src/hotspot/cpu/x86/macroAssembler_x86.hpp
changeset 47216 71c04702a3d5
parent 46961 c9094b1e5f87
child 47683 f433d49aceb4
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/cpu/x86/macroAssembler_x86.hpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,1749 @@
+/*
+ * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
+#define CPU_X86_VM_MACROASSEMBLER_X86_HPP
+
+#include "asm/assembler.hpp"
+#include "utilities/macros.hpp"
+#include "runtime/rtmLocking.hpp"
+
+// MacroAssembler extends Assembler by frequently used macros.
+//
+// Instructions for which a 'better' code sequence exists depending
+// on arguments should also go in here.
+
+class MacroAssembler: public Assembler {
+  friend class LIR_Assembler;
+  friend class Runtime1;      // as_Address()
+
+ protected:
+
+  Address as_Address(AddressLiteral adr);
+  Address as_Address(ArrayAddress adr);
+
+  // Support for VM calls
+  //
+  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
+  // may customize this version by overriding it for its purposes (e.g., to save/restore
+  // additional registers when doing a VM call).
+
+  virtual void call_VM_leaf_base(
+    address entry_point,               // the entry point
+    int     number_of_arguments        // the number of arguments to pop after the call
+  );
+
+  // This is the base routine called by the different versions of call_VM. The interpreter
+  // may customize this version by overriding it for its purposes (e.g., to save/restore
+  // additional registers when doing a VM call).
+  //
+  // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
+  // returns the register which contains the thread upon return. If a thread register has been
+  // specified, the return value will correspond to that register. If no last_java_sp is specified
+  // (noreg) than rsp will be used instead.
+  virtual void call_VM_base(           // returns the register containing the thread upon return
+    Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
+    Register java_thread,              // the thread if computed before     ; use noreg otherwise
+    Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
+    address  entry_point,              // the entry point
+    int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
+    bool     check_exceptions          // whether to check for pending exceptions after return
+  );
+
+  void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
+
+  // helpers for FPU flag access
+  // tmp is a temporary register, if none is available use noreg
+  void save_rax   (Register tmp);
+  void restore_rax(Register tmp);
+
+ public:
+  MacroAssembler(CodeBuffer* code) : Assembler(code) {}
+
+ // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
+ // The implementation is only non-empty for the InterpreterMacroAssembler,
+ // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
+ virtual void check_and_handle_popframe(Register java_thread);
+ virtual void check_and_handle_earlyret(Register java_thread);
+
+  // Support for NULL-checks
+  //
+  // Generates code that causes a NULL OS exception if the content of reg is NULL.
+  // If the accessed location is M[reg + offset] and the offset is known, provide the
+  // offset. No explicit code generation is needed if the offset is within a certain
+  // range (0 <= offset <= page_size).
+
+  void null_check(Register reg, int offset = -1);
+  static bool needs_explicit_null_check(intptr_t offset);
+
+  // Required platform-specific helpers for Label::patch_instructions.
+  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
+  void pd_patch_instruction(address branch, address target) {
+    unsigned char op = branch[0];
+    assert(op == 0xE8 /* call */ ||
+        op == 0xE9 /* jmp */ ||
+        op == 0xEB /* short jmp */ ||
+        (op & 0xF0) == 0x70 /* short jcc */ ||
+        op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
+        op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
+        "Invalid opcode at patch point");
+
+    if (op == 0xEB || (op & 0xF0) == 0x70) {
+      // short offset operators (jmp and jcc)
+      char* disp = (char*) &branch[1];
+      int imm8 = target - (address) &disp[1];
+      guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
+      *disp = imm8;
+    } else {
+      int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
+      int imm32 = target - (address) &disp[1];
+      *disp = imm32;
+    }
+  }
+
+  // The following 4 methods return the offset of the appropriate move instruction
+
+  // Support for fast byte/short loading with zero extension (depending on particular CPU)
+  int load_unsigned_byte(Register dst, Address src);
+  int load_unsigned_short(Register dst, Address src);
+
+  // Support for fast byte/short loading with sign extension (depending on particular CPU)
+  int load_signed_byte(Register dst, Address src);
+  int load_signed_short(Register dst, Address src);
+
+  // Support for sign-extension (hi:lo = extend_sign(lo))
+  void extend_sign(Register hi, Register lo);
+
+  // Load and store values by size and signed-ness
+  void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
+  void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
+
+  // Support for inc/dec with optimal instruction selection depending on value
+
+  void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
+  void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
+
+  void decrementl(Address dst, int value = 1);
+  void decrementl(Register reg, int value = 1);
+
+  void decrementq(Register reg, int value = 1);
+  void decrementq(Address dst, int value = 1);
+
+  void incrementl(Address dst, int value = 1);
+  void incrementl(Register reg, int value = 1);
+
+  void incrementq(Register reg, int value = 1);
+  void incrementq(Address dst, int value = 1);
+
+  // special instructions for EVEX
+  void setvectmask(Register dst, Register src);
+  void restorevectmask();
+
+  // Support optimal SSE move instructions.
+  void movflt(XMMRegister dst, XMMRegister src) {
+    if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
+    else                       { movss (dst, src); return; }
+  }
+  void movflt(XMMRegister dst, Address src) { movss(dst, src); }
+  void movflt(XMMRegister dst, AddressLiteral src);
+  void movflt(Address dst, XMMRegister src) { movss(dst, src); }
+
+  void movdbl(XMMRegister dst, XMMRegister src) {
+    if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
+    else                       { movsd (dst, src); return; }
+  }
+
+  void movdbl(XMMRegister dst, AddressLiteral src);
+
+  void movdbl(XMMRegister dst, Address src) {
+    if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
+    else                         { movlpd(dst, src); return; }
+  }
+  void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
+
+  void incrementl(AddressLiteral dst);
+  void incrementl(ArrayAddress dst);
+
+  void incrementq(AddressLiteral dst);
+
+  // Alignment
+  void align(int modulus);
+  void align(int modulus, int target);
+
+  // A 5 byte nop that is safe for patching (see patch_verified_entry)
+  void fat_nop();
+
+  // Stack frame creation/removal
+  void enter();
+  void leave();
+
+  // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
+  // The pointer will be loaded into the thread register.
+  void get_thread(Register thread);
+
+
+  // Support for VM calls
+  //
+  // It is imperative that all calls into the VM are handled via the call_VM macros.
