src/hotspot/cpu/x86/nativeInst_x86.hpp
changeset 47216 71c04702a3d5
parent 46630 75aa3e39d02c
child 47881 0ce0ac68ace7
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/cpu/x86/nativeInst_x86.hpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,741 @@
+/*
+ * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifndef CPU_X86_VM_NATIVEINST_X86_HPP
+#define CPU_X86_VM_NATIVEINST_X86_HPP
+
+#include "asm/assembler.hpp"
+#include "memory/allocation.hpp"
+#include "runtime/icache.hpp"
+#include "runtime/os.hpp"
+
+// We have interfaces for the following instructions:
+// - NativeInstruction
+// - - NativeCall
+// - - NativeMovConstReg
+// - - NativeMovConstRegPatching
+// - - NativeMovRegMem
+// - - NativeMovRegMemPatching
+// - - NativeJump
+// - - NativeFarJump
+// - - NativeIllegalOpCode
+// - - NativeGeneralJump
+// - - NativeReturn
+// - - NativeReturnX (return with argument)
+// - - NativePushConst
+// - - NativeTstRegMem
+
+// The base class for different kinds of native instruction abstractions.
+// Provides the primitive operations to manipulate code relative to this.
+
+class NativeInstruction VALUE_OBJ_CLASS_SPEC {
+  friend class Relocation;
+
+ public:
+  enum Intel_specific_constants {
+    nop_instruction_code        = 0x90,
+    nop_instruction_size        =    1
+  };
+
+  bool is_nop()                        { return ubyte_at(0) == nop_instruction_code; }
+  inline bool is_call();
+  inline bool is_call_reg();
+  inline bool is_illegal();
+  inline bool is_return();
+  inline bool is_jump();
+  inline bool is_jump_reg();
+  inline bool is_far_jump();
+  inline bool is_cond_jump();
+  inline bool is_safepoint_poll();
+  inline bool is_mov_literal64();
+
+ protected:
+  address addr_at(int offset) const    { return address(this) + offset; }
+
+  s_char sbyte_at(int offset) const    { return *(s_char*) addr_at(offset); }
+  u_char ubyte_at(int offset) const    { return *(u_char*) addr_at(offset); }
+
+  jint int_at(int offset) const         { return *(jint*) addr_at(offset); }
+
+  intptr_t ptr_at(int offset) const    { return *(intptr_t*) addr_at(offset); }
+
+  oop  oop_at (int offset) const       { return *(oop*) addr_at(offset); }
+
+
+  void set_char_at(int offset, char c)        { *addr_at(offset) = (u_char)c; wrote(offset); }
+  void set_int_at(int offset, jint  i)        { *(jint*)addr_at(offset) = i;  wrote(offset); }
+  void set_ptr_at (int offset, intptr_t  ptr) { *(intptr_t*) addr_at(offset) = ptr;  wrote(offset); }
+  void set_oop_at (int offset, oop  o)        { *(oop*) addr_at(offset) = o;  wrote(offset); }
+
+  // This doesn't really do anything on Intel, but it is the place where
+  // cache invalidation belongs, generically:
+  void wrote(int offset);
+
+ public:
+
+  // unit test stuff
+  static void test() {}                 // override for testing
+
+  inline friend NativeInstruction* nativeInstruction_at(address address);
+};
+
+inline NativeInstruction* nativeInstruction_at(address address) {
+  NativeInstruction* inst = (NativeInstruction*)address;
+#ifdef ASSERT
+  //inst->verify();
+#endif
+  return inst;
+}
+
+class NativePltCall: public NativeInstruction {
+public:
+  enum Intel_specific_constants {
+    instruction_code           = 0xE8,
+    instruction_size           =    5,
+    instruction_offset         =    0,
+    displacement_offset        =    1,
+    return_address_offset      =    5
+  };
