_slots,
+                                               int total_c_args,
+                                               int total_in_args,
+                                               int arg_save_area,
+                                               OopMapSet* oop_maps,
+                                               VMRegPair* in_regs,
+                                               BasicType* in_sig_bt) {
+  __ block_comment("check GCLocker::needs_gc");
+  Label cont;
+  __ cmp8(ExternalAddress((address)GCLocker::needs_gc_address()), false);
+  __ jcc(Assembler::equal, cont);
+
+  // Save down any incoming oops and call into the runtime to halt for a GC
+
+  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
+
+  save_or_restore_arguments(masm, stack_slots, total_in_args,
+                            arg_save_area, map, in_regs, in_sig_bt);
+
+  address the_pc = __ pc();
+  oop_maps->add_gc_map( __ offset(), map);
+  __ set_last_Java_frame(thread, rsp, noreg, the_pc);
+
+  __ block_comment("block_for_jni_critical");
+  __ push(thread);
+  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
+  __ increment(rsp, wordSize);
+
+  __ get_thread(thread);
+  __ reset_last_Java_frame(thread, false);
+
+  save_or_restore_arguments(masm, stack_slots, total_in_args,
+                            arg_save_area, NULL, in_regs, in_sig_bt);
+
+  __ bind(cont);
+#ifdef ASSERT
+  if (StressCriticalJNINatives) {
+    // Stress register saving
+    OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
+    save_or_restore_arguments(masm, stack_slots, total_in_args,
+                              arg_save_area, map, in_regs, in_sig_bt);
+    // Destroy argument registers
+    for (int i = 0; i < total_in_args - 1; i++) {
+      if (in_regs[i].first()->is_Register()) {
+        const Register reg = in_regs[i].first()->as_Register();
+        __ xorptr(reg, reg);
+      } else if (in_regs[i].first()->is_XMMRegister()) {
+        __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
+      } else if (in_regs[i].first()->is_FloatRegister()) {
+        ShouldNotReachHere();
+      } else if (in_regs[i].first()->is_stack()) {
+        // Nothing to do
+      } else {
+        ShouldNotReachHere();
+      }
+      if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
+        i++;
+      }
+    }
+
+    save_or_restore_arguments(masm, stack_slots, total_in_args,
+                              arg_save_area, NULL, in_regs, in_sig_bt);
+  }
+#endif
+}
+
+// Unpack an array argument into a pointer to the body and the length
+// if the array is non-null, otherwise pass 0 for both.
+static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
+  Register tmp_reg = rax;
+  assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
+         "possible collision");
+  assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
+         "possible collision");
+
+  // Pass the length, ptr pair
+  Label is_null, done;
+  VMRegPair tmp(tmp_reg->as_VMReg());
+  if (reg.first()->is_stack()) {
+    // Load the arg up from the stack
+    simple_move32(masm, reg, tmp);
+    reg = tmp;
+  }
+  __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
+  __ jccb(Assembler::equal, is_null);
+  __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
+  simple_move32(masm, tmp, body_arg);
+  // load the length relative to the body.
+  __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
+                           arrayOopDesc::base_offset_in_bytes(in_elem_type)));
+  simple_move32(masm, tmp, length_arg);
+  __ jmpb(done);
+  __ bind(is_null);
+  // Pass zeros
+  __ xorptr(tmp_reg, tmp_reg);
+  simple_move32(masm, tmp, body_arg);
+  simple_move32(masm, tmp, length_arg);
+  __ bind(done);
+}
+
+static void verify_oop_args(MacroAssembler* masm,
+                            const methodHandle& method,
+                            const BasicType* sig_bt,
+                            const VMRegPair* regs) {
+  Register temp_reg = rbx;  // not part of any compiled calling seq
+  if (VerifyOops) {
+    for (int i = 0; i < method->size_of_parameters(); i++) {
+      if (sig_bt[i] == T_OBJECT ||
+          sig_bt[i] == T_ARRAY) {
+        VMReg r = regs[i].first();
+        assert(r->is_valid(), "bad oop arg");
+        if (r->is_stack()) {
+          __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
+          __ verify_oop(temp_reg);
+        } else {
+          __ verify_oop(r->as_Register());
+        }
+      }
+    }
+  }
+}
+
+static void gen_special_dispatch(MacroAssembler* masm,
+                                 const methodHandle& method,
+                                 const BasicType* sig_bt,
+                                 const VMRegPair* regs) {
+  verify_oop_args(masm, method, sig_bt, regs);
+  vmIntrinsics::ID iid = method->intrinsic_id();
+
+  // Now write the args into the outgoing interpreter space
+  bool     has_receiver   = false;
+  Register receiver_reg   = noreg;
+  int      member_arg_pos = -1;
+  Register member_reg     = noreg;
+  int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
+  if (ref_kind != 0) {
+    member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
+    member_reg = rbx;  // known to be free at this point
+    has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
+  } else if (iid == vmIntrinsics::_invokeBasic) {
+    has_receiver = true;
+  } else {
+    fatal("unexpected intrinsic id %d", iid);
+  }
+
+  if (member_reg != noreg) {
+    // Load the member_arg into register, if necessary.
+    SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
+    VMReg r = regs[member_arg_pos].first();
+    if (r->is_stack()) {
+      __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
+    } else {
+      // no data motion is needed
+      member_reg = r->as_Register();
+    }
+  }
+
+  if (has_receiver) {
+    // Make sure the receiver is loaded into a register.
+    assert(method->size_of_parameters() > 0, "oob");
+    assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
+    VMReg r = regs[0].first();
+    assert(r->is_valid(), "bad receiver arg");
+    if (r->is_stack()) {
+      // Porting note:  This assumes that compiled calling conventions always
+      // pass the receiver oop in a register.  If this is not true on some
+      // platform, pick a temp and load the receiver from stack.
+      fatal("receiver always in a register");
+      receiver_reg = rcx;  // known to be free at this point
+      __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
+    } else {
+      // no data motion is needed
+      receiver_reg = r->as_Register();
+    }
+  }
+
+  // Figure out which address we are really jumping to:
+  MethodHandles::generate_method_handle_dispatch(masm, iid,
+                                                 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
+}
+
+// ---------------------------------------------------------------------------
+// Generate a native wrapper for a given method.  The method takes arguments
+// in the Java compiled code convention, marshals them to the native
+// convention (handlizes oops, etc), transitions to native, makes the call,
+// returns to java state (possibly blocking), unhandlizes any result and
+// returns.
+//
+// Critical native functions are a shorthand for the use of
+// GetPrimtiveArrayCritical and disallow the use of any other JNI
+// functions.  The wrapper is expected to unpack the arguments before
+// passing them to the callee and perform checks before and after the
+// native call to ensure that they GCLocker
+// lock_critical/unlock_critical semantics are followed.  Some other
+// parts of JNI setup are skipped like the tear down of the JNI handle
+// block and the check for pending exceptions it's impossible for them
+// to be thrown.