+  // They make sure that the stack linkage is setup correctly. call_VM's correspond
+  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
+
+
+  void call_VM(Register oop_result,
+               address entry_point,
+               bool check_exceptions = true);
+  void call_VM(Register oop_result,
+               address entry_point,
+               Register arg_1,
+               bool check_exceptions = true);
+  void call_VM(Register oop_result,
+               address entry_point,
+               Register arg_1, Register arg_2,
+               bool check_exceptions = true);
+  void call_VM(Register oop_result,
+               address entry_point,
+               Register arg_1, Register arg_2, Register arg_3,
+               bool check_exceptions = true);
+
+  // Overloadings with last_Java_sp
+  void call_VM(Register oop_result,
+               Register last_java_sp,
+               address entry_point,
+               int number_of_arguments = 0,
+               bool check_exceptions = true);
+  void call_VM(Register oop_result,
+               Register last_java_sp,
+               address entry_point,
+               Register arg_1, bool
+               check_exceptions = true);
+  void call_VM(Register oop_result,
+               Register last_java_sp,
+               address entry_point,
+               Register arg_1, Register arg_2,
+               bool check_exceptions = true);
+  void call_VM(Register oop_result,
+               Register last_java_sp,
+               address entry_point,
+               Register arg_1, Register arg_2, Register arg_3,
+               bool check_exceptions = true);
+
+  void get_vm_result  (Register oop_result, Register thread);
+  void get_vm_result_2(Register metadata_result, Register thread);
+
+  // These always tightly bind to MacroAssembler::call_VM_base
+  // bypassing the virtual implementation
+  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
+  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
+  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
+  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
+  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
+
+  void call_VM_leaf0(address entry_point);
+  void call_VM_leaf(address entry_point,
+                    int number_of_arguments = 0);
+  void call_VM_leaf(address entry_point,
+                    Register arg_1);
+  void call_VM_leaf(address entry_point,
+                    Register arg_1, Register arg_2);
+  void call_VM_leaf(address entry_point,
+                    Register arg_1, Register arg_2, Register arg_3);
+
+  // These always tightly bind to MacroAssembler::call_VM_leaf_base
+  // bypassing the virtual implementation
+  void super_call_VM_leaf(address entry_point);
+  void super_call_VM_leaf(address entry_point, Register arg_1);
+  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
+  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
+  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
+
+  // last Java Frame (fills frame anchor)
+  void set_last_Java_frame(Register thread,
+                           Register last_java_sp,
+                           Register last_java_fp,
+                           address last_java_pc);
+
+  // thread in the default location (r15_thread on 64bit)
+  void set_last_Java_frame(Register last_java_sp,
+                           Register last_java_fp,
+                           address last_java_pc);
+
+  void reset_last_Java_frame(Register thread, bool clear_fp);
+
+  // thread in the default location (r15_thread on 64bit)
+  void reset_last_Java_frame(bool clear_fp);
+
+  // Stores
+  void store_check(Register obj);                // store check for obj - register is destroyed afterwards
+  void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
+
+  void resolve_jobject(Register value, Register thread, Register tmp);
+  void clear_jweak_tag(Register possibly_jweak);
+
+#if INCLUDE_ALL_GCS
+
+  void g1_write_barrier_pre(Register obj,
+                            Register pre_val,
+                            Register thread,
+                            Register tmp,
+                            bool tosca_live,
+                            bool expand_call);
+
+  void g1_write_barrier_post(Register store_addr,
+                             Register new_val,
+                             Register thread,
+                             Register tmp,
+                             Register tmp2);
+
+#endif // INCLUDE_ALL_GCS
+
+  // C 'boolean' to Java boolean: x == 0 ? 0 : 1
+  void c2bool(Register x);
+
+  // C++ bool manipulation
+
+  void movbool(Register dst, Address src);
+  void movbool(Address dst, bool boolconst);
+  void movbool(Address dst, Register src);
+  void testbool(Register dst);
+
+  void resolve_oop_handle(Register result);
+  void load_mirror(Register mirror, Register method);
+
+  // oop manipulations
+  void load_klass(Register dst, Register src);
+  void store_klass(Register dst, Register src);
+
+  void load_heap_oop(Register dst, Address src);
+  void load_heap_oop_not_null(Register dst, Address src);
+  void store_heap_oop(Address dst, Register src);
+  void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
+
+  // Used for storing NULL. All other oop constants should be
+  // stored using routines that take a jobject.
+  void store_heap_oop_null(Address dst);
+
+  void load_prototype_header(Register dst, Register src);
+
+#ifdef _LP64
+  void store_klass_gap(Register dst, Register src);
+
+  // This dummy is to prevent a call to store_heap_oop from
+  // converting a zero (like NULL) into a Register by giving
+  // the compiler two choices it can't resolve
+
+  void store_heap_oop(Address dst, void* dummy);
+
+  void encode_heap_oop(Register r);
+  void decode_heap_oop(Register r);
+  void encode_heap_oop_not_null(Register r);
+  void decode_heap_oop_not_null(Register r);
+  void encode_heap_oop_not_null(Register dst, Register src);
+  void decode_heap_oop_not_null(Register dst, Register src);
+
+  void set_narrow_oop(Register dst, jobject obj);
+  void set_narrow_oop(Address dst, jobject obj);
+  void cmp_narrow_oop(Register dst, jobject obj);
+  void cmp_narrow_oop(Address dst, jobject obj);
+
+  void encode_klass_not_null(Register r);
+  void decode_klass_not_null(Register r);
+  void encode_klass_not_null(Register dst, Register src);
+  void decode_klass_not_null(Register dst, Register src);
+  void set_narrow_klass(Register dst, Klass* k);
+  void set_narrow_klass(Address dst, Klass* k);
+  void cmp_narrow_klass(Register dst, Klass* k);
+  void cmp_narrow_klass(Address dst, Klass* k);
+
+  // Returns the byte size of the instructions generated by decode_klass_not_null()
+  // when compressed klass pointers are being used.
+  static int instr_size_for_decode_klass_not_null();
+
+  // if heap base register is used - reinit it with the correct value
+  void reinit_heapbase();
+
+  DEBUG_ONLY(void verify_heapbase(const char* msg);)
+
+#endif // _LP64
+
+  // Int division/remainder for Java
+  // (as idivl, but checks for special case as described in JVM spec.)
+  // returns idivl instruction offset for implicit exception handling
+  int corrected_idivl(Register reg);
+
+  // Long division/remainder for Java
+  // (as idivq, but checks for special case as described in JVM spec.)
+  // returns idivq instruction offset for implicit exception handling
+  int corrected_idivq(Register reg);
+
+  void int3();
+
+  // Long operation macros for a 32bit cpu
+  // Long negation for Java
+  void lneg(Register hi, Register lo);
+
+  // Long multiplication for Java
+  // (destroys contents of eax, ebx, ecx and edx)
+  void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
+
+  // Long shifts for Java
+  // (semantics as described in JVM spec.)