+  address instruction_address() const { return addr_at(instruction_offset); }
+  address next_instruction_address() const { return addr_at(return_address_offset); }
+  address displacement_address() const { return addr_at(displacement_offset); }
+  int displacement() const { return (jint) int_at(displacement_offset); }
+  address return_address() const { return addr_at(return_address_offset); }
+  address destination() const;
+  address plt_entry() const;
+  address plt_jump() const;
+  address plt_load_got() const;
+  address plt_resolve_call() const;
+  address plt_c2i_stub() const;
+  void set_stub_to_clean();
+
+  void  reset_to_plt_resolve_call();
+  void  set_destination_mt_safe(address dest);
+
+  void verify() const;
+};
+
+inline NativePltCall* nativePltCall_at(address address) {
+  NativePltCall* call = (NativePltCall*) address;
+#ifdef ASSERT
+  call->verify();
+#endif
+  return call;
+}
+
+inline NativePltCall* nativePltCall_before(address addr) {
+  address at = addr - NativePltCall::instruction_size;
+  return nativePltCall_at(at);
+}
+
+inline NativeCall* nativeCall_at(address address);
+// The NativeCall is an abstraction for accessing/manipulating native call imm32/rel32off
+// instructions (used to manipulate inline caches, primitive & dll calls, etc.).
+
+class NativeCall: public NativeInstruction {
+ public:
+  enum Intel_specific_constants {
+    instruction_code            = 0xE8,
+    instruction_size            =    5,
+    instruction_offset          =    0,
+    displacement_offset         =    1,
+    return_address_offset       =    5
+  };
+
+  enum { cache_line_size = BytesPerWord };  // conservative estimate!
+
+  address instruction_address() const       { return addr_at(instruction_offset); }
+  address next_instruction_address() const  { return addr_at(return_address_offset); }
+  int   displacement() const                { return (jint) int_at(displacement_offset); }
+  address displacement_address() const      { return addr_at(displacement_offset); }
+  address return_address() const            { return addr_at(return_address_offset); }
+  address destination() const;
+  void  set_destination(address dest)       {
+#ifdef AMD64
+    intptr_t disp = dest - return_address();
+    guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
+#endif // AMD64
+    set_int_at(displacement_offset, dest - return_address());
+  }
+  void  set_destination_mt_safe(address dest);
+
+  void  verify_alignment() { assert((intptr_t)addr_at(displacement_offset) % BytesPerInt == 0, "must be aligned"); }
+  void  verify();
+  void  print();
+
+  // Creation
+  inline friend NativeCall* nativeCall_at(address address);
+  inline friend NativeCall* nativeCall_before(address return_address);
+
+  static bool is_call_at(address instr) {
+    return ((*instr) & 0xFF) == NativeCall::instruction_code;
+  }
+
+  static bool is_call_before(address return_address) {
+    return is_call_at(return_address - NativeCall::return_address_offset);
+  }
+
+  static bool is_call_to(address instr, address target) {
+    return nativeInstruction_at(instr)->is_call() &&
+      nativeCall_at(instr)->destination() == target;
+  }
+
+#if INCLUDE_AOT
+  static bool is_far_call(address instr, address target) {
+    intptr_t disp = target - (instr + sizeof(int32_t));
+    return !Assembler::is_simm32(disp);
+  }
+#endif
+
+  // MT-safe patching of a call instruction.