+//
+// They are roughly structured like this:
+//    if (GCLocker::needs_gc())
+//      SharedRuntime::block_for_jni_critical();
+//    tranistion to thread_in_native
+//    unpack arrray arguments and call native entry point
+//    check for safepoint in progress
+//    check if any thread suspend flags are set
+//      call into JVM and possible unlock the JNI critical
+//      if a GC was suppressed while in the critical native.
+//    transition back to thread_in_Java
+//    return to caller
+//
+nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
+                                                const methodHandle& method,
+                                                int compile_id,
+                                                BasicType* in_sig_bt,
+                                                VMRegPair* in_regs,
+                                                BasicType ret_type) {
+  if (method->is_method_handle_intrinsic()) {
+    vmIntrinsics::ID iid = method->intrinsic_id();
+    intptr_t start = (intptr_t)__ pc();
+    int vep_offset = ((intptr_t)__ pc()) - start;
+    gen_special_dispatch(masm,
+                         method,
+                         in_sig_bt,
+                         in_regs);
+    int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
+    __ flush();
+    int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
+    return nmethod::new_native_nmethod(method,
+                                       compile_id,
+                                       masm->code(),
+                                       vep_offset,
+                                       frame_complete,
+                                       stack_slots / VMRegImpl::slots_per_word,
+                                       in_ByteSize(-1),
+                                       in_ByteSize(-1),
+                                       (OopMapSet*)NULL);
+  }
+  bool is_critical_native = true;
+  address native_func = method->critical_native_function();
+  if (native_func == NULL) {
+    native_func = method->native_function();
+    is_critical_native = false;
+  }
+  assert(native_func != NULL, "must have function");
+
+  // An OopMap for lock (and class if static)
+  OopMapSet *oop_maps = new OopMapSet();
+
+  // We have received a description of where all the java arg are located
+  // on entry to the wrapper. We need to convert these args to where
+  // the jni function will expect them. To figure out where they go
+  // we convert the java signature to a C signature by inserting
+  // the hidden arguments as arg[0] and possibly arg[1] (static method)
+
+  const int total_in_args = method->size_of_parameters();
+  int total_c_args = total_in_args;
+  if (!is_critical_native) {
+    total_c_args += 1;
+    if (method->is_static()) {
+      total_c_args++;
+    }
+  } else {
+    for (int i = 0; i < total_in_args; i++) {
+      if (in_sig_bt[i] == T_ARRAY) {
+        total_c_args++;
+      }
+    }
+  }
+
+  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
+  VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
+  BasicType* in_elem_bt = NULL;
+
+  int argc = 0;
+  if (!is_critical_native) {
+    out_sig_bt[argc++] = T_ADDRESS;
+    if (method->is_static()) {
+      out_sig_bt[argc++] = T_OBJECT;
+    }
+
+    for (int i = 0; i < total_in_args ; i++ ) {
+      out_sig_bt[argc++] = in_sig_bt[i];
+    }
+  } else {
+    Thread* THREAD = Thread::current();
+    in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
+    SignatureStream ss(method->signature());
+    for (int i = 0; i < total_in_args ; i++ ) {
+      if (in_sig_bt[i] == T_ARRAY) {
+        // Arrays are passed as int, elem* pair
+        out_sig_bt[argc++] = T_INT;
+        out_sig_bt[argc++] = T_ADDRESS;
+        Symbol* atype = ss.as_symbol(CHECK_NULL);
+        const char* at = atype->as_C_string();
+        if (strlen(at) == 2) {
+          assert(at[0] == '[', "must be");
+          switch (at[1]) {
+            case 'B': in_elem_bt[i]  = T_BYTE; break;
+            case 'C': in_elem_bt[i]  = T_CHAR; break;
+            case 'D': in_elem_bt[i]  = T_DOUBLE; break;
+            case 'F': in_elem_bt[i]  = T_FLOAT; break;
+            case 'I': in_elem_bt[i]  = T_INT; break;
+            case 'J': in_elem_bt[i]  = T_LONG; break;
+            case 'S': in_elem_bt[i]  = T_SHORT; break;
+            case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
+            default: ShouldNotReachHere();
+          }
+        }
+      } else {
+        out_sig_bt[argc++] = in_sig_bt[i];
+        in_elem_bt[i] = T_VOID;
+      }
+      if (in_sig_bt[i] != T_VOID) {
+        assert(in_sig_bt[i] == ss.type(), "must match");
+        ss.next();
+      }
+    }
+  }
+
+  // Now figure out where the args must be stored and how much stack space
+  // they require.
+  int out_arg_slots;
+  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
+
+  // Compute framesize for the wrapper.  We need to handlize all oops in
+  // registers a max of 2 on x86.
+
+  // Calculate the total number of stack slots we will need.
+
+  // First count the abi requirement plus all of the outgoing args
+  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
+
+  // Now the space for the inbound oop handle area
+  int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
+  if (is_critical_native) {
+    // Critical natives may have to call out so they need a save area
+    // for register arguments.
+    int double_slots = 0;
+    int single_slots = 0;
+    for ( int i = 0; i < total_in_args; i++) {
+      if (in_regs[i].first()->is_Register()) {
+        const Register reg = in_regs[i].first()->as_Register();
+        switch (in_sig_bt[i]) {
+          case T_ARRAY:  // critical array (uses 2 slots on LP64)
+          case T_BOOLEAN:
+          case T_BYTE:
+          case T_SHORT:
+          case T_CHAR:
+          case T_INT:  single_slots++; break;
+          case T_LONG: double_slots++; break;
+          default:  ShouldNotReachHere();
+        }
+      } else if (in_regs[i].first()->is_XMMRegister()) {
+        switch (in_sig_bt[i]) {
+          case T_FLOAT:  single_slots++; break;
+          case T_DOUBLE: double_slots++; break;
+          default:  ShouldNotReachHere();
+        }
+      } else if (in_regs[i].first()->is_FloatRegister()) {
+        ShouldNotReachHere();
+      }
+    }
+    total_save_slots = double_slots * 2 + single_slots;
+    // align the save area
+    if (double_slots != 0) {
+      stack_slots = align_up(stack_slots, 2);
+    }
+  }
+
+  int oop_handle_offset = stack_slots;
+  stack_slots += total_save_slots;
+
+  // Now any space we need for handlizing a klass if static method
+
+  int klass_slot_offset = 0;
+  int klass_offset = -1;
+  int lock_slot_offset = 0;
+  bool is_static = false;
+
+  if (method->is_static()) {
+    klass_slot_offset = stack_slots;
+    stack_slots += VMRegImpl::slots_per_word;
+    klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
+    is_static = true;
+  }
+
+  // Plus a lock if needed
+
+  if (method->is_synchronized()) {
+    lock_slot_offset = stack_slots;
+    stack_slots += VMRegImpl::slots_per_word;
+  }
+
+  // Now a place (+2) to save return values or temp during shuffling
+  // + 2 for return address (which we own) and saved rbp,
+  stack_slots += 4;
+
+  // Ok The space we have allocated will look like:
+  //
+  //
+  // FP-> |                     |
+  //      |---------------------|
+  //      | 2 slots for moves   |
+  //      |---------------------|
+  //      | lock box (if sync)  |
+  //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
+  //      | klass (if static)   |
+  //      |---------------------| <- klass_slot_offset
+  //      | oopHandle area      |
+  //      |---------------------| <- oop_handle_offset (a max of 2 registers)
+  //      | outbound memory     |
+  //      | based arguments     |
+  //      |                     |
+  //      |---------------------|
+  //      |                     |
+  // SP-> | out_preserved_slots |
+  //
+  //
+  // ****************************************************************************
+  // WARNING - on Windows Java Natives use pascal calling convention and pop the
+  // arguments off of the stack after the jni call. Before the call we can use
+  // instructions that are SP relative. After the jni call we switch to FP
+  // relative instructions instead of re-adjusting the stack on windows.