+  void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
+  void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
+
+  // Long compare for Java
+  // (semantics as described in JVM spec.)
+  void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
+
+
+  // misc
+
+  // Sign extension
+  void sign_extend_short(Register reg);
+  void sign_extend_byte(Register reg);
+
+  // Division by power of 2, rounding towards 0
+  void division_with_shift(Register reg, int shift_value);
+
+  // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
+  //
+  // CF (corresponds to C0) if x < y
+  // PF (corresponds to C2) if unordered
+  // ZF (corresponds to C3) if x = y
+  //
+  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
+  // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
+  void fcmp(Register tmp);
+  // Variant of the above which allows y to be further down the stack
+  // and which only pops x and y if specified. If pop_right is
+  // specified then pop_left must also be specified.
+  void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
+
+  // Floating-point comparison for Java
+  // Compares the top-most stack entries on the FPU stack and stores the result in dst.
+  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
+  // (semantics as described in JVM spec.)
+  void fcmp2int(Register dst, bool unordered_is_less);
+  // Variant of the above which allows y to be further down the stack
+  // and which only pops x and y if specified. If pop_right is
+  // specified then pop_left must also be specified.
+  void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
+
+  // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
+  // tmp is a temporary register, if none is available use noreg
+  void fremr(Register tmp);
+
+  // dst = c = a * b + c
+  void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
+  void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
+
+  void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
+  void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
+  void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
+  void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
+
+
+  // same as fcmp2int, but using SSE2
+  void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
+  void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
+
+  // branch to L if FPU flag C2 is set/not set
+  // tmp is a temporary register, if none is available use noreg
+  void jC2 (Register tmp, Label& L);
+  void jnC2(Register tmp, Label& L);
+
+  // Pop ST (ffree & fincstp combined)
+  void fpop();
+
+  // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
+  // register xmm0. Otherwise, the value is loaded onto the FPU stack.
+  void load_float(Address src);
+
+  // Store float value to 'address'. If UseSSE >= 1, the value is stored
+  // from register xmm0. Otherwise, the value is stored from the FPU stack.
+  void store_float(Address dst);
+
+  // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
+  // register xmm0. Otherwise, the value is loaded onto the FPU stack.
+  void load_double(Address src);
+
+  // Store double value to 'address'. If UseSSE >= 2, the value is stored
+  // from register xmm0. Otherwise, the value is stored from the FPU stack.
+  void store_double(Address dst);
+
+  // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
+  void push_fTOS();
+
+  // pops double TOS element from CPU stack and pushes on FPU stack
+  void pop_fTOS();
+
+  void empty_FPU_stack();
+
+  void push_IU_state();
+  void pop_IU_state();
+
+  void push_FPU_state();
+  void pop_FPU_state();
+
+  void push_CPU_state();
+  void pop_CPU_state();
+
+  // Round up to a power of two
+  void round_to(Register reg, int modulus);
+
+  // Callee saved registers handling
+  void push_callee_saved_registers();
+  void pop_callee_saved_registers();
+
+  // allocation
+  void eden_allocate(
+    Register obj,                      // result: pointer to object after successful allocation
+    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
+    int      con_size_in_bytes,        // object size in bytes if   known at compile time
+    Register t1,                       // temp register
+    Label&   slow_case                 // continuation point if fast allocation fails
+  );
+  void tlab_allocate(
+    Register obj,                      // result: pointer to object after successful allocation
+    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
+    int      con_size_in_bytes,        // object size in bytes if   known at compile time
+    Register t1,                       // temp register
+    Register t2,                       // temp register
+    Label&   slow_case                 // continuation point if fast allocation fails
+  );
+  Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
+  void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
+
+  void incr_allocated_bytes(Register thread,
+                            Register var_size_in_bytes, int con_size_in_bytes,
+                            Register t1 = noreg);
+
+  // interface method calling
+  void lookup_interface_method(Register recv_klass,
+                               Register intf_klass,
+                               RegisterOrConstant itable_index,
+                               Register method_result,
+                               Register scan_temp,
+                               Label& no_such_interface);
+
+  // virtual method calling
+  void lookup_virtual_method(Register recv_klass,
+                             RegisterOrConstant vtable_index,
+                             Register method_result);
+
+  // Test sub_klass against super_klass, with fast and slow paths.
+
+  // The fast path produces a tri-state answer: yes / no / maybe-slow.
+  // One of the three labels can be NULL, meaning take the fall-through.
+  // If super_check_offset is -1, the value is loaded up from super_klass.
+  // No registers are killed, except temp_reg.
+  void check_klass_subtype_fast_path(Register sub_klass,
+                                     Register super_klass,
+                                     Register temp_reg,
+                                     Label* L_success,
+                                     Label* L_failure,
+                                     Label* L_slow_path,
+                RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
+
+  // The rest of the type check; must be wired to a corresponding fast path.
+  // It does not repeat the fast path logic, so don't use it standalone.
+  // The temp_reg and temp2_reg can be noreg, if no temps are available.
+  // Updates the sub's secondary super cache as necessary.
+  // If set_cond_codes, condition codes will be Z on success, NZ on failure.
+  void check_klass_subtype_slow_path(Register sub_klass,
+                                     Register super_klass,
+                                     Register temp_reg,
+                                     Register temp2_reg,
+                                     Label* L_success,
+                                     Label* L_failure,
+                                     bool set_cond_codes = false);
+
+  // Simplified, combined version, good for typical uses.
+  // Falls through on failure.
+  void check_klass_subtype(Register sub_klass,
+                           Register super_klass,
+                           Register temp_reg,
+                           Label& L_success);
+
+  // method handles (JSR 292)
+  Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
+
+  //----
+  void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
+
+  // Debugging
+
+  // only if +VerifyOops
+  // TODO: Make these macros with file and line like sparc version!
+  void verify_oop(Register reg, const char* s = "broken oop");
+  void verify_oop_addr(Address addr, const char * s = "broken oop addr");
+
+  // TODO: verify method and klass metadata (compare against vptr?)