+  static void insert(address code_pos, address entry);
+
+  static void replace_mt_safe(address instr_addr, address code_buffer);
+};
+
+inline NativeCall* nativeCall_at(address address) {
+  NativeCall* call = (NativeCall*)(address - NativeCall::instruction_offset);
+#ifdef ASSERT
+  call->verify();
+#endif
+  return call;
+}
+
+inline NativeCall* nativeCall_before(address return_address) {
+  NativeCall* call = (NativeCall*)(return_address - NativeCall::return_address_offset);
+#ifdef ASSERT
+  call->verify();
+#endif
+  return call;
+}
+
+class NativeCallReg: public NativeInstruction {
+ public:
+  enum Intel_specific_constants {
+    instruction_code            = 0xFF,
+    instruction_offset          =    0,
+    return_address_offset_norex =    2,
+    return_address_offset_rex   =    3
+  };
+
+  int next_instruction_offset() const  {
+    if (ubyte_at(0) == NativeCallReg::instruction_code) {
+      return return_address_offset_norex;
+    } else {
+      return return_address_offset_rex;
+    }
+  }
+};
+
+// An interface for accessing/manipulating native mov reg, imm32 instructions.
+// (used to manipulate inlined 32bit data dll calls, etc.)
+class NativeMovConstReg: public NativeInstruction {
+#ifdef AMD64
+  static const bool has_rex = true;
+  static const int rex_size = 1;
+#else
+  static const bool has_rex = false;
+  static const int rex_size = 0;
+#endif // AMD64
+ public:
+  enum Intel_specific_constants {
+    instruction_code            = 0xB8,
+    instruction_size            =    1 + rex_size + wordSize,
+    instruction_offset          =    0,
+    data_offset                 =    1 + rex_size,
+    next_instruction_offset     =    instruction_size,
+    register_mask               = 0x07
+  };
+
+  address instruction_address() const       { return addr_at(instruction_offset); }
+  address next_instruction_address() const  { return addr_at(next_instruction_offset); }
+  intptr_t data() const                     { return ptr_at(data_offset); }
+  void  set_data(intptr_t x)                { set_ptr_at(data_offset, x); }
+
+  void  verify();
+  void  print();
+
+  // unit test stuff
+  static void test() {}
+
+  // Creation
+  inline friend NativeMovConstReg* nativeMovConstReg_at(address address);
+  inline friend NativeMovConstReg* nativeMovConstReg_before(address address);
+};
+
+inline NativeMovConstReg* nativeMovConstReg_at(address address) {
+  NativeMovConstReg* test = (NativeMovConstReg*)(address - NativeMovConstReg::instruction_offset);
+#ifdef ASSERT
+  test->verify();
+#endif
+  return test;
+}
+
+inline NativeMovConstReg* nativeMovConstReg_before(address address) {
+  NativeMovConstReg* test = (NativeMovConstReg*)(address - NativeMovConstReg::instruction_size - NativeMovConstReg::instruction_offset);
+#ifdef ASSERT
+  test->verify();
+#endif
+  return test;
+}
+
+class NativeMovConstRegPatching: public NativeMovConstReg {
+ private:
+    friend NativeMovConstRegPatching* nativeMovConstRegPatching_at(address address) {
+    NativeMovConstRegPatching* test = (NativeMovConstRegPatching*)(address - instruction_offset);
+    #ifdef ASSERT
+      test->verify();
+    #endif
+    return test;
+  }
+};
+
+// An interface for accessing/manipulating native moves of the form:
+//      mov[b/w/l/q] [reg + offset], reg   (instruction_code_reg2mem)
+//      mov[b/w/l/q] reg, [reg+offset]     (instruction_code_mem2reg
+//      mov[s/z]x[w/b/q] [reg + offset], reg
+//      fld_s  [reg+offset]
+//      fld_d  [reg+offset]
+//      fstp_s [reg + offset]
+//      fstp_d [reg + offset]
+//      mov_literal64  scratch,<pointer> ; mov[b/w/l/q] 0(scratch),reg | mov[b/w/l/q] reg,0(scratch)
+//
+// Warning: These routines must be able to handle any instruction sequences
+// that are generated as a result of the load/store byte,word,long
+// macros.  For example: The load_unsigned_byte instruction generates
+// an xor reg,reg inst prior to generating the movb instruction.  This
+// class must skip the xor instruction.