+  // ****************************************************************************
+
+
+  // Now compute actual number of stack words we need rounding to make
+  // stack properly aligned.
+  stack_slots = align_up(stack_slots, StackAlignmentInSlots);
+
+  int stack_size = stack_slots * VMRegImpl::stack_slot_size;
+
+  intptr_t start = (intptr_t)__ pc();
+
+  // First thing make an ic check to see if we should even be here
+
+  // We are free to use all registers as temps without saving them and
+  // restoring them except rbp. rbp is the only callee save register
+  // as far as the interpreter and the compiler(s) are concerned.
+
+
+  const Register ic_reg = rax;
+  const Register receiver = rcx;
+  Label hit;
+  Label exception_pending;
+
+  __ verify_oop(receiver);
+  __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
+  __ jcc(Assembler::equal, hit);
+
+  __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
+
+  // verified entry must be aligned for code patching.
+  // and the first 5 bytes must be in the same cache line
+  // if we align at 8 then we will be sure 5 bytes are in the same line
+  __ align(8);
+
+  __ bind(hit);
+
+  int vep_offset = ((intptr_t)__ pc()) - start;
+
+#ifdef COMPILER1
+  // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
+  if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
+    inline_check_hashcode_from_object_header(masm, method, rcx /*obj_reg*/, rax /*result*/);
+   }
+#endif // COMPILER1
+
+  // The instruction at the verified entry point must be 5 bytes or longer
+  // because it can be patched on the fly by make_non_entrant. The stack bang
+  // instruction fits that requirement.
+
+  // Generate stack overflow check
+
+  if (UseStackBanging) {
+    __ bang_stack_with_offset((int)JavaThread::stack_shadow_zone_size());
+  } else {
+    // need a 5 byte instruction to allow MT safe patching to non-entrant
+    __ fat_nop();
+  }
+
+  // Generate a new frame for the wrapper.
+  __ enter();
+  // -2 because return address is already present and so is saved rbp
+  __ subptr(rsp, stack_size - 2*wordSize);
+
+  // Frame is now completed as far as size and linkage.
+  int frame_complete = ((intptr_t)__ pc()) - start;
+
+  if (UseRTMLocking) {
+    // Abort RTM transaction before calling JNI
+    // because critical section will be large and will be
+    // aborted anyway. Also nmethod could be deoptimized.
+    __ xabort(0);
+  }
+
+  // Calculate the difference between rsp and rbp,. We need to know it
+  // after the native call because on windows Java Natives will pop
+  // the arguments and it is painful to do rsp relative addressing
+  // in a platform independent way. So after the call we switch to
+  // rbp, relative addressing.
+
+  int fp_adjustment = stack_size - 2*wordSize;
+
+#ifdef COMPILER2
+  // C2 may leave the stack dirty if not in SSE2+ mode
+  if (UseSSE >= 2) {
+    __ verify_FPU(0, "c2i transition should have clean FPU stack");
+  } else {
+    __ empty_FPU_stack();
+  }
+#endif /* COMPILER2 */
+
+  // Compute the rbp, offset for any slots used after the jni call
+
+  int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
+
+  // We use rdi as a thread pointer because it is callee save and
+  // if we load it once it is usable thru the entire wrapper
+  const Register thread = rdi;
+
+  // We use rsi as the oop handle for the receiver/klass
+  // It is callee save so it survives the call to native
+
+  const Register oop_handle_reg = rsi;
+
+  __ get_thread(thread);
+
+  if (is_critical_native) {
+    check_needs_gc_for_critical_native(masm, thread, stack_slots, total_c_args, total_in_args,
+                                       oop_handle_offset, oop_maps, in_regs, in_sig_bt);
+  }
+
+  //
+  // We immediately shuffle the arguments so that any vm call we have to
+  // make from here on out (sync slow path, jvmti, etc.) we will have
+  // captured the oops from our caller and have a valid oopMap for
+  // them.
+
+  // -----------------
+  // The Grand Shuffle
+  //
+  // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
+  // and, if static, the class mirror instead of a receiver.  This pretty much
+  // guarantees that register layout will not match (and x86 doesn't use reg
+  // parms though amd does).  Since the native abi doesn't use register args
+  // and the java conventions does we don't have to worry about collisions.
+  // All of our moved are reg->stack or stack->stack.
+  // We ignore the extra arguments during the shuffle and handle them at the
+  // last moment. The shuffle is described by the two calling convention
+  // vectors we have in our possession. We simply walk the java vector to
+  // get the source locations and the c vector to get the destinations.
+
+  int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 );
+
+  // Record rsp-based slot for receiver on stack for non-static methods
+  int receiver_offset = -1;
+
+  // This is a trick. We double the stack slots so we can claim
+  // the oops in the caller's frame. Since we are sure to have
+  // more args than the caller doubling is enough to make
+  // sure we can capture all the incoming oop args from the
+  // caller.
+  //
+  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
+
+  // Mark location of rbp,
+  // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
+
+  // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
+  // Are free to temporaries if we have to do  stack to steck moves.
+  // All inbound args are referenced based on rbp, and all outbound args via rsp.
+
+  for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
+    switch (in_sig_bt[i]) {
+      case T_ARRAY:
+        if (is_critical_native) {
+          unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
+          c_arg++;
+          break;
+        }
+      case T_OBJECT:
+        assert(!is_critical_native, "no oop arguments");
+        object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
+                    ((i == 0) && (!is_static)),
+                    &receiver_offset);
+        break;
+      case T_VOID:
+        break;
+
+      case T_FLOAT:
+        float_move(masm, in_regs[i], out_regs[c_arg]);
+          break;
+
+      case T_DOUBLE:
+        assert( i + 1 < total_in_args &&
+                in_sig_bt[i + 1] == T_VOID &&
+                out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
+        double_move(masm, in_regs[i], out_regs[c_arg]);
+        break;
+
+      case T_LONG :
+        long_move(masm, in_regs[i], out_regs[c_arg]);
+        break;
+
+      case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
+
+      default:
+        simple_move32(masm, in_regs[i], out_regs[c_arg]);
+    }
+  }
+
+  // Pre-load a static method's oop into rsi.  Used both by locking code and
+  // the normal JNI call code.
+  if (method->is_static() && !is_critical_native) {
+
+    //  load opp into a register
+    __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
+
+    // Now handlize the static class mirror it's known not-null.