+  void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
+  void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
+
+#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
+#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
+
+  // only if +VerifyFPU
+  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
+
+  // Verify or restore cpu control state after JNI call
+  void restore_cpu_control_state_after_jni();
+
+  // prints msg, dumps registers and stops execution
+  void stop(const char* msg);
+
+  // prints msg and continues
+  void warn(const char* msg);
+
+  // dumps registers and other state
+  void print_state();
+
+  static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
+  static void debug64(char* msg, int64_t pc, int64_t regs[]);
+  static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
+  static void print_state64(int64_t pc, int64_t regs[]);
+
+  void os_breakpoint();
+
+  void untested()                                { stop("untested"); }
+
+  void unimplemented(const char* what = "");
+
+  void should_not_reach_here()                   { stop("should not reach here"); }
+
+  void print_CPU_state();
+
+  // Stack overflow checking
+  void bang_stack_with_offset(int offset) {
+    // stack grows down, caller passes positive offset
+    assert(offset > 0, "must bang with negative offset");
+    movl(Address(rsp, (-offset)), rax);
+  }
+
+  // Writes to stack successive pages until offset reached to check for
+  // stack overflow + shadow pages.  Also, clobbers tmp
+  void bang_stack_size(Register size, Register tmp);
+
+  // Check for reserved stack access in method being exited (for JIT)
+  void reserved_stack_check();
+
+  virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
+                                                Register tmp,
+                                                int offset);
+
+  // Support for serializing memory accesses between threads
+  void serialize_memory(Register thread, Register tmp);
+
+  void verify_tlab();
+
+  // Biased locking support
+  // lock_reg and obj_reg must be loaded up with the appropriate values.
+  // swap_reg must be rax, and is killed.
+  // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
+  // be killed; if not supplied, push/pop will be used internally to
+  // allocate a temporary (inefficient, avoid if possible).
+  // Optional slow case is for implementations (interpreter and C1) which branch to
+  // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
+  // Returns offset of first potentially-faulting instruction for null
+  // check info (currently consumed only by C1). If
+  // swap_reg_contains_mark is true then returns -1 as it is assumed
+  // the calling code has already passed any potential faults.
+  int biased_locking_enter(Register lock_reg, Register obj_reg,
+                           Register swap_reg, Register tmp_reg,
+                           bool swap_reg_contains_mark,
+                           Label& done, Label* slow_case = NULL,
+                           BiasedLockingCounters* counters = NULL);
+  void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
+#ifdef COMPILER2
+  // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
+  // See full desription in macroAssembler_x86.cpp.
+  void fast_lock(Register obj, Register box, Register tmp,
+                 Register scr, Register cx1, Register cx2,
+                 BiasedLockingCounters* counters,
+                 RTMLockingCounters* rtm_counters,
+                 RTMLockingCounters* stack_rtm_counters,
+                 Metadata* method_data,
+                 bool use_rtm, bool profile_rtm);
+  void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
+#if INCLUDE_RTM_OPT
+  void rtm_counters_update(Register abort_status, Register rtm_counters);
+  void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
+  void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
+                                   RTMLockingCounters* rtm_counters,
+                                   Metadata* method_data);
+  void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
+                     RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
+  void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
+  void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
+  void rtm_stack_locking(Register obj, Register tmp, Register scr,
+                         Register retry_on_abort_count,
+                         RTMLockingCounters* stack_rtm_counters,
+                         Metadata* method_data, bool profile_rtm,
+                         Label& DONE_LABEL, Label& IsInflated);
+  void rtm_inflated_locking(Register obj, Register box, Register tmp,
+                            Register scr, Register retry_on_busy_count,
+                            Register retry_on_abort_count,
+                            RTMLockingCounters* rtm_counters,
+                            Metadata* method_data, bool profile_rtm,
+                            Label& DONE_LABEL);
+#endif
+#endif
+
+  Condition negate_condition(Condition cond);
+
+  // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
+  // operands. In general the names are modified to avoid hiding the instruction in Assembler
+  // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
+  // here in MacroAssembler. The major exception to this rule is call
+
+  // Arithmetics
+
+
+  void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
+  void addptr(Address dst, Register src);
+
+  void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
+  void addptr(Register dst, int32_t src);
+  void addptr(Register dst, Register src);
+  void addptr(Register dst, RegisterOrConstant src) {
+    if (src.is_constant()) addptr(dst, (int) src.as_constant());
+    else                   addptr(dst,       src.as_register());
+  }
+
+  void andptr(Register dst, int32_t src);
+  void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
+
+  void cmp8(AddressLiteral src1, int imm);
+
+  // renamed to drag out the casting of address to int32_t/intptr_t
+  void cmp32(Register src1, int32_t imm);
+
+  void cmp32(AddressLiteral src1, int32_t imm);
+  // compare reg - mem, or reg - &mem
+  void cmp32(Register src1, AddressLiteral src2);
+
+  void cmp32(Register src1, Address src2);
+
+#ifndef _LP64
+  void cmpklass(Address dst, Metadata* obj);
+  void cmpklass(Register dst, Metadata* obj);
+  void cmpoop(Address dst, jobject obj);
+  void cmpoop(Register dst, jobject obj);
+#endif // _LP64
+
+  // NOTE src2 must be the lval. This is NOT an mem-mem compare
+  void cmpptr(Address src1, AddressLiteral src2);
+
+  void cmpptr(Register src1, AddressLiteral src2);
+
+  void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
+  void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
+  // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
+
+  void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
+  void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
+
+  // cmp64 to avoild hiding cmpq
+  void cmp64(Register src1, AddressLiteral src);
+
+  void cmpxchgptr(Register reg, Address adr);
+
+  void locked_cmpxchgptr(Register reg, AddressLiteral adr);
+
+
+  void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
+  void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
+
+
+  void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
+
+  void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
+
+  void shlptr(Register dst, int32_t shift);
+  void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
+
+  void shrptr(Register dst, int32_t shift);
+  void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
+
+  void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
+  void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
+
+  void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
+
+  void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
+  void subptr(Register dst, int32_t src);
+  // Force generation of a 4 byte immediate value even if it fits into 8bit
+  void subptr_imm32(Register dst, int32_t src);
+  void subptr(Register dst, Register src);
+  void subptr(Register dst, RegisterOrConstant src) {
+    if (src.is_constant()) subptr(dst, (int) src.as_constant());
+    else                   subptr(dst,       src.as_register());
+  }
+
+  void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
+  void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
+
+  void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
+  void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
+
+  void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
+
+
+
+  // Helper functions for statistics gathering.
+  // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
+  void cond_inc32(Condition cond, AddressLiteral counter_addr);
+  // Unconditional atomic increment.
+  void atomic_incl(Address counter_addr);
+  void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
+#ifdef _LP64
+  void atomic_incq(Address counter_addr);
+  void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
+#endif
+  void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
+  void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
+
+  void lea(Register dst, AddressLiteral adr);
+  void lea(Address dst, AddressLiteral adr);
+  void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
+
+  void leal32(Register dst, Address src) { leal(dst, src); }
+
+  // Import other testl() methods from the parent class or else
+  // they will be hidden by the following overriding declaration.