+
+class NativeMovRegMem: public NativeInstruction {
+ public:
+  enum Intel_specific_constants {
+    instruction_prefix_wide_lo          = Assembler::REX,
+    instruction_prefix_wide_hi          = Assembler::REX_WRXB,
+    instruction_code_xor                = 0x33,
+    instruction_extended_prefix         = 0x0F,
+    instruction_code_mem2reg_movslq     = 0x63,
+    instruction_code_mem2reg_movzxb     = 0xB6,
+    instruction_code_mem2reg_movsxb     = 0xBE,
+    instruction_code_mem2reg_movzxw     = 0xB7,
+    instruction_code_mem2reg_movsxw     = 0xBF,
+    instruction_operandsize_prefix      = 0x66,
+    instruction_code_reg2mem            = 0x89,
+    instruction_code_mem2reg            = 0x8b,
+    instruction_code_reg2memb           = 0x88,
+    instruction_code_mem2regb           = 0x8a,
+    instruction_code_float_s            = 0xd9,
+    instruction_code_float_d            = 0xdd,
+    instruction_code_long_volatile      = 0xdf,
+    instruction_code_xmm_ss_prefix      = 0xf3,
+    instruction_code_xmm_sd_prefix      = 0xf2,
+    instruction_code_xmm_code           = 0x0f,
+    instruction_code_xmm_load           = 0x10,
+    instruction_code_xmm_store          = 0x11,
+    instruction_code_xmm_lpd            = 0x12,
+
+    instruction_VEX_prefix_2bytes       = Assembler::VEX_2bytes,
+    instruction_VEX_prefix_3bytes       = Assembler::VEX_3bytes,
+    instruction_EVEX_prefix_4bytes      = Assembler::EVEX_4bytes,
+
+    instruction_size                    = 4,
+    instruction_offset                  = 0,
+    data_offset                         = 2,
+    next_instruction_offset             = 4
+  };
+
+  // helper
+  int instruction_start() const;
+
+  address instruction_address() const;
+
+  address next_instruction_address() const;
+
+  int   offset() const;
+
+  void  set_offset(int x);
+
+  void  add_offset_in_bytes(int add_offset)     { set_offset ( ( offset() + add_offset ) ); }
+
+  void verify();
+  void print ();
+
+  // unit test stuff
+  static void test() {}
+
+ private:
+  inline friend NativeMovRegMem* nativeMovRegMem_at (address address);
+};
+
+inline NativeMovRegMem* nativeMovRegMem_at (address address) {
+  NativeMovRegMem* test = (NativeMovRegMem*)(address - NativeMovRegMem::instruction_offset);
+#ifdef ASSERT
+  test->verify();
+#endif
+  return test;
+}
+
+
+// An interface for accessing/manipulating native leal instruction of form:
+//        leal reg, [reg + offset]
+
+class NativeLoadAddress: public NativeMovRegMem {
+#ifdef AMD64
+  static const bool has_rex = true;
+  static const int rex_size = 1;
+#else
+  static const bool has_rex = false;
+  static const int rex_size = 0;
+#endif // AMD64
+ public:
+  enum Intel_specific_constants {
+    instruction_prefix_wide             = Assembler::REX_W,
+    instruction_prefix_wide_extended    = Assembler::REX_WB,
+    lea_instruction_code                = 0x8D,
+    mov64_instruction_code              = 0xB8
+  };
+
+  void verify();
+  void print ();
+
+  // unit test stuff
+  static void test() {}
+
+ private:
+  friend NativeLoadAddress* nativeLoadAddress_at (address address) {
+    NativeLoadAddress* test = (NativeLoadAddress*)(address - instruction_offset);
+    #ifdef ASSERT
+      test->verify();
+    #endif
+    return test;
+  }
+};
+
+// destination is rbx or rax
+// mov rbx, [rip + offset]
+class NativeLoadGot: public NativeInstruction {
+#ifdef AMD64
+  static const bool has_rex = true;
+  static const int rex_size = 1;
+#else
+  static const bool has_rex = false;
+  static const int rex_size = 0;
+#endif