+    __ movptr(Address(rsp, klass_offset), oop_handle_reg);
+    map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
+
+    // Now get the handle
+    __ lea(oop_handle_reg, Address(rsp, klass_offset));
+    // store the klass handle as second argument
+    __ movptr(Address(rsp, wordSize), oop_handle_reg);
+  }
+
+  // Change state to native (we save the return address in the thread, since it might not
+  // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
+  // points into the right code segment. It does not have to be the correct return pc.
+  // We use the same pc/oopMap repeatedly when we call out
+
+  intptr_t the_pc = (intptr_t) __ pc();
+  oop_maps->add_gc_map(the_pc - start, map);
+
+  __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
+
+
+  // We have all of the arguments setup at this point. We must not touch any register
+  // argument registers at this point (what if we save/restore them there are no oop?
+
+  {
+    SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
+    __ mov_metadata(rax, method());
+    __ call_VM_leaf(
+         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
+         thread, rax);
+  }
+
+  // RedefineClasses() tracing support for obsolete method entry
+  if (log_is_enabled(Trace, redefine, class, obsolete)) {
+    __ mov_metadata(rax, method());
+    __ call_VM_leaf(
+         CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
+         thread, rax);
+  }
+
+  // These are register definitions we need for locking/unlocking
+  const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
+  const Register obj_reg  = rcx;  // Will contain the oop
+  const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
+
+  Label slow_path_lock;
+  Label lock_done;
+
+  // Lock a synchronized method
+  if (method->is_synchronized()) {
+    assert(!is_critical_native, "unhandled");
+
+
+    const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
+
+    // Get the handle (the 2nd argument)
+    __ movptr(oop_handle_reg, Address(rsp, wordSize));
+
+    // Get address of the box
+
+    __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
+
+    // Load the oop from the handle
+    __ movptr(obj_reg, Address(oop_handle_reg, 0));
+
+    if (UseBiasedLocking) {
+      // Note that oop_handle_reg is trashed during this call
+      __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
+    }
+
+    // Load immediate 1 into swap_reg %rax,
+    __ movptr(swap_reg, 1);
+
+    // Load (object->mark() | 1) into swap_reg %rax,
+    __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
+
+    // Save (object->mark() | 1) into BasicLock's displaced header
+    __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
+
+    if (os::is_MP()) {
+      __ lock();
+    }
+
+    // src -> dest iff dest == rax, else rax, <- dest
+    // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
+    __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
+    __ jcc(Assembler::equal, lock_done);
+
+    // Test if the oopMark is an obvious stack pointer, i.e.,
+    //  1) (mark & 3) == 0, and
+    //  2) rsp <= mark < mark + os::pagesize()
+    // These 3 tests can be done by evaluating the following
+    // expression: ((mark - rsp) & (3 - os::vm_page_size())),
+    // assuming both stack pointer and pagesize have their
+    // least significant 2 bits clear.
+    // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
+
+    __ subptr(swap_reg, rsp);
+    __ andptr(swap_reg, 3 - os::vm_page_size());
+
+    // Save the test result, for recursive case, the result is zero
+    __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
+    __ jcc(Assembler::notEqual, slow_path_lock);
+    // Slow path will re-enter here
+    __ bind(lock_done);
+
+    if (UseBiasedLocking) {
+      // Re-fetch oop_handle_reg as we trashed it above
+      __ movptr(oop_handle_reg, Address(rsp, wordSize));
+    }
+  }
+
+
+  // Finally just about ready to make the JNI call
+
+
+  // get JNIEnv* which is first argument to native
+  if (!is_critical_native) {
+    __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
+    __ movptr(Address(rsp, 0), rdx);
+  }
+
+  // Now set thread in native
+  __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
+
+  __ call(RuntimeAddress(native_func));
+
+  // Verify or restore cpu control state after JNI call
+  __ restore_cpu_control_state_after_jni();
+
+  // WARNING - on Windows Java Natives use pascal calling convention and pop the
+  // arguments off of the stack. We could just re-adjust the stack pointer here
+  // and continue to do SP relative addressing but we instead switch to FP
+  // relative addressing.
+
+  // Unpack native results.
+  switch (ret_type) {
+  case T_BOOLEAN: __ c2bool(rax);            break;
+  case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
+  case T_BYTE   : __ sign_extend_byte (rax); break;
+  case T_SHORT  : __ sign_extend_short(rax); break;
+  case T_INT    : /* nothing to do */        break;
+  case T_DOUBLE :
+  case T_FLOAT  :
+    // Result is in st0 we'll save as needed
+    break;
+  case T_ARRAY:                 // Really a handle
+  case T_OBJECT:                // Really a handle
+      break; // can't de-handlize until after safepoint check
+  case T_VOID: break;
+  case T_LONG: break;
+  default       : ShouldNotReachHere();
+  }
+
+  // Switch thread to "native transition" state before reading the synchronization state.
+  // This additional state is necessary because reading and testing the synchronization
+  // state is not atomic w.r.t. GC, as this scenario demonstrates:
+  //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
+  //     VM thread changes sync state to synchronizing and suspends threads for GC.
+  //     Thread A is resumed to finish this native method, but doesn't block here since it
+  //     didn't see any synchronization is progress, and escapes.
+  __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
+
+  if(os::is_MP()) {
+    if (UseMembar) {
+      // Force this write out before the read below
+      __ membar(Assembler::Membar_mask_bits(
+           Assembler::LoadLoad | Assembler::LoadStore |
+           Assembler::StoreLoad | Assembler::StoreStore));
+    } else {
+      // Write serialization page so VM thread can do a pseudo remote membar.
+      // We use the current thread pointer to calculate a thread specific
+      // offset to write to within the page. This minimizes bus traffic
+      // due to cache line collision.
+      __ serialize_memory(thread, rcx);
+    }
+  }
+
+  if (AlwaysRestoreFPU) {
+    // Make sure the control word is correct.
+    __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
+  }
+
+  Label after_transition;
+
+  // check for safepoint operation in progress and/or pending suspend requests
+  { Label Continue;
+
+    __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
+             SafepointSynchronize::_not_synchronized);
+
+    Label L;
+    __ jcc(Assembler::notEqual, L);
+    __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
+    __ jcc(Assembler::equal, Continue);
+    __ bind(L);
+
+    // Don't use call_VM as it will see a possible pending exception and forward it
+    // and never return here preventing us from clearing _last_native_pc down below.
+    // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
+    // preserved and correspond to the bcp/locals pointers. So we do a runtime call
+    // by hand.
+    //
+    __ vzeroupper();
+
+    save_native_result(masm, ret_type, stack_slots);
+    __ push(thread);
+    if (!is_critical_native) {
+      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
+                                              JavaThread::check_special_condition_for_native_trans)));
+    } else {
+      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
+                                              JavaThread::check_special_condition_for_native_trans_and_transition)));
+    }
+    __ increment(rsp, wordSize);
+    // Restore any method result value
+    restore_native_result(masm, ret_type, stack_slots);
+
+    if (is_critical_native) {
+      // The call above performed the transition to thread_in_Java so
+      // skip the transition logic below.
+      __ jmpb(after_transition);
+    }
+
+    __ bind(Continue);
+  }
+
+  // change thread state
+  __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
+  __ bind(after_transition);
+
+  Label reguard;
+  Label reguard_done;
+  __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_reserved_disabled);
+  __ jcc(Assembler::equal, reguard);
+
+  // slow path reguard  re-enters here
+  __ bind(reguard_done);
+
+  // Handle possible exception (will unlock if necessary)
+
+  // native result if any is live
+
+  // Unlock
+  Label slow_path_unlock;
+  Label unlock_done;
+  if (method->is_synchronized()) {
+
+    Label done;
+
+    // Get locked oop from the handle we passed to jni
+    __ movptr(obj_reg, Address(oop_handle_reg, 0));
+
+    if (UseBiasedLocking) {
+      __ biased_locking_exit(obj_reg, rbx, done);
+    }
+
+    // Simple recursive lock?
+
+    __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
+    __ jcc(Assembler::equal, done);
+
+    // Must save rax, if if it is live now because cmpxchg must use it
+    if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
+      save_native_result(masm, ret_type, stack_slots);
+    }
+
+    //  get old displaced header
+    __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
+
+    // get address of the stack lock
+    __ lea(rax, Address(rbp, lock_slot_rbp_offset));
+
+    // Atomic swap old header if oop still contains the stack lock
+    if (os::is_MP()) {
+    __ lock();
+    }
+
+    // src -> dest iff dest == rax, else rax, <- dest
+    // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
+    __ cmpxchgptr(rbx, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
+    __ jcc(Assembler::notEqual, slow_path_unlock);
+
+    // slow path re-enters here
+    __ bind(unlock_done);
+    if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
+      restore_native_result(masm, ret_type, stack_slots);
+    }
+
+    __ bind(done);
+
+  }
+
+  {
+    SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
+    // Tell dtrace about this method exit
+    save_native_result(masm, ret_type, stack_slots);
+    __ mov_metadata(rax, method());
+    __ call_VM_leaf(
+         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
+         thread, rax);
+    restore_native_result(masm, ret_type, stack_slots);
+  }
+
+  // We can finally stop using that last_Java_frame we setup ages ago
+
+  __ reset_last_Java_frame(thread, false);
+
+  // Unbox oop result, e.g. JNIHandles::resolve value.
+  if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
+    __ resolve_jobject(rax /* value */,
+                       thread /* thread */,
+                       rcx /* tmp */);
+  }
+
+  if (CheckJNICalls) {
+    // clear_pending_jni_exception_check
+    __ movptr(Address(thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
+  }
+
+  if (!is_critical_native) {
+    // reset handle block
+    __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
+    __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
+
+    // Any exception pending?
+    __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
+    __ jcc(Assembler::notEqual, exception_pending);
+  }
+
+  // no exception, we're almost done
+
+  // check that only result value is on FPU stack
+  __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
+
+  // Fixup floating pointer results so that result looks like a return from a compiled method
+  if (ret_type == T_FLOAT) {
+    if (UseSSE >= 1) {
+      // Pop st0 and store as float and reload into xmm register
+      __ fstp_s(Address(rbp, -4));
+      __ movflt(xmm0, Address(rbp, -4));
+    }
+  } else if (ret_type == T_DOUBLE) {
+    if (UseSSE >= 2) {
+      // Pop st0 and store as double and reload into xmm register
+      __ fstp_d(Address(rbp, -8));
+      __ movdbl(xmm0, Address(rbp, -8));
+    }
+  }
+
+  // Return
+
+  __ leave();
+  __ ret(0);
+
+  // Unexpected paths are out of line and go here
+
+  // Slow path locking & unlocking
+  if (method->is_synchronized()) {
+
+    // BEGIN Slow path lock
+
+    __ bind(slow_path_lock);
+
+    // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
+    // args are (oop obj, BasicLock* lock, JavaThread* thread)
+    __ push(thread);
+    __ push(lock_reg);
+    __ push(obj_reg);
+    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
+    __ addptr(rsp, 3*wordSize);
+
+#ifdef ASSERT
+    { Label L;
+    __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
+    __ jcc(Assembler::equal, L);
+    __ stop("no pending exception allowed on exit from monitorenter");
+    __ bind(L);
+    }
+#endif
+    __ jmp(lock_done);
+
+    // END Slow path lock
+
+    // BEGIN Slow path unlock
+    __ bind(slow_path_unlock);
+    __ vzeroupper();
+    // Slow path unlock
+
+    if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
+      save_native_result(masm, ret_type, stack_slots);
+    }
+    // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
+
+    __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
+    __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
+
+
+    // should be a peal
+    // +wordSize because of the push above
+    // args are (oop obj, BasicLock* lock, JavaThread* thread)
+    __ push(thread);
+    __ lea(rax, Address(rbp, lock_slot_rbp_offset));
+    __ push(rax);
+
+    __ push(obj_reg);
+    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
+    __ addptr(rsp, 3*wordSize);
+#ifdef ASSERT
+    {
+      Label L;
+      __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
+      __ jcc(Assembler::equal, L);
+      __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
+      __ bind(L);
+    }
+#endif /* ASSERT */
+
+    __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
+
+    if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
+      restore_native_result(masm, ret_type, stack_slots);
+    }
+    __ jmp(unlock_done);
+    // END Slow path unlock
+
+  }
+
+  // SLOW PATH Reguard the stack if needed
+
+  __ bind(reguard);
+  __ vzeroupper();
+  save_native_result(masm, ret_type, stack_slots);
+  {
+    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
+  }
+  restore_native_result(masm, ret_type, stack_slots);
+  __ jmp(reguard_done);
+
+
+  // BEGIN EXCEPTION PROCESSING
+
+  if (!is_critical_native) {
+    // Forward  the exception
+    __ bind(exception_pending);
+
+    // remove possible return value from FPU register stack
+    __ empty_FPU_stack();
+
+    // pop our frame
+    __ leave();
+    // and forward the exception
+    __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
+  }
+
+  __ flush();
+
+  nmethod *nm = nmethod::new_native_nmethod(method,
+                                            compile_id,
+                                            masm->code(),
+                                            vep_offset,
+                                            frame_complete,
+                                            stack_slots / VMRegImpl::slots_per_word,
+                                            (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
+                                            in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
+                                            oop_maps);
+
+  if (is_critical_native) {
+    nm->set_lazy_critical_native(true);
+  }
+
+  return nm;
+
+}
+
+// this function returns the adjust size (in number of words) to a c2i adapter
+// activation for use during deoptimization
+int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
+  return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
+}
+
+
+uint SharedRuntime::out_preserve_stack_slots() {
+  return 0;
+}
+
+//------------------------------generate_deopt_blob----------------------------
+void SharedRuntime::generate_deopt_blob() {
+  // allocate space for the code
+  ResourceMark rm;
+  // setup code generation tools
+  // note: the buffer code size must account for StackShadowPages=50
+  CodeBuffer   buffer("deopt_blob", 1536, 1024);
+  MacroAssembler* masm = new MacroAssembler(&buffer);
+  int frame_size_in_words;
+  OopMap* map = NULL;
+  // Account for the extra args we place on the stack
+  // by the time we call fetch_unroll_info
+  const int additional_words = 2; // deopt kind, thread
+
+  OopMapSet *oop_maps = new OopMapSet();
+
+  // -------------
+  // This code enters when returning to a de-optimized nmethod.  A return
+  // address has been pushed on the the stack, and return values are in
+  // registers.
+  // If we are doing a normal deopt then we were called from the patched
+  // nmethod from the point we returned to the nmethod. So the return
+  // address on the stack is wrong by NativeCall::instruction_size
+  // We will adjust the value to it looks like we have the original return
+  // address on the stack (like when we eagerly deoptimized).
+  // In the case of an exception pending with deoptimized then we enter
+  // with a return address on the stack that points after the call we patched
+  // into the exception handler. We have the following register state:
+  //    rax,: exception
+  //    rbx,: exception handler
+  //    rdx: throwing pc
+  // So in this case we simply jam rdx into the useless return address and
+  // the stack looks just like we want.
+  //
+  // At this point we need to de-opt.  We save the argument return
+  // registers.  We call the first C routine, fetch_unroll_info().  This
+  // routine captures the return values and returns a structure which
+  // describes the current frame size and the sizes of all replacement frames.
+  // The current frame is compiled code and may contain many inlined
+  // functions, each with their own JVM state.  We pop the current frame, then
+  // push all the new frames.  Then we call the C routine unpack_frames() to
+  // populate these frames.  Finally unpack_frames() returns us the new target
+  // address.  Notice that callee-save registers are BLOWN here; they have
+  // already been captured in the vframeArray at the time the return PC was
+  // patched.
+  address start = __ pc();
+  Label cont;
+
+  // Prolog for non exception case!
+
+  // Save everything in sight.
+
+  map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
+  // Normal deoptimization
+  __ push(Deoptimization::Unpack_deopt);
+  __ jmp(cont);
+
+  int reexecute_offset = __ pc() - start;
+
+  // Reexecute case
+  // return address is the pc describes what bci to do re-execute at
+
+  // No need to update map as each call to save_live_registers will produce identical oopmap
+  (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
+
+  __ push(Deoptimization::Unpack_reexecute);
+  __ jmp(cont);
+
+  int exception_offset = __ pc() - start;
+
+  // Prolog for exception case
+
+  // all registers are dead at this entry point, except for rax, and
+  // rdx which contain the exception oop and exception pc
+  // respectively.  Set them in TLS and fall thru to the
+  // unpack_with_exception_in_tls entry point.
+
+  __ get_thread(rdi);
+  __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
+  __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
+
+  int exception_in_tls_offset = __ pc() - start;
+
+  // new implementation because exception oop is now passed in JavaThread
+
+  // Prolog for exception case
+  // All registers must be preserved because they might be used by LinearScan
+  // Exceptiop oop and throwing PC are passed in JavaThread
+  // tos: stack at point of call to method that threw the exception (i.e. only
+  // args are on the stack, no return address)
+
+  // make room on stack for the return address
+  // It will be patched later with the throwing pc. The correct value is not
+  // available now because loading it from memory would destroy registers.
+  __ push(0);
+
+  // Save everything in sight.
+
+  // No need to update map as each call to save_live_registers will produce identical oopmap
+  (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
+
+  // Now it is safe to overwrite any register
+
+  // store the correct deoptimization type
+  __ push(Deoptimization::Unpack_exception);
+
+  // load throwing pc from JavaThread and patch it as the return address
+  // of the current frame. Then clear the field in JavaThread
+  __ get_thread(rdi);
+  __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
+  __ movptr(Address(rbp, wordSize), rdx);
+  __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
+
+#ifdef ASSERT
+  // verify that there is really an exception oop in JavaThread
+  __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
+  __ verify_oop(rax);
+
+  // verify that there is no pending exception
+  Label no_pending_exception;
+  __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
+  __ testptr(rax, rax);
+  __ jcc(Assembler::zero, no_pending_exception);
+  __ stop("must not have pending exception here");
+  __ bind(no_pending_exception);
+#endif
+
+  __ bind(cont);
+
+  // Compiled code leaves the floating point stack dirty, empty it.
+  __ empty_FPU_stack();
+
+
+  // Call C code.  Need thread and this frame, but NOT official VM entry
+  // crud.  We cannot block on this call, no GC can happen.
+  __ get_thread(rcx);
+  __ push(rcx);
+  // fetch_unroll_info needs to call last_java_frame()
+  __ set_last_Java_frame(rcx, noreg, noreg, NULL);
+
+  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
+
+  // Need to have an oopmap that tells fetch_unroll_info where to
+  // find any register it might need.
+
+  oop_maps->add_gc_map( __ pc()-start, map);
+
+  // Discard args to fetch_unroll_info
+  __ pop(rcx);
+  __ pop(rcx);
+
+  __ get_thread(rcx);
+  __ reset_last_Java_frame(rcx, false);
+
+  // Load UnrollBlock into EDI
+  __ mov(rdi, rax);
+
+  // Move the unpack kind to a safe place in the UnrollBlock because
+  // we are very short of registers
+
+  Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
+  // retrieve the deopt kind from the UnrollBlock.
+  __ movl(rax, unpack_kind);
+
+   Label noException;
+  __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
+  __ jcc(Assembler::notEqual, noException);
+  __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
+  __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
+  __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
+  __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
+
+  __ verify_oop(rax);
+
+  // Overwrite the result registers with the exception results.
+  __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
+  __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
+
+  __ bind(noException);
+
+  // Stack is back to only having register save data on the stack.
+  // Now restore the result registers. Everything else is either dead or captured
+  // in the vframeArray.
+
+  RegisterSaver::restore_result_registers(masm);
+
+  // Non standard control word may be leaked out through a safepoint blob, and we can
+  // deopt at a poll point with the non standard control word. However, we should make
+  // sure the control word is correct after restore_result_registers.
+  __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
+
+  // All of the register save area has been popped of the stack. Only the
+  // return address remains.
+
+  // Pop all the frames we must move/replace.
+  //
+  // Frame picture (youngest to oldest)
+  // 1: self-frame (no frame link)
+  // 2: deopting frame  (no frame link)
+  // 3: caller of deopting frame (could be compiled/interpreted).
+  //
+  // Note: by leaving the return address of self-frame on the stack
+  // and using the size of frame 2 to adjust the stack
+  // when we are done the return to frame 3 will still be on the stack.
+
+  // Pop deoptimized frame
+  __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
+
+  // sp should be pointing at the return address to the caller (3)
+
+  // Pick up the initial fp we should save
+  // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
+  __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
+
+#ifdef ASSERT
+  // Compilers generate code that bang the stack by as much as the
+  // interpreter would need. So this stack banging should never
+  // trigger a fault. Verify that it does not on non product builds.
+  if (UseStackBanging) {
+    __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
+    __ bang_stack_size(rbx, rcx);
+  }
+#endif
+
+  // Load array of frame pcs into ECX
+  __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
+
+  __ pop(rsi); // trash the old pc
+
+  // Load array of frame sizes into ESI
+  __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
+
+  Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
+
+  __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
+  __ movl(counter, rbx);
+
+  // Now adjust the caller's stack to make up for the extra locals
+  // but record the original sp so that we can save it in the skeletal interpreter
+  // frame and the stack walking of interpreter_sender will get the unextended sp
+  // value and not the "real" sp value.
+
+  Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
+  __ movptr(sp_temp, rsp);
+  __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
+  __ subptr(rsp, rbx);
+
+  // Push interpreter frames in a loop
+  Label loop;
+  __ bind(loop);
+  __ movptr(rbx, Address(rsi, 0));      // Load frame size
+  __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
+  __ pushptr(Address(rcx, 0));          // save return address
+  __ enter();                           // save old & set new rbp,
+  __ subptr(rsp, rbx);                  // Prolog!
+  __ movptr(rbx, sp_temp);              // sender's sp
+  // This value is corrected by layout_activation_impl
+  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
+  __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
+  __ movptr(sp_temp, rsp);              // pass to next frame
+  __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
+  __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
+  __ decrementl(counter);             // decrement counter
+  __ jcc(Assembler::notZero, loop);
+  __ pushptr(Address(rcx, 0));          // save final return address
+
+  // Re-push self-frame
+  __ enter();                           // save old & set new rbp,
+
+  //  Return address and rbp, are in place
+  // We'll push additional args later. Just allocate a full sized
+  // register save area
+  __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
+
+  // Restore frame locals after moving the frame
+  __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
+  __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
+  __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
+  if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
+  if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
+
+  // Set up the args to unpack_frame
+
+  __ pushl(unpack_kind);                     // get the unpack_kind value
+  __ get_thread(rcx);
+  __ push(rcx);
+
+  // set last_Java_sp, last_Java_fp
+  __ set_last_Java_frame(rcx, noreg, rbp, NULL);
+
+  // Call C code.  Need thread but NOT official VM entry
+  // crud.  We cannot block on this call, no GC can happen.  Call should
+  // restore return values to their stack-slots with the new SP.
+  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
+  // Set an oopmap for the call site
+  oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
+
+  // rax, contains the return result type
+  __ push(rax);
+
+  __ get_thread(rcx);
+  __ reset_last_Java_frame(rcx, false);
+
+  // Collect return values
+  __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
+  __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
+
+  // Clear floating point stack before returning to interpreter
+  __ empty_FPU_stack();
+
+  // Check if we should push the float or double return value.
+  Label results_done, yes_double_value;
+  __ cmpl(Address(rsp, 0), T_DOUBLE);
+  __ jcc (Assembler::zero, yes_double_value);
+  __ cmpl(Address(rsp, 0), T_FLOAT);
+  __ jcc (Assembler::notZero, results_done);
+
+  // return float value as expected by interpreter
+  if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
+  else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
+  __ jmp(results_done);
+
+  // return double value as expected by interpreter
+  __ bind(yes_double_value);
+  if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
+  else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
+
+  __ bind(results_done);
+
+  // Pop self-frame.
+  __ leave();                              // Epilog!
+
+  // Jump to interpreter
+  __ ret(0);
+
+  // -------------
+  // make sure all code is generated
+  masm->flush();
+
+  _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
+  _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
+}
+
+
+#ifdef COMPILER2
+//------------------------------generate_uncommon_trap_blob--------------------
+void SharedRuntime::generate_uncommon_trap_blob() {
+  // allocate space for the code
+  ResourceMark rm;
+  // setup code generation tools
+  CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
+  MacroAssembler* masm = new MacroAssembler(&buffer);
+
+  enum frame_layout {
+    arg0_off,      // thread                     sp + 0 // Arg location for
+    arg1_off,      // unloaded_class_index       sp + 1 // calling C
+    arg2_off,      // exec_mode                  sp + 2
+    // The frame sender code expects that rbp will be in the "natural" place and
+    // will override any oopMap setting for it. We must therefore force the layout
+    // so that it agrees with the frame sender code.
+    rbp_off,       // callee saved register      sp + 3
+    return_off,    // slot for return address    sp + 4
+    framesize
+  };
+
+  address start = __ pc();
+
+  if (UseRTMLocking) {
+    // Abort RTM transaction before possible nmethod deoptimization.
+    __ xabort(0);
+  }
+
+  // Push self-frame.
+  __ subptr(rsp, return_off*wordSize);     // Epilog!
+
+  // rbp, is an implicitly saved callee saved register (i.e. the calling
+  // convention will save restore it in prolog/epilog) Other than that
+  // there are no callee save registers no that adapter frames are gone.
+  __ movptr(Address(rsp, rbp_off*wordSize), rbp);
+
+  // Clear the floating point exception stack
+  __ empty_FPU_stack();
+
+  // set last_Java_sp
+  __ get_thread(rdx);
+  __ set_last_Java_frame(rdx, noreg, noreg, NULL);
+
+  // Call C code.  Need thread but NOT official VM entry
+  // crud.  We cannot block on this call, no GC can happen.  Call should
+  // capture callee-saved registers as well as return values.
+  __ movptr(Address(rsp, arg0_off*wordSize), rdx);
+  // argument already in ECX
+  __ movl(Address(rsp, arg1_off*wordSize),rcx);
+  __ movl(Address(rsp, arg2_off*wordSize), Deoptimization::Unpack_uncommon_trap);
+  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
+
+  // Set an oopmap for the call site
+  OopMapSet *oop_maps = new OopMapSet();
+  OopMap* map =  new OopMap( framesize, 0 );
+  // No oopMap for rbp, it is known implicitly
+
+  oop_maps->add_gc_map( __ pc()-start, map);
+
+  __ get_thread(rcx);
+
+  __ reset_last_Java_frame(rcx, false);
+
+  // Load UnrollBlock into EDI
+  __ movptr(rdi, rax);
+
+#ifdef ASSERT
+  { Label L;
+    __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()),
+            (int32_t)Deoptimization::Unpack_uncommon_trap);
+    __ jcc(Assembler::equal, L);
+    __ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap");
+    __ bind(L);
+  }
+#endif
+
+  // Pop all the frames we must move/replace.
+  //
+  // Frame picture (youngest to oldest)
+  // 1: self-frame (no frame link)
+  // 2: deopting frame  (no frame link)
+  // 3: caller of deopting frame (could be compiled/interpreted).
+
+  // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
+  __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
+
+  // Pop deoptimized frame
+  __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
+  __ addptr(rsp, rcx);
+
+  // sp should be pointing at the return address to the caller (3)
+
+  // Pick up the initial fp we should save
+  // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
+  __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
+
+#ifdef ASSERT
+  // Compilers generate code that bang the stack by as much as the
+  // interpreter would need. So this stack banging should never
+  // trigger a fault. Verify that it does not on non product builds.
+  if (UseStackBanging) {
+    __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
+    __ bang_stack_size(rbx, rcx);
+  }
+#endif
+
+  // Load array of frame pcs into ECX
+  __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
+
+  __ pop(rsi); // trash the pc
+
+  // Load array of frame sizes into ESI
+  __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
+
+  Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
+
+  __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
+  __ movl(counter, rbx);
+
+  // Now adjust the caller's stack to make up for the extra locals
+  // but record the original sp so that we can save it in the skeletal interpreter
+  // frame and the stack walking of interpreter_sender will get the unextended sp
+  // value and not the "real" sp value.
+
+  Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
+  __ movptr(sp_temp, rsp);
+  __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
+  __ subptr(rsp, rbx);
+
+  // Push interpreter frames in a loop
+  Label loop;
+  __ bind(loop);
+  __ movptr(rbx, Address(rsi, 0));      // Load frame size
+  __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
+  __ pushptr(Address(rcx, 0));          // save return address
+  __ enter();                           // save old & set new rbp,
+  __ subptr(rsp, rbx);                  // Prolog!
+  __ movptr(rbx, sp_temp);              // sender's sp
+  // This value is corrected by layout_activation_impl
+  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
+  __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
+  __ movptr(sp_temp, rsp);              // pass to next frame
+  __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
+  __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
+  __ decrementl(counter);             // decrement counter
+  __ jcc(Assembler::notZero, loop);
+  __ pushptr(Address(rcx, 0));            // save final return address
+
+  // Re-push self-frame
+  __ enter();                           // save old & set new rbp,
+  __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
+
+
+  // set last_Java_sp, last_Java_fp
+  __ get_thread(rdi);
+  __ set_last_Java_frame(rdi, noreg, rbp, NULL);
+
+  // Call C code.  Need thread but NOT official VM entry
+  // crud.  We cannot block on this call, no GC can happen.  Call should
+  // restore return values to their stack-slots with the new SP.
+  __ movptr(Address(rsp,arg0_off*wordSize),rdi);
+  __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
+  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
+  // Set an oopmap for the call site
+  oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
+
+  __ get_thread(rdi);
+  __ reset_last_Java_frame(rdi, true);
+
+  // Pop self-frame.
+  __ leave();     // Epilog!
+
+  // Jump to interpreter
+  __ ret(0);
+
+  // -------------
+  // make sure all code is generated
+  masm->flush();
+
+   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
+}
+#endif // COMPILER2
+
+//------------------------------generate_handler_blob------
+//
+// Generate a special Compile2Runtime blob that saves all registers,
+// setup oopmap, and calls safepoint code to stop the compiled code for
+// a safepoint.
+//
+SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
+
+  // Account for thread arg in our frame
+  const int additional_words = 1;
+  int frame_size_in_words;
+
+  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
+
+  ResourceMark rm;
+  OopMapSet *oop_maps = new OopMapSet();
+  OopMap* map;
+
+  // allocate space for the code
+  // setup code generation tools
+  CodeBuffer   buffer("handler_blob", 1024, 512);
+  MacroAssembler* masm = new MacroAssembler(&buffer);
+
+  const Register java_thread = rdi; // callee-saved for VC++
+  address start   = __ pc();
+  address call_pc = NULL;
+  bool cause_return = (poll_type == POLL_AT_RETURN);
+  bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
+
+  if (UseRTMLocking) {
+    // Abort RTM transaction before calling runtime
+    // because critical section will be large and will be
+    // aborted anyway. Also nmethod could be deoptimized.
+    __ xabort(0);
+  }
+
+  // If cause_return is true we are at a poll_return and there is
+  // the return address on the stack to the caller on the nmethod
+  // that is safepoint. We can leave this return on the stack and
+  // effectively complete the return and safepoint in the caller.
+  // Otherwise we push space for a return address that the safepoint
+  // handler will install later to make the stack walking sensible.
+  if (!cause_return)
+    __ push(rbx);  // Make room for return address (or push it again)
+
+  map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors);
+
+  // The following is basically a call_VM. However, we need the precise
+  // address of the call in order to generate an oopmap. Hence, we do all the
+  // work ourselves.
+
+  // Push thread argument and setup last_Java_sp
+  __ get_thread(java_thread);
+  __ push(java_thread);
+  __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
+
+  // if this was not a poll_return then we need to correct the return address now.
+  if (!cause_return) {
+    __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
+    __ movptr(Address(rbp, wordSize), rax);
+  }
+
+  // do the call
+  __ call(RuntimeAddress(call_ptr));
+
+  // Set an oopmap for the call site.  This oopmap will map all
+  // oop-registers and debug-info registers as callee-saved.  This
+  // will allow deoptimization at this safepoint to find all possible
+  // debug-info recordings, as well as let GC find all oops.
+
+  oop_maps->add_gc_map( __ pc() - start, map);
+
+  // Discard arg
+  __ pop(rcx);
+
+  Label noException;
+
+  // Clear last_Java_sp again
+  __ get_thread(java_thread);
+  __ reset_last_Java_frame(java_thread, false);
+
+  __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
+  __ jcc(Assembler::equal, noException);
+
+  // Exception pending
+  RegisterSaver::restore_live_registers(masm, save_vectors);
+
+  __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
+
+  __ bind(noException);
+
+  // Normal exit, register restoring and exit
+  RegisterSaver::restore_live_registers(masm, save_vectors);
+
+  __ ret(0);
+
+  // make sure all code is generated
+  masm->flush();
+
+  // Fill-out other meta info
+  return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
+}
+
+//
+// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
+//
+// Generate a stub that calls into vm to find out the proper destination
+// of a java call. All the argument registers are live at this point
+// but since this is generic code we don't know what they are and the caller
+// must do any gc of the args.
+//
+RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
+  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
+
+  // allocate space for the code
+  ResourceMark rm;
+
+  CodeBuffer buffer(name, 1000, 512);
+  MacroAssembler* masm                = new MacroAssembler(&buffer);
+
+  int frame_size_words;
+  enum frame_layout {
+                thread_off,
+                extra_words };
+
+  OopMapSet *oop_maps = new OopMapSet();
+  OopMap* map = NULL;
+
+  int start = __ offset();
+
+  map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
+
+  int frame_complete = __ offset();
+
+  const Register thread = rdi;
+  __ get_thread(rdi);
+
+  __ push(thread);
+  __ set_last_Java_frame(thread, noreg, rbp, NULL);
+
+  __ call(RuntimeAddress(destination));
+
+
+  // Set an oopmap for the call site.
+  // We need this not only for callee-saved registers, but also for volatile
+  // registers that the compiler might be keeping live across a safepoint.
+
+  oop_maps->add_gc_map( __ offset() - start, map);
+
+  // rax, contains the address we are going to jump to assuming no exception got installed
+
+  __ addptr(rsp, wordSize);
+
+  // clear last_Java_sp
+  __ reset_last_Java_frame(thread, true);
+  // check for pending exceptions
+  Label pending;
+  __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
+  __ jcc(Assembler::notEqual, pending);
+
+  // get the returned Method*
+  __ get_vm_result_2(rbx, thread);
+  __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
+
+  __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
+
+  RegisterSaver::restore_live_registers(masm);
+
+  // We are back the the original state on entry and ready to go.
+
+  __ jmp(rax);
+
+  // Pending exception after the safepoint
+
+  __ bind(pending);
+
+  RegisterSaver::restore_live_registers(masm);
+
+  // exception pending => remove activation and forward to exception handler
+
+  __ get_thread(thread);
+  __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
+  __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
+  __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
+
+  // -------------
+  // make sure all code is generated
+  masm->flush();
+
+  // return the  blob
+  // frame_size_words or bytes??
+  return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
+}