+  using Assembler::testl;
+  void testl(Register dst, AddressLiteral src);
+
+  void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
+  void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
+  void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
+  void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
+
+  void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
+  void testptr(Register src1, Register src2);
+
+  void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
+  void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
+
+  // Calls
+
+  void call(Label& L, relocInfo::relocType rtype);
+  void call(Register entry);
+
+  // NOTE: this call transfers to the effective address of entry NOT
+  // the address contained by entry. This is because this is more natural
+  // for jumps/calls.
+  void call(AddressLiteral entry);
+
+  // Emit the CompiledIC call idiom
+  void ic_call(address entry, jint method_index = 0);
+
+  // Jumps
+
+  // NOTE: these jumps tranfer to the effective address of dst NOT
+  // the address contained by dst. This is because this is more natural
+  // for jumps/calls.
+  void jump(AddressLiteral dst);
+  void jump_cc(Condition cc, AddressLiteral dst);
+
+  // 32bit can do a case table jump in one instruction but we no longer allow the base
+  // to be installed in the Address class. This jump will tranfers to the address
+  // contained in the location described by entry (not the address of entry)
+  void jump(ArrayAddress entry);
+
+  // Floating
+
+  void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
+  void andpd(XMMRegister dst, AddressLiteral src);
+  void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
+
+  void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
+  void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
+  void andps(XMMRegister dst, AddressLiteral src);
+
+  void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
+  void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
+  void comiss(XMMRegister dst, AddressLiteral src);
+
+  void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
+  void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
+  void comisd(XMMRegister dst, AddressLiteral src);
+
+  void fadd_s(Address src)        { Assembler::fadd_s(src); }
+  void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
+
+  void fldcw(Address src) { Assembler::fldcw(src); }
+  void fldcw(AddressLiteral src);
+
+  void fld_s(int index)   { Assembler::fld_s(index); }
+  void fld_s(Address src) { Assembler::fld_s(src); }
+  void fld_s(AddressLiteral src);
+
+  void fld_d(Address src) { Assembler::fld_d(src); }
+  void fld_d(AddressLiteral src);
+
+  void fld_x(Address src) { Assembler::fld_x(src); }
+  void fld_x(AddressLiteral src);
+
+  void fmul_s(Address src)        { Assembler::fmul_s(src); }
+  void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
+
+  void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
+  void ldmxcsr(AddressLiteral src);
+
+#ifdef _LP64
+ private:
+  void sha256_AVX2_one_round_compute(
+    Register  reg_old_h,
+    Register  reg_a,
+    Register  reg_b,
+    Register  reg_c,
+    Register  reg_d,
+    Register  reg_e,
+    Register  reg_f,
+    Register  reg_g,
+    Register  reg_h,
+    int iter);
+  void sha256_AVX2_four_rounds_compute_first(int start);
+  void sha256_AVX2_four_rounds_compute_last(int start);
+  void sha256_AVX2_one_round_and_sched(
+        XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
+        XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
+        XMMRegister xmm_2,     /* ymm6 */
+        XMMRegister xmm_3,     /* ymm7 */
+        Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
+        Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
+        Register    reg_c,      /* edi */
+        Register    reg_d,      /* esi */
+        Register    reg_e,      /* r8d */
+        Register    reg_f,      /* r9d */
+        Register    reg_g,      /* r10d */
+        Register    reg_h,      /* r11d */
+        int iter);
+
+  void addm(int disp, Register r1, Register r2);
+
+ public:
+  void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
+                   XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
+                   Register buf, Register state, Register ofs, Register limit, Register rsp,
+                   bool multi_block, XMMRegister shuf_mask);
+#endif
+
+#ifdef _LP64
+ private:
+  void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
+                                     Register e, Register f, Register g, Register h, int iteration);
+
+  void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
+                                          Register a, Register b, Register c, Register d, Register e, Register f,
+                                          Register g, Register h, int iteration);
+
+  void addmq(int disp, Register r1, Register r2);
+ public:
+  void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
+                   XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
+                   Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
+                   XMMRegister shuf_mask);
+#endif
+
+  void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
+                 XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
+                 Register buf, Register state, Register ofs, Register limit, Register rsp,
+                 bool multi_block);
+
+#ifdef _LP64
+  void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
+                   XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
+                   Register buf, Register state, Register ofs, Register limit, Register rsp,
+                   bool multi_block, XMMRegister shuf_mask);
+#else
+  void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
+                   XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
+                   Register buf, Register state, Register ofs, Register limit, Register rsp,
+                   bool multi_block);
+#endif
+
+  void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
+                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
+                Register rax, Register rcx, Register rdx, Register tmp);
+
+#ifdef _LP64
+  void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
+                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
+                Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
+
+  void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
+                  XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
+                  Register rax, Register rcx, Register rdx, Register r11);
+
+  void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
+                XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
+                Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
+
+  void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
+                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
+                Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
+                Register tmp3, Register tmp4);
+
+  void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
+                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
+                Register rax, Register rcx, Register rdx, Register tmp1,
+                Register tmp2, Register tmp3, Register tmp4);
+  void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
+                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
+                Register rax, Register rcx, Register rdx, Register tmp1,
+                Register tmp2, Register tmp3, Register tmp4);
+#else
+  void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
+                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
+                Register rax, Register rcx, Register rdx, Register tmp1);
+
+  void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
+                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
+                Register rax, Register rcx, Register rdx, Register tmp);
+
+  void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
+                XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
+                Register rdx, Register tmp);
+
+  void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
+                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
+                Register rax, Register rbx, Register rdx);
+
+  void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
+                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
+                Register rax, Register rcx, Register rdx, Register tmp);
+
+  void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
+                        Register edx, Register ebx, Register esi, Register edi,
+                        Register ebp, Register esp);
+
+  void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
+                         Register esi, Register edi, Register ebp, Register esp);