+public:
+  enum Intel_specific_constants {
+    rex_prefix = 0x48,
+    instruction_code = 0x8b,
+    modrm_rbx_code = 0x1d,
+    modrm_rax_code = 0x05,
+    instruction_length = 6 + rex_size,
+    offset_offset = 2 + rex_size
+  };
+
+  address instruction_address() const { return addr_at(0); }
+  address rip_offset_address() const { return addr_at(offset_offset); }
+  int rip_offset() const { return int_at(offset_offset); }
+  address return_address() const { return addr_at(instruction_length); }
+  address got_address() const { return return_address() + rip_offset(); }
+  address next_instruction_address() const { return return_address(); }
+  intptr_t data() const;
+  void set_data(intptr_t data) {
+    intptr_t *addr = (intptr_t *) got_address();
+    *addr = data;
+  }
+
+  void verify() const;
+private:
+  void report_and_fail() const;
+};
+
+inline NativeLoadGot* nativeLoadGot_at(address addr) {
+  NativeLoadGot* load = (NativeLoadGot*) addr;
+#ifdef ASSERT
+  load->verify();
+#endif
+  return load;
+}
+
+// jump rel32off
+
+class NativeJump: public NativeInstruction {
+ public:
+  enum Intel_specific_constants {
+    instruction_code            = 0xe9,
+    instruction_size            =    5,
+    instruction_offset          =    0,
+    data_offset                 =    1,
+    next_instruction_offset     =    5
+  };
+
+  address instruction_address() const       { return addr_at(instruction_offset); }
+  address next_instruction_address() const  { return addr_at(next_instruction_offset); }
+  address jump_destination() const          {
+     address dest = (int_at(data_offset)+next_instruction_address());
+     // 32bit used to encode unresolved jmp as jmp -1
+     // 64bit can't produce this so it used jump to self.
+     // Now 32bit and 64bit use jump to self as the unresolved address
+     // which the inline cache code (and relocs) know about
+
+     // return -1 if jump to self
+    dest = (dest == (address) this) ? (address) -1 : dest;
+    return dest;
+  }
+
+  void  set_jump_destination(address dest)  {
+    intptr_t val = dest - next_instruction_address();
+    if (dest == (address) -1) {
+      val = -5; // jump to self
+    }
+#ifdef AMD64
+    assert((labs(val)  & 0xFFFFFFFF00000000) == 0 || dest == (address)-1, "must be 32bit offset or -1");
+#endif // AMD64
+    set_int_at(data_offset, (jint)val);
+  }
+
+  // Creation
+  inline friend NativeJump* nativeJump_at(address address);
+
+  void verify();
+
+  // Unit testing stuff
+  static void test() {}
+
+  // Insertion of native jump instruction
+  static void insert(address code_pos, address entry);
+  // MT-safe insertion of native jump at verified method entry
+  static void check_verified_entry_alignment(address entry, address verified_entry);
+  static void patch_verified_entry(address entry, address verified_entry, address dest);
+};
+
+inline NativeJump* nativeJump_at(address address) {
+  NativeJump* jump = (NativeJump*)(address - NativeJump::instruction_offset);
+#ifdef ASSERT
+  jump->verify();
+#endif
+  return jump;
+}
+
+// far jump reg
+class NativeFarJump: public NativeInstruction {
+ public:
+  address jump_destination() const;
+
+  // Creation
+  inline friend NativeFarJump* nativeFarJump_at(address address);
+
+  void verify();
+
+  // Unit testing stuff
+  static void test() {}
+
+};
+
+inline NativeFarJump* nativeFarJump_at(address address) {
+  NativeFarJump* jump = (NativeFarJump*)(address);
+#ifdef ASSERT
+  jump->verify();
+#endif
+  return jump;
+}
+
+// Handles all kinds of jump on Intel. Long/far, conditional/unconditional
+class NativeGeneralJump: public NativeInstruction {
+ public:
+  enum Intel_specific_constants {
+    // Constants does not apply, since the lengths and offsets depends on the actual jump
+    // used
+    // Instruction codes:
+    //   Unconditional jumps: 0xE9    (rel32off), 0xEB (rel8off)
+    //   Conditional jumps:   0x0F8x  (rel32off), 0x7x (rel8off)
+    unconditional_long_jump  = 0xe9,
+    unconditional_short_jump = 0xeb,
+    instruction_size = 5
+  };
+
+  address instruction_address() const       { return addr_at(0); }
+  address jump_destination()    const;
+
+  // Creation
+  inline friend NativeGeneralJump* nativeGeneralJump_at(address address);
+
+  // Insertion of native general jump instruction
+  static void insert_unconditional(address code_pos, address entry);
+  static void replace_mt_safe(address instr_addr, address code_buffer);
+
+  void verify();
+};
+
+inline NativeGeneralJump* nativeGeneralJump_at(address address) {
+  NativeGeneralJump* jump = (NativeGeneralJump*)(address);
+  debug_only(jump->verify();)
+  return jump;
+}
+
+class NativeGotJump: public NativeInstruction {
+public:
+  enum Intel_specific_constants {
+    instruction_code = 0xff,
+    instruction_offset = 0,
+    instruction_size = 6,
+    rip_offset = 2
+  };
+
+  void verify() const;
+  address instruction_address() const { return addr_at(instruction_offset); }
+  address destination() const;
+  address return_address() const { return addr_at(instruction_size); }
+  int got_offset() const { return (jint) int_at(rip_offset); }
+  address got_address() const { return return_address() + got_offset(); }
+  address next_instruction_address() const { return addr_at(instruction_size); }
+  bool is_GotJump() const { return ubyte_at(0) == instruction_code; }
+
+  void set_jump_destination(address dest)  {
+    address *got_entry = (address *) got_address();
+    *got_entry = dest;
+  }
+};
+
+inline NativeGotJump* nativeGotJump_at(address addr) {
+  NativeGotJump* jump = (NativeGotJump*)(addr);
+  debug_only(jump->verify());
+  return jump;
+}
+
+class NativePopReg : public NativeInstruction {
+ public:
+  enum Intel_specific_constants {
+    instruction_code            = 0x58,
+    instruction_size            =    1,
+    instruction_offset          =    0,
+    data_offset                 =    1,
+    next_instruction_offset     =    1
+  };
+
+  // Insert a pop instruction
+  static void insert(address code_pos, Register reg);
+};
+
+
+class NativeIllegalInstruction: public NativeInstruction {
+ public:
+  enum Intel_specific_constants {
+    instruction_code            = 0x0B0F,    // Real byte order is: 0x0F, 0x0B
+    instruction_size            =    2,
+    instruction_offset          =    0,
+    next_instruction_offset     =    2
+  };
+
+  // Insert illegal opcode as specific address
+  static void insert(address code_pos);
+};
+
+// return instruction that does not pop values of the stack
+class NativeReturn: public NativeInstruction {
+ public:
+  enum Intel_specific_constants {
+    instruction_code            = 0xC3,
+    instruction_size            =    1,
+    instruction_offset          =    0,
+    next_instruction_offset     =    1
+  };
+};
+
+// return instruction that does pop values of the stack
+class NativeReturnX: public NativeInstruction {
+ public:
+  enum Intel_specific_constants {
+    instruction_code            = 0xC2,
+    instruction_size            =    2,
+    instruction_offset          =    0,
+    next_instruction_offset     =    2
+  };
+};
+
+// Simple test vs memory
+class NativeTstRegMem: public NativeInstruction {
+ public:
+  enum Intel_specific_constants {
+    instruction_rex_prefix_mask = 0xF0,
+    instruction_rex_prefix      = Assembler::REX,
+    instruction_code_memXregl   = 0x85,
+    modrm_mask                  = 0x38, // select reg from the ModRM byte
+    modrm_reg                   = 0x00  // rax
+  };
+};
+
+inline bool NativeInstruction::is_illegal()      { return (short)int_at(0) == (short)NativeIllegalInstruction::instruction_code; }
+inline bool NativeInstruction::is_call()         { return ubyte_at(0) == NativeCall::instruction_code; }
+inline bool NativeInstruction::is_call_reg()     { return ubyte_at(0) == NativeCallReg::instruction_code ||
+                                                          (ubyte_at(1) == NativeCallReg::instruction_code &&
+                                                           (ubyte_at(0) == Assembler::REX || ubyte_at(0) == Assembler::REX_B)); }
+inline bool NativeInstruction::is_return()       { return ubyte_at(0) == NativeReturn::instruction_code ||
+                                                          ubyte_at(0) == NativeReturnX::instruction_code; }
+inline bool NativeInstruction::is_jump()         { return ubyte_at(0) == NativeJump::instruction_code ||
+                                                          ubyte_at(0) == 0xEB; /* short jump */ }
+inline bool NativeInstruction::is_jump_reg()     {
+  int pos = 0;
+  if (ubyte_at(0) == Assembler::REX_B) pos = 1;
+  return ubyte_at(pos) == 0xFF && (ubyte_at(pos + 1) & 0xF0) == 0xE0;
+}
+inline bool NativeInstruction::is_far_jump()     { return is_mov_literal64(); }
+inline bool NativeInstruction::is_cond_jump()    { return (int_at(0) & 0xF0FF) == 0x800F /* long jump */ ||
+                                                          (ubyte_at(0) & 0xF0) == 0x70;  /* short jump */ }
+inline bool NativeInstruction::is_safepoint_poll() {
+#ifdef AMD64
+  // Try decoding a near safepoint first:
+  if (ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl &&
+      ubyte_at(1) == 0x05) { // 00 rax 101
+    address fault = addr_at(6) + int_at(2);
+    NOT_JVMCI(assert(!Assembler::is_polling_page_far(), "unexpected poll encoding");)
+    return os::is_poll_address(fault);
+  }
+  // Now try decoding a far safepoint:
+  // two cases, depending on the choice of the base register in the address.
+  if (((ubyte_at(0) & NativeTstRegMem::instruction_rex_prefix_mask) == NativeTstRegMem::instruction_rex_prefix &&
+       ubyte_at(1) == NativeTstRegMem::instruction_code_memXregl &&
+       (ubyte_at(2) & NativeTstRegMem::modrm_mask) == NativeTstRegMem::modrm_reg) ||
+      (ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl &&
+       (ubyte_at(1) & NativeTstRegMem::modrm_mask) == NativeTstRegMem::modrm_reg)) {
+    NOT_JVMCI(assert(Assembler::is_polling_page_far(), "unexpected poll encoding");)
+    return true;
+  }
+  return false;
+#else
+  return ( ubyte_at(0) == NativeMovRegMem::instruction_code_mem2reg ||
+           ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl ) &&
+           (ubyte_at(1)&0xC7) == 0x05 && /* Mod R/M == disp32 */
+           (os::is_poll_address((address)int_at(2)));
+#endif // AMD64
+}
+
+inline bool NativeInstruction::is_mov_literal64() {
+#ifdef AMD64
+  return ((ubyte_at(0) == Assembler::REX_W || ubyte_at(0) == Assembler::REX_WB) &&
+          (ubyte_at(1) & (0xff ^ NativeMovConstReg::register_mask)) == 0xB8);
+#else
+  return false;
+#endif // AMD64
+}
+
+#endif // CPU_X86_VM_NATIVEINST_X86_HPP