+
+  void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
+                        Register edx, Register ebx, Register esi, Register edi,
+                        Register ebp, Register esp);
+
+  void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
+                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
+                Register rax, Register rcx, Register rdx, Register tmp);
+#endif
+
+  void increase_precision();
+  void restore_precision();
+
+private:
+
+  // these are private because users should be doing movflt/movdbl
+
+  void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
+  void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
+  void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
+  void movss(XMMRegister dst, AddressLiteral src);
+
+  void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
+  void movlpd(XMMRegister dst, AddressLiteral src);
+
+public:
+
+  void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
+  void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
+  void addsd(XMMRegister dst, AddressLiteral src);
+
+  void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
+  void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
+  void addss(XMMRegister dst, AddressLiteral src);
+
+  void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
+  void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
+  void addpd(XMMRegister dst, AddressLiteral src);
+
+  void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
+  void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
+  void divsd(XMMRegister dst, AddressLiteral src);
+
+  void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
+  void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
+  void divss(XMMRegister dst, AddressLiteral src);
+
+  // Move Unaligned Double Quadword
+  void movdqu(Address     dst, XMMRegister src);
+  void movdqu(XMMRegister dst, Address src);
+  void movdqu(XMMRegister dst, XMMRegister src);
+  void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
+  // AVX Unaligned forms
+  void vmovdqu(Address     dst, XMMRegister src);
+  void vmovdqu(XMMRegister dst, Address src);
+  void vmovdqu(XMMRegister dst, XMMRegister src);
+  void vmovdqu(XMMRegister dst, AddressLiteral src);
+
+  // Move Aligned Double Quadword
+  void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
+  void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
+  void movdqa(XMMRegister dst, AddressLiteral src);
+
+  void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
+  void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
+  void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
+  void movsd(XMMRegister dst, AddressLiteral src);
+
+  void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
+  void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
+  void mulpd(XMMRegister dst, AddressLiteral src);
+
+  void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
+  void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
+  void mulsd(XMMRegister dst, AddressLiteral src);
+
+  void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
+  void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
+  void mulss(XMMRegister dst, AddressLiteral src);
+
+  // Carry-Less Multiplication Quadword
+  void pclmulldq(XMMRegister dst, XMMRegister src) {
+    // 0x00 - multiply lower 64 bits [0:63]
+    Assembler::pclmulqdq(dst, src, 0x00);
+  }
+  void pclmulhdq(XMMRegister dst, XMMRegister src) {
+    // 0x11 - multiply upper 64 bits [64:127]
+    Assembler::pclmulqdq(dst, src, 0x11);
+  }
+
+  void pcmpeqb(XMMRegister dst, XMMRegister src);
+  void pcmpeqw(XMMRegister dst, XMMRegister src);
+
+  void pcmpestri(XMMRegister dst, Address src, int imm8);
+  void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
+
+  void pmovzxbw(XMMRegister dst, XMMRegister src);
+  void pmovzxbw(XMMRegister dst, Address src);
+
+  void pmovmskb(Register dst, XMMRegister src);
+
+  void ptest(XMMRegister dst, XMMRegister src);
+
+  void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
+  void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
+  void sqrtsd(XMMRegister dst, AddressLiteral src);
+
+  void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
+  void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
+  void sqrtss(XMMRegister dst, AddressLiteral src);
+
+  void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
+  void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
+  void subsd(XMMRegister dst, AddressLiteral src);
+
+  void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
+  void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
+  void subss(XMMRegister dst, AddressLiteral src);
+
+  void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
+  void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
+  void ucomiss(XMMRegister dst, AddressLiteral src);
+
+  void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
+  void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
+  void ucomisd(XMMRegister dst, AddressLiteral src);
+
+  // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
+  void xorpd(XMMRegister dst, XMMRegister src);
+  void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
+  void xorpd(XMMRegister dst, AddressLiteral src);
+
+  // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
+  void xorps(XMMRegister dst, XMMRegister src);
+  void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
+  void xorps(XMMRegister dst, AddressLiteral src);
+
+  // Shuffle Bytes
+  void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
+  void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
+  void pshufb(XMMRegister dst, AddressLiteral src);
+  // AVX 3-operands instructions
+
+  void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
+  void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
+  void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
+
+  void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
+  void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
+  void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
+
+  void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
+  void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
+
+  void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
+  void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
+
+  void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
+  void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
+
+  void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
+  void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
+  void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
+
+  void vpbroadcastw(XMMRegister dst, XMMRegister src);
+
+  void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
+  void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
+
+  void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
+  void vpmovmskb(Register dst, XMMRegister src);
+
+  void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
+  void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
+
+  void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
+  void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
+
+  void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
+  void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
+
+  void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
+  void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
+
+  void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
+  void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
+
+  void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
+  void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
+
+  void vptest(XMMRegister dst, XMMRegister src);
+
+  void punpcklbw(XMMRegister dst, XMMRegister src);
+  void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
+
+  void pshufd(XMMRegister dst, Address src, int mode);
+  void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
+
+  void pshuflw(XMMRegister dst, XMMRegister src, int mode);
+  void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
+
+  void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
+  void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
+  void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
+
+  void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
+  void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
+  void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
+
+  void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
+  void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
+  void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
+
+  void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
+  void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
+  void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
+
+  void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
+  void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
+  void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
+
+  void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
+  void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
+  void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
+
+  void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
+  void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
+  void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
+
+  void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
+  void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
+  void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
+
+  void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
+  void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
+
+  // AVX Vector instructions
+
+  void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
+  void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
+  void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
+
+  void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
+  void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
+  void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
+
+  void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+    if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
+      Assembler::vpxor(dst, nds, src, vector_len);
+    else
+      Assembler::vxorpd(dst, nds, src, vector_len);
+  }
+  void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
+    if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
+      Assembler::vpxor(dst, nds, src, vector_len);
+    else
+      Assembler::vxorpd(dst, nds, src, vector_len);
+  }
+
+  // Simple version for AVX2 256bit vectors
+  void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
+  void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
+
+  void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
+    if (UseAVX > 2) {
+      Assembler::vinserti32x4(dst, dst, src, imm8);
+    } else if (UseAVX > 1) {
+      // vinserti128 is available only in AVX2
+      Assembler::vinserti128(dst, nds, src, imm8);
+    } else {
+      Assembler::vinsertf128(dst, nds, src, imm8);
+    }
+  }
+
+  void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
+    if (UseAVX > 2) {
+      Assembler::vinserti32x4(dst, dst, src, imm8);
+    } else if (UseAVX > 1) {
+      // vinserti128 is available only in AVX2
+      Assembler::vinserti128(dst, nds, src, imm8);
+    } else {
+      Assembler::vinsertf128(dst, nds, src, imm8);
+    }
+  }
+
+  void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
+    if (UseAVX > 2) {
+      Assembler::vextracti32x4(dst, src, imm8);
+    } else if (UseAVX > 1) {
+      // vextracti128 is available only in AVX2
+      Assembler::vextracti128(dst, src, imm8);
+    } else {
+      Assembler::vextractf128(dst, src, imm8);
+    }
+  }
+
+  void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
+    if (UseAVX > 2) {
+      Assembler::vextracti32x4(dst, src, imm8);
+    } else if (UseAVX > 1) {
+      // vextracti128 is available only in AVX2
+      Assembler::vextracti128(dst, src, imm8);
+    } else {
+      Assembler::vextractf128(dst, src, imm8);
+    }
+  }
+
+  // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
+  void vinserti128_high(XMMRegister dst, XMMRegister src) {
+    vinserti128(dst, dst, src, 1);
+  }
+  void vinserti128_high(XMMRegister dst, Address src) {
+    vinserti128(dst, dst, src, 1);
+  }
+  void vextracti128_high(XMMRegister dst, XMMRegister src) {
+    vextracti128(dst, src, 1);
+  }
+  void vextracti128_high(Address dst, XMMRegister src) {
+    vextracti128(dst, src, 1);
+  }
+
+  void vinsertf128_high(XMMRegister dst, XMMRegister src) {
+    if (UseAVX > 2) {
+      Assembler::vinsertf32x4(dst, dst, src, 1);
+    } else {
+      Assembler::vinsertf128(dst, dst, src, 1);
+    }
+  }
+
+  void vinsertf128_high(XMMRegister dst, Address src) {
+    if (UseAVX > 2) {
+      Assembler::vinsertf32x4(dst, dst, src, 1);
+    } else {
+      Assembler::vinsertf128(dst, dst, src, 1);
+    }
+  }
+
+  void vextractf128_high(XMMRegister dst, XMMRegister src) {
+    if (UseAVX > 2) {
+      Assembler::vextractf32x4(dst, src, 1);
+    } else {
+      Assembler::vextractf128(dst, src, 1);
+    }
+  }
+
+  void vextractf128_high(Address dst, XMMRegister src) {
+    if (UseAVX > 2) {
+      Assembler::vextractf32x4(dst, src, 1);
+    } else {
+      Assembler::vextractf128(dst, src, 1);
+    }
+  }
+
+  // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
+  void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
+    Assembler::vinserti64x4(dst, dst, src, 1);
+  }
+  void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
+    Assembler::vinsertf64x4(dst, dst, src, 1);
+  }
+  void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
+    Assembler::vextracti64x4(dst, src, 1);
+  }
+  void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
+    Assembler::vextractf64x4(dst, src, 1);
+  }
+  void vextractf64x4_high(Address dst, XMMRegister src) {
+    Assembler::vextractf64x4(dst, src, 1);
+  }
+  void vinsertf64x4_high(XMMRegister dst, Address src) {
+    Assembler::vinsertf64x4(dst, dst, src, 1);
+  }
+
+  // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
+  void vinserti128_low(XMMRegister dst, XMMRegister src) {
+    vinserti128(dst, dst, src, 0);
+  }
+  void vinserti128_low(XMMRegister dst, Address src) {
+    vinserti128(dst, dst, src, 0);
+  }
+  void vextracti128_low(XMMRegister dst, XMMRegister src) {
+    vextracti128(dst, src, 0);
+  }
+  void vextracti128_low(Address dst, XMMRegister src) {
+    vextracti128(dst, src, 0);
+  }
+
+  void vinsertf128_low(XMMRegister dst, XMMRegister src) {
+    if (UseAVX > 2) {
+      Assembler::vinsertf32x4(dst, dst, src, 0);
+    } else {
+      Assembler::vinsertf128(dst, dst, src, 0);
+    }
+  }
+
+  void vinsertf128_low(XMMRegister dst, Address src) {
+    if (UseAVX > 2) {
+      Assembler::vinsertf32x4(dst, dst, src, 0);
+    } else {
+      Assembler::vinsertf128(dst, dst, src, 0);
+    }
+  }
+
+  void vextractf128_low(XMMRegister dst, XMMRegister src) {
+    if (UseAVX > 2) {
+      Assembler::vextractf32x4(dst, src, 0);
+    } else {
+      Assembler::vextractf128(dst, src, 0);
+    }
+  }
+
+  void vextractf128_low(Address dst, XMMRegister src) {
+    if (UseAVX > 2) {
+      Assembler::vextractf32x4(dst, src, 0);
+    } else {
+      Assembler::vextractf128(dst, src, 0);
+    }
+  }
+
+  // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
+  void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
+    Assembler::vinserti64x4(dst, dst, src, 0);
+  }
+  void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
+    Assembler::vinsertf64x4(dst, dst, src, 0);
+  }
+  void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
+    Assembler::vextracti64x4(dst, src, 0);
+  }
+  void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
+    Assembler::vextractf64x4(dst, src, 0);
+  }
+  void vextractf64x4_low(Address dst, XMMRegister src) {
+    Assembler::vextractf64x4(dst, src, 0);
+  }
+  void vinsertf64x4_low(XMMRegister dst, Address src) {
+    Assembler::vinsertf64x4(dst, dst, src, 0);
+  }
+
+  // Carry-Less Multiplication Quadword
+  void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
+    // 0x00 - multiply lower 64 bits [0:63]
+    Assembler::vpclmulqdq(dst, nds, src, 0x00);
+  }
+  void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
+    // 0x11 - multiply upper 64 bits [64:127]
+    Assembler::vpclmulqdq(dst, nds, src, 0x11);
+  }
+
+  // Data
+
+  void cmov32( Condition cc, Register dst, Address  src);
+  void cmov32( Condition cc, Register dst, Register src);
+
+  void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
+
+  void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
+  void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
+
+  void movoop(Register dst, jobject obj);
+  void movoop(Address dst, jobject obj);
+
+  void mov_metadata(Register dst, Metadata* obj);
+  void mov_metadata(Address dst, Metadata* obj);
+
+  void movptr(ArrayAddress dst, Register src);
+  // can this do an lea?
+  void movptr(Register dst, ArrayAddress src);
+
+  void movptr(Register dst, Address src);
+
+#ifdef _LP64
+  void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
+#else
+  void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
+#endif
+
+  void movptr(Register dst, intptr_t src);
+  void movptr(Register dst, Register src);
+  void movptr(Address dst, intptr_t src);
+
+  void movptr(Address dst, Register src);
+
+  void movptr(Register dst, RegisterOrConstant src) {
+    if (src.is_constant()) movptr(dst, src.as_constant());
+    else                   movptr(dst, src.as_register());
+  }
+
+#ifdef _LP64
+  // Generally the next two are only used for moving NULL
+  // Although there are situations in initializing the mark word where
+  // they could be used. They are dangerous.
+
+  // They only exist on LP64 so that int32_t and intptr_t are not the same
+  // and we have ambiguous declarations.
+
+  void movptr(Address dst, int32_t imm32);
+  void movptr(Register dst, int32_t imm32);
+#endif // _LP64
+
+  // to avoid hiding movl
+  void mov32(AddressLiteral dst, Register src);
+  void mov32(Register dst, AddressLiteral src);
+
+  // to avoid hiding movb
+  void movbyte(ArrayAddress dst, int src);
+
+  // Import other mov() methods from the parent class or else
+  // they will be hidden by the following overriding declaration.
+  using Assembler::movdl;
+  using Assembler::movq;
+  void movdl(XMMRegister dst, AddressLiteral src);
+  void movq(XMMRegister dst, AddressLiteral src);
+
+  // Can push value or effective address
+  void pushptr(AddressLiteral src);
+
+  void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
+  void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
+
+  void pushoop(jobject obj);
+  void pushklass(Metadata* obj);
+
+  // sign extend as need a l to ptr sized element
+  void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
+  void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
+
+  // C2 compiled method's prolog code.
+  void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
+
+  // clear memory of size 'cnt' qwords, starting at 'base';
+  // if 'is_large' is set, do not try to produce short loop
+  void clear_mem(Register base, Register cnt, Register rtmp, bool is_large);
+
+#ifdef COMPILER2
+  void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
+                           XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
+
+  // IndexOf strings.
+  // Small strings are loaded through stack if they cross page boundary.
+  void string_indexof(Register str1, Register str2,
+                      Register cnt1, Register cnt2,
+                      int int_cnt2,  Register result,
+                      XMMRegister vec, Register tmp,
+                      int ae);
+
+  // IndexOf for constant substrings with size >= 8 elements
+  // which don't need to be loaded through stack.
+  void string_indexofC8(Register str1, Register str2,
+                      Register cnt1, Register cnt2,
+                      int int_cnt2,  Register result,
+                      XMMRegister vec, Register tmp,
+                      int ae);
+
+    // Smallest code: we don't need to load through stack,
+    // check string tail.
+
+  // helper function for string_compare
+  void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
+                          Address::ScaleFactor scale, Address::ScaleFactor scale1,
+                          Address::ScaleFactor scale2, Register index, int ae);
+  // Compare strings.
+  void string_compare(Register str1, Register str2,
+                      Register cnt1, Register cnt2, Register result,
+                      XMMRegister vec1, int ae);
+
+  // Search for Non-ASCII character (Negative byte value) in a byte array,
+  // return true if it has any and false otherwise.
+  void has_negatives(Register ary1, Register len,
+                     Register result, Register tmp1,
+                     XMMRegister vec1, XMMRegister vec2);
+
+  // Compare char[] or byte[] arrays.
+  void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
+                     Register limit, Register result, Register chr,
+                     XMMRegister vec1, XMMRegister vec2, bool is_char);
+
+#endif
+
+  // Fill primitive arrays
+  void generate_fill(BasicType t, bool aligned,
+                     Register to, Register value, Register count,
+                     Register rtmp, XMMRegister xtmp);
+
+  void encode_iso_array(Register src, Register dst, Register len,
+                        XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
+                        XMMRegister tmp4, Register tmp5, Register result);
+
+#ifdef _LP64
+  void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
+  void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
+                             Register y, Register y_idx, Register z,
+                             Register carry, Register product,
+                             Register idx, Register kdx);
+  void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
+                              Register yz_idx, Register idx,
+                              Register carry, Register product, int offset);
+  void multiply_128_x_128_bmi2_loop(Register y, Register z,
+                                    Register carry, Register carry2,
+                                    Register idx, Register jdx,
+                                    Register yz_idx1, Register yz_idx2,
+                                    Register tmp, Register tmp3, Register tmp4);
+  void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
+                               Register yz_idx, Register idx, Register jdx,
+                               Register carry, Register product,
+                               Register carry2);
+  void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
+                       Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
+  void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
+                     Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
+  void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
+                            Register tmp2);
+  void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
+                       Register rdxReg, Register raxReg);
+  void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
+  void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
+                       Register tmp3, Register tmp4);
+  void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
+                     Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
+
+  void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
+               Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
+               Register raxReg);
+  void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
+               Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
+               Register raxReg);
+  void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
+                           Register result, Register tmp1, Register tmp2,
+                           XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
+#endif
+
+  // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
+  void update_byte_crc32(Register crc, Register val, Register table);
+  void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
+  // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
+  // Note on a naming convention:
+  // Prefix w = register only used on a Westmere+ architecture
+  // Prefix n = register only used on a Nehalem architecture
+#ifdef _LP64
+  void crc32c_ipl_alg4(Register in_out, uint32_t n,
+                       Register tmp1, Register tmp2, Register tmp3);
+#else
+  void crc32c_ipl_alg4(Register in_out, uint32_t n,
+                       Register tmp1, Register tmp2, Register tmp3,
+                       XMMRegister xtmp1, XMMRegister xtmp2);
+#endif
+  void crc32c_pclmulqdq(XMMRegister w_xtmp1,
+                        Register in_out,
+                        uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
+                        XMMRegister w_xtmp2,
+                        Register tmp1,
+                        Register n_tmp2, Register n_tmp3);
+  void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
+                       XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
+                       Register tmp1, Register tmp2,
+                       Register n_tmp3);
+  void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
+                         Register in_out1, Register in_out2, Register in_out3,
+                         Register tmp1, Register tmp2, Register tmp3,
+                         XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
+                         Register tmp4, Register tmp5,
+                         Register n_tmp6);
+  void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
+                            Register tmp1, Register tmp2, Register tmp3,
+                            Register tmp4, Register tmp5, Register tmp6,
+                            XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
+                            bool is_pclmulqdq_supported);
+  // Fold 128-bit data chunk
+  void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
+  void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
+  // Fold 8-bit data
+  void fold_8bit_crc32(Register crc, Register table, Register tmp);
+  void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
+
+  // Compress char[] array to byte[].
+  void char_array_compress(Register src, Register dst, Register len,
+                           XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
+                           XMMRegister tmp4, Register tmp5, Register result);
+
+  // Inflate byte[] array to char[].
+  void byte_array_inflate(Register src, Register dst, Register len,
+                          XMMRegister tmp1, Register tmp2);
+
+};
+
+/**
+ * class SkipIfEqual:
+ *
+ * Instantiating this class will result in assembly code being output that will
+ * jump around any code emitted between the creation of the instance and it's
+ * automatic destruction at the end of a scope block, depending on the value of
+ * the flag passed to the constructor, which will be checked at run-time.
+ */
+class SkipIfEqual {
+ private:
+  MacroAssembler* _masm;
+  Label _label;
+
+ public:
+   SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
+   ~SkipIfEqual();
+};
+
+#endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP