src/hotspot/cpu/x86/macroAssembler_x86.cpp
changeset 47216 71c04702a3d5
parent 46961 c9094b1e5f87
child 47580 96392e113a0a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/cpu/x86/macroAssembler_x86.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,11316 @@
+/*
+ * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "asm/assembler.hpp"
+#include "asm/assembler.inline.hpp"
+#include "compiler/disassembler.hpp"
+#include "gc/shared/cardTableModRefBS.hpp"
+#include "gc/shared/collectedHeap.inline.hpp"
+#include "interpreter/interpreter.hpp"
+#include "memory/resourceArea.hpp"
+#include "memory/universe.hpp"
+#include "oops/klass.inline.hpp"
+#include "prims/jvm.h"
+#include "prims/methodHandles.hpp"
+#include "runtime/biasedLocking.hpp"
+#include "runtime/interfaceSupport.hpp"
+#include "runtime/objectMonitor.hpp"
+#include "runtime/os.hpp"
+#include "runtime/sharedRuntime.hpp"
+#include "runtime/stubRoutines.hpp"
+#include "runtime/thread.hpp"
+#include "utilities/macros.hpp"
+#if INCLUDE_ALL_GCS
+#include "gc/g1/g1CollectedHeap.inline.hpp"
+#include "gc/g1/g1SATBCardTableModRefBS.hpp"
+#include "gc/g1/heapRegion.hpp"
+#endif // INCLUDE_ALL_GCS
+#include "crc32c.h"
+#ifdef COMPILER2
+#include "opto/intrinsicnode.hpp"
+#endif
+
+#ifdef PRODUCT
+#define BLOCK_COMMENT(str) /* nothing */
+#define STOP(error) stop(error)
+#else
+#define BLOCK_COMMENT(str) block_comment(str)
+#define STOP(error) block_comment(error); stop(error)
+#endif
+
+#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
+
+#ifdef ASSERT
+bool AbstractAssembler::pd_check_instruction_mark() { return true; }
+#endif
+
+static Assembler::Condition reverse[] = {
+    Assembler::noOverflow     /* overflow      = 0x0 */ ,
+    Assembler::overflow       /* noOverflow    = 0x1 */ ,
+    Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
+    Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
+    Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
+    Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
+    Assembler::above          /* belowEqual    = 0x6 */ ,
+    Assembler::belowEqual     /* above         = 0x7 */ ,
+    Assembler::positive       /* negative      = 0x8 */ ,
+    Assembler::negative       /* positive      = 0x9 */ ,
+    Assembler::noParity       /* parity        = 0xa */ ,
+    Assembler::parity         /* noParity      = 0xb */ ,
+    Assembler::greaterEqual   /* less          = 0xc */ ,
+    Assembler::less           /* greaterEqual  = 0xd */ ,
+    Assembler::greater        /* lessEqual     = 0xe */ ,
+    Assembler::lessEqual      /* greater       = 0xf, */
+
+};
+
+
+// Implementation of MacroAssembler
+
+// First all the versions that have distinct versions depending on 32/64 bit
+// Unless the difference is trivial (1 line or so).
+
+#ifndef _LP64
+
+// 32bit versions
+
+Address MacroAssembler::as_Address(AddressLiteral adr) {
+  return Address(adr.target(), adr.rspec());
+}
+
+Address MacroAssembler::as_Address(ArrayAddress adr) {
+  return Address::make_array(adr);
+}
+
+void MacroAssembler::call_VM_leaf_base(address entry_point,
+                                       int number_of_arguments) {
+  call(RuntimeAddress(entry_point));
+  increment(rsp, number_of_arguments * wordSize);
+}
+
+void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
+  cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
+}
+
+void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
+  cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
+}
+
+void MacroAssembler::cmpoop(Address src1, jobject obj) {
+  cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
+}
+
+void MacroAssembler::cmpoop(Register src1, jobject obj) {
+  cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
+}
+
+void MacroAssembler::extend_sign(Register hi, Register lo) {
+  // According to Intel Doc. AP-526, "Integer Divide", p.18.
+  if (VM_Version::is_P6() && hi == rdx && lo == rax) {
+    cdql();
+  } else {
+    movl(hi, lo);
+    sarl(hi, 31);
+  }
+}
+
+void MacroAssembler::jC2(Register tmp, Label& L) {
+  // set parity bit if FPU flag C2 is set (via rax)
+  save_rax(tmp);
+  fwait(); fnstsw_ax();
+  sahf();
+  restore_rax(tmp);
+  // branch
+  jcc(Assembler::parity, L);
+}
+
+void MacroAssembler::jnC2(Register tmp, Label& L) {
+  // set parity bit if FPU flag C2 is set (via rax)
+  save_rax(tmp);
+  fwait(); fnstsw_ax();
+  sahf();
+  restore_rax(tmp);
+  // branch
+  jcc(Assembler::noParity, L);
+}
+
+// 32bit can do a case table jump in one instruction but we no longer allow the base
+// to be installed in the Address class
+void MacroAssembler::jump(ArrayAddress entry) {
+  jmp(as_Address(entry));
+}
+
+// Note: y_lo will be destroyed
+void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
+  // Long compare for Java (semantics as described in JVM spec.)
+  Label high, low, done;
+
+  cmpl(x_hi, y_hi);
+  jcc(Assembler::less, low);
+  jcc(Assembler::greater, high);
+  // x_hi is the return register
+  xorl(x_hi, x_hi);
+  cmpl(x_lo, y_lo);
+  jcc(Assembler::below, low);
+  jcc(Assembler::equal, done);
+
+  bind(high);
+  xorl(x_hi, x_hi);
+  increment(x_hi);
+  jmp(done);
+
+  bind(low);
+  xorl(x_hi, x_hi);
+  decrementl(x_hi);
+
+  bind(done);
+}
+
+void MacroAssembler::lea(Register dst, AddressLiteral src) {
+    mov_literal32(dst, (int32_t)src.target(), src.rspec());
+}
+
+void MacroAssembler::lea(Address dst, AddressLiteral adr) {
+  // leal(dst, as_Address(adr));
+  // see note in movl as to why we must use a move
+  mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
+}
+
+void MacroAssembler::leave() {
+  mov(rsp, rbp);
+  pop(rbp);
+}
+
+void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
+  // Multiplication of two Java long values stored on the stack
+  // as illustrated below. Result is in rdx:rax.
+  //
+  // rsp ---> [  ??  ] \               \
+  //            ....    | y_rsp_offset  |
+  //          [ y_lo ] /  (in bytes)    | x_rsp_offset
+  //          [ y_hi ]                  | (in bytes)
+  //            ....                    |
+  //          [ x_lo ]                 /
+  //          [ x_hi ]
+  //            ....
+  //
+  // Basic idea: lo(result) = lo(x_lo * y_lo)
+  //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
+  Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
+  Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
+  Label quick;
+  // load x_hi, y_hi and check if quick
+  // multiplication is possible
+  movl(rbx, x_hi);
+  movl(rcx, y_hi);
+  movl(rax, rbx);
+  orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
+  jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
+  // do full multiplication
+  // 1st step
+  mull(y_lo);                                    // x_hi * y_lo
+  movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
+  // 2nd step
+  movl(rax, x_lo);
+  mull(rcx);                                     // x_lo * y_hi
+  addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
+  // 3rd step
+  bind(quick);                                   // note: rbx, = 0 if quick multiply!
+  movl(rax, x_lo);
+  mull(y_lo);                                    // x_lo * y_lo
+  addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
+}
+
+void MacroAssembler::lneg(Register hi, Register lo) {
+  negl(lo);
+  adcl(hi, 0);
+  negl(hi);
+}
+
+void MacroAssembler::lshl(Register hi, Register lo) {
+  // Java shift left long support (semantics as described in JVM spec., p.305)
+  // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
+  // shift value is in rcx !
+  assert(hi != rcx, "must not use rcx");
+  assert(lo != rcx, "must not use rcx");
+  const Register s = rcx;                        // shift count
+  const int      n = BitsPerWord;
+  Label L;
+  andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
+  cmpl(s, n);                                    // if (s < n)
+  jcc(Assembler::less, L);                       // else (s >= n)
+  movl(hi, lo);                                  // x := x << n
+  xorl(lo, lo);
+  // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
+  bind(L);                                       // s (mod n) < n
+  shldl(hi, lo);                                 // x := x << s
+  shll(lo);
+}
+
+
+void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
+  // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
+  // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
+  assert(hi != rcx, "must not use rcx");
+  assert(lo != rcx, "must not use rcx");
+  const Register s = rcx;                        // shift count
+  const int      n = BitsPerWord;
+  Label L;
+  andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
+  cmpl(s, n);                                    // if (s < n)
+  jcc(Assembler::less, L);                       // else (s >= n)
+  movl(lo, hi);                                  // x := x >> n
+  if (sign_extension) sarl(hi, 31);
+  else                xorl(hi, hi);
+  // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
+  bind(L);                                       // s (mod n) < n
+  shrdl(lo, hi);                                 // x := x >> s
+  if (sign_extension) sarl(hi);
+  else                shrl(hi);
+}
+
+void MacroAssembler::movoop(Register dst, jobject obj) {
+  mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
+}
+
+void MacroAssembler::movoop(Address dst, jobject obj) {
+  mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
+}
+
+void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
+  mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
+}
+
+void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
+  mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
+}
+
+void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
+  // scratch register is not used,
+  // it is defined to match parameters of 64-bit version of this method.
+  if (src.is_lval()) {
+    mov_literal32(dst, (intptr_t)src.target(), src.rspec());
+  } else {
+    movl(dst, as_Address(src));
+  }
+}
+
+void MacroAssembler::movptr(ArrayAddress dst, Register src) {
+  movl(as_Address(dst), src);
+}
+
+void MacroAssembler::movptr(Register dst, ArrayAddress src) {
+  movl(dst, as_Address(src));
+}
+
+// src should NEVER be a real pointer. Use AddressLiteral for true pointers
+void MacroAssembler::movptr(Address dst, intptr_t src) {
+  movl(dst, src);
+}
+
+
+void MacroAssembler::pop_callee_saved_registers() {
+  pop(rcx);
+  pop(rdx);
+  pop(rdi);
+  pop(rsi);
+}
+
+void MacroAssembler::pop_fTOS() {
+  fld_d(Address(rsp, 0));
+  addl(rsp, 2 * wordSize);
+}
+
+void MacroAssembler::push_callee_saved_registers() {
+  push(rsi);
+  push(rdi);
+  push(rdx);
+  push(rcx);
+}
+
+void MacroAssembler::push_fTOS() {
+  subl(rsp, 2 * wordSize);
+  fstp_d(Address(rsp, 0));
+}
+
+
+void MacroAssembler::pushoop(jobject obj) {
+  push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
+}
+
+void MacroAssembler::pushklass(Metadata* obj) {
+  push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
+}
+
+void MacroAssembler::pushptr(AddressLiteral src) {
+  if (src.is_lval()) {
+    push_literal32((int32_t)src.target(), src.rspec());
+  } else {
+    pushl(as_Address(src));
+  }
+}
+
+void MacroAssembler::set_word_if_not_zero(Register dst) {
+  xorl(dst, dst);
+  set_byte_if_not_zero(dst);
+}
+
+static void pass_arg0(MacroAssembler* masm, Register arg) {
+  masm->push(arg);
+}
+
+static void pass_arg1(MacroAssembler* masm, Register arg) {
+  masm->push(arg);
+}
+
+static void pass_arg2(MacroAssembler* masm, Register arg) {
+  masm->push(arg);
+}
+
+static void pass_arg3(MacroAssembler* masm, Register arg) {
+  masm->push(arg);
+}
+
+#ifndef PRODUCT
+extern "C" void findpc(intptr_t x);
+#endif
+
+void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
+  // In order to get locks to work, we need to fake a in_VM state
+  JavaThread* thread = JavaThread::current();
+  JavaThreadState saved_state = thread->thread_state();
+  thread->set_thread_state(_thread_in_vm);
+  if (ShowMessageBoxOnError) {
+    JavaThread* thread = JavaThread::current();
+    JavaThreadState saved_state = thread->thread_state();
+    thread->set_thread_state(_thread_in_vm);
+    if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
+      ttyLocker ttyl;
+      BytecodeCounter::print();
+    }
+    // To see where a verify_oop failed, get $ebx+40/X for this frame.
+    // This is the value of eip which points to where verify_oop will return.
+    if (os::message_box(msg, "Execution stopped, print registers?")) {
+      print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
+      BREAKPOINT;
+    }
+  } else {
+    ttyLocker ttyl;
+    ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
+  }
+  // Don't assert holding the ttyLock
+    assert(false, "DEBUG MESSAGE: %s", msg);
+  ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
+}
+
+void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
+  ttyLocker ttyl;
+  FlagSetting fs(Debugging, true);
+  tty->print_cr("eip = 0x%08x", eip);
+#ifndef PRODUCT
+  if ((WizardMode || Verbose) && PrintMiscellaneous) {
+    tty->cr();
+    findpc(eip);
+    tty->cr();
+  }
+#endif
+#define PRINT_REG(rax) \
+  { tty->print("%s = ", #rax); os::print_location(tty, rax); }
+  PRINT_REG(rax);
+  PRINT_REG(rbx);
+  PRINT_REG(rcx);
+  PRINT_REG(rdx);
+  PRINT_REG(rdi);
+  PRINT_REG(rsi);
+  PRINT_REG(rbp);
+  PRINT_REG(rsp);
+#undef PRINT_REG
+  // Print some words near top of staack.
+  int* dump_sp = (int*) rsp;
+  for (int col1 = 0; col1 < 8; col1++) {
+    tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
+    os::print_location(tty, *dump_sp++);
+  }
+  for (int row = 0; row < 16; row++) {
+    tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
+    for (int col = 0; col < 8; col++) {
+      tty->print(" 0x%08x", *dump_sp++);
+    }
+    tty->cr();
+  }
+  // Print some instructions around pc:
+  Disassembler::decode((address)eip-64, (address)eip);
+  tty->print_cr("--------");
+  Disassembler::decode((address)eip, (address)eip+32);
+}
+
+void MacroAssembler::stop(const char* msg) {
+  ExternalAddress message((address)msg);
+  // push address of message
+  pushptr(message.addr());
+  { Label L; call(L, relocInfo::none); bind(L); }     // push eip
+  pusha();                                            // push registers
+  call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
+  hlt();
+}
+
+void MacroAssembler::warn(const char* msg) {
+  push_CPU_state();
+
+  ExternalAddress message((address) msg);
+  // push address of message
+  pushptr(message.addr());
+
+  call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
+  addl(rsp, wordSize);       // discard argument
+  pop_CPU_state();
+}
+
+void MacroAssembler::print_state() {
+  { Label L; call(L, relocInfo::none); bind(L); }     // push eip
+  pusha();                                            // push registers
+
+  push_CPU_state();
+  call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
+  pop_CPU_state();
+
+  popa();
+  addl(rsp, wordSize);
+}
+
+#else // _LP64
+
+// 64 bit versions
+
+Address MacroAssembler::as_Address(AddressLiteral adr) {
+  // amd64 always does this as a pc-rel
+  // we can be absolute or disp based on the instruction type
+  // jmp/call are displacements others are absolute
+  assert(!adr.is_lval(), "must be rval");
+  assert(reachable(adr), "must be");
+  return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
+
+}
+
+Address MacroAssembler::as_Address(ArrayAddress adr) {
+  AddressLiteral base = adr.base();
+  lea(rscratch1, base);
+  Address index = adr.index();
+  assert(index._disp == 0, "must not have disp"); // maybe it can?
+  Address array(rscratch1, index._index, index._scale, index._disp);
+  return array;
+}
+
+void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
+  Label L, E;
+
+#ifdef _WIN64
+  // Windows always allocates space for it's register args
+  assert(num_args <= 4, "only register arguments supported");
+  subq(rsp,  frame::arg_reg_save_area_bytes);
+#endif
+
+  // Align stack if necessary
+  testl(rsp, 15);
+  jcc(Assembler::zero, L);
+
+  subq(rsp, 8);
+  {
+    call(RuntimeAddress(entry_point));
+  }
+  addq(rsp, 8);
+  jmp(E);
+
+  bind(L);
+  {
+    call(RuntimeAddress(entry_point));
+  }
+
+  bind(E);
+
+#ifdef _WIN64
+  // restore stack pointer
+  addq(rsp, frame::arg_reg_save_area_bytes);
+#endif
+
+}
+
+void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
+  assert(!src2.is_lval(), "should use cmpptr");
+
+  if (reachable(src2)) {
+    cmpq(src1, as_Address(src2));
+  } else {
+    lea(rscratch1, src2);
+    Assembler::cmpq(src1, Address(rscratch1, 0));
+  }
+}
+
+int MacroAssembler::corrected_idivq(Register reg) {
+  // Full implementation of Java ldiv and lrem; checks for special
+  // case as described in JVM spec., p.243 & p.271.  The function
+  // returns the (pc) offset of the idivl instruction - may be needed
+  // for implicit exceptions.
+  //
+  //         normal case                           special case
+  //
+  // input : rax: dividend                         min_long
+  //         reg: divisor   (may not be eax/edx)   -1
+  //
+  // output: rax: quotient  (= rax idiv reg)       min_long
+  //         rdx: remainder (= rax irem reg)       0
+  assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
+  static const int64_t min_long = 0x8000000000000000;
+  Label normal_case, special_case;
+
+  // check for special case
+  cmp64(rax, ExternalAddress((address) &min_long));
+  jcc(Assembler::notEqual, normal_case);
+  xorl(rdx, rdx); // prepare rdx for possible special case (where
+                  // remainder = 0)
+  cmpq(reg, -1);
+  jcc(Assembler::equal, special_case);
+
+  // handle normal case
+  bind(normal_case);
+  cdqq();
+  int idivq_offset = offset();
+  idivq(reg);
+
+  // normal and special case exit
+  bind(special_case);
+
+  return idivq_offset;
+}
+
+void MacroAssembler::decrementq(Register reg, int value) {
+  if (value == min_jint) { subq(reg, value); return; }
+  if (value <  0) { incrementq(reg, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { decq(reg) ; return; }
+  /* else */      { subq(reg, value)       ; return; }
+}
+
+void MacroAssembler::decrementq(Address dst, int value) {
+  if (value == min_jint) { subq(dst, value); return; }
+  if (value <  0) { incrementq(dst, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { decq(dst) ; return; }
+  /* else */      { subq(dst, value)       ; return; }
+}
+
+void MacroAssembler::incrementq(AddressLiteral dst) {
+  if (reachable(dst)) {
+    incrementq(as_Address(dst));
+  } else {
+    lea(rscratch1, dst);
+    incrementq(Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::incrementq(Register reg, int value) {
+  if (value == min_jint) { addq(reg, value); return; }
+  if (value <  0) { decrementq(reg, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { incq(reg) ; return; }
+  /* else */      { addq(reg, value)       ; return; }
+}
+
+void MacroAssembler::incrementq(Address dst, int value) {
+  if (value == min_jint) { addq(dst, value); return; }
+  if (value <  0) { decrementq(dst, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { incq(dst) ; return; }
+  /* else */      { addq(dst, value)       ; return; }
+}
+
+// 32bit can do a case table jump in one instruction but we no longer allow the base
+// to be installed in the Address class
+void MacroAssembler::jump(ArrayAddress entry) {
+  lea(rscratch1, entry.base());
+  Address dispatch = entry.index();
+  assert(dispatch._base == noreg, "must be");
+  dispatch._base = rscratch1;
+  jmp(dispatch);
+}
+
+void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
+  ShouldNotReachHere(); // 64bit doesn't use two regs
+  cmpq(x_lo, y_lo);
+}
+
+void MacroAssembler::lea(Register dst, AddressLiteral src) {
+    mov_literal64(dst, (intptr_t)src.target(), src.rspec());
+}
+
+void MacroAssembler::lea(Address dst, AddressLiteral adr) {
+  mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
+  movptr(dst, rscratch1);
+}
+
+void MacroAssembler::leave() {
+  // %%% is this really better? Why not on 32bit too?
+  emit_int8((unsigned char)0xC9); // LEAVE
+}
+
+void MacroAssembler::lneg(Register hi, Register lo) {
+  ShouldNotReachHere(); // 64bit doesn't use two regs
+  negq(lo);
+}
+
+void MacroAssembler::movoop(Register dst, jobject obj) {
+  mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
+}
+
+void MacroAssembler::movoop(Address dst, jobject obj) {
+  mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
+  movq(dst, rscratch1);
+}
+
+void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
+  mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
+}
+
+void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
+  mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
+  movq(dst, rscratch1);
+}
+
+void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
+  if (src.is_lval()) {
+    mov_literal64(dst, (intptr_t)src.target(), src.rspec());
+  } else {
+    if (reachable(src)) {
+      movq(dst, as_Address(src));
+    } else {
+      lea(scratch, src);
+      movq(dst, Address(scratch, 0));
+    }
+  }
+}
+
+void MacroAssembler::movptr(ArrayAddress dst, Register src) {
+  movq(as_Address(dst), src);
+}
+
+void MacroAssembler::movptr(Register dst, ArrayAddress src) {
+  movq(dst, as_Address(src));
+}
+
+// src should NEVER be a real pointer. Use AddressLiteral for true pointers
+void MacroAssembler::movptr(Address dst, intptr_t src) {
+  mov64(rscratch1, src);
+  movq(dst, rscratch1);
+}
+
+// These are mostly for initializing NULL
+void MacroAssembler::movptr(Address dst, int32_t src) {
+  movslq(dst, src);
+}
+
+void MacroAssembler::movptr(Register dst, int32_t src) {
+  mov64(dst, (intptr_t)src);
+}
+
+void MacroAssembler::pushoop(jobject obj) {
+  movoop(rscratch1, obj);
+  push(rscratch1);
+}
+
+void MacroAssembler::pushklass(Metadata* obj) {
+  mov_metadata(rscratch1, obj);
+  push(rscratch1);
+}
+
+void MacroAssembler::pushptr(AddressLiteral src) {
+  lea(rscratch1, src);
+  if (src.is_lval()) {
+    push(rscratch1);
+  } else {
+    pushq(Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
+  // we must set sp to zero to clear frame
+  movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
+  // must clear fp, so that compiled frames are not confused; it is
+  // possible that we need it only for debugging
+  if (clear_fp) {
+    movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
+  }
+
+  // Always clear the pc because it could have been set by make_walkable()
+  movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
+  vzeroupper();
+}
+
+void MacroAssembler::set_last_Java_frame(Register last_java_sp,
+                                         Register last_java_fp,
+                                         address  last_java_pc) {
+  vzeroupper();
+  // determine last_java_sp register
+  if (!last_java_sp->is_valid()) {
+    last_java_sp = rsp;
+  }
+
+  // last_java_fp is optional
+  if (last_java_fp->is_valid()) {
+    movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
+           last_java_fp);
+  }
+
+  // last_java_pc is optional
+  if (last_java_pc != NULL) {
+    Address java_pc(r15_thread,
+                    JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
+    lea(rscratch1, InternalAddress(last_java_pc));
+    movptr(java_pc, rscratch1);
+  }
+
+  movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
+}
+
+static void pass_arg0(MacroAssembler* masm, Register arg) {
+  if (c_rarg0 != arg ) {
+    masm->mov(c_rarg0, arg);
+  }
+}
+
+static void pass_arg1(MacroAssembler* masm, Register arg) {
+  if (c_rarg1 != arg ) {
+    masm->mov(c_rarg1, arg);
+  }
+}
+
+static void pass_arg2(MacroAssembler* masm, Register arg) {
+  if (c_rarg2 != arg ) {
+    masm->mov(c_rarg2, arg);
+  }
+}
+
+static void pass_arg3(MacroAssembler* masm, Register arg) {
+  if (c_rarg3 != arg ) {
+    masm->mov(c_rarg3, arg);
+  }
+}
+
+void MacroAssembler::stop(const char* msg) {
+  address rip = pc();
+  pusha(); // get regs on stack
+  lea(c_rarg0, ExternalAddress((address) msg));
+  lea(c_rarg1, InternalAddress(rip));
+  movq(c_rarg2, rsp); // pass pointer to regs array
+  andq(rsp, -16); // align stack as required by ABI
+  call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
+  hlt();
+}
+
+void MacroAssembler::warn(const char* msg) {
+  push(rbp);
+  movq(rbp, rsp);
+  andq(rsp, -16);     // align stack as required by push_CPU_state and call
+  push_CPU_state();   // keeps alignment at 16 bytes
+  lea(c_rarg0, ExternalAddress((address) msg));
+  call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
+  pop_CPU_state();
+  mov(rsp, rbp);
+  pop(rbp);
+}
+
+void MacroAssembler::print_state() {
+  address rip = pc();
+  pusha();            // get regs on stack
+  push(rbp);
+  movq(rbp, rsp);
+  andq(rsp, -16);     // align stack as required by push_CPU_state and call
+  push_CPU_state();   // keeps alignment at 16 bytes
+
+  lea(c_rarg0, InternalAddress(rip));
+  lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
+  call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
+
+  pop_CPU_state();
+  mov(rsp, rbp);
+  pop(rbp);
+  popa();
+}
+
+#ifndef PRODUCT
+extern "C" void findpc(intptr_t x);
+#endif
+
+void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
+  // In order to get locks to work, we need to fake a in_VM state
+  if (ShowMessageBoxOnError) {
+    JavaThread* thread = JavaThread::current();
+    JavaThreadState saved_state = thread->thread_state();
+    thread->set_thread_state(_thread_in_vm);
+#ifndef PRODUCT
+    if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
+      ttyLocker ttyl;
+      BytecodeCounter::print();
+    }
+#endif
+    // To see where a verify_oop failed, get $ebx+40/X for this frame.
+    // XXX correct this offset for amd64
+    // This is the value of eip which points to where verify_oop will return.
+    if (os::message_box(msg, "Execution stopped, print registers?")) {
+      print_state64(pc, regs);
+      BREAKPOINT;
+      assert(false, "start up GDB");
+    }
+    ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
+  } else {
+    ttyLocker ttyl;
+    ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
+                    msg);
+    assert(false, "DEBUG MESSAGE: %s", msg);
+  }
+}
+
+void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
+  ttyLocker ttyl;
+  FlagSetting fs(Debugging, true);
+  tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
+#ifndef PRODUCT
+  tty->cr();
+  findpc(pc);
+  tty->cr();
+#endif
+#define PRINT_REG(rax, value) \
+  { tty->print("%s = ", #rax); os::print_location(tty, value); }
+  PRINT_REG(rax, regs[15]);
+  PRINT_REG(rbx, regs[12]);
+  PRINT_REG(rcx, regs[14]);
+  PRINT_REG(rdx, regs[13]);
+  PRINT_REG(rdi, regs[8]);
+  PRINT_REG(rsi, regs[9]);
+  PRINT_REG(rbp, regs[10]);
+  PRINT_REG(rsp, regs[11]);
+  PRINT_REG(r8 , regs[7]);
+  PRINT_REG(r9 , regs[6]);
+  PRINT_REG(r10, regs[5]);
+  PRINT_REG(r11, regs[4]);
+  PRINT_REG(r12, regs[3]);
+  PRINT_REG(r13, regs[2]);
+  PRINT_REG(r14, regs[1]);
+  PRINT_REG(r15, regs[0]);
+#undef PRINT_REG
+  // Print some words near top of staack.
+  int64_t* rsp = (int64_t*) regs[11];
+  int64_t* dump_sp = rsp;
+  for (int col1 = 0; col1 < 8; col1++) {
+    tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
+    os::print_location(tty, *dump_sp++);
+  }
+  for (int row = 0; row < 25; row++) {
+    tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
+    for (int col = 0; col < 4; col++) {
+      tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
+    }
+    tty->cr();
+  }
+  // Print some instructions around pc:
+  Disassembler::decode((address)pc-64, (address)pc);
+  tty->print_cr("--------");
+  Disassembler::decode((address)pc, (address)pc+32);
+}
+
+#endif // _LP64
+
+// Now versions that are common to 32/64 bit
+
+void MacroAssembler::addptr(Register dst, int32_t imm32) {
+  LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
+}
+
+void MacroAssembler::addptr(Register dst, Register src) {
+  LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
+}
+
+void MacroAssembler::addptr(Address dst, Register src) {
+  LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
+}
+
+void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    Assembler::addsd(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::addsd(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    addss(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    addss(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    Assembler::addpd(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::addpd(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::align(int modulus) {
+  align(modulus, offset());
+}
+
+void MacroAssembler::align(int modulus, int target) {
+  if (target % modulus != 0) {
+    nop(modulus - (target % modulus));
+  }
+}
+
+void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
+  // Used in sign-masking with aligned address.
+  assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
+  if (reachable(src)) {
+    Assembler::andpd(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::andpd(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
+  // Used in sign-masking with aligned address.
+  assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
+  if (reachable(src)) {
+    Assembler::andps(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::andps(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::andptr(Register dst, int32_t imm32) {
+  LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
+}
+
+void MacroAssembler::atomic_incl(Address counter_addr) {
+  if (os::is_MP())
+    lock();
+  incrementl(counter_addr);
+}
+
+void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
+  if (reachable(counter_addr)) {
+    atomic_incl(as_Address(counter_addr));
+  } else {
+    lea(scr, counter_addr);
+    atomic_incl(Address(scr, 0));
+  }
+}
+
+#ifdef _LP64
+void MacroAssembler::atomic_incq(Address counter_addr) {
+  if (os::is_MP())
+    lock();
+  incrementq(counter_addr);
+}
+
+void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
+  if (reachable(counter_addr)) {
+    atomic_incq(as_Address(counter_addr));
+  } else {
+    lea(scr, counter_addr);
+    atomic_incq(Address(scr, 0));
+  }
+}
+#endif
+
+// Writes to stack successive pages until offset reached to check for
+// stack overflow + shadow pages.  This clobbers tmp.
+void MacroAssembler::bang_stack_size(Register size, Register tmp) {
+  movptr(tmp, rsp);
+  // Bang stack for total size given plus shadow page size.
+  // Bang one page at a time because large size can bang beyond yellow and
+  // red zones.
+  Label loop;
+  bind(loop);
+  movl(Address(tmp, (-os::vm_page_size())), size );
+  subptr(tmp, os::vm_page_size());
+  subl(size, os::vm_page_size());
+  jcc(Assembler::greater, loop);
+
+  // Bang down shadow pages too.
+  // At this point, (tmp-0) is the last address touched, so don't
+  // touch it again.  (It was touched as (tmp-pagesize) but then tmp
+  // was post-decremented.)  Skip this address by starting at i=1, and
+  // touch a few more pages below.  N.B.  It is important to touch all
+  // the way down including all pages in the shadow zone.
+  for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
+    // this could be any sized move but this is can be a debugging crumb
+    // so the bigger the better.
+    movptr(Address(tmp, (-i*os::vm_page_size())), size );
+  }
+}
+
+void MacroAssembler::reserved_stack_check() {
+    // testing if reserved zone needs to be enabled
+    Label no_reserved_zone_enabling;
+    Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
+    NOT_LP64(get_thread(rsi);)
+
+    cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
+    jcc(Assembler::below, no_reserved_zone_enabling);
+
+    call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
+    jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
+    should_not_reach_here();
+
+    bind(no_reserved_zone_enabling);
+}
+
+int MacroAssembler::biased_locking_enter(Register lock_reg,
+                                         Register obj_reg,
+                                         Register swap_reg,
+                                         Register tmp_reg,
+                                         bool swap_reg_contains_mark,
+                                         Label& done,
+                                         Label* slow_case,
+                                         BiasedLockingCounters* counters) {
+  assert(UseBiasedLocking, "why call this otherwise?");
+  assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
+  assert(tmp_reg != noreg, "tmp_reg must be supplied");
+  assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
+  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
+  Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
+  NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
+
+  if (PrintBiasedLockingStatistics && counters == NULL) {
+    counters = BiasedLocking::counters();
+  }
+  // Biased locking
+  // See whether the lock is currently biased toward our thread and
+  // whether the epoch is still valid
+  // Note that the runtime guarantees sufficient alignment of JavaThread
+  // pointers to allow age to be placed into low bits
+  // First check to see whether biasing is even enabled for this object
+  Label cas_label;
+  int null_check_offset = -1;
+  if (!swap_reg_contains_mark) {
+    null_check_offset = offset();
+    movptr(swap_reg, mark_addr);
+  }
+  movptr(tmp_reg, swap_reg);
+  andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
+  cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
+  jcc(Assembler::notEqual, cas_label);
+  // The bias pattern is present in the object's header. Need to check
+  // whether the bias owner and the epoch are both still current.
+#ifndef _LP64
+  // Note that because there is no current thread register on x86_32 we
+  // need to store off the mark word we read out of the object to
+  // avoid reloading it and needing to recheck invariants below. This
+  // store is unfortunate but it makes the overall code shorter and
+  // simpler.
+  movptr(saved_mark_addr, swap_reg);
+#endif
+  if (swap_reg_contains_mark) {
+    null_check_offset = offset();
+  }
+  load_prototype_header(tmp_reg, obj_reg);
+#ifdef _LP64
+  orptr(tmp_reg, r15_thread);
+  xorptr(tmp_reg, swap_reg);
+  Register header_reg = tmp_reg;
+#else
+  xorptr(tmp_reg, swap_reg);
+  get_thread(swap_reg);
+  xorptr(swap_reg, tmp_reg);
+  Register header_reg = swap_reg;
+#endif
+  andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
+  if (counters != NULL) {
+    cond_inc32(Assembler::zero,
+               ExternalAddress((address) counters->biased_lock_entry_count_addr()));
+  }
+  jcc(Assembler::equal, done);
+
+  Label try_revoke_bias;
+  Label try_rebias;
+
+  // At this point we know that the header has the bias pattern and
+  // that we are not the bias owner in the current epoch. We need to
+  // figure out more details about the state of the header in order to
+  // know what operations can be legally performed on the object's
+  // header.
+
+  // If the low three bits in the xor result aren't clear, that means
+  // the prototype header is no longer biased and we have to revoke
+  // the bias on this object.
+  testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
+  jccb(Assembler::notZero, try_revoke_bias);
+
+  // Biasing is still enabled for this data type. See whether the
+  // epoch of the current bias is still valid, meaning that the epoch
+  // bits of the mark word are equal to the epoch bits of the
+  // prototype header. (Note that the prototype header's epoch bits
+  // only change at a safepoint.) If not, attempt to rebias the object
+  // toward the current thread. Note that we must be absolutely sure
+  // that the current epoch is invalid in order to do this because
+  // otherwise the manipulations it performs on the mark word are
+  // illegal.
+  testptr(header_reg, markOopDesc::epoch_mask_in_place);
+  jccb(Assembler::notZero, try_rebias);
+
+  // The epoch of the current bias is still valid but we know nothing
+  // about the owner; it might be set or it might be clear. Try to
+  // acquire the bias of the object using an atomic operation. If this
+  // fails we will go in to the runtime to revoke the object's bias.
+  // Note that we first construct the presumed unbiased header so we
+  // don't accidentally blow away another thread's valid bias.
+  NOT_LP64( movptr(swap_reg, saved_mark_addr); )
+  andptr(swap_reg,
+         markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
+#ifdef _LP64
+  movptr(tmp_reg, swap_reg);
+  orptr(tmp_reg, r15_thread);
+#else
+  get_thread(tmp_reg);
+  orptr(tmp_reg, swap_reg);
+#endif
+  if (os::is_MP()) {
+    lock();
+  }
+  cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
+  // If the biasing toward our thread failed, this means that
+  // another thread succeeded in biasing it toward itself and we
+  // need to revoke that bias. The revocation will occur in the
+  // interpreter runtime in the slow case.
+  if (counters != NULL) {
+    cond_inc32(Assembler::zero,
+               ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
+  }
+  if (slow_case != NULL) {
+    jcc(Assembler::notZero, *slow_case);
+  }
+  jmp(done);
+
+  bind(try_rebias);
+  // At this point we know the epoch has expired, meaning that the
+  // current "bias owner", if any, is actually invalid. Under these
+  // circumstances _only_, we are allowed to use the current header's
+  // value as the comparison value when doing the cas to acquire the
+  // bias in the current epoch. In other words, we allow transfer of
+  // the bias from one thread to another directly in this situation.
+  //
+  // FIXME: due to a lack of registers we currently blow away the age
+  // bits in this situation. Should attempt to preserve them.
+  load_prototype_header(tmp_reg, obj_reg);
+#ifdef _LP64
+  orptr(tmp_reg, r15_thread);
+#else
+  get_thread(swap_reg);
+  orptr(tmp_reg, swap_reg);
+  movptr(swap_reg, saved_mark_addr);
+#endif
+  if (os::is_MP()) {
+    lock();
+  }
+  cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
+  // If the biasing toward our thread failed, then another thread
+  // succeeded in biasing it toward itself and we need to revoke that
+  // bias. The revocation will occur in the runtime in the slow case.
+  if (counters != NULL) {
+    cond_inc32(Assembler::zero,
+               ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
+  }
+  if (slow_case != NULL) {
+    jcc(Assembler::notZero, *slow_case);
+  }
+  jmp(done);
+
+  bind(try_revoke_bias);
+  // The prototype mark in the klass doesn't have the bias bit set any
+  // more, indicating that objects of this data type are not supposed
+  // to be biased any more. We are going to try to reset the mark of
+  // this object to the prototype value and fall through to the
+  // CAS-based locking scheme. Note that if our CAS fails, it means
+  // that another thread raced us for the privilege of revoking the
+  // bias of this particular object, so it's okay to continue in the
+  // normal locking code.
+  //
+  // FIXME: due to a lack of registers we currently blow away the age
+  // bits in this situation. Should attempt to preserve them.
+  NOT_LP64( movptr(swap_reg, saved_mark_addr); )
+  load_prototype_header(tmp_reg, obj_reg);
+  if (os::is_MP()) {
+    lock();
+  }
+  cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
+  // Fall through to the normal CAS-based lock, because no matter what
+  // the result of the above CAS, some thread must have succeeded in
+  // removing the bias bit from the object's header.
+  if (counters != NULL) {
+    cond_inc32(Assembler::zero,
+               ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
+  }
+
+  bind(cas_label);
+
+  return null_check_offset;
+}
+
+void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
+  assert(UseBiasedLocking, "why call this otherwise?");
+
+  // Check for biased locking unlock case, which is a no-op
+  // Note: we do not have to check the thread ID for two reasons.
+  // First, the interpreter checks for IllegalMonitorStateException at
+  // a higher level. Second, if the bias was revoked while we held the
+  // lock, the object could not be rebiased toward another thread, so
+  // the bias bit would be clear.
+  movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
+  andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
+  cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
+  jcc(Assembler::equal, done);
+}
+
+#ifdef COMPILER2
+
+#if INCLUDE_RTM_OPT
+
+// Update rtm_counters based on abort status
+// input: abort_status
+//        rtm_counters (RTMLockingCounters*)
+// flags are killed
+void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
+
+  atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
+  if (PrintPreciseRTMLockingStatistics) {
+    for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
+      Label check_abort;
+      testl(abort_status, (1<<i));
+      jccb(Assembler::equal, check_abort);
+      atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
+      bind(check_abort);
+    }
+  }
+}
+
+// Branch if (random & (count-1) != 0), count is 2^n
+// tmp, scr and flags are killed
+void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
+  assert(tmp == rax, "");
+  assert(scr == rdx, "");
+  rdtsc(); // modifies EDX:EAX
+  andptr(tmp, count-1);
+  jccb(Assembler::notZero, brLabel);
+}
+
+// Perform abort ratio calculation, set no_rtm bit if high ratio
+// input:  rtm_counters_Reg (RTMLockingCounters* address)
+// tmpReg, rtm_counters_Reg and flags are killed
+void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
+                                                 Register rtm_counters_Reg,
+                                                 RTMLockingCounters* rtm_counters,
+                                                 Metadata* method_data) {
+  Label L_done, L_check_always_rtm1, L_check_always_rtm2;
+
+  if (RTMLockingCalculationDelay > 0) {
+    // Delay calculation
+    movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
+    testptr(tmpReg, tmpReg);
+    jccb(Assembler::equal, L_done);
+  }
+  // Abort ratio calculation only if abort_count > RTMAbortThreshold
+  //   Aborted transactions = abort_count * 100
+  //   All transactions = total_count *  RTMTotalCountIncrRate
+  //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
+
+  movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
+  cmpptr(tmpReg, RTMAbortThreshold);
+  jccb(Assembler::below, L_check_always_rtm2);
+  imulptr(tmpReg, tmpReg, 100);
+
+  Register scrReg = rtm_counters_Reg;
+  movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
+  imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
+  imulptr(scrReg, scrReg, RTMAbortRatio);
+  cmpptr(tmpReg, scrReg);
+  jccb(Assembler::below, L_check_always_rtm1);
+  if (method_data != NULL) {
+    // set rtm_state to "no rtm" in MDO
+    mov_metadata(tmpReg, method_data);
+    if (os::is_MP()) {
+      lock();
+    }
+    orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
+  }
+  jmpb(L_done);
+  bind(L_check_always_rtm1);
+  // Reload RTMLockingCounters* address
+  lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
+  bind(L_check_always_rtm2);
+  movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
+  cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
+  jccb(Assembler::below, L_done);
+  if (method_data != NULL) {
+    // set rtm_state to "always rtm" in MDO
+    mov_metadata(tmpReg, method_data);
+    if (os::is_MP()) {
+      lock();
+    }
+    orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
+  }
+  bind(L_done);
+}
+
+// Update counters and perform abort ratio calculation
+// input:  abort_status_Reg
+// rtm_counters_Reg, flags are killed
+void MacroAssembler::rtm_profiling(Register abort_status_Reg,
+                                   Register rtm_counters_Reg,
+                                   RTMLockingCounters* rtm_counters,
+                                   Metadata* method_data,
+                                   bool profile_rtm) {
+
+  assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
+  // update rtm counters based on rax value at abort
+  // reads abort_status_Reg, updates flags
+  lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
+  rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
+  if (profile_rtm) {
+    // Save abort status because abort_status_Reg is used by following code.
+    if (RTMRetryCount > 0) {
+      push(abort_status_Reg);
+    }
+    assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
+    rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
+    // restore abort status
+    if (RTMRetryCount > 0) {
+      pop(abort_status_Reg);
+    }
+  }
+}
+
+// Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
+// inputs: retry_count_Reg
+//       : abort_status_Reg
+// output: retry_count_Reg decremented by 1
+// flags are killed
+void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
+  Label doneRetry;
+  assert(abort_status_Reg == rax, "");
+  // The abort reason bits are in eax (see all states in rtmLocking.hpp)
+  // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
+  // if reason is in 0x6 and retry count != 0 then retry
+  andptr(abort_status_Reg, 0x6);
+  jccb(Assembler::zero, doneRetry);
+  testl(retry_count_Reg, retry_count_Reg);
+  jccb(Assembler::zero, doneRetry);
+  pause();
+  decrementl(retry_count_Reg);
+  jmp(retryLabel);
+  bind(doneRetry);
+}
+
+// Spin and retry if lock is busy,
+// inputs: box_Reg (monitor address)
+//       : retry_count_Reg
+// output: retry_count_Reg decremented by 1
+//       : clear z flag if retry count exceeded
+// tmp_Reg, scr_Reg, flags are killed
+void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
+                                            Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
+  Label SpinLoop, SpinExit, doneRetry;
+  int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
+
+  testl(retry_count_Reg, retry_count_Reg);
+  jccb(Assembler::zero, doneRetry);
+  decrementl(retry_count_Reg);
+  movptr(scr_Reg, RTMSpinLoopCount);
+
+  bind(SpinLoop);
+  pause();
+  decrementl(scr_Reg);
+  jccb(Assembler::lessEqual, SpinExit);
+  movptr(tmp_Reg, Address(box_Reg, owner_offset));
+  testptr(tmp_Reg, tmp_Reg);
+  jccb(Assembler::notZero, SpinLoop);
+
+  bind(SpinExit);
+  jmp(retryLabel);
+  bind(doneRetry);
+  incrementl(retry_count_Reg); // clear z flag
+}
+
+// Use RTM for normal stack locks
+// Input: objReg (object to lock)
+void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
+                                       Register retry_on_abort_count_Reg,
+                                       RTMLockingCounters* stack_rtm_counters,
+                                       Metadata* method_data, bool profile_rtm,
+                                       Label& DONE_LABEL, Label& IsInflated) {
+  assert(UseRTMForStackLocks, "why call this otherwise?");
+  assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
+  assert(tmpReg == rax, "");
+  assert(scrReg == rdx, "");
+  Label L_rtm_retry, L_decrement_retry, L_on_abort;
+
+  if (RTMRetryCount > 0) {
+    movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
+    bind(L_rtm_retry);
+  }
+  movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
+  testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
+  jcc(Assembler::notZero, IsInflated);
+
+  if (PrintPreciseRTMLockingStatistics || profile_rtm) {
+    Label L_noincrement;
+    if (RTMTotalCountIncrRate > 1) {
+      // tmpReg, scrReg and flags are killed
+      branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
+    }
+    assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
+    atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
+    bind(L_noincrement);
+  }
+  xbegin(L_on_abort);
+  movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));       // fetch markword
+  andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
+  cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
+  jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
+
+  Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
+  if (UseRTMXendForLockBusy) {
+    xend();
+    movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
+    jmp(L_decrement_retry);
+  }
+  else {
+    xabort(0);
+  }
+  bind(L_on_abort);
+  if (PrintPreciseRTMLockingStatistics || profile_rtm) {
+    rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
+  }
+  bind(L_decrement_retry);
+  if (RTMRetryCount > 0) {
+    // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
+    rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
+  }
+}
+
+// Use RTM for inflating locks
+// inputs: objReg (object to lock)
+//         boxReg (on-stack box address (displaced header location) - KILLED)
+//         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
+void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
+                                          Register scrReg, Register retry_on_busy_count_Reg,
+                                          Register retry_on_abort_count_Reg,
+                                          RTMLockingCounters* rtm_counters,
+                                          Metadata* method_data, bool profile_rtm,
+                                          Label& DONE_LABEL) {
+  assert(UseRTMLocking, "why call this otherwise?");
+  assert(tmpReg == rax, "");
+  assert(scrReg == rdx, "");
+  Label L_rtm_retry, L_decrement_retry, L_on_abort;
+  int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
+
+  // Without cast to int32_t a movptr will destroy r10 which is typically obj
+  movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
+  movptr(boxReg, tmpReg); // Save ObjectMonitor address
+
+  if (RTMRetryCount > 0) {
+    movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
+    movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
+    bind(L_rtm_retry);
+  }
+  if (PrintPreciseRTMLockingStatistics || profile_rtm) {
+    Label L_noincrement;
+    if (RTMTotalCountIncrRate > 1) {
+      // tmpReg, scrReg and flags are killed
+      branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
+    }
+    assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
+    atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
+    bind(L_noincrement);
+  }
+  xbegin(L_on_abort);
+  movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
+  movptr(tmpReg, Address(tmpReg, owner_offset));
+  testptr(tmpReg, tmpReg);
+  jcc(Assembler::zero, DONE_LABEL);
+  if (UseRTMXendForLockBusy) {
+    xend();
+    jmp(L_decrement_retry);
+  }
+  else {
+    xabort(0);
+  }
+  bind(L_on_abort);
+  Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
+  if (PrintPreciseRTMLockingStatistics || profile_rtm) {
+    rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
+  }
+  if (RTMRetryCount > 0) {
+    // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
+    rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
+  }
+
+  movptr(tmpReg, Address(boxReg, owner_offset)) ;
+  testptr(tmpReg, tmpReg) ;
+  jccb(Assembler::notZero, L_decrement_retry) ;
+
+  // Appears unlocked - try to swing _owner from null to non-null.
+  // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
+#ifdef _LP64
+  Register threadReg = r15_thread;
+#else
+  get_thread(scrReg);
+  Register threadReg = scrReg;
+#endif
+  if (os::is_MP()) {
+    lock();
+  }
+  cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
+
+  if (RTMRetryCount > 0) {
+    // success done else retry
+    jccb(Assembler::equal, DONE_LABEL) ;
+    bind(L_decrement_retry);
+    // Spin and retry if lock is busy.
+    rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
+  }
+  else {
+    bind(L_decrement_retry);
+  }
+}
+
+#endif //  INCLUDE_RTM_OPT
+
+// Fast_Lock and Fast_Unlock used by C2
+
+// Because the transitions from emitted code to the runtime
+// monitorenter/exit helper stubs are so slow it's critical that
+// we inline both the stack-locking fast-path and the inflated fast path.
+//
+// See also: cmpFastLock and cmpFastUnlock.
+//
+// What follows is a specialized inline transliteration of the code
+// in slow_enter() and slow_exit().  If we're concerned about I$ bloat
+// another option would be to emit TrySlowEnter and TrySlowExit methods
+// at startup-time.  These methods would accept arguments as
+// (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
+// indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
+// marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
+// In practice, however, the # of lock sites is bounded and is usually small.
+// Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
+// if the processor uses simple bimodal branch predictors keyed by EIP
+// Since the helper routines would be called from multiple synchronization
+// sites.
+//
+// An even better approach would be write "MonitorEnter()" and "MonitorExit()"
+// in java - using j.u.c and unsafe - and just bind the lock and unlock sites
+// to those specialized methods.  That'd give us a mostly platform-independent
+// implementation that the JITs could optimize and inline at their pleasure.
+// Done correctly, the only time we'd need to cross to native could would be
+// to park() or unpark() threads.  We'd also need a few more unsafe operators
+// to (a) prevent compiler-JIT reordering of non-volatile accesses, and
+// (b) explicit barriers or fence operations.
+//
+// TODO:
+//
+// *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
+//    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
+//    Given TLAB allocation, Self is usually manifested in a register, so passing it into
+//    the lock operators would typically be faster than reifying Self.
+//
+// *  Ideally I'd define the primitives as:
+//       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
+//       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
+//    Unfortunately ADLC bugs prevent us from expressing the ideal form.
+//    Instead, we're stuck with a rather awkward and brittle register assignments below.
+//    Furthermore the register assignments are overconstrained, possibly resulting in
+//    sub-optimal code near the synchronization site.
+//
+// *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
+//    Alternately, use a better sp-proximity test.
+//
+// *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
+//    Either one is sufficient to uniquely identify a thread.
+//    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
+//
+// *  Intrinsify notify() and notifyAll() for the common cases where the
+//    object is locked by the calling thread but the waitlist is empty.
+//    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
+//
+// *  use jccb and jmpb instead of jcc and jmp to improve code density.
+//    But beware of excessive branch density on AMD Opterons.
+//
+// *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
+//    or failure of the fast-path.  If the fast-path fails then we pass
+//    control to the slow-path, typically in C.  In Fast_Lock and
+//    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
+//    will emit a conditional branch immediately after the node.
+//    So we have branches to branches and lots of ICC.ZF games.
+//    Instead, it might be better to have C2 pass a "FailureLabel"
+//    into Fast_Lock and Fast_Unlock.  In the case of success, control
+//    will drop through the node.  ICC.ZF is undefined at exit.
+//    In the case of failure, the node will branch directly to the
+//    FailureLabel
+
+
+// obj: object to lock
+// box: on-stack box address (displaced header location) - KILLED
+// rax,: tmp -- KILLED
+// scr: tmp -- KILLED
+void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
+                               Register scrReg, Register cx1Reg, Register cx2Reg,
+                               BiasedLockingCounters* counters,
+                               RTMLockingCounters* rtm_counters,
+                               RTMLockingCounters* stack_rtm_counters,
+                               Metadata* method_data,
+                               bool use_rtm, bool profile_rtm) {
+  // Ensure the register assignments are disjoint
+  assert(tmpReg == rax, "");
+
+  if (use_rtm) {
+    assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
+  } else {
+    assert(cx1Reg == noreg, "");
+    assert(cx2Reg == noreg, "");
+    assert_different_registers(objReg, boxReg, tmpReg, scrReg);
+  }
+
+  if (counters != NULL) {
+    atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
+  }
+  if (EmitSync & 1) {
+      // set box->dhw = markOopDesc::unused_mark()
+      // Force all sync thru slow-path: slow_enter() and slow_exit()
+      movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
+      cmpptr (rsp, (int32_t)NULL_WORD);
+  } else {
+    // Possible cases that we'll encounter in fast_lock
+    // ------------------------------------------------
+    // * Inflated
+    //    -- unlocked
+    //    -- Locked
+    //       = by self
+    //       = by other
+    // * biased
+    //    -- by Self
+    //    -- by other
+    // * neutral
+    // * stack-locked
+    //    -- by self
+    //       = sp-proximity test hits
+    //       = sp-proximity test generates false-negative
+    //    -- by other
+    //
+
+    Label IsInflated, DONE_LABEL;
+
+    // it's stack-locked, biased or neutral
+    // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
+    // order to reduce the number of conditional branches in the most common cases.
+    // Beware -- there's a subtle invariant that fetch of the markword
+    // at [FETCH], below, will never observe a biased encoding (*101b).
+    // If this invariant is not held we risk exclusion (safety) failure.
+    if (UseBiasedLocking && !UseOptoBiasInlining) {
+      biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
+    }
+
+#if INCLUDE_RTM_OPT
+    if (UseRTMForStackLocks && use_rtm) {
+      rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
+                        stack_rtm_counters, method_data, profile_rtm,
+                        DONE_LABEL, IsInflated);
+    }
+#endif // INCLUDE_RTM_OPT
+
+    movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));          // [FETCH]
+    testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
+    jccb(Assembler::notZero, IsInflated);
+
+    // Attempt stack-locking ...
+    orptr (tmpReg, markOopDesc::unlocked_value);
+    movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
+    if (os::is_MP()) {
+      lock();
+    }
+    cmpxchgptr(boxReg, Address(objReg, oopDesc::mark_offset_in_bytes()));      // Updates tmpReg
+    if (counters != NULL) {
+      cond_inc32(Assembler::equal,
+                 ExternalAddress((address)counters->fast_path_entry_count_addr()));
+    }
+    jcc(Assembler::equal, DONE_LABEL);           // Success
+
+    // Recursive locking.
+    // The object is stack-locked: markword contains stack pointer to BasicLock.
+    // Locked by current thread if difference with current SP is less than one page.
+    subptr(tmpReg, rsp);
+    // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
+    andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
+    movptr(Address(boxReg, 0), tmpReg);
+    if (counters != NULL) {
+      cond_inc32(Assembler::equal,
+                 ExternalAddress((address)counters->fast_path_entry_count_addr()));
+    }
+    jmp(DONE_LABEL);
+
+    bind(IsInflated);
+    // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
+
+#if INCLUDE_RTM_OPT
+    // Use the same RTM locking code in 32- and 64-bit VM.
+    if (use_rtm) {
+      rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
+                           rtm_counters, method_data, profile_rtm, DONE_LABEL);
+    } else {
+#endif // INCLUDE_RTM_OPT
+
+#ifndef _LP64
+    // The object is inflated.
+
+    // boxReg refers to the on-stack BasicLock in the current frame.
+    // We'd like to write:
+    //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
+    // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
+    // additional latency as we have another ST in the store buffer that must drain.
+
+    if (EmitSync & 8192) {
+       movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
+       get_thread (scrReg);
+       movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
+       movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
+       if (os::is_MP()) {
+         lock();
+       }
+       cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
+    } else
+    if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
+       // register juggle because we need tmpReg for cmpxchgptr below
+       movptr(scrReg, boxReg);
+       movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
+
+       // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
+       if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
+          // prefetchw [eax + Offset(_owner)-2]
+          prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
+       }
+
+       if ((EmitSync & 64) == 0) {
+         // Optimistic form: consider XORL tmpReg,tmpReg
+         movptr(tmpReg, NULL_WORD);
+       } else {
+         // Can suffer RTS->RTO upgrades on shared or cold $ lines
+         // Test-And-CAS instead of CAS
+         movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
+         testptr(tmpReg, tmpReg);                   // Locked ?
+         jccb  (Assembler::notZero, DONE_LABEL);
+       }
+
+       // Appears unlocked - try to swing _owner from null to non-null.
+       // Ideally, I'd manifest "Self" with get_thread and then attempt
+       // to CAS the register containing Self into m->Owner.
+       // But we don't have enough registers, so instead we can either try to CAS
+       // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
+       // we later store "Self" into m->Owner.  Transiently storing a stack address
+       // (rsp or the address of the box) into  m->owner is harmless.
+       // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
+       if (os::is_MP()) {
+         lock();
+       }
+       cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
+       movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
+       // If we weren't able to swing _owner from NULL to the BasicLock
+       // then take the slow path.
+       jccb  (Assembler::notZero, DONE_LABEL);
+       // update _owner from BasicLock to thread
+       get_thread (scrReg);                    // beware: clobbers ICCs
+       movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
+       xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
+
+       // If the CAS fails we can either retry or pass control to the slow-path.
+       // We use the latter tactic.
+       // Pass the CAS result in the icc.ZFlag into DONE_LABEL
+       // If the CAS was successful ...
+       //   Self has acquired the lock
+       //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
+       // Intentional fall-through into DONE_LABEL ...
+    } else {
+       movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
+       movptr(boxReg, tmpReg);
+
+       // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
+       if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
+          // prefetchw [eax + Offset(_owner)-2]
+          prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
+       }
+
+       if ((EmitSync & 64) == 0) {
+         // Optimistic form
+         xorptr  (tmpReg, tmpReg);
+       } else {
+         // Can suffer RTS->RTO upgrades on shared or cold $ lines
+         movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
+         testptr(tmpReg, tmpReg);                   // Locked ?
+         jccb  (Assembler::notZero, DONE_LABEL);
+       }
+
+       // Appears unlocked - try to swing _owner from null to non-null.
+       // Use either "Self" (in scr) or rsp as thread identity in _owner.
+       // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
+       get_thread (scrReg);
+       if (os::is_MP()) {
+         lock();
+       }
+       cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
+
+       // If the CAS fails we can either retry or pass control to the slow-path.
+       // We use the latter tactic.
+       // Pass the CAS result in the icc.ZFlag into DONE_LABEL
+       // If the CAS was successful ...
+       //   Self has acquired the lock
+       //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
+       // Intentional fall-through into DONE_LABEL ...
+    }
+#else // _LP64
+    // It's inflated
+    movq(scrReg, tmpReg);
+    xorq(tmpReg, tmpReg);
+
+    if (os::is_MP()) {
+      lock();
+    }
+    cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
+    // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
+    // Without cast to int32_t movptr will destroy r10 which is typically obj.
+    movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
+    // Intentional fall-through into DONE_LABEL ...
+    // Propagate ICC.ZF from CAS above into DONE_LABEL.
+#endif // _LP64
+#if INCLUDE_RTM_OPT
+    } // use_rtm()
+#endif
+    // DONE_LABEL is a hot target - we'd really like to place it at the
+    // start of cache line by padding with NOPs.
+    // See the AMD and Intel software optimization manuals for the
+    // most efficient "long" NOP encodings.
+    // Unfortunately none of our alignment mechanisms suffice.
+    bind(DONE_LABEL);
+
+    // At DONE_LABEL the icc ZFlag is set as follows ...
+    // Fast_Unlock uses the same protocol.
+    // ZFlag == 1 -> Success
+    // ZFlag == 0 -> Failure - force control through the slow-path
+  }
+}
+
+// obj: object to unlock
+// box: box address (displaced header location), killed.  Must be EAX.
+// tmp: killed, cannot be obj nor box.
+//
+// Some commentary on balanced locking:
+//
+// Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
+// Methods that don't have provably balanced locking are forced to run in the
+// interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
+// The interpreter provides two properties:
+// I1:  At return-time the interpreter automatically and quietly unlocks any
+//      objects acquired the current activation (frame).  Recall that the
+//      interpreter maintains an on-stack list of locks currently held by
+//      a frame.
+// I2:  If a method attempts to unlock an object that is not held by the
+//      the frame the interpreter throws IMSX.
+//
+// Lets say A(), which has provably balanced locking, acquires O and then calls B().
+// B() doesn't have provably balanced locking so it runs in the interpreter.
+// Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
+// is still locked by A().
+//
+// The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
+// Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
+// should not be unlocked by "normal" java-level locking and vice-versa.  The specification
+// doesn't specify what will occur if a program engages in such mixed-mode locking, however.
+// Arguably given that the spec legislates the JNI case as undefined our implementation
+// could reasonably *avoid* checking owner in Fast_Unlock().
+// In the interest of performance we elide m->Owner==Self check in unlock.
+// A perfectly viable alternative is to elide the owner check except when
+// Xcheck:jni is enabled.
+
+void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
+  assert(boxReg == rax, "");
+  assert_different_registers(objReg, boxReg, tmpReg);
+
+  if (EmitSync & 4) {
+    // Disable - inhibit all inlining.  Force control through the slow-path
+    cmpptr (rsp, 0);
+  } else {
+    Label DONE_LABEL, Stacked, CheckSucc;
+
+    // Critically, the biased locking test must have precedence over
+    // and appear before the (box->dhw == 0) recursive stack-lock test.
+    if (UseBiasedLocking && !UseOptoBiasInlining) {
+       biased_locking_exit(objReg, tmpReg, DONE_LABEL);
+    }
+
+#if INCLUDE_RTM_OPT
+    if (UseRTMForStackLocks && use_rtm) {
+      assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
+      Label L_regular_unlock;
+      movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));           // fetch markword
+      andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
+      cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
+      jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
+      xend();                                       // otherwise end...
+      jmp(DONE_LABEL);                              // ... and we're done
+      bind(L_regular_unlock);
+    }
+#endif
+
+    cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
+    jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
+    movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));             // Examine the object's markword
+    testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
+    jccb  (Assembler::zero, Stacked);
+
+    // It's inflated.
+#if INCLUDE_RTM_OPT
+    if (use_rtm) {
+      Label L_regular_inflated_unlock;
+      int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
+      movptr(boxReg, Address(tmpReg, owner_offset));
+      testptr(boxReg, boxReg);
+      jccb(Assembler::notZero, L_regular_inflated_unlock);
+      xend();
+      jmpb(DONE_LABEL);
+      bind(L_regular_inflated_unlock);
+    }
+#endif
+
+    // Despite our balanced locking property we still check that m->_owner == Self
+    // as java routines or native JNI code called by this thread might
+    // have released the lock.
+    // Refer to the comments in synchronizer.cpp for how we might encode extra
+    // state in _succ so we can avoid fetching EntryList|cxq.
+    //
+    // I'd like to add more cases in fast_lock() and fast_unlock() --
+    // such as recursive enter and exit -- but we have to be wary of
+    // I$ bloat, T$ effects and BP$ effects.
+    //
+    // If there's no contention try a 1-0 exit.  That is, exit without
+    // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
+    // we detect and recover from the race that the 1-0 exit admits.
+    //
+    // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
+    // before it STs null into _owner, releasing the lock.  Updates
+    // to data protected by the critical section must be visible before
+    // we drop the lock (and thus before any other thread could acquire
+    // the lock and observe the fields protected by the lock).
+    // IA32's memory-model is SPO, so STs are ordered with respect to
+    // each other and there's no need for an explicit barrier (fence).
+    // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
+#ifndef _LP64
+    get_thread (boxReg);
+    if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
+      // prefetchw [ebx + Offset(_owner)-2]
+      prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
+    }
+
+    // Note that we could employ various encoding schemes to reduce
+    // the number of loads below (currently 4) to just 2 or 3.
+    // Refer to the comments in synchronizer.cpp.
+    // In practice the chain of fetches doesn't seem to impact performance, however.
+    xorptr(boxReg, boxReg);
+    if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
+       // Attempt to reduce branch density - AMD's branch predictor.
+       orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
+       orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
+       orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
+       jccb  (Assembler::notZero, DONE_LABEL);
+       movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
+       jmpb  (DONE_LABEL);
+    } else {
+       orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
+       jccb  (Assembler::notZero, DONE_LABEL);
+       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
+       orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
+       jccb  (Assembler::notZero, CheckSucc);
+       movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
+       jmpb  (DONE_LABEL);
+    }
+
+    // The Following code fragment (EmitSync & 65536) improves the performance of
+    // contended applications and contended synchronization microbenchmarks.
+    // Unfortunately the emission of the code - even though not executed - causes regressions
+    // in scimark and jetstream, evidently because of $ effects.  Replacing the code
+    // with an equal number of never-executed NOPs results in the same regression.
+    // We leave it off by default.
+
+    if ((EmitSync & 65536) != 0) {
+       Label LSuccess, LGoSlowPath ;
+
+       bind  (CheckSucc);
+
+       // Optional pre-test ... it's safe to elide this
+       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
+       jccb(Assembler::zero, LGoSlowPath);
+
+       // We have a classic Dekker-style idiom:
+       //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
+       // There are a number of ways to implement the barrier:
+       // (1) lock:andl &m->_owner, 0
+       //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
+       //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
+       //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
+       // (2) If supported, an explicit MFENCE is appealing.
+       //     In older IA32 processors MFENCE is slower than lock:add or xchg
+       //     particularly if the write-buffer is full as might be the case if
+       //     if stores closely precede the fence or fence-equivalent instruction.
+       //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
+       //     as the situation has changed with Nehalem and Shanghai.
+       // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
+       //     The $lines underlying the top-of-stack should be in M-state.
+       //     The locked add instruction is serializing, of course.
+       // (4) Use xchg, which is serializing
+       //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
+       // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
+       //     The integer condition codes will tell us if succ was 0.
+       //     Since _succ and _owner should reside in the same $line and
+       //     we just stored into _owner, it's likely that the $line
+       //     remains in M-state for the lock:orl.
+       //
+       // We currently use (3), although it's likely that switching to (2)
+       // is correct for the future.
+
+       movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
+       if (os::is_MP()) {
+         lock(); addptr(Address(rsp, 0), 0);
+       }
+       // Ratify _succ remains non-null
+       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
+       jccb  (Assembler::notZero, LSuccess);
+
+       xorptr(boxReg, boxReg);                  // box is really EAX
+       if (os::is_MP()) { lock(); }
+       cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
+       // There's no successor so we tried to regrab the lock with the
+       // placeholder value. If that didn't work, then another thread
+       // grabbed the lock so we're done (and exit was a success).
+       jccb  (Assembler::notEqual, LSuccess);
+       // Since we're low on registers we installed rsp as a placeholding in _owner.
+       // Now install Self over rsp.  This is safe as we're transitioning from
+       // non-null to non=null
+       get_thread (boxReg);
+       movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
+       // Intentional fall-through into LGoSlowPath ...
+
+       bind  (LGoSlowPath);
+       orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
+       jmpb  (DONE_LABEL);
+
+       bind  (LSuccess);
+       xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
+       jmpb  (DONE_LABEL);
+    }
+
+    bind (Stacked);
+    // It's not inflated and it's not recursively stack-locked and it's not biased.
+    // It must be stack-locked.
+    // Try to reset the header to displaced header.
+    // The "box" value on the stack is stable, so we can reload
+    // and be assured we observe the same value as above.
+    movptr(tmpReg, Address(boxReg, 0));
+    if (os::is_MP()) {
+      lock();
+    }
+    cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
+    // Intention fall-thru into DONE_LABEL
+
+    // DONE_LABEL is a hot target - we'd really like to place it at the
+    // start of cache line by padding with NOPs.
+    // See the AMD and Intel software optimization manuals for the
+    // most efficient "long" NOP encodings.
+    // Unfortunately none of our alignment mechanisms suffice.
+    if ((EmitSync & 65536) == 0) {
+       bind (CheckSucc);
+    }
+#else // _LP64
+    // It's inflated
+    if (EmitSync & 1024) {
+      // Emit code to check that _owner == Self
+      // We could fold the _owner test into subsequent code more efficiently
+      // than using a stand-alone check, but since _owner checking is off by
+      // default we don't bother. We also might consider predicating the
+      // _owner==Self check on Xcheck:jni or running on a debug build.
+      movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
+      xorptr(boxReg, r15_thread);
+    } else {
+      xorptr(boxReg, boxReg);
+    }
+    orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
+    jccb  (Assembler::notZero, DONE_LABEL);
+    movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
+    orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
+    jccb  (Assembler::notZero, CheckSucc);
+    movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
+    jmpb  (DONE_LABEL);
+
+    if ((EmitSync & 65536) == 0) {
+      // Try to avoid passing control into the slow_path ...
+      Label LSuccess, LGoSlowPath ;
+      bind  (CheckSucc);
+
+      // The following optional optimization can be elided if necessary
+      // Effectively: if (succ == null) goto SlowPath
+      // The code reduces the window for a race, however,
+      // and thus benefits performance.
+      cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
+      jccb  (Assembler::zero, LGoSlowPath);
+
+      xorptr(boxReg, boxReg);
+      if ((EmitSync & 16) && os::is_MP()) {
+        xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
+      } else {
+        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
+        if (os::is_MP()) {
+          // Memory barrier/fence
+          // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
+          // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
+          // This is faster on Nehalem and AMD Shanghai/Barcelona.
+          // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
+          // We might also restructure (ST Owner=0;barrier;LD _Succ) to
+          // (mov box,0; xchgq box, &m->Owner; LD _succ) .
+          lock(); addl(Address(rsp, 0), 0);
+        }
+      }
+      cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
+      jccb  (Assembler::notZero, LSuccess);
+
+      // Rare inopportune interleaving - race.
+      // The successor vanished in the small window above.
+      // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
+      // We need to ensure progress and succession.
+      // Try to reacquire the lock.
+      // If that fails then the new owner is responsible for succession and this
+      // thread needs to take no further action and can exit via the fast path (success).
+      // If the re-acquire succeeds then pass control into the slow path.
+      // As implemented, this latter mode is horrible because we generated more
+      // coherence traffic on the lock *and* artifically extended the critical section
+      // length while by virtue of passing control into the slow path.
+
+      // box is really RAX -- the following CMPXCHG depends on that binding
+      // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
+      if (os::is_MP()) { lock(); }
+      cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
+      // There's no successor so we tried to regrab the lock.
+      // If that didn't work, then another thread grabbed the
+      // lock so we're done (and exit was a success).
+      jccb  (Assembler::notEqual, LSuccess);
+      // Intentional fall-through into slow-path
+
+      bind  (LGoSlowPath);
+      orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
+      jmpb  (DONE_LABEL);
+
+      bind  (LSuccess);
+      testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
+      jmpb  (DONE_LABEL);
+    }
+
+    bind  (Stacked);
+    movptr(tmpReg, Address (boxReg, 0));      // re-fetch
+    if (os::is_MP()) { lock(); }
+    cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
+
+    if (EmitSync & 65536) {
+       bind (CheckSucc);
+    }
+#endif
+    bind(DONE_LABEL);
+  }
+}
+#endif // COMPILER2
+
+void MacroAssembler::c2bool(Register x) {
+  // implements x == 0 ? 0 : 1
+  // note: must only look at least-significant byte of x
+  //       since C-style booleans are stored in one byte
+  //       only! (was bug)
+  andl(x, 0xFF);
+  setb(Assembler::notZero, x);
+}
+
+// Wouldn't need if AddressLiteral version had new name
+void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
+  Assembler::call(L, rtype);
+}
+
+void MacroAssembler::call(Register entry) {
+  Assembler::call(entry);
+}
+
+void MacroAssembler::call(AddressLiteral entry) {
+  if (reachable(entry)) {
+    Assembler::call_literal(entry.target(), entry.rspec());
+  } else {
+    lea(rscratch1, entry);
+    Assembler::call(rscratch1);
+  }
+}
+
+void MacroAssembler::ic_call(address entry, jint method_index) {
+  RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
+  movptr(rax, (intptr_t)Universe::non_oop_word());
+  call(AddressLiteral(entry, rh));
+}
+
+// Implementation of call_VM versions
+
+void MacroAssembler::call_VM(Register oop_result,
+                             address entry_point,
+                             bool check_exceptions) {
+  Label C, E;
+  call(C, relocInfo::none);
+  jmp(E);
+
+  bind(C);
+  call_VM_helper(oop_result, entry_point, 0, check_exceptions);
+  ret(0);
+
+  bind(E);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             address entry_point,
+                             Register arg_1,
+                             bool check_exceptions) {
+  Label C, E;
+  call(C, relocInfo::none);
+  jmp(E);
+
+  bind(C);
+  pass_arg1(this, arg_1);
+  call_VM_helper(oop_result, entry_point, 1, check_exceptions);
+  ret(0);
+
+  bind(E);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             address entry_point,
+                             Register arg_1,
+                             Register arg_2,
+                             bool check_exceptions) {
+  Label C, E;
+  call(C, relocInfo::none);
+  jmp(E);
+
+  bind(C);
+
+  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
+
+  pass_arg2(this, arg_2);
+  pass_arg1(this, arg_1);
+  call_VM_helper(oop_result, entry_point, 2, check_exceptions);
+  ret(0);
+
+  bind(E);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             address entry_point,
+                             Register arg_1,
+                             Register arg_2,
+                             Register arg_3,
+                             bool check_exceptions) {
+  Label C, E;
+  call(C, relocInfo::none);
+  jmp(E);
+
+  bind(C);
+
+  LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
+  LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
+  pass_arg3(this, arg_3);
+
+  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
+  pass_arg2(this, arg_2);
+
+  pass_arg1(this, arg_1);
+  call_VM_helper(oop_result, entry_point, 3, check_exceptions);
+  ret(0);
+
+  bind(E);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             Register last_java_sp,
+                             address entry_point,
+                             int number_of_arguments,
+                             bool check_exceptions) {
+  Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
+  call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             Register last_java_sp,
+                             address entry_point,
+                             Register arg_1,
+                             bool check_exceptions) {
+  pass_arg1(this, arg_1);
+  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             Register last_java_sp,
+                             address entry_point,
+                             Register arg_1,
+                             Register arg_2,
+                             bool check_exceptions) {
+
+  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
+  pass_arg2(this, arg_2);
+  pass_arg1(this, arg_1);
+  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             Register last_java_sp,
+                             address entry_point,
+                             Register arg_1,
+                             Register arg_2,
+                             Register arg_3,
+                             bool check_exceptions) {
+  LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
+  LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
+  pass_arg3(this, arg_3);
+  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
+  pass_arg2(this, arg_2);
+  pass_arg1(this, arg_1);
+  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
+}
+
+void MacroAssembler::super_call_VM(Register oop_result,
+                                   Register last_java_sp,
+                                   address entry_point,
+                                   int number_of_arguments,
+                                   bool check_exceptions) {
+  Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
+  MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
+}
+
+void MacroAssembler::super_call_VM(Register oop_result,
+                                   Register last_java_sp,
+                                   address entry_point,
+                                   Register arg_1,
+                                   bool check_exceptions) {
+  pass_arg1(this, arg_1);
+  super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
+}
+
+void MacroAssembler::super_call_VM(Register oop_result,
+                                   Register last_java_sp,
+                                   address entry_point,
+                                   Register arg_1,
+                                   Register arg_2,
+                                   bool check_exceptions) {
+
+  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
+  pass_arg2(this, arg_2);
+  pass_arg1(this, arg_1);
+  super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
+}
+
+void MacroAssembler::super_call_VM(Register oop_result,
+                                   Register last_java_sp,
+                                   address entry_point,
+                                   Register arg_1,
+                                   Register arg_2,
+                                   Register arg_3,
+                                   bool check_exceptions) {
+  LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
+  LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
+  pass_arg3(this, arg_3);
+  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
+  pass_arg2(this, arg_2);
+  pass_arg1(this, arg_1);
+  super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
+}
+
+void MacroAssembler::call_VM_base(Register oop_result,
+                                  Register java_thread,
+                                  Register last_java_sp,
+                                  address  entry_point,
+                                  int      number_of_arguments,
+                                  bool     check_exceptions) {
+  // determine java_thread register
+  if (!java_thread->is_valid()) {
+#ifdef _LP64
+    java_thread = r15_thread;
+#else
+    java_thread = rdi;
+    get_thread(java_thread);
+#endif // LP64
+  }
+  // determine last_java_sp register
+  if (!last_java_sp->is_valid()) {
+    last_java_sp = rsp;
+  }
+  // debugging support
+  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
+  LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
+#ifdef ASSERT
+  // TraceBytecodes does not use r12 but saves it over the call, so don't verify
+  // r12 is the heapbase.
+  LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
+#endif // ASSERT
+
+  assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
+  assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
+
+  // push java thread (becomes first argument of C function)
+
+  NOT_LP64(push(java_thread); number_of_arguments++);
+  LP64_ONLY(mov(c_rarg0, r15_thread));
+
+  // set last Java frame before call
+  assert(last_java_sp != rbp, "can't use ebp/rbp");
+
+  // Only interpreter should have to set fp
+  set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
+
+  // do the call, remove parameters
+  MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
+
+  // restore the thread (cannot use the pushed argument since arguments
+  // may be overwritten by C code generated by an optimizing compiler);
+  // however can use the register value directly if it is callee saved.
+  if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
+    // rdi & rsi (also r15) are callee saved -> nothing to do
+#ifdef ASSERT
+    guarantee(java_thread != rax, "change this code");
+    push(rax);
+    { Label L;
+      get_thread(rax);
+      cmpptr(java_thread, rax);
+      jcc(Assembler::equal, L);
+      STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
+      bind(L);
+    }
+    pop(rax);
+#endif
+  } else {
+    get_thread(java_thread);
+  }
+  // reset last Java frame
+  // Only interpreter should have to clear fp
+  reset_last_Java_frame(java_thread, true);
+
+   // C++ interp handles this in the interpreter
+  check_and_handle_popframe(java_thread);
+  check_and_handle_earlyret(java_thread);
+
+  if (check_exceptions) {
+    // check for pending exceptions (java_thread is set upon return)
+    cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
+#ifndef _LP64
+    jump_cc(Assembler::notEqual,
+            RuntimeAddress(StubRoutines::forward_exception_entry()));
+#else
+    // This used to conditionally jump to forward_exception however it is
+    // possible if we relocate that the branch will not reach. So we must jump
+    // around so we can always reach
+
+    Label ok;
+    jcc(Assembler::equal, ok);
+    jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
+    bind(ok);
+#endif // LP64
+  }
+
+  // get oop result if there is one and reset the value in the thread
+  if (oop_result->is_valid()) {
+    get_vm_result(oop_result, java_thread);
+  }
+}
+
+void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
+
+  // Calculate the value for last_Java_sp
+  // somewhat subtle. call_VM does an intermediate call
+  // which places a return address on the stack just under the
+  // stack pointer as the user finsihed with it. This allows
+  // use to retrieve last_Java_pc from last_Java_sp[-1].
+  // On 32bit we then have to push additional args on the stack to accomplish
+  // the actual requested call. On 64bit call_VM only can use register args
+  // so the only extra space is the return address that call_VM created.
+  // This hopefully explains the calculations here.
+
+#ifdef _LP64
+  // We've pushed one address, correct last_Java_sp
+  lea(rax, Address(rsp, wordSize));
+#else
+  lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
+#endif // LP64
+
+  call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
+
+}
+
+// Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
+void MacroAssembler::call_VM_leaf0(address entry_point) {
+  MacroAssembler::call_VM_leaf_base(entry_point, 0);
+}
+
+void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
+  call_VM_leaf_base(entry_point, number_of_arguments);
+}
+
+void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
+  pass_arg0(this, arg_0);
+  call_VM_leaf(entry_point, 1);
+}
+
+void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
+
+  LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
+  pass_arg1(this, arg_1);
+  pass_arg0(this, arg_0);
+  call_VM_leaf(entry_point, 2);
+}
+
+void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
+  LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
+  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
+  pass_arg2(this, arg_2);
+  LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
+  pass_arg1(this, arg_1);
+  pass_arg0(this, arg_0);
+  call_VM_leaf(entry_point, 3);
+}
+
+void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
+  pass_arg0(this, arg_0);
+  MacroAssembler::call_VM_leaf_base(entry_point, 1);
+}
+
+void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
+
+  LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
+  pass_arg1(this, arg_1);
+  pass_arg0(this, arg_0);
+  MacroAssembler::call_VM_leaf_base(entry_point, 2);
+}
+
+void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
+  LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
+  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
+  pass_arg2(this, arg_2);
+  LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
+  pass_arg1(this, arg_1);
+  pass_arg0(this, arg_0);
+  MacroAssembler::call_VM_leaf_base(entry_point, 3);
+}
+
+void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
+  LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
+  LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
+  LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
+  pass_arg3(this, arg_3);
+  LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
+  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
+  pass_arg2(this, arg_2);
+  LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
+  pass_arg1(this, arg_1);
+  pass_arg0(this, arg_0);
+  MacroAssembler::call_VM_leaf_base(entry_point, 4);
+}
+
+void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
+  movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
+  movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
+  verify_oop(oop_result, "broken oop in call_VM_base");
+}
+
+void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
+  movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
+  movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
+}
+
+void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
+}
+
+void MacroAssembler::check_and_handle_popframe(Register java_thread) {
+}
+
+void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
+  if (reachable(src1)) {
+    cmpl(as_Address(src1), imm);
+  } else {
+    lea(rscratch1, src1);
+    cmpl(Address(rscratch1, 0), imm);
+  }
+}
+
+void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
+  assert(!src2.is_lval(), "use cmpptr");
+  if (reachable(src2)) {
+    cmpl(src1, as_Address(src2));
+  } else {
+    lea(rscratch1, src2);
+    cmpl(src1, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::cmp32(Register src1, int32_t imm) {
+  Assembler::cmpl(src1, imm);
+}
+
+void MacroAssembler::cmp32(Register src1, Address src2) {
+  Assembler::cmpl(src1, src2);
+}
+
+void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
+  ucomisd(opr1, opr2);
+
+  Label L;
+  if (unordered_is_less) {
+    movl(dst, -1);
+    jcc(Assembler::parity, L);
+    jcc(Assembler::below , L);
+    movl(dst, 0);
+    jcc(Assembler::equal , L);
+    increment(dst);
+  } else { // unordered is greater
+    movl(dst, 1);
+    jcc(Assembler::parity, L);
+    jcc(Assembler::above , L);
+    movl(dst, 0);
+    jcc(Assembler::equal , L);
+    decrementl(dst);
+  }
+  bind(L);
+}
+
+void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
+  ucomiss(opr1, opr2);
+
+  Label L;
+  if (unordered_is_less) {
+    movl(dst, -1);
+    jcc(Assembler::parity, L);
+    jcc(Assembler::below , L);
+    movl(dst, 0);
+    jcc(Assembler::equal , L);
+    increment(dst);
+  } else { // unordered is greater
+    movl(dst, 1);
+    jcc(Assembler::parity, L);
+    jcc(Assembler::above , L);
+    movl(dst, 0);
+    jcc(Assembler::equal , L);
+    decrementl(dst);
+  }
+  bind(L);
+}
+
+
+void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
+  if (reachable(src1)) {
+    cmpb(as_Address(src1), imm);
+  } else {
+    lea(rscratch1, src1);
+    cmpb(Address(rscratch1, 0), imm);
+  }
+}
+
+void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
+#ifdef _LP64
+  if (src2.is_lval()) {
+    movptr(rscratch1, src2);
+    Assembler::cmpq(src1, rscratch1);
+  } else if (reachable(src2)) {
+    cmpq(src1, as_Address(src2));
+  } else {
+    lea(rscratch1, src2);
+    Assembler::cmpq(src1, Address(rscratch1, 0));
+  }
+#else
+  if (src2.is_lval()) {
+    cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
+  } else {
+    cmpl(src1, as_Address(src2));
+  }
+#endif // _LP64
+}
+
+void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
+  assert(src2.is_lval(), "not a mem-mem compare");
+#ifdef _LP64
+  // moves src2's literal address
+  movptr(rscratch1, src2);
+  Assembler::cmpq(src1, rscratch1);
+#else
+  cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
+#endif // _LP64
+}
+
+void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
+  if (reachable(adr)) {
+    if (os::is_MP())
+      lock();
+    cmpxchgptr(reg, as_Address(adr));
+  } else {
+    lea(rscratch1, adr);
+    if (os::is_MP())
+      lock();
+    cmpxchgptr(reg, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
+  LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
+}
+
+void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    Assembler::comisd(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::comisd(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    Assembler::comiss(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::comiss(dst, Address(rscratch1, 0));
+  }
+}
+
+
+void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
+  Condition negated_cond = negate_condition(cond);
+  Label L;
+  jcc(negated_cond, L);
+  pushf(); // Preserve flags
+  atomic_incl(counter_addr);
+  popf();
+  bind(L);
+}
+
+int MacroAssembler::corrected_idivl(Register reg) {
+  // Full implementation of Java idiv and irem; checks for
+  // special case as described in JVM spec., p.243 & p.271.
+  // The function returns the (pc) offset of the idivl
+  // instruction - may be needed for implicit exceptions.
+  //
+  //         normal case                           special case
+  //
+  // input : rax,: dividend                         min_int
+  //         reg: divisor   (may not be rax,/rdx)   -1
+  //
+  // output: rax,: quotient  (= rax, idiv reg)       min_int
+  //         rdx: remainder (= rax, irem reg)       0
+  assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
+  const int min_int = 0x80000000;
+  Label normal_case, special_case;
+
+  // check for special case
+  cmpl(rax, min_int);
+  jcc(Assembler::notEqual, normal_case);
+  xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
+  cmpl(reg, -1);
+  jcc(Assembler::equal, special_case);
+
+  // handle normal case
+  bind(normal_case);
+  cdql();
+  int idivl_offset = offset();
+  idivl(reg);
+
+  // normal and special case exit
+  bind(special_case);
+
+  return idivl_offset;
+}
+
+
+
+void MacroAssembler::decrementl(Register reg, int value) {
+  if (value == min_jint) {subl(reg, value) ; return; }
+  if (value <  0) { incrementl(reg, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { decl(reg) ; return; }
+  /* else */      { subl(reg, value)       ; return; }
+}
+
+void MacroAssembler::decrementl(Address dst, int value) {
+  if (value == min_jint) {subl(dst, value) ; return; }
+  if (value <  0) { incrementl(dst, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { decl(dst) ; return; }
+  /* else */      { subl(dst, value)       ; return; }
+}
+
+void MacroAssembler::division_with_shift (Register reg, int shift_value) {
+  assert (shift_value > 0, "illegal shift value");
+  Label _is_positive;
+  testl (reg, reg);
+  jcc (Assembler::positive, _is_positive);
+  int offset = (1 << shift_value) - 1 ;
+
+  if (offset == 1) {
+    incrementl(reg);
+  } else {
+    addl(reg, offset);
+  }
+
+  bind (_is_positive);
+  sarl(reg, shift_value);
+}
+
+void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    Assembler::divsd(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::divsd(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    Assembler::divss(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::divss(dst, Address(rscratch1, 0));
+  }
+}
+
+// !defined(COMPILER2) is because of stupid core builds
+#if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
+void MacroAssembler::empty_FPU_stack() {
+  if (VM_Version::supports_mmx()) {
+    emms();
+  } else {
+    for (int i = 8; i-- > 0; ) ffree(i);
+  }
+}
+#endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
+
+
+// Defines obj, preserves var_size_in_bytes
+void MacroAssembler::eden_allocate(Register obj,
+                                   Register var_size_in_bytes,
+                                   int con_size_in_bytes,
+                                   Register t1,
+                                   Label& slow_case) {
+  assert(obj == rax, "obj must be in rax, for cmpxchg");
+  assert_different_registers(obj, var_size_in_bytes, t1);
+  if (!Universe::heap()->supports_inline_contig_alloc()) {
+    jmp(slow_case);
+  } else {
+    Register end = t1;
+    Label retry;
+    bind(retry);
+    ExternalAddress heap_top((address) Universe::heap()->top_addr());
+    movptr(obj, heap_top);
+    if (var_size_in_bytes == noreg) {
+      lea(end, Address(obj, con_size_in_bytes));
+    } else {
+      lea(end, Address(obj, var_size_in_bytes, Address::times_1));
+    }
+    // if end < obj then we wrapped around => object too long => slow case
+    cmpptr(end, obj);
+    jcc(Assembler::below, slow_case);
+    cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
+    jcc(Assembler::above, slow_case);
+    // Compare obj with the top addr, and if still equal, store the new top addr in
+    // end at the address of the top addr pointer. Sets ZF if was equal, and clears
+    // it otherwise. Use lock prefix for atomicity on MPs.
+    locked_cmpxchgptr(end, heap_top);
+    jcc(Assembler::notEqual, retry);
+  }
+}
+
+void MacroAssembler::enter() {
+  push(rbp);
+  mov(rbp, rsp);
+}
+
+// A 5 byte nop that is safe for patching (see patch_verified_entry)
+void MacroAssembler::fat_nop() {
+  if (UseAddressNop) {
+    addr_nop_5();
+  } else {
+    emit_int8(0x26); // es:
+    emit_int8(0x2e); // cs:
+    emit_int8(0x64); // fs:
+    emit_int8(0x65); // gs:
+    emit_int8((unsigned char)0x90);
+  }
+}
+
+void MacroAssembler::fcmp(Register tmp) {
+  fcmp(tmp, 1, true, true);
+}
+
+void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
+  assert(!pop_right || pop_left, "usage error");
+  if (VM_Version::supports_cmov()) {
+    assert(tmp == noreg, "unneeded temp");
+    if (pop_left) {
+      fucomip(index);
+    } else {
+      fucomi(index);
+    }
+    if (pop_right) {
+      fpop();
+    }
+  } else {
+    assert(tmp != noreg, "need temp");
+    if (pop_left) {
+      if (pop_right) {
+        fcompp();
+      } else {
+        fcomp(index);
+      }
+    } else {
+      fcom(index);
+    }
+    // convert FPU condition into eflags condition via rax,
+    save_rax(tmp);
+    fwait(); fnstsw_ax();
+    sahf();
+    restore_rax(tmp);
+  }
+  // condition codes set as follows:
+  //
+  // CF (corresponds to C0) if x < y
+  // PF (corresponds to C2) if unordered
+  // ZF (corresponds to C3) if x = y
+}
+
+void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
+  fcmp2int(dst, unordered_is_less, 1, true, true);
+}
+
+void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
+  fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
+  Label L;
+  if (unordered_is_less) {
+    movl(dst, -1);
+    jcc(Assembler::parity, L);
+    jcc(Assembler::below , L);
+    movl(dst, 0);
+    jcc(Assembler::equal , L);
+    increment(dst);
+  } else { // unordered is greater
+    movl(dst, 1);
+    jcc(Assembler::parity, L);
+    jcc(Assembler::above , L);
+    movl(dst, 0);
+    jcc(Assembler::equal , L);
+    decrementl(dst);
+  }
+  bind(L);
+}
+
+void MacroAssembler::fld_d(AddressLiteral src) {
+  fld_d(as_Address(src));
+}
+
+void MacroAssembler::fld_s(AddressLiteral src) {
+  fld_s(as_Address(src));
+}
+
+void MacroAssembler::fld_x(AddressLiteral src) {
+  Assembler::fld_x(as_Address(src));
+}
+
+void MacroAssembler::fldcw(AddressLiteral src) {
+  Assembler::fldcw(as_Address(src));
+}
+
+void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    Assembler::mulpd(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::mulpd(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::increase_precision() {
+  subptr(rsp, BytesPerWord);
+  fnstcw(Address(rsp, 0));
+  movl(rax, Address(rsp, 0));
+  orl(rax, 0x300);
+  push(rax);
+  fldcw(Address(rsp, 0));
+  pop(rax);
+}
+
+void MacroAssembler::restore_precision() {
+  fldcw(Address(rsp, 0));
+  addptr(rsp, BytesPerWord);
+}
+
+void MacroAssembler::fpop() {
+  ffree();
+  fincstp();
+}
+
+void MacroAssembler::load_float(Address src) {
+  if (UseSSE >= 1) {
+    movflt(xmm0, src);
+  } else {
+    LP64_ONLY(ShouldNotReachHere());
+    NOT_LP64(fld_s(src));
+  }
+}
+
+void MacroAssembler::store_float(Address dst) {
+  if (UseSSE >= 1) {
+    movflt(dst, xmm0);
+  } else {
+    LP64_ONLY(ShouldNotReachHere());
+    NOT_LP64(fstp_s(dst));
+  }
+}
+
+void MacroAssembler::load_double(Address src) {
+  if (UseSSE >= 2) {
+    movdbl(xmm0, src);
+  } else {
+    LP64_ONLY(ShouldNotReachHere());
+    NOT_LP64(fld_d(src));
+  }
+}
+
+void MacroAssembler::store_double(Address dst) {
+  if (UseSSE >= 2) {
+    movdbl(dst, xmm0);
+  } else {
+    LP64_ONLY(ShouldNotReachHere());
+    NOT_LP64(fstp_d(dst));
+  }
+}
+
+void MacroAssembler::fremr(Register tmp) {
+  save_rax(tmp);
+  { Label L;
+    bind(L);
+    fprem();
+    fwait(); fnstsw_ax();
+#ifdef _LP64
+    testl(rax, 0x400);
+    jcc(Assembler::notEqual, L);
+#else
+    sahf();
+    jcc(Assembler::parity, L);
+#endif // _LP64
+  }
+  restore_rax(tmp);
+  // Result is in ST0.
+  // Note: fxch & fpop to get rid of ST1
+  // (otherwise FPU stack could overflow eventually)
+  fxch(1);
+  fpop();
+}
+
+// dst = c = a * b + c
+void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
+  Assembler::vfmadd231sd(c, a, b);
+  if (dst != c) {
+    movdbl(dst, c);
+  }
+}
+
+// dst = c = a * b + c
+void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
+  Assembler::vfmadd231ss(c, a, b);
+  if (dst != c) {
+    movflt(dst, c);
+  }
+}
+
+// dst = c = a * b + c
+void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
+  Assembler::vfmadd231pd(c, a, b, vector_len);
+  if (dst != c) {
+    vmovdqu(dst, c);
+  }
+}
+
+// dst = c = a * b + c
+void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
+  Assembler::vfmadd231ps(c, a, b, vector_len);
+  if (dst != c) {
+    vmovdqu(dst, c);
+  }
+}
+
+// dst = c = a * b + c
+void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
+  Assembler::vfmadd231pd(c, a, b, vector_len);
+  if (dst != c) {
+    vmovdqu(dst, c);
+  }
+}
+
+// dst = c = a * b + c
+void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
+  Assembler::vfmadd231ps(c, a, b, vector_len);
+  if (dst != c) {
+    vmovdqu(dst, c);
+  }
+}
+
+void MacroAssembler::incrementl(AddressLiteral dst) {
+  if (reachable(dst)) {
+    incrementl(as_Address(dst));
+  } else {
+    lea(rscratch1, dst);
+    incrementl(Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::incrementl(ArrayAddress dst) {
+  incrementl(as_Address(dst));
+}
+
+void MacroAssembler::incrementl(Register reg, int value) {
+  if (value == min_jint) {addl(reg, value) ; return; }
+  if (value <  0) { decrementl(reg, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { incl(reg) ; return; }
+  /* else */      { addl(reg, value)       ; return; }
+}
+
+void MacroAssembler::incrementl(Address dst, int value) {
+  if (value == min_jint) {addl(dst, value) ; return; }
+  if (value <  0) { decrementl(dst, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { incl(dst) ; return; }
+  /* else */      { addl(dst, value)       ; return; }
+}
+
+void MacroAssembler::jump(AddressLiteral dst) {
+  if (reachable(dst)) {
+    jmp_literal(dst.target(), dst.rspec());
+  } else {
+    lea(rscratch1, dst);
+    jmp(rscratch1);
+  }
+}
+
+void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
+  if (reachable(dst)) {
+    InstructionMark im(this);
+    relocate(dst.reloc());
+    const int short_size = 2;
+    const int long_size = 6;
+    int offs = (intptr_t)dst.target() - ((intptr_t)pc());
+    if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
+      // 0111 tttn #8-bit disp
+      emit_int8(0x70 | cc);
+      emit_int8((offs - short_size) & 0xFF);
+    } else {
+      // 0000 1111 1000 tttn #32-bit disp
+      emit_int8(0x0F);
+      emit_int8((unsigned char)(0x80 | cc));
+      emit_int32(offs - long_size);
+    }
+  } else {
+#ifdef ASSERT
+    warning("reversing conditional branch");
+#endif /* ASSERT */
+    Label skip;
+    jccb(reverse[cc], skip);
+    lea(rscratch1, dst);
+    Assembler::jmp(rscratch1);
+    bind(skip);
+  }
+}
+
+void MacroAssembler::ldmxcsr(AddressLiteral src) {
+  if (reachable(src)) {
+    Assembler::ldmxcsr(as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::ldmxcsr(Address(rscratch1, 0));
+  }
+}
+
+int MacroAssembler::load_signed_byte(Register dst, Address src) {
+  int off;
+  if (LP64_ONLY(true ||) VM_Version::is_P6()) {
+    off = offset();
+    movsbl(dst, src); // movsxb
+  } else {
+    off = load_unsigned_byte(dst, src);
+    shll(dst, 24);
+    sarl(dst, 24);
+  }
+  return off;
+}
+
+// Note: load_signed_short used to be called load_signed_word.
+// Although the 'w' in x86 opcodes refers to the term "word" in the assembler
+// manual, which means 16 bits, that usage is found nowhere in HotSpot code.
+// The term "word" in HotSpot means a 32- or 64-bit machine word.
+int MacroAssembler::load_signed_short(Register dst, Address src) {
+  int off;
+  if (LP64_ONLY(true ||) VM_Version::is_P6()) {
+    // This is dubious to me since it seems safe to do a signed 16 => 64 bit
+    // version but this is what 64bit has always done. This seems to imply
+    // that users are only using 32bits worth.
+    off = offset();
+    movswl(dst, src); // movsxw
+  } else {
+    off = load_unsigned_short(dst, src);
+    shll(dst, 16);
+    sarl(dst, 16);
+  }
+  return off;
+}
+
+int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
+  // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
+  // and "3.9 Partial Register Penalties", p. 22).
+  int off;
+  if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
+    off = offset();
+    movzbl(dst, src); // movzxb
+  } else {
+    xorl(dst, dst);
+    off = offset();
+    movb(dst, src);
+  }
+  return off;
+}
+
+// Note: load_unsigned_short used to be called load_unsigned_word.
+int MacroAssembler::load_unsigned_short(Register dst, Address src) {
+  // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
+  // and "3.9 Partial Register Penalties", p. 22).
+  int off;
+  if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
+    off = offset();
+    movzwl(dst, src); // movzxw
+  } else {
+    xorl(dst, dst);
+    off = offset();
+    movw(dst, src);
+  }
+  return off;
+}
+
+void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
+  switch (size_in_bytes) {
+#ifndef _LP64
+  case  8:
+    assert(dst2 != noreg, "second dest register required");
+    movl(dst,  src);
+    movl(dst2, src.plus_disp(BytesPerInt));
+    break;
+#else
+  case  8:  movq(dst, src); break;
+#endif
+  case  4:  movl(dst, src); break;
+  case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
+  case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
+  default:  ShouldNotReachHere();
+  }
+}
+
+void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
+  switch (size_in_bytes) {
+#ifndef _LP64
+  case  8:
+    assert(src2 != noreg, "second source register required");
+    movl(dst,                        src);
+    movl(dst.plus_disp(BytesPerInt), src2);
+    break;
+#else
+  case  8:  movq(dst, src); break;
+#endif
+  case  4:  movl(dst, src); break;
+  case  2:  movw(dst, src); break;
+  case  1:  movb(dst, src); break;
+  default:  ShouldNotReachHere();
+  }
+}
+
+void MacroAssembler::mov32(AddressLiteral dst, Register src) {
+  if (reachable(dst)) {
+    movl(as_Address(dst), src);
+  } else {
+    lea(rscratch1, dst);
+    movl(Address(rscratch1, 0), src);
+  }
+}
+
+void MacroAssembler::mov32(Register dst, AddressLiteral src) {
+  if (reachable(src)) {
+    movl(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    movl(dst, Address(rscratch1, 0));
+  }
+}
+
+// C++ bool manipulation
+
+void MacroAssembler::movbool(Register dst, Address src) {
+  if(sizeof(bool) == 1)
+    movb(dst, src);
+  else if(sizeof(bool) == 2)
+    movw(dst, src);
+  else if(sizeof(bool) == 4)
+    movl(dst, src);
+  else
+    // unsupported
+    ShouldNotReachHere();
+}
+
+void MacroAssembler::movbool(Address dst, bool boolconst) {
+  if(sizeof(bool) == 1)
+    movb(dst, (int) boolconst);
+  else if(sizeof(bool) == 2)
+    movw(dst, (int) boolconst);
+  else if(sizeof(bool) == 4)
+    movl(dst, (int) boolconst);
+  else
+    // unsupported
+    ShouldNotReachHere();
+}
+
+void MacroAssembler::movbool(Address dst, Register src) {
+  if(sizeof(bool) == 1)
+    movb(dst, src);
+  else if(sizeof(bool) == 2)
+    movw(dst, src);
+  else if(sizeof(bool) == 4)
+    movl(dst, src);
+  else
+    // unsupported
+    ShouldNotReachHere();
+}
+
+void MacroAssembler::movbyte(ArrayAddress dst, int src) {
+  movb(as_Address(dst), src);
+}
+
+void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    movdl(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    movdl(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    movq(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    movq(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::setvectmask(Register dst, Register src) {
+  Assembler::movl(dst, 1);
+  Assembler::shlxl(dst, dst, src);
+  Assembler::decl(dst);
+  Assembler::kmovdl(k1, dst);
+  Assembler::movl(dst, src);
+}
+
+void MacroAssembler::restorevectmask() {
+  Assembler::knotwl(k1, k0);
+}
+
+void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    if (UseXmmLoadAndClearUpper) {
+      movsd (dst, as_Address(src));
+    } else {
+      movlpd(dst, as_Address(src));
+    }
+  } else {
+    lea(rscratch1, src);
+    if (UseXmmLoadAndClearUpper) {
+      movsd (dst, Address(rscratch1, 0));
+    } else {
+      movlpd(dst, Address(rscratch1, 0));
+    }
+  }
+}
+
+void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    movss(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    movss(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::movptr(Register dst, Register src) {
+  LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
+}
+
+void MacroAssembler::movptr(Register dst, Address src) {
+  LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
+}
+
+// src should NEVER be a real pointer. Use AddressLiteral for true pointers
+void MacroAssembler::movptr(Register dst, intptr_t src) {
+  LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
+}
+
+void MacroAssembler::movptr(Address dst, Register src) {
+  LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
+}
+
+void MacroAssembler::movdqu(Address dst, XMMRegister src) {
+  if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
+    Assembler::vextractf32x4(dst, src, 0);
+  } else {
+    Assembler::movdqu(dst, src);
+  }
+}
+
+void MacroAssembler::movdqu(XMMRegister dst, Address src) {
+  if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
+    Assembler::vinsertf32x4(dst, dst, src, 0);
+  } else {
+    Assembler::movdqu(dst, src);
+  }
+}
+
+void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
+  if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
+    Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
+  } else {
+    Assembler::movdqu(dst, src);
+  }
+}
+
+void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) {
+  if (reachable(src)) {
+    movdqu(dst, as_Address(src));
+  } else {
+    lea(scratchReg, src);
+    movdqu(dst, Address(scratchReg, 0));
+  }
+}
+
+void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
+  if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
+    vextractf64x4_low(dst, src);
+  } else {
+    Assembler::vmovdqu(dst, src);
+  }
+}
+
+void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
+  if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
+    vinsertf64x4_low(dst, src);
+  } else {
+    Assembler::vmovdqu(dst, src);
+  }
+}
+
+void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
+  if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
+    Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
+  }
+  else {
+    Assembler::vmovdqu(dst, src);
+  }
+}
+
+void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    vmovdqu(dst, as_Address(src));
+  }
+  else {
+    lea(rscratch1, src);
+    vmovdqu(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    Assembler::movdqa(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::movdqa(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    Assembler::movsd(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::movsd(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    Assembler::movss(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::movss(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    Assembler::mulsd(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::mulsd(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    Assembler::mulss(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::mulss(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::null_check(Register reg, int offset) {
+  if (needs_explicit_null_check(offset)) {
+    // provoke OS NULL exception if reg = NULL by
+    // accessing M[reg] w/o changing any (non-CC) registers
+    // NOTE: cmpl is plenty here to provoke a segv
+    cmpptr(rax, Address(reg, 0));
+    // Note: should probably use testl(rax, Address(reg, 0));
+    //       may be shorter code (however, this version of
+    //       testl needs to be implemented first)
+  } else {
+    // nothing to do, (later) access of M[reg + offset]
+    // will provoke OS NULL exception if reg = NULL
+  }
+}
+
+void MacroAssembler::os_breakpoint() {
+  // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
+  // (e.g., MSVC can't call ps() otherwise)
+  call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
+}
+
+void MacroAssembler::unimplemented(const char* what) {
+  char* b = new char[1024];
+  jio_snprintf(b, 1024, "unimplemented: %s", what);
+  stop(b);
+}
+
+#ifdef _LP64
+#define XSTATE_BV 0x200
+#endif
+
+void MacroAssembler::pop_CPU_state() {
+  pop_FPU_state();
+  pop_IU_state();
+}
+
+void MacroAssembler::pop_FPU_state() {
+#ifndef _LP64
+  frstor(Address(rsp, 0));
+#else
+  fxrstor(Address(rsp, 0));
+#endif
+  addptr(rsp, FPUStateSizeInWords * wordSize);
+}
+
+void MacroAssembler::pop_IU_state() {
+  popa();
+  LP64_ONLY(addq(rsp, 8));
+  popf();
+}
+
+// Save Integer and Float state
+// Warning: Stack must be 16 byte aligned (64bit)
+void MacroAssembler::push_CPU_state() {
+  push_IU_state();
+  push_FPU_state();
+}
+
+void MacroAssembler::push_FPU_state() {
+  subptr(rsp, FPUStateSizeInWords * wordSize);
+#ifndef _LP64
+  fnsave(Address(rsp, 0));
+  fwait();
+#else
+  fxsave(Address(rsp, 0));
+#endif // LP64
+}
+
+void MacroAssembler::push_IU_state() {
+  // Push flags first because pusha kills them
+  pushf();
+  // Make sure rsp stays 16-byte aligned
+  LP64_ONLY(subq(rsp, 8));
+  pusha();
+}
+
+void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
+  if (!java_thread->is_valid()) {
+    java_thread = rdi;
+    get_thread(java_thread);
+  }
+  // we must set sp to zero to clear frame
+  movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
+  if (clear_fp) {
+    movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
+  }
+
+  // Always clear the pc because it could have been set by make_walkable()
+  movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
+
+  vzeroupper();
+}
+
+void MacroAssembler::restore_rax(Register tmp) {
+  if (tmp == noreg) pop(rax);
+  else if (tmp != rax) mov(rax, tmp);
+}
+
+void MacroAssembler::round_to(Register reg, int modulus) {
+  addptr(reg, modulus - 1);
+  andptr(reg, -modulus);
+}
+
+void MacroAssembler::save_rax(Register tmp) {
+  if (tmp == noreg) push(rax);
+  else if (tmp != rax) mov(tmp, rax);
+}
+
+// Write serialization page so VM thread can do a pseudo remote membar.
+// We use the current thread pointer to calculate a thread specific
+// offset to write to within the page. This minimizes bus traffic
+// due to cache line collision.
+void MacroAssembler::serialize_memory(Register thread, Register tmp) {
+  movl(tmp, thread);
+  shrl(tmp, os::get_serialize_page_shift_count());
+  andl(tmp, (os::vm_page_size() - sizeof(int)));
+
+  Address index(noreg, tmp, Address::times_1);
+  ExternalAddress page(os::get_memory_serialize_page());
+
+  // Size of store must match masking code above
+  movl(as_Address(ArrayAddress(page, index)), tmp);
+}
+
+// Calls to C land
+//
+// When entering C land, the rbp, & rsp of the last Java frame have to be recorded
+// in the (thread-local) JavaThread object. When leaving C land, the last Java fp
+// has to be reset to 0. This is required to allow proper stack traversal.
+void MacroAssembler::set_last_Java_frame(Register java_thread,
+                                         Register last_java_sp,
+                                         Register last_java_fp,
+                                         address  last_java_pc) {
+  vzeroupper();
+  // determine java_thread register
+  if (!java_thread->is_valid()) {
+    java_thread = rdi;
+    get_thread(java_thread);
+  }
+  // determine last_java_sp register
+  if (!last_java_sp->is_valid()) {
+    last_java_sp = rsp;
+  }
+
+  // last_java_fp is optional
+
+  if (last_java_fp->is_valid()) {
+    movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
+  }
+
+  // last_java_pc is optional
+
+  if (last_java_pc != NULL) {
+    lea(Address(java_thread,
+                 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
+        InternalAddress(last_java_pc));
+
+  }
+  movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
+}
+
+void MacroAssembler::shlptr(Register dst, int imm8) {
+  LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
+}
+
+void MacroAssembler::shrptr(Register dst, int imm8) {
+  LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
+}
+
+void MacroAssembler::sign_extend_byte(Register reg) {
+  if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
+    movsbl(reg, reg); // movsxb
+  } else {
+    shll(reg, 24);
+    sarl(reg, 24);
+  }
+}
+
+void MacroAssembler::sign_extend_short(Register reg) {
+  if (LP64_ONLY(true ||) VM_Version::is_P6()) {
+    movswl(reg, reg); // movsxw
+  } else {
+    shll(reg, 16);
+    sarl(reg, 16);
+  }
+}
+
+void MacroAssembler::testl(Register dst, AddressLiteral src) {
+  assert(reachable(src), "Address should be reachable");
+  testl(dst, as_Address(src));
+}
+
+void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
+  int dst_enc = dst->encoding();
+  int src_enc = src->encoding();
+  if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
+    Assembler::pcmpeqb(dst, src);
+  } else if ((dst_enc < 16) && (src_enc < 16)) {
+    Assembler::pcmpeqb(dst, src);
+  } else if (src_enc < 16) {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::pcmpeqb(xmm0, src);
+    movdqu(dst, xmm0);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  } else if (dst_enc < 16) {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, src, Assembler::AVX_512bit);
+    Assembler::pcmpeqb(dst, xmm0);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  } else {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
+    movdqu(xmm0, src);
+    movdqu(xmm1, dst);
+    Assembler::pcmpeqb(xmm1, xmm0);
+    movdqu(dst, xmm1);
+    evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  }
+}
+
+void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
+  int dst_enc = dst->encoding();
+  int src_enc = src->encoding();
+  if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
+    Assembler::pcmpeqw(dst, src);
+  } else if ((dst_enc < 16) && (src_enc < 16)) {
+    Assembler::pcmpeqw(dst, src);
+  } else if (src_enc < 16) {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::pcmpeqw(xmm0, src);
+    movdqu(dst, xmm0);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  } else if (dst_enc < 16) {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, src, Assembler::AVX_512bit);
+    Assembler::pcmpeqw(dst, xmm0);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  } else {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
+    movdqu(xmm0, src);
+    movdqu(xmm1, dst);
+    Assembler::pcmpeqw(xmm1, xmm0);
+    movdqu(dst, xmm1);
+    evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  }
+}
+
+void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
+  int dst_enc = dst->encoding();
+  if (dst_enc < 16) {
+    Assembler::pcmpestri(dst, src, imm8);
+  } else {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::pcmpestri(xmm0, src, imm8);
+    movdqu(dst, xmm0);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  }
+}
+
+void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
+  int dst_enc = dst->encoding();
+  int src_enc = src->encoding();
+  if ((dst_enc < 16) && (src_enc < 16)) {
+    Assembler::pcmpestri(dst, src, imm8);
+  } else if (src_enc < 16) {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::pcmpestri(xmm0, src, imm8);
+    movdqu(dst, xmm0);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  } else if (dst_enc < 16) {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, src, Assembler::AVX_512bit);
+    Assembler::pcmpestri(dst, xmm0, imm8);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  } else {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
+    movdqu(xmm0, src);
+    movdqu(xmm1, dst);
+    Assembler::pcmpestri(xmm1, xmm0, imm8);
+    movdqu(dst, xmm1);
+    evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  }
+}
+
+void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
+  int dst_enc = dst->encoding();
+  int src_enc = src->encoding();
+  if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
+    Assembler::pmovzxbw(dst, src);
+  } else if ((dst_enc < 16) && (src_enc < 16)) {
+    Assembler::pmovzxbw(dst, src);
+  } else if (src_enc < 16) {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::pmovzxbw(xmm0, src);
+    movdqu(dst, xmm0);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  } else if (dst_enc < 16) {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, src, Assembler::AVX_512bit);
+    Assembler::pmovzxbw(dst, xmm0);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  } else {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
+    movdqu(xmm0, src);
+    movdqu(xmm1, dst);
+    Assembler::pmovzxbw(xmm1, xmm0);
+    movdqu(dst, xmm1);
+    evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  }
+}
+
+void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
+  int dst_enc = dst->encoding();
+  if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
+    Assembler::pmovzxbw(dst, src);
+  } else if (dst_enc < 16) {
+    Assembler::pmovzxbw(dst, src);
+  } else {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::pmovzxbw(xmm0, src);
+    movdqu(dst, xmm0);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  }
+}
+
+void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
+  int src_enc = src->encoding();
+  if (src_enc < 16) {
+    Assembler::pmovmskb(dst, src);
+  } else {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, src, Assembler::AVX_512bit);
+    Assembler::pmovmskb(dst, xmm0);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  }
+}
+
+void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
+  int dst_enc = dst->encoding();
+  int src_enc = src->encoding();
+  if ((dst_enc < 16) && (src_enc < 16)) {
+    Assembler::ptest(dst, src);
+  } else if (src_enc < 16) {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::ptest(xmm0, src);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  } else if (dst_enc < 16) {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, src, Assembler::AVX_512bit);
+    Assembler::ptest(dst, xmm0);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  } else {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
+    movdqu(xmm0, src);
+    movdqu(xmm1, dst);
+    Assembler::ptest(xmm1, xmm0);
+    evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  }
+}
+
+void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    Assembler::sqrtsd(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::sqrtsd(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    Assembler::sqrtss(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::sqrtss(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    Assembler::subsd(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::subsd(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    Assembler::subss(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::subss(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    Assembler::ucomisd(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::ucomisd(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    Assembler::ucomiss(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::ucomiss(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
+  // Used in sign-bit flipping with aligned address.
+  assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
+  if (reachable(src)) {
+    Assembler::xorpd(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::xorpd(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
+  if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
+    Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
+  }
+  else {
+    Assembler::xorpd(dst, src);
+  }
+}
+
+void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
+  if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
+    Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
+  } else {
+    Assembler::xorps(dst, src);
+  }
+}
+
+void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
+  // Used in sign-bit flipping with aligned address.
+  assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
+  if (reachable(src)) {
+    Assembler::xorps(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::xorps(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
+  // Used in sign-bit flipping with aligned address.
+  bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
+  assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
+  if (reachable(src)) {
+    Assembler::pshufb(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::pshufb(dst, Address(rscratch1, 0));
+  }
+}
+
+// AVX 3-operands instructions
+
+void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
+  if (reachable(src)) {
+    vaddsd(dst, nds, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    vaddsd(dst, nds, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
+  if (reachable(src)) {
+    vaddss(dst, nds, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    vaddss(dst, nds, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
+  int dst_enc = dst->encoding();
+  int nds_enc = nds->encoding();
+  int src_enc = src->encoding();
+  if ((dst_enc < 16) && (nds_enc < 16)) {
+    vandps(dst, nds, negate_field, vector_len);
+  } else if ((src_enc < 16) && (dst_enc < 16)) {
+    evmovdqul(src, nds, Assembler::AVX_512bit);
+    vandps(dst, src, negate_field, vector_len);
+  } else if (src_enc < 16) {
+    evmovdqul(src, nds, Assembler::AVX_512bit);
+    vandps(src, src, negate_field, vector_len);
+    evmovdqul(dst, src, Assembler::AVX_512bit);
+  } else if (dst_enc < 16) {
+    evmovdqul(src, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+    vandps(dst, xmm0, negate_field, vector_len);
+    evmovdqul(xmm0, src, Assembler::AVX_512bit);
+  } else {
+    if (src_enc != dst_enc) {
+      evmovdqul(src, xmm0, Assembler::AVX_512bit);
+      evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+      vandps(xmm0, xmm0, negate_field, vector_len);
+      evmovdqul(dst, xmm0, Assembler::AVX_512bit);
+      evmovdqul(xmm0, src, Assembler::AVX_512bit);
+    } else {
+      subptr(rsp, 64);
+      evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+      evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+      vandps(xmm0, xmm0, negate_field, vector_len);
+      evmovdqul(dst, xmm0, Assembler::AVX_512bit);
+      evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+      addptr(rsp, 64);
+    }
+  }
+}
+
+void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
+  int dst_enc = dst->encoding();
+  int nds_enc = nds->encoding();
+  int src_enc = src->encoding();
+  if ((dst_enc < 16) && (nds_enc < 16)) {
+    vandpd(dst, nds, negate_field, vector_len);
+  } else if ((src_enc < 16) && (dst_enc < 16)) {
+    evmovdqul(src, nds, Assembler::AVX_512bit);
+    vandpd(dst, src, negate_field, vector_len);
+  } else if (src_enc < 16) {
+    evmovdqul(src, nds, Assembler::AVX_512bit);
+    vandpd(src, src, negate_field, vector_len);
+    evmovdqul(dst, src, Assembler::AVX_512bit);
+  } else if (dst_enc < 16) {
+    evmovdqul(src, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+    vandpd(dst, xmm0, negate_field, vector_len);
+    evmovdqul(xmm0, src, Assembler::AVX_512bit);
+  } else {
+    if (src_enc != dst_enc) {
+      evmovdqul(src, xmm0, Assembler::AVX_512bit);
+      evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+      vandpd(xmm0, xmm0, negate_field, vector_len);
+      evmovdqul(dst, xmm0, Assembler::AVX_512bit);
+      evmovdqul(xmm0, src, Assembler::AVX_512bit);
+    } else {
+      subptr(rsp, 64);
+      evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+      evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+      vandpd(xmm0, xmm0, negate_field, vector_len);
+      evmovdqul(dst, xmm0, Assembler::AVX_512bit);
+      evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+      addptr(rsp, 64);
+    }
+  }
+}
+
+void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+  int dst_enc = dst->encoding();
+  int nds_enc = nds->encoding();
+  int src_enc = src->encoding();
+  if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
+    Assembler::vpaddb(dst, nds, src, vector_len);
+  } else if ((dst_enc < 16) && (src_enc < 16)) {
+    Assembler::vpaddb(dst, dst, src, vector_len);
+  } else if ((dst_enc < 16) && (nds_enc < 16)) {
+    // use nds as scratch for src
+    evmovdqul(nds, src, Assembler::AVX_512bit);
+    Assembler::vpaddb(dst, dst, nds, vector_len);
+  } else if ((src_enc < 16) && (nds_enc < 16)) {
+    // use nds as scratch for dst
+    evmovdqul(nds, dst, Assembler::AVX_512bit);
+    Assembler::vpaddb(nds, nds, src, vector_len);
+    evmovdqul(dst, nds, Assembler::AVX_512bit);
+  } else if (dst_enc < 16) {
+    // use nds as scatch for xmm0 to hold src
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, src, Assembler::AVX_512bit);
+    Assembler::vpaddb(dst, dst, xmm0, vector_len);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+  } else {
+    // worse case scenario, all regs are in the upper bank
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm1, src, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::vpaddb(xmm0, xmm0, xmm1, vector_len);
+    evmovdqul(dst, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+    evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  }
+}
+
+void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
+  int dst_enc = dst->encoding();
+  int nds_enc = nds->encoding();
+  if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
+    Assembler::vpaddb(dst, nds, src, vector_len);
+  } else if (dst_enc < 16) {
+    Assembler::vpaddb(dst, dst, src, vector_len);
+  } else if (nds_enc < 16) {
+    // implies dst_enc in upper bank with src as scratch
+    evmovdqul(nds, dst, Assembler::AVX_512bit);
+    Assembler::vpaddb(nds, nds, src, vector_len);
+    evmovdqul(dst, nds, Assembler::AVX_512bit);
+  } else {
+    // worse case scenario, all regs in upper bank
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::vpaddb(xmm0, xmm0, src, vector_len);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+  }
+}
+
+void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+  int dst_enc = dst->encoding();
+  int nds_enc = nds->encoding();
+  int src_enc = src->encoding();
+  if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
+    Assembler::vpaddw(dst, nds, src, vector_len);
+  } else if ((dst_enc < 16) && (src_enc < 16)) {
+    Assembler::vpaddw(dst, dst, src, vector_len);
+  } else if ((dst_enc < 16) && (nds_enc < 16)) {
+    // use nds as scratch for src
+    evmovdqul(nds, src, Assembler::AVX_512bit);
+    Assembler::vpaddw(dst, dst, nds, vector_len);
+  } else if ((src_enc < 16) && (nds_enc < 16)) {
+    // use nds as scratch for dst
+    evmovdqul(nds, dst, Assembler::AVX_512bit);
+    Assembler::vpaddw(nds, nds, src, vector_len);
+    evmovdqul(dst, nds, Assembler::AVX_512bit);
+  } else if (dst_enc < 16) {
+    // use nds as scatch for xmm0 to hold src
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, src, Assembler::AVX_512bit);
+    Assembler::vpaddw(dst, dst, xmm0, vector_len);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+  } else {
+    // worse case scenario, all regs are in the upper bank
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm1, src, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::vpaddw(xmm0, xmm0, xmm1, vector_len);
+    evmovdqul(dst, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+    evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  }
+}
+
+void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
+  int dst_enc = dst->encoding();
+  int nds_enc = nds->encoding();
+  if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
+    Assembler::vpaddw(dst, nds, src, vector_len);
+  } else if (dst_enc < 16) {
+    Assembler::vpaddw(dst, dst, src, vector_len);
+  } else if (nds_enc < 16) {
+    // implies dst_enc in upper bank with src as scratch
+    evmovdqul(nds, dst, Assembler::AVX_512bit);
+    Assembler::vpaddw(nds, nds, src, vector_len);
+    evmovdqul(dst, nds, Assembler::AVX_512bit);
+  } else {
+    // worse case scenario, all regs in upper bank
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::vpaddw(xmm0, xmm0, src, vector_len);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+  }
+}
+
+void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
+  if (reachable(src)) {
+    Assembler::vpand(dst, nds, as_Address(src), vector_len);
+  } else {
+    lea(rscratch1, src);
+    Assembler::vpand(dst, nds, Address(rscratch1, 0), vector_len);
+  }
+}
+
+void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
+  int dst_enc = dst->encoding();
+  int src_enc = src->encoding();
+  if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
+    Assembler::vpbroadcastw(dst, src);
+  } else if ((dst_enc < 16) && (src_enc < 16)) {
+    Assembler::vpbroadcastw(dst, src);
+  } else if (src_enc < 16) {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::vpbroadcastw(xmm0, src);
+    movdqu(dst, xmm0);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  } else if (dst_enc < 16) {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, src, Assembler::AVX_512bit);
+    Assembler::vpbroadcastw(dst, xmm0);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  } else {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
+    movdqu(xmm0, src);
+    movdqu(xmm1, dst);
+    Assembler::vpbroadcastw(xmm1, xmm0);
+    movdqu(dst, xmm1);
+    evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  }
+}
+
+void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+  int dst_enc = dst->encoding();
+  int nds_enc = nds->encoding();
+  int src_enc = src->encoding();
+  assert(dst_enc == nds_enc, "");
+  if ((dst_enc < 16) && (src_enc < 16)) {
+    Assembler::vpcmpeqb(dst, nds, src, vector_len);
+  } else if (src_enc < 16) {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::vpcmpeqb(xmm0, xmm0, src, vector_len);
+    movdqu(dst, xmm0);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  } else if (dst_enc < 16) {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, src, Assembler::AVX_512bit);
+    Assembler::vpcmpeqb(dst, dst, xmm0, vector_len);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  } else {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
+    movdqu(xmm0, src);
+    movdqu(xmm1, dst);
+    Assembler::vpcmpeqb(xmm1, xmm1, xmm0, vector_len);
+    movdqu(dst, xmm1);
+    evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  }
+}
+
+void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+  int dst_enc = dst->encoding();
+  int nds_enc = nds->encoding();
+  int src_enc = src->encoding();
+  assert(dst_enc == nds_enc, "");
+  if ((dst_enc < 16) && (src_enc < 16)) {
+    Assembler::vpcmpeqw(dst, nds, src, vector_len);
+  } else if (src_enc < 16) {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::vpcmpeqw(xmm0, xmm0, src, vector_len);
+    movdqu(dst, xmm0);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  } else if (dst_enc < 16) {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, src, Assembler::AVX_512bit);
+    Assembler::vpcmpeqw(dst, dst, xmm0, vector_len);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  } else {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
+    movdqu(xmm0, src);
+    movdqu(xmm1, dst);
+    Assembler::vpcmpeqw(xmm1, xmm1, xmm0, vector_len);
+    movdqu(dst, xmm1);
+    evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  }
+}
+
+void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
+  int dst_enc = dst->encoding();
+  if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
+    Assembler::vpmovzxbw(dst, src, vector_len);
+  } else if (dst_enc < 16) {
+    Assembler::vpmovzxbw(dst, src, vector_len);
+  } else {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::vpmovzxbw(xmm0, src, vector_len);
+    movdqu(dst, xmm0);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  }
+}
+
+void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
+  int src_enc = src->encoding();
+  if (src_enc < 16) {
+    Assembler::vpmovmskb(dst, src);
+  } else {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, src, Assembler::AVX_512bit);
+    Assembler::vpmovmskb(dst, xmm0);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  }
+}
+
+void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+  int dst_enc = dst->encoding();
+  int nds_enc = nds->encoding();
+  int src_enc = src->encoding();
+  if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
+    Assembler::vpmullw(dst, nds, src, vector_len);
+  } else if ((dst_enc < 16) && (src_enc < 16)) {
+    Assembler::vpmullw(dst, dst, src, vector_len);
+  } else if ((dst_enc < 16) && (nds_enc < 16)) {
+    // use nds as scratch for src
+    evmovdqul(nds, src, Assembler::AVX_512bit);
+    Assembler::vpmullw(dst, dst, nds, vector_len);
+  } else if ((src_enc < 16) && (nds_enc < 16)) {
+    // use nds as scratch for dst
+    evmovdqul(nds, dst, Assembler::AVX_512bit);
+    Assembler::vpmullw(nds, nds, src, vector_len);
+    evmovdqul(dst, nds, Assembler::AVX_512bit);
+  } else if (dst_enc < 16) {
+    // use nds as scatch for xmm0 to hold src
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, src, Assembler::AVX_512bit);
+    Assembler::vpmullw(dst, dst, xmm0, vector_len);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+  } else {
+    // worse case scenario, all regs are in the upper bank
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm1, src, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::vpmullw(xmm0, xmm0, xmm1, vector_len);
+    evmovdqul(dst, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+    evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  }
+}
+
+void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
+  int dst_enc = dst->encoding();
+  int nds_enc = nds->encoding();
+  if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
+    Assembler::vpmullw(dst, nds, src, vector_len);
+  } else if (dst_enc < 16) {
+    Assembler::vpmullw(dst, dst, src, vector_len);
+  } else if (nds_enc < 16) {
+    // implies dst_enc in upper bank with src as scratch
+    evmovdqul(nds, dst, Assembler::AVX_512bit);
+    Assembler::vpmullw(nds, nds, src, vector_len);
+    evmovdqul(dst, nds, Assembler::AVX_512bit);
+  } else {
+    // worse case scenario, all regs in upper bank
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::vpmullw(xmm0, xmm0, src, vector_len);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+  }
+}
+
+void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+  int dst_enc = dst->encoding();
+  int nds_enc = nds->encoding();
+  int src_enc = src->encoding();
+  if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
+    Assembler::vpsubb(dst, nds, src, vector_len);
+  } else if ((dst_enc < 16) && (src_enc < 16)) {
+    Assembler::vpsubb(dst, dst, src, vector_len);
+  } else if ((dst_enc < 16) && (nds_enc < 16)) {
+    // use nds as scratch for src
+    evmovdqul(nds, src, Assembler::AVX_512bit);
+    Assembler::vpsubb(dst, dst, nds, vector_len);
+  } else if ((src_enc < 16) && (nds_enc < 16)) {
+    // use nds as scratch for dst
+    evmovdqul(nds, dst, Assembler::AVX_512bit);
+    Assembler::vpsubb(nds, nds, src, vector_len);
+    evmovdqul(dst, nds, Assembler::AVX_512bit);
+  } else if (dst_enc < 16) {
+    // use nds as scatch for xmm0 to hold src
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, src, Assembler::AVX_512bit);
+    Assembler::vpsubb(dst, dst, xmm0, vector_len);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+  } else {
+    // worse case scenario, all regs are in the upper bank
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm1, src, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::vpsubb(xmm0, xmm0, xmm1, vector_len);
+    evmovdqul(dst, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+    evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  }
+}
+
+void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
+  int dst_enc = dst->encoding();
+  int nds_enc = nds->encoding();
+  if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
+    Assembler::vpsubb(dst, nds, src, vector_len);
+  } else if (dst_enc < 16) {
+    Assembler::vpsubb(dst, dst, src, vector_len);
+  } else if (nds_enc < 16) {
+    // implies dst_enc in upper bank with src as scratch
+    evmovdqul(nds, dst, Assembler::AVX_512bit);
+    Assembler::vpsubb(nds, nds, src, vector_len);
+    evmovdqul(dst, nds, Assembler::AVX_512bit);
+  } else {
+    // worse case scenario, all regs in upper bank
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::vpsubw(xmm0, xmm0, src, vector_len);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+  }
+}
+
+void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+  int dst_enc = dst->encoding();
+  int nds_enc = nds->encoding();
+  int src_enc = src->encoding();
+  if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
+    Assembler::vpsubw(dst, nds, src, vector_len);
+  } else if ((dst_enc < 16) && (src_enc < 16)) {
+    Assembler::vpsubw(dst, dst, src, vector_len);
+  } else if ((dst_enc < 16) && (nds_enc < 16)) {
+    // use nds as scratch for src
+    evmovdqul(nds, src, Assembler::AVX_512bit);
+    Assembler::vpsubw(dst, dst, nds, vector_len);
+  } else if ((src_enc < 16) && (nds_enc < 16)) {
+    // use nds as scratch for dst
+    evmovdqul(nds, dst, Assembler::AVX_512bit);
+    Assembler::vpsubw(nds, nds, src, vector_len);
+    evmovdqul(dst, nds, Assembler::AVX_512bit);
+  } else if (dst_enc < 16) {
+    // use nds as scatch for xmm0 to hold src
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, src, Assembler::AVX_512bit);
+    Assembler::vpsubw(dst, dst, xmm0, vector_len);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+  } else {
+    // worse case scenario, all regs are in the upper bank
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm1, src, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::vpsubw(xmm0, xmm0, xmm1, vector_len);
+    evmovdqul(dst, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+    evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  }
+}
+
+void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
+  int dst_enc = dst->encoding();
+  int nds_enc = nds->encoding();
+  if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
+    Assembler::vpsubw(dst, nds, src, vector_len);
+  } else if (dst_enc < 16) {
+    Assembler::vpsubw(dst, dst, src, vector_len);
+  } else if (nds_enc < 16) {
+    // implies dst_enc in upper bank with src as scratch
+    evmovdqul(nds, dst, Assembler::AVX_512bit);
+    Assembler::vpsubw(nds, nds, src, vector_len);
+    evmovdqul(dst, nds, Assembler::AVX_512bit);
+  } else {
+    // worse case scenario, all regs in upper bank
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::vpsubw(xmm0, xmm0, src, vector_len);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+  }
+}
+
+void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
+  int dst_enc = dst->encoding();
+  int nds_enc = nds->encoding();
+  int shift_enc = shift->encoding();
+  if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
+    Assembler::vpsraw(dst, nds, shift, vector_len);
+  } else if ((dst_enc < 16) && (shift_enc < 16)) {
+    Assembler::vpsraw(dst, dst, shift, vector_len);
+  } else if ((dst_enc < 16) && (nds_enc < 16)) {
+    // use nds_enc as scratch with shift
+    evmovdqul(nds, shift, Assembler::AVX_512bit);
+    Assembler::vpsraw(dst, dst, nds, vector_len);
+  } else if ((shift_enc < 16) && (nds_enc < 16)) {
+    // use nds as scratch with dst
+    evmovdqul(nds, dst, Assembler::AVX_512bit);
+    Assembler::vpsraw(nds, nds, shift, vector_len);
+    evmovdqul(dst, nds, Assembler::AVX_512bit);
+  } else if (dst_enc < 16) {
+    // use nds to save a copy of xmm0 and hold shift
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, shift, Assembler::AVX_512bit);
+    Assembler::vpsraw(dst, dst, xmm0, vector_len);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+  } else if (nds_enc < 16) {
+    // use nds as dest as temps
+    evmovdqul(nds, dst, Assembler::AVX_512bit);
+    evmovdqul(dst, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, shift, Assembler::AVX_512bit);
+    Assembler::vpsraw(nds, nds, xmm0, vector_len);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    evmovdqul(dst, nds, Assembler::AVX_512bit);
+  } else {
+    // worse case scenario, all regs are in the upper bank
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm1, shift, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
+    evmovdqul(xmm1, dst, Assembler::AVX_512bit);
+    evmovdqul(dst, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+    evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  }
+}
+
+void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
+  int dst_enc = dst->encoding();
+  int nds_enc = nds->encoding();
+  if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
+    Assembler::vpsraw(dst, nds, shift, vector_len);
+  } else if (dst_enc < 16) {
+    Assembler::vpsraw(dst, dst, shift, vector_len);
+  } else if (nds_enc < 16) {
+    // use nds as scratch
+    evmovdqul(nds, dst, Assembler::AVX_512bit);
+    Assembler::vpsraw(nds, nds, shift, vector_len);
+    evmovdqul(dst, nds, Assembler::AVX_512bit);
+  } else {
+    // use nds as scratch for xmm0
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::vpsraw(xmm0, xmm0, shift, vector_len);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+  }
+}
+
+void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
+  int dst_enc = dst->encoding();
+  int nds_enc = nds->encoding();
+  int shift_enc = shift->encoding();
+  if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
+    Assembler::vpsrlw(dst, nds, shift, vector_len);
+  } else if ((dst_enc < 16) && (shift_enc < 16)) {
+    Assembler::vpsrlw(dst, dst, shift, vector_len);
+  } else if ((dst_enc < 16) && (nds_enc < 16)) {
+    // use nds_enc as scratch with shift
+    evmovdqul(nds, shift, Assembler::AVX_512bit);
+    Assembler::vpsrlw(dst, dst, nds, vector_len);
+  } else if ((shift_enc < 16) && (nds_enc < 16)) {
+    // use nds as scratch with dst
+    evmovdqul(nds, dst, Assembler::AVX_512bit);
+    Assembler::vpsrlw(nds, nds, shift, vector_len);
+    evmovdqul(dst, nds, Assembler::AVX_512bit);
+  } else if (dst_enc < 16) {
+    // use nds to save a copy of xmm0 and hold shift
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, shift, Assembler::AVX_512bit);
+    Assembler::vpsrlw(dst, dst, xmm0, vector_len);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+  } else if (nds_enc < 16) {
+    // use nds as dest as temps
+    evmovdqul(nds, dst, Assembler::AVX_512bit);
+    evmovdqul(dst, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, shift, Assembler::AVX_512bit);
+    Assembler::vpsrlw(nds, nds, xmm0, vector_len);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    evmovdqul(dst, nds, Assembler::AVX_512bit);
+  } else {
+    // worse case scenario, all regs are in the upper bank
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm1, shift, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
+    evmovdqul(xmm1, dst, Assembler::AVX_512bit);
+    evmovdqul(dst, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+    evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  }
+}
+
+void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
+  int dst_enc = dst->encoding();
+  int nds_enc = nds->encoding();
+  if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
+    Assembler::vpsrlw(dst, nds, shift, vector_len);
+  } else if (dst_enc < 16) {
+    Assembler::vpsrlw(dst, dst, shift, vector_len);
+  } else if (nds_enc < 16) {
+    // use nds as scratch
+    evmovdqul(nds, dst, Assembler::AVX_512bit);
+    Assembler::vpsrlw(nds, nds, shift, vector_len);
+    evmovdqul(dst, nds, Assembler::AVX_512bit);
+  } else {
+    // use nds as scratch for xmm0
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::vpsrlw(xmm0, xmm0, shift, vector_len);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+  }
+}
+
+void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
+  int dst_enc = dst->encoding();
+  int nds_enc = nds->encoding();
+  int shift_enc = shift->encoding();
+  if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
+    Assembler::vpsllw(dst, nds, shift, vector_len);
+  } else if ((dst_enc < 16) && (shift_enc < 16)) {
+    Assembler::vpsllw(dst, dst, shift, vector_len);
+  } else if ((dst_enc < 16) && (nds_enc < 16)) {
+    // use nds_enc as scratch with shift
+    evmovdqul(nds, shift, Assembler::AVX_512bit);
+    Assembler::vpsllw(dst, dst, nds, vector_len);
+  } else if ((shift_enc < 16) && (nds_enc < 16)) {
+    // use nds as scratch with dst
+    evmovdqul(nds, dst, Assembler::AVX_512bit);
+    Assembler::vpsllw(nds, nds, shift, vector_len);
+    evmovdqul(dst, nds, Assembler::AVX_512bit);
+  } else if (dst_enc < 16) {
+    // use nds to save a copy of xmm0 and hold shift
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, shift, Assembler::AVX_512bit);
+    Assembler::vpsllw(dst, dst, xmm0, vector_len);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+  } else if (nds_enc < 16) {
+    // use nds as dest as temps
+    evmovdqul(nds, dst, Assembler::AVX_512bit);
+    evmovdqul(dst, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, shift, Assembler::AVX_512bit);
+    Assembler::vpsllw(nds, nds, xmm0, vector_len);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    evmovdqul(dst, nds, Assembler::AVX_512bit);
+  } else {
+    // worse case scenario, all regs are in the upper bank
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm1, shift, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
+    evmovdqul(xmm1, dst, Assembler::AVX_512bit);
+    evmovdqul(dst, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+    evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  }
+}
+
+void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
+  int dst_enc = dst->encoding();
+  int nds_enc = nds->encoding();
+  if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
+    Assembler::vpsllw(dst, nds, shift, vector_len);
+  } else if (dst_enc < 16) {
+    Assembler::vpsllw(dst, dst, shift, vector_len);
+  } else if (nds_enc < 16) {
+    // use nds as scratch
+    evmovdqul(nds, dst, Assembler::AVX_512bit);
+    Assembler::vpsllw(nds, nds, shift, vector_len);
+    evmovdqul(dst, nds, Assembler::AVX_512bit);
+  } else {
+    // use nds as scratch for xmm0
+    evmovdqul(nds, xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::vpsllw(xmm0, xmm0, shift, vector_len);
+    evmovdqul(xmm0, nds, Assembler::AVX_512bit);
+  }
+}
+
+void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
+  int dst_enc = dst->encoding();
+  int src_enc = src->encoding();
+  if ((dst_enc < 16) && (src_enc < 16)) {
+    Assembler::vptest(dst, src);
+  } else if (src_enc < 16) {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+    Assembler::vptest(xmm0, src);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  } else if (dst_enc < 16) {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    evmovdqul(xmm0, src, Assembler::AVX_512bit);
+    Assembler::vptest(dst, xmm0);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  } else {
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+    subptr(rsp, 64);
+    evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
+    movdqu(xmm0, src);
+    movdqu(xmm1, dst);
+    Assembler::vptest(xmm1, xmm0);
+    evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+    evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+    addptr(rsp, 64);
+  }
+}
+
+// This instruction exists within macros, ergo we cannot control its input
+// when emitted through those patterns.
+void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
+  if (VM_Version::supports_avx512nobw()) {
+    int dst_enc = dst->encoding();
+    int src_enc = src->encoding();
+    if (dst_enc == src_enc) {
+      if (dst_enc < 16) {
+        Assembler::punpcklbw(dst, src);
+      } else {
+        subptr(rsp, 64);
+        evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+        evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+        Assembler::punpcklbw(xmm0, xmm0);
+        evmovdqul(dst, xmm0, Assembler::AVX_512bit);
+        evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+        addptr(rsp, 64);
+      }
+    } else {
+      if ((src_enc < 16) && (dst_enc < 16)) {
+        Assembler::punpcklbw(dst, src);
+      } else if (src_enc < 16) {
+        subptr(rsp, 64);
+        evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+        evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+        Assembler::punpcklbw(xmm0, src);
+        evmovdqul(dst, xmm0, Assembler::AVX_512bit);
+        evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+        addptr(rsp, 64);
+      } else if (dst_enc < 16) {
+        subptr(rsp, 64);
+        evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+        evmovdqul(xmm0, src, Assembler::AVX_512bit);
+        Assembler::punpcklbw(dst, xmm0);
+        evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+        addptr(rsp, 64);
+      } else {
+        subptr(rsp, 64);
+        evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+        subptr(rsp, 64);
+        evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
+        evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+        evmovdqul(xmm1, src, Assembler::AVX_512bit);
+        Assembler::punpcklbw(xmm0, xmm1);
+        evmovdqul(dst, xmm0, Assembler::AVX_512bit);
+        evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
+        addptr(rsp, 64);
+        evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+        addptr(rsp, 64);
+      }
+    }
+  } else {
+    Assembler::punpcklbw(dst, src);
+  }
+}
+
+void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
+  if (VM_Version::supports_avx512vl()) {
+    Assembler::pshufd(dst, src, mode);
+  } else {
+    int dst_enc = dst->encoding();
+    if (dst_enc < 16) {
+      Assembler::pshufd(dst, src, mode);
+    } else {
+      subptr(rsp, 64);
+      evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+      Assembler::pshufd(xmm0, src, mode);
+      evmovdqul(dst, xmm0, Assembler::AVX_512bit);
+      evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+      addptr(rsp, 64);
+    }
+  }
+}
+
+// This instruction exists within macros, ergo we cannot control its input
+// when emitted through those patterns.
+void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
+  if (VM_Version::supports_avx512nobw()) {
+    int dst_enc = dst->encoding();
+    int src_enc = src->encoding();
+    if (dst_enc == src_enc) {
+      if (dst_enc < 16) {
+        Assembler::pshuflw(dst, src, mode);
+      } else {
+        subptr(rsp, 64);
+        evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+        evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+        Assembler::pshuflw(xmm0, xmm0, mode);
+        evmovdqul(dst, xmm0, Assembler::AVX_512bit);
+        evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+        addptr(rsp, 64);
+      }
+    } else {
+      if ((src_enc < 16) && (dst_enc < 16)) {
+        Assembler::pshuflw(dst, src, mode);
+      } else if (src_enc < 16) {
+        subptr(rsp, 64);
+        evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+        evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+        Assembler::pshuflw(xmm0, src, mode);
+        evmovdqul(dst, xmm0, Assembler::AVX_512bit);
+        evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+        addptr(rsp, 64);
+      } else if (dst_enc < 16) {
+        subptr(rsp, 64);
+        evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+        evmovdqul(xmm0, src, Assembler::AVX_512bit);
+        Assembler::pshuflw(dst, xmm0, mode);
+        evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+        addptr(rsp, 64);
+      } else {
+        subptr(rsp, 64);
+        evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+        subptr(rsp, 64);
+        evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
+        evmovdqul(xmm0, dst, Assembler::AVX_512bit);
+        evmovdqul(xmm1, src, Assembler::AVX_512bit);
+        Assembler::pshuflw(xmm0, xmm1, mode);
+        evmovdqul(dst, xmm0, Assembler::AVX_512bit);
+        evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
+        addptr(rsp, 64);
+        evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+        addptr(rsp, 64);
+      }
+    }
+  } else {
+    Assembler::pshuflw(dst, src, mode);
+  }
+}
+
+void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
+  if (reachable(src)) {
+    vandpd(dst, nds, as_Address(src), vector_len);
+  } else {
+    lea(rscratch1, src);
+    vandpd(dst, nds, Address(rscratch1, 0), vector_len);
+  }
+}
+
+void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
+  if (reachable(src)) {
+    vandps(dst, nds, as_Address(src), vector_len);
+  } else {
+    lea(rscratch1, src);
+    vandps(dst, nds, Address(rscratch1, 0), vector_len);
+  }
+}
+
+void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
+  if (reachable(src)) {
+    vdivsd(dst, nds, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    vdivsd(dst, nds, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
+  if (reachable(src)) {
+    vdivss(dst, nds, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    vdivss(dst, nds, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
+  if (reachable(src)) {
+    vmulsd(dst, nds, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    vmulsd(dst, nds, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
+  if (reachable(src)) {
+    vmulss(dst, nds, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    vmulss(dst, nds, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
+  if (reachable(src)) {
+    vsubsd(dst, nds, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    vsubsd(dst, nds, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
+  if (reachable(src)) {
+    vsubss(dst, nds, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    vsubss(dst, nds, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
+  int nds_enc = nds->encoding();
+  int dst_enc = dst->encoding();
+  bool dst_upper_bank = (dst_enc > 15);
+  bool nds_upper_bank = (nds_enc > 15);
+  if (VM_Version::supports_avx512novl() &&
+      (nds_upper_bank || dst_upper_bank)) {
+    if (dst_upper_bank) {
+      subptr(rsp, 64);
+      evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+      movflt(xmm0, nds);
+      vxorps(xmm0, xmm0, src, Assembler::AVX_128bit);
+      movflt(dst, xmm0);
+      evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+      addptr(rsp, 64);
+    } else {
+      movflt(dst, nds);
+      vxorps(dst, dst, src, Assembler::AVX_128bit);
+    }
+  } else {
+    vxorps(dst, nds, src, Assembler::AVX_128bit);
+  }
+}
+
+void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
+  int nds_enc = nds->encoding();
+  int dst_enc = dst->encoding();
+  bool dst_upper_bank = (dst_enc > 15);
+  bool nds_upper_bank = (nds_enc > 15);
+  if (VM_Version::supports_avx512novl() &&
+      (nds_upper_bank || dst_upper_bank)) {
+    if (dst_upper_bank) {
+      subptr(rsp, 64);
+      evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+      movdbl(xmm0, nds);
+      vxorpd(xmm0, xmm0, src, Assembler::AVX_128bit);
+      movdbl(dst, xmm0);
+      evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+      addptr(rsp, 64);
+    } else {
+      movdbl(dst, nds);
+      vxorpd(dst, dst, src, Assembler::AVX_128bit);
+    }
+  } else {
+    vxorpd(dst, nds, src, Assembler::AVX_128bit);
+  }
+}
+
+void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
+  if (reachable(src)) {
+    vxorpd(dst, nds, as_Address(src), vector_len);
+  } else {
+    lea(rscratch1, src);
+    vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
+  }
+}
+
+void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
+  if (reachable(src)) {
+    vxorps(dst, nds, as_Address(src), vector_len);
+  } else {
+    lea(rscratch1, src);
+    vxorps(dst, nds, Address(rscratch1, 0), vector_len);
+  }
+}
+
+
+void MacroAssembler::resolve_jobject(Register value,
+                                     Register thread,
+                                     Register tmp) {
+  assert_different_registers(value, thread, tmp);
+  Label done, not_weak;
+  testptr(value, value);
+  jcc(Assembler::zero, done);                // Use NULL as-is.
+  testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
+  jcc(Assembler::zero, not_weak);
+  // Resolve jweak.
+  movptr(value, Address(value, -JNIHandles::weak_tag_value));
+  verify_oop(value);
+#if INCLUDE_ALL_GCS
+  if (UseG1GC) {
+    g1_write_barrier_pre(noreg /* obj */,
+                         value /* pre_val */,
+                         thread /* thread */,
+                         tmp /* tmp */,
+                         true /* tosca_live */,
+                         true /* expand_call */);
+  }
+#endif // INCLUDE_ALL_GCS
+  jmp(done);
+  bind(not_weak);
+  // Resolve (untagged) jobject.
+  movptr(value, Address(value, 0));
+  verify_oop(value);
+  bind(done);
+}
+
+void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
+  const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
+  STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
+  // The inverted mask is sign-extended
+  andptr(possibly_jweak, inverted_jweak_mask);
+}
+
+//////////////////////////////////////////////////////////////////////////////////
+#if INCLUDE_ALL_GCS
+
+void MacroAssembler::g1_write_barrier_pre(Register obj,
+                                          Register pre_val,
+                                          Register thread,
+                                          Register tmp,
+                                          bool tosca_live,
+                                          bool expand_call) {
+
+  // If expand_call is true then we expand the call_VM_leaf macro
+  // directly to skip generating the check by
+  // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
+
+#ifdef _LP64
+  assert(thread == r15_thread, "must be");
+#endif // _LP64
+
+  Label done;
+  Label runtime;
+
+  assert(pre_val != noreg, "check this code");
+
+  if (obj != noreg) {
+    assert_different_registers(obj, pre_val, tmp);
+    assert(pre_val != rax, "check this code");
+  }
+
+  Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
+                                       SATBMarkQueue::byte_offset_of_active()));
+  Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
+                                       SATBMarkQueue::byte_offset_of_index()));
+  Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
+                                       SATBMarkQueue::byte_offset_of_buf()));
+
+
+  // Is marking active?
+  if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
+    cmpl(in_progress, 0);
+  } else {
+    assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
+    cmpb(in_progress, 0);
+  }
+  jcc(Assembler::equal, done);
+
+  // Do we need to load the previous value?
+  if (obj != noreg) {
+    load_heap_oop(pre_val, Address(obj, 0));
+  }
+
+  // Is the previous value null?
+  cmpptr(pre_val, (int32_t) NULL_WORD);
+  jcc(Assembler::equal, done);
+
+  // Can we store original value in the thread's buffer?
+  // Is index == 0?
+  // (The index field is typed as size_t.)
+
+  movptr(tmp, index);                   // tmp := *index_adr
+  cmpptr(tmp, 0);                       // tmp == 0?
+  jcc(Assembler::equal, runtime);       // If yes, goto runtime
+
+  subptr(tmp, wordSize);                // tmp := tmp - wordSize
+  movptr(index, tmp);                   // *index_adr := tmp
+  addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
+
+  // Record the previous value
+  movptr(Address(tmp, 0), pre_val);
+  jmp(done);
+
+  bind(runtime);
+  // save the live input values
+  if(tosca_live) push(rax);
+
+  if (obj != noreg && obj != rax)
+    push(obj);
+
+  if (pre_val != rax)
+    push(pre_val);
+
+  // Calling the runtime using the regular call_VM_leaf mechanism generates
+  // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
+  // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
+  //
+  // If we care generating the pre-barrier without a frame (e.g. in the
+  // intrinsified Reference.get() routine) then ebp might be pointing to
+  // the caller frame and so this check will most likely fail at runtime.
+  //
+  // Expanding the call directly bypasses the generation of the check.
+  // So when we do not have have a full interpreter frame on the stack
+  // expand_call should be passed true.
+
+  NOT_LP64( push(thread); )
+
+  if (expand_call) {
+    LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
+    pass_arg1(this, thread);
+    pass_arg0(this, pre_val);
+    MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
+  } else {
+    call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
+  }
+
+  NOT_LP64( pop(thread); )
+
+  // save the live input values
+  if (pre_val != rax)
+    pop(pre_val);
+
+  if (obj != noreg && obj != rax)
+    pop(obj);
+
+  if(tosca_live) pop(rax);
+
+  bind(done);
+}
+
+void MacroAssembler::g1_write_barrier_post(Register store_addr,
+                                           Register new_val,
+                                           Register thread,
+                                           Register tmp,
+                                           Register tmp2) {
+#ifdef _LP64
+  assert(thread == r15_thread, "must be");
+#endif // _LP64
+
+  Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
+                                       DirtyCardQueue::byte_offset_of_index()));
+  Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
+                                       DirtyCardQueue::byte_offset_of_buf()));
+
+  CardTableModRefBS* ct =
+    barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
+  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
+
+  Label done;
+  Label runtime;
+
+  // Does store cross heap regions?
+
+  movptr(tmp, store_addr);
+  xorptr(tmp, new_val);
+  shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
+  jcc(Assembler::equal, done);
+
+  // crosses regions, storing NULL?
+
+  cmpptr(new_val, (int32_t) NULL_WORD);
+  jcc(Assembler::equal, done);
+
+  // storing region crossing non-NULL, is card already dirty?
+
+  const Register card_addr = tmp;
+  const Register cardtable = tmp2;
+
+  movptr(card_addr, store_addr);
+  shrptr(card_addr, CardTableModRefBS::card_shift);
+  // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
+  // a valid address and therefore is not properly handled by the relocation code.
+  movptr(cardtable, (intptr_t)ct->byte_map_base);
+  addptr(card_addr, cardtable);
+
+  cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
+  jcc(Assembler::equal, done);
+
+  membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
+  cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
+  jcc(Assembler::equal, done);
+
+
+  // storing a region crossing, non-NULL oop, card is clean.
+  // dirty card and log.
+
+  movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
+
+  cmpl(queue_index, 0);
+  jcc(Assembler::equal, runtime);
+  subl(queue_index, wordSize);
+  movptr(tmp2, buffer);
+#ifdef _LP64
+  movslq(rscratch1, queue_index);
+  addq(tmp2, rscratch1);
+  movq(Address(tmp2, 0), card_addr);
+#else
+  addl(tmp2, queue_index);
+  movl(Address(tmp2, 0), card_addr);
+#endif
+  jmp(done);
+
+  bind(runtime);
+  // save the live input values
+  push(store_addr);
+  push(new_val);
+#ifdef _LP64
+  call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
+#else
+  push(thread);
+  call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
+  pop(thread);
+#endif
+  pop(new_val);
+  pop(store_addr);
+
+  bind(done);
+}
+
+#endif // INCLUDE_ALL_GCS
+//////////////////////////////////////////////////////////////////////////////////
+
+
+void MacroAssembler::store_check(Register obj, Address dst) {
+  store_check(obj);
+}
+
+void MacroAssembler::store_check(Register obj) {
+  // Does a store check for the oop in register obj. The content of
+  // register obj is destroyed afterwards.
+  BarrierSet* bs = Universe::heap()->barrier_set();
+  assert(bs->kind() == BarrierSet::CardTableForRS ||
+         bs->kind() == BarrierSet::CardTableExtension,
+         "Wrong barrier set kind");
+
+  CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
+  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
+
+  shrptr(obj, CardTableModRefBS::card_shift);
+
+  Address card_addr;
+
+  // The calculation for byte_map_base is as follows:
+  // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
+  // So this essentially converts an address to a displacement and it will
+  // never need to be relocated. On 64bit however the value may be too
+  // large for a 32bit displacement.
+  intptr_t disp = (intptr_t) ct->byte_map_base;
+  if (is_simm32(disp)) {
+    card_addr = Address(noreg, obj, Address::times_1, disp);
+  } else {
+    // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
+    // displacement and done in a single instruction given favorable mapping and a
+    // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
+    // entry and that entry is not properly handled by the relocation code.
+    AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
+    Address index(noreg, obj, Address::times_1);
+    card_addr = as_Address(ArrayAddress(cardtable, index));
+  }
+
+  int dirty = CardTableModRefBS::dirty_card_val();
+  if (UseCondCardMark) {
+    Label L_already_dirty;
+    if (UseConcMarkSweepGC) {
+      membar(Assembler::StoreLoad);
+    }
+    cmpb(card_addr, dirty);
+    jcc(Assembler::equal, L_already_dirty);
+    movb(card_addr, dirty);
+    bind(L_already_dirty);
+  } else {
+    movb(card_addr, dirty);
+  }
+}
+
+void MacroAssembler::subptr(Register dst, int32_t imm32) {
+  LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
+}
+
+// Force generation of a 4 byte immediate value even if it fits into 8bit
+void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
+  LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
+}
+
+void MacroAssembler::subptr(Register dst, Register src) {
+  LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
+}
+
+// C++ bool manipulation
+void MacroAssembler::testbool(Register dst) {
+  if(sizeof(bool) == 1)
+    testb(dst, 0xff);
+  else if(sizeof(bool) == 2) {
+    // testw implementation needed for two byte bools
+    ShouldNotReachHere();
+  } else if(sizeof(bool) == 4)
+    testl(dst, dst);
+  else
+    // unsupported
+    ShouldNotReachHere();
+}
+
+void MacroAssembler::testptr(Register dst, Register src) {
+  LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
+}
+
+// Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
+void MacroAssembler::tlab_allocate(Register obj,
+                                   Register var_size_in_bytes,
+                                   int con_size_in_bytes,
+                                   Register t1,
+                                   Register t2,
+                                   Label& slow_case) {
+  assert_different_registers(obj, t1, t2);
+  assert_different_registers(obj, var_size_in_bytes, t1);
+  Register end = t2;
+  Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
+
+  verify_tlab();
+
+  NOT_LP64(get_thread(thread));
+
+  movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
+  if (var_size_in_bytes == noreg) {
+    lea(end, Address(obj, con_size_in_bytes));
+  } else {
+    lea(end, Address(obj, var_size_in_bytes, Address::times_1));
+  }
+  cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
+  jcc(Assembler::above, slow_case);
+
+  // update the tlab top pointer
+  movptr(Address(thread, JavaThread::tlab_top_offset()), end);
+
+  // recover var_size_in_bytes if necessary
+  if (var_size_in_bytes == end) {
+    subptr(var_size_in_bytes, obj);
+  }
+  verify_tlab();
+}
+
+// Preserves rbx, and rdx.
+Register MacroAssembler::tlab_refill(Label& retry,
+                                     Label& try_eden,
+                                     Label& slow_case) {
+  Register top = rax;
+  Register t1  = rcx; // object size
+  Register t2  = rsi;
+  Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
+  assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
+  Label do_refill, discard_tlab;
+
+  if (!Universe::heap()->supports_inline_contig_alloc()) {
+    // No allocation in the shared eden.
+    jmp(slow_case);
+  }
+
+  NOT_LP64(get_thread(thread_reg));
+
+  movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
+  movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
+
+  // calculate amount of free space
+  subptr(t1, top);
+  shrptr(t1, LogHeapWordSize);
+
+  // Retain tlab and allocate object in shared space if
+  // the amount free in the tlab is too large to discard.
+  cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
+  jcc(Assembler::lessEqual, discard_tlab);
+
+  // Retain
+  // %%% yuck as movptr...
+  movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
+  addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
+  if (TLABStats) {
+    // increment number of slow_allocations
+    addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
+  }
+  jmp(try_eden);
+
+  bind(discard_tlab);
+  if (TLABStats) {
+    // increment number of refills
+    addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
+    // accumulate wastage -- t1 is amount free in tlab
+    addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
+  }
+
+  // if tlab is currently allocated (top or end != null) then
+  // fill [top, end + alignment_reserve) with array object
+  testptr(top, top);
+  jcc(Assembler::zero, do_refill);
+
+  // set up the mark word
+  movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
+  // set the length to the remaining space
+  subptr(t1, typeArrayOopDesc::header_size(T_INT));
+  addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
+  shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
+  movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
+  // set klass to intArrayKlass
+  // dubious reloc why not an oop reloc?
+  movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
+  // store klass last.  concurrent gcs assumes klass length is valid if
+  // klass field is not null.
+  store_klass(top, t1);
+
+  movptr(t1, top);
+  subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
+  incr_allocated_bytes(thread_reg, t1, 0);
+
+  // refill the tlab with an eden allocation
+  bind(do_refill);
+  movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
+  shlptr(t1, LogHeapWordSize);
+  // allocate new tlab, address returned in top
+  eden_allocate(top, t1, 0, t2, slow_case);
+
+  // Check that t1 was preserved in eden_allocate.
+#ifdef ASSERT
+  if (UseTLAB) {
+    Label ok;
+    Register tsize = rsi;
+    assert_different_registers(tsize, thread_reg, t1);
+    push(tsize);
+    movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
+    shlptr(tsize, LogHeapWordSize);
+    cmpptr(t1, tsize);
+    jcc(Assembler::equal, ok);
+    STOP("assert(t1 != tlab size)");
+    should_not_reach_here();
+
+    bind(ok);
+    pop(tsize);
+  }
+#endif
+  movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
+  movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
+  addptr(top, t1);
+  subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
+  movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
+
+  if (ZeroTLAB) {
+    // This is a fast TLAB refill, therefore the GC is not notified of it.
+    // So compiled code must fill the new TLAB with zeroes.
+    movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
+    zero_memory(top, t1, 0, t2);
+  }
+
+  verify_tlab();
+  jmp(retry);
+
+  return thread_reg; // for use by caller
+}
+
+// Preserves the contents of address, destroys the contents length_in_bytes and temp.
+void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
+  assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
+  assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
+  Label done;
+
+  testptr(length_in_bytes, length_in_bytes);
+  jcc(Assembler::zero, done);
+
+  // initialize topmost word, divide index by 2, check if odd and test if zero
+  // note: for the remaining code to work, index must be a multiple of BytesPerWord
+#ifdef ASSERT
+  {
+    Label L;
+    testptr(length_in_bytes, BytesPerWord - 1);
+    jcc(Assembler::zero, L);
+    stop("length must be a multiple of BytesPerWord");
+    bind(L);
+  }
+#endif
+  Register index = length_in_bytes;
+  xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
+  if (UseIncDec) {
+    shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
+  } else {
+    shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
+    shrptr(index, 1);
+  }
+#ifndef _LP64
+  // index could have not been a multiple of 8 (i.e., bit 2 was set)
+  {
+    Label even;
+    // note: if index was a multiple of 8, then it cannot
+    //       be 0 now otherwise it must have been 0 before
+    //       => if it is even, we don't need to check for 0 again
+    jcc(Assembler::carryClear, even);
+    // clear topmost word (no jump would be needed if conditional assignment worked here)
+    movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
+    // index could be 0 now, must check again
+    jcc(Assembler::zero, done);
+    bind(even);
+  }
+#endif // !_LP64
+  // initialize remaining object fields: index is a multiple of 2 now
+  {
+    Label loop;
+    bind(loop);
+    movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
+    NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
+    decrement(index);
+    jcc(Assembler::notZero, loop);
+  }
+
+  bind(done);
+}
+
+void MacroAssembler::incr_allocated_bytes(Register thread,
+                                          Register var_size_in_bytes,
+                                          int con_size_in_bytes,
+                                          Register t1) {
+  if (!thread->is_valid()) {
+#ifdef _LP64
+    thread = r15_thread;
+#else
+    assert(t1->is_valid(), "need temp reg");
+    thread = t1;
+    get_thread(thread);
+#endif
+  }
+
+#ifdef _LP64
+  if (var_size_in_bytes->is_valid()) {
+    addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
+  } else {
+    addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
+  }
+#else
+  if (var_size_in_bytes->is_valid()) {
+    addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
+  } else {
+    addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
+  }
+  adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
+#endif
+}
+
+// Look up the method for a megamorphic invokeinterface call.
+// The target method is determined by <intf_klass, itable_index>.
+// The receiver klass is in recv_klass.
+// On success, the result will be in method_result, and execution falls through.
+// On failure, execution transfers to the given label.
+void MacroAssembler::lookup_interface_method(Register recv_klass,
+                                             Register intf_klass,
+                                             RegisterOrConstant itable_index,
+                                             Register method_result,
+                                             Register scan_temp,
+                                             Label& L_no_such_interface) {
+  assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
+  assert(itable_index.is_constant() || itable_index.as_register() == method_result,
+         "caller must use same register for non-constant itable index as for method");
+
+  // Compute start of first itableOffsetEntry (which is at the end of the vtable)
+  int vtable_base = in_bytes(Klass::vtable_start_offset());
+  int itentry_off = itableMethodEntry::method_offset_in_bytes();
+  int scan_step   = itableOffsetEntry::size() * wordSize;
+  int vte_size    = vtableEntry::size_in_bytes();
+  Address::ScaleFactor times_vte_scale = Address::times_ptr;
+  assert(vte_size == wordSize, "else adjust times_vte_scale");
+
+  movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
+
+  // %%% Could store the aligned, prescaled offset in the klassoop.
+  lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
+
+  // Adjust recv_klass by scaled itable_index, so we can free itable_index.
+  assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
+  lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
+
+  // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
+  //   if (scan->interface() == intf) {
+  //     result = (klass + scan->offset() + itable_index);
+  //   }
+  // }
+  Label search, found_method;
+
+  for (int peel = 1; peel >= 0; peel--) {
+    movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
+    cmpptr(intf_klass, method_result);
+
+    if (peel) {
+      jccb(Assembler::equal, found_method);
+    } else {
+      jccb(Assembler::notEqual, search);
+      // (invert the test to fall through to found_method...)
+    }
+
+    if (!peel)  break;
+
+    bind(search);
+
+    // Check that the previous entry is non-null.  A null entry means that
+    // the receiver class doesn't implement the interface, and wasn't the
+    // same as when the caller was compiled.
+    testptr(method_result, method_result);
+    jcc(Assembler::zero, L_no_such_interface);
+    addptr(scan_temp, scan_step);
+  }
+
+  bind(found_method);
+
+  // Got a hit.
+  movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
+  movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
+}
+
+
+// virtual method calling
+void MacroAssembler::lookup_virtual_method(Register recv_klass,
+                                           RegisterOrConstant vtable_index,
+                                           Register method_result) {
+  const int base = in_bytes(Klass::vtable_start_offset());
+  assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
+  Address vtable_entry_addr(recv_klass,
+                            vtable_index, Address::times_ptr,
+                            base + vtableEntry::method_offset_in_bytes());
+  movptr(method_result, vtable_entry_addr);
+}
+
+
+void MacroAssembler::check_klass_subtype(Register sub_klass,
+                           Register super_klass,
+                           Register temp_reg,
+                           Label& L_success) {
+  Label L_failure;
+  check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
+  check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
+  bind(L_failure);
+}
+
+
+void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
+                                                   Register super_klass,
+                                                   Register temp_reg,
+                                                   Label* L_success,
+                                                   Label* L_failure,
+                                                   Label* L_slow_path,
+                                        RegisterOrConstant super_check_offset) {
+  assert_different_registers(sub_klass, super_klass, temp_reg);
+  bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
+  if (super_check_offset.is_register()) {
+    assert_different_registers(sub_klass, super_klass,
+                               super_check_offset.as_register());
+  } else if (must_load_sco) {
+    assert(temp_reg != noreg, "supply either a temp or a register offset");
+  }
+
+  Label L_fallthrough;
+  int label_nulls = 0;
+  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
+  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
+  if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
+  assert(label_nulls <= 1, "at most one NULL in the batch");
+
+  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
+  int sco_offset = in_bytes(Klass::super_check_offset_offset());
+  Address super_check_offset_addr(super_klass, sco_offset);
+
+  // Hacked jcc, which "knows" that L_fallthrough, at least, is in
+  // range of a jccb.  If this routine grows larger, reconsider at
+  // least some of these.
+#define local_jcc(assembler_cond, label)                                \
+  if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
+  else                             jcc( assembler_cond, label) /*omit semi*/
+
+  // Hacked jmp, which may only be used just before L_fallthrough.
+#define final_jmp(label)                                                \
+  if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
+  else                            jmp(label)                /*omit semi*/
+
+  // If the pointers are equal, we are done (e.g., String[] elements).
+  // This self-check enables sharing of secondary supertype arrays among
+  // non-primary types such as array-of-interface.  Otherwise, each such
+  // type would need its own customized SSA.
+  // We move this check to the front of the fast path because many
+  // type checks are in fact trivially successful in this manner,
+  // so we get a nicely predicted branch right at the start of the check.
+  cmpptr(sub_klass, super_klass);
+  local_jcc(Assembler::equal, *L_success);
+
+  // Check the supertype display:
+  if (must_load_sco) {
+    // Positive movl does right thing on LP64.
+    movl(temp_reg, super_check_offset_addr);
+    super_check_offset = RegisterOrConstant(temp_reg);
+  }
+  Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
+  cmpptr(super_klass, super_check_addr); // load displayed supertype
+
+  // This check has worked decisively for primary supers.
+  // Secondary supers are sought in the super_cache ('super_cache_addr').
+  // (Secondary supers are interfaces and very deeply nested subtypes.)
+  // This works in the same check above because of a tricky aliasing
+  // between the super_cache and the primary super display elements.
+  // (The 'super_check_addr' can address either, as the case requires.)
+  // Note that the cache is updated below if it does not help us find
+  // what we need immediately.
+  // So if it was a primary super, we can just fail immediately.
+  // Otherwise, it's the slow path for us (no success at this point).
+
+  if (super_check_offset.is_register()) {
+    local_jcc(Assembler::equal, *L_success);
+    cmpl(super_check_offset.as_register(), sc_offset);
+    if (L_failure == &L_fallthrough) {
+      local_jcc(Assembler::equal, *L_slow_path);
+    } else {
+      local_jcc(Assembler::notEqual, *L_failure);
+      final_jmp(*L_slow_path);
+    }
+  } else if (super_check_offset.as_constant() == sc_offset) {
+    // Need a slow path; fast failure is impossible.
+    if (L_slow_path == &L_fallthrough) {
+      local_jcc(Assembler::equal, *L_success);
+    } else {
+      local_jcc(Assembler::notEqual, *L_slow_path);
+      final_jmp(*L_success);
+    }
+  } else {
+    // No slow path; it's a fast decision.
+    if (L_failure == &L_fallthrough) {
+      local_jcc(Assembler::equal, *L_success);
+    } else {
+      local_jcc(Assembler::notEqual, *L_failure);
+      final_jmp(*L_success);
+    }
+  }
+
+  bind(L_fallthrough);
+
+#undef local_jcc
+#undef final_jmp
+}
+
+
+void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
+                                                   Register super_klass,
+                                                   Register temp_reg,
+                                                   Register temp2_reg,
+                                                   Label* L_success,
+                                                   Label* L_failure,
+                                                   bool set_cond_codes) {
+  assert_different_registers(sub_klass, super_klass, temp_reg);
+  if (temp2_reg != noreg)
+    assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
+#define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
+
+  Label L_fallthrough;
+  int label_nulls = 0;
+  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
+  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
+  assert(label_nulls <= 1, "at most one NULL in the batch");
+
+  // a couple of useful fields in sub_klass:
+  int ss_offset = in_bytes(Klass::secondary_supers_offset());
+  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
+  Address secondary_supers_addr(sub_klass, ss_offset);
+  Address super_cache_addr(     sub_klass, sc_offset);
+
+  // Do a linear scan of the secondary super-klass chain.
+  // This code is rarely used, so simplicity is a virtue here.
+  // The repne_scan instruction uses fixed registers, which we must spill.
+  // Don't worry too much about pre-existing connections with the input regs.
+
+  assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
+  assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
+
+  // Get super_klass value into rax (even if it was in rdi or rcx).
+  bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
+  if (super_klass != rax || UseCompressedOops) {
+    if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
+    mov(rax, super_klass);
+  }
+  if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
+  if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
+
+#ifndef PRODUCT
+  int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
+  ExternalAddress pst_counter_addr((address) pst_counter);
+  NOT_LP64(  incrementl(pst_counter_addr) );
+  LP64_ONLY( lea(rcx, pst_counter_addr) );
+  LP64_ONLY( incrementl(Address(rcx, 0)) );
+#endif //PRODUCT
+
+  // We will consult the secondary-super array.
+  movptr(rdi, secondary_supers_addr);
+  // Load the array length.  (Positive movl does right thing on LP64.)
+  movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
+  // Skip to start of data.
+  addptr(rdi, Array<Klass*>::base_offset_in_bytes());
+
+  // Scan RCX words at [RDI] for an occurrence of RAX.
+  // Set NZ/Z based on last compare.
+  // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
+  // not change flags (only scas instruction which is repeated sets flags).
+  // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
+
+    testptr(rax,rax); // Set Z = 0
+    repne_scan();
+
+  // Unspill the temp. registers:
+  if (pushed_rdi)  pop(rdi);
+  if (pushed_rcx)  pop(rcx);
+  if (pushed_rax)  pop(rax);
+
+  if (set_cond_codes) {
+    // Special hack for the AD files:  rdi is guaranteed non-zero.
+    assert(!pushed_rdi, "rdi must be left non-NULL");
+    // Also, the condition codes are properly set Z/NZ on succeed/failure.
+  }
+
+  if (L_failure == &L_fallthrough)
+        jccb(Assembler::notEqual, *L_failure);
+  else  jcc(Assembler::notEqual, *L_failure);
+
+  // Success.  Cache the super we found and proceed in triumph.
+  movptr(super_cache_addr, super_klass);
+
+  if (L_success != &L_fallthrough) {
+    jmp(*L_success);
+  }
+
+#undef IS_A_TEMP
+
+  bind(L_fallthrough);
+}
+
+
+void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
+  if (VM_Version::supports_cmov()) {
+    cmovl(cc, dst, src);
+  } else {
+    Label L;
+    jccb(negate_condition(cc), L);
+    movl(dst, src);
+    bind(L);
+  }
+}
+
+void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
+  if (VM_Version::supports_cmov()) {
+    cmovl(cc, dst, src);
+  } else {
+    Label L;
+    jccb(negate_condition(cc), L);
+    movl(dst, src);
+    bind(L);
+  }
+}
+
+void MacroAssembler::verify_oop(Register reg, const char* s) {
+  if (!VerifyOops) return;
+
+  // Pass register number to verify_oop_subroutine
+  const char* b = NULL;
+  {
+    ResourceMark rm;
+    stringStream ss;
+    ss.print("verify_oop: %s: %s", reg->name(), s);
+    b = code_string(ss.as_string());
+  }
+  BLOCK_COMMENT("verify_oop {");
+#ifdef _LP64
+  push(rscratch1);                    // save r10, trashed by movptr()
+#endif
+  push(rax);                          // save rax,
+  push(reg);                          // pass register argument
+  ExternalAddress buffer((address) b);
+  // avoid using pushptr, as it modifies scratch registers
+  // and our contract is not to modify anything
+  movptr(rax, buffer.addr());
+  push(rax);
+  // call indirectly to solve generation ordering problem
+  movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
+  call(rax);
+  // Caller pops the arguments (oop, message) and restores rax, r10
+  BLOCK_COMMENT("} verify_oop");
+}
+
+
+RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
+                                                      Register tmp,
+                                                      int offset) {
+  intptr_t value = *delayed_value_addr;
+  if (value != 0)
+    return RegisterOrConstant(value + offset);
+
+  // load indirectly to solve generation ordering problem
+  movptr(tmp, ExternalAddress((address) delayed_value_addr));
+
+#ifdef ASSERT
+  { Label L;
+    testptr(tmp, tmp);
+    if (WizardMode) {
+      const char* buf = NULL;
+      {
+        ResourceMark rm;
+        stringStream ss;
+        ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
+        buf = code_string(ss.as_string());
+      }
+      jcc(Assembler::notZero, L);
+      STOP(buf);
+    } else {
+      jccb(Assembler::notZero, L);
+      hlt();
+    }
+    bind(L);
+  }
+#endif
+
+  if (offset != 0)
+    addptr(tmp, offset);
+
+  return RegisterOrConstant(tmp);
+}
+
+
+Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
+                                         int extra_slot_offset) {
+  // cf. TemplateTable::prepare_invoke(), if (load_receiver).
+  int stackElementSize = Interpreter::stackElementSize;
+  int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
+#ifdef ASSERT
+  int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
+  assert(offset1 - offset == stackElementSize, "correct arithmetic");
+#endif
+  Register             scale_reg    = noreg;
+  Address::ScaleFactor scale_factor = Address::no_scale;
+  if (arg_slot.is_constant()) {
+    offset += arg_slot.as_constant() * stackElementSize;
+  } else {
+    scale_reg    = arg_slot.as_register();
+    scale_factor = Address::times(stackElementSize);
+  }
+  offset += wordSize;           // return PC is on stack
+  return Address(rsp, scale_reg, scale_factor, offset);
+}
+
+
+void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
+  if (!VerifyOops) return;
+
+  // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
+  // Pass register number to verify_oop_subroutine
+  const char* b = NULL;
+  {
+    ResourceMark rm;
+    stringStream ss;
+    ss.print("verify_oop_addr: %s", s);
+    b = code_string(ss.as_string());
+  }
+#ifdef _LP64
+  push(rscratch1);                    // save r10, trashed by movptr()
+#endif
+  push(rax);                          // save rax,
+  // addr may contain rsp so we will have to adjust it based on the push
+  // we just did (and on 64 bit we do two pushes)
+  // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
+  // stores rax into addr which is backwards of what was intended.
+  if (addr.uses(rsp)) {
+    lea(rax, addr);
+    pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
+  } else {
+    pushptr(addr);
+  }
+
+  ExternalAddress buffer((address) b);
+  // pass msg argument
+  // avoid using pushptr, as it modifies scratch registers
+  // and our contract is not to modify anything
+  movptr(rax, buffer.addr());
+  push(rax);
+
+  // call indirectly to solve generation ordering problem
+  movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
+  call(rax);
+  // Caller pops the arguments (addr, message) and restores rax, r10.
+}
+
+void MacroAssembler::verify_tlab() {
+#ifdef ASSERT
+  if (UseTLAB && VerifyOops) {
+    Label next, ok;
+    Register t1 = rsi;
+    Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
+
+    push(t1);
+    NOT_LP64(push(thread_reg));
+    NOT_LP64(get_thread(thread_reg));
+
+    movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
+    cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
+    jcc(Assembler::aboveEqual, next);
+    STOP("assert(top >= start)");
+    should_not_reach_here();
+
+    bind(next);
+    movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
+    cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
+    jcc(Assembler::aboveEqual, ok);
+    STOP("assert(top <= end)");
+    should_not_reach_here();
+
+    bind(ok);
+    NOT_LP64(pop(thread_reg));
+    pop(t1);
+  }
+#endif
+}
+
+class ControlWord {
+ public:
+  int32_t _value;
+
+  int  rounding_control() const        { return  (_value >> 10) & 3      ; }
+  int  precision_control() const       { return  (_value >>  8) & 3      ; }
+  bool precision() const               { return ((_value >>  5) & 1) != 0; }
+  bool underflow() const               { return ((_value >>  4) & 1) != 0; }
+  bool overflow() const                { return ((_value >>  3) & 1) != 0; }
+  bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
+  bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
+  bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
+
+  void print() const {
+    // rounding control
+    const char* rc;
+    switch (rounding_control()) {
+      case 0: rc = "round near"; break;
+      case 1: rc = "round down"; break;
+      case 2: rc = "round up  "; break;
+      case 3: rc = "chop      "; break;
+    };
+    // precision control
+    const char* pc;
+    switch (precision_control()) {
+      case 0: pc = "24 bits "; break;
+      case 1: pc = "reserved"; break;
+      case 2: pc = "53 bits "; break;
+      case 3: pc = "64 bits "; break;
+    };
+    // flags
+    char f[9];
+    f[0] = ' ';
+    f[1] = ' ';
+    f[2] = (precision   ()) ? 'P' : 'p';
+    f[3] = (underflow   ()) ? 'U' : 'u';
+    f[4] = (overflow    ()) ? 'O' : 'o';
+    f[5] = (zero_divide ()) ? 'Z' : 'z';
+    f[6] = (denormalized()) ? 'D' : 'd';
+    f[7] = (invalid     ()) ? 'I' : 'i';
+    f[8] = '\x0';
+    // output
+    printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
+  }
+
+};
+
+class StatusWord {
+ public:
+  int32_t _value;
+
+  bool busy() const                    { return ((_value >> 15) & 1) != 0; }
+  bool C3() const                      { return ((_value >> 14) & 1) != 0; }
+  bool C2() const                      { return ((_value >> 10) & 1) != 0; }
+  bool C1() const                      { return ((_value >>  9) & 1) != 0; }
+  bool C0() const                      { return ((_value >>  8) & 1) != 0; }
+  int  top() const                     { return  (_value >> 11) & 7      ; }
+  bool error_status() const            { return ((_value >>  7) & 1) != 0; }
+  bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
+  bool precision() const               { return ((_value >>  5) & 1) != 0; }
+  bool underflow() const               { return ((_value >>  4) & 1) != 0; }
+  bool overflow() const                { return ((_value >>  3) & 1) != 0; }
+  bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
+  bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
+  bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
+
+  void print() const {
+    // condition codes
+    char c[5];
+    c[0] = (C3()) ? '3' : '-';
+    c[1] = (C2()) ? '2' : '-';
+    c[2] = (C1()) ? '1' : '-';
+    c[3] = (C0()) ? '0' : '-';
+    c[4] = '\x0';
+    // flags
+    char f[9];
+    f[0] = (error_status()) ? 'E' : '-';
+    f[1] = (stack_fault ()) ? 'S' : '-';
+    f[2] = (precision   ()) ? 'P' : '-';
+    f[3] = (underflow   ()) ? 'U' : '-';
+    f[4] = (overflow    ()) ? 'O' : '-';
+    f[5] = (zero_divide ()) ? 'Z' : '-';
+    f[6] = (denormalized()) ? 'D' : '-';
+    f[7] = (invalid     ()) ? 'I' : '-';
+    f[8] = '\x0';
+    // output
+    printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
+  }
+
+};
+
+class TagWord {
+ public:
+  int32_t _value;
+
+  int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
+
+  void print() const {
+    printf("%04x", _value & 0xFFFF);
+  }
+
+};
+
+class FPU_Register {
+ public:
+  int32_t _m0;
+  int32_t _m1;
+  int16_t _ex;
+
+  bool is_indefinite() const           {
+    return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
+  }
+
+  void print() const {
+    char  sign = (_ex < 0) ? '-' : '+';
+    const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
+    printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
+  };
+
+};
+
+class FPU_State {
+ public:
+  enum {
+    register_size       = 10,
+    number_of_registers =  8,
+    register_mask       =  7
+  };
+
+  ControlWord  _control_word;
+  StatusWord   _status_word;
+  TagWord      _tag_word;
+  int32_t      _error_offset;
+  int32_t      _error_selector;
+  int32_t      _data_offset;
+  int32_t      _data_selector;
+  int8_t       _register[register_size * number_of_registers];
+
+  int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
+  FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
+
+  const char* tag_as_string(int tag) const {
+    switch (tag) {
+      case 0: return "valid";
+      case 1: return "zero";
+      case 2: return "special";
+      case 3: return "empty";
+    }
+    ShouldNotReachHere();
+    return NULL;
+  }
+
+  void print() const {
+    // print computation registers
+    { int t = _status_word.top();
+      for (int i = 0; i < number_of_registers; i++) {
+        int j = (i - t) & register_mask;
+        printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
+        st(j)->print();
+        printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
+      }
+    }
+    printf("\n");
+    // print control registers
+    printf("ctrl = "); _control_word.print(); printf("\n");
+    printf("stat = "); _status_word .print(); printf("\n");
+    printf("tags = "); _tag_word    .print(); printf("\n");
+  }
+
+};
+
+class Flag_Register {
+ public:
+  int32_t _value;
+
+  bool overflow() const                { return ((_value >> 11) & 1) != 0; }
+  bool direction() const               { return ((_value >> 10) & 1) != 0; }
+  bool sign() const                    { return ((_value >>  7) & 1) != 0; }
+  bool zero() const                    { return ((_value >>  6) & 1) != 0; }
+  bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
+  bool parity() const                  { return ((_value >>  2) & 1) != 0; }
+  bool carry() const                   { return ((_value >>  0) & 1) != 0; }
+
+  void print() const {
+    // flags
+    char f[8];
+    f[0] = (overflow       ()) ? 'O' : '-';
+    f[1] = (direction      ()) ? 'D' : '-';
+    f[2] = (sign           ()) ? 'S' : '-';
+    f[3] = (zero           ()) ? 'Z' : '-';
+    f[4] = (auxiliary_carry()) ? 'A' : '-';
+    f[5] = (parity         ()) ? 'P' : '-';
+    f[6] = (carry          ()) ? 'C' : '-';
+    f[7] = '\x0';
+    // output
+    printf("%08x  flags = %s", _value, f);
+  }
+
+};
+
+class IU_Register {
+ public:
+  int32_t _value;
+
+  void print() const {
+    printf("%08x  %11d", _value, _value);
+  }
+
+};
+
+class IU_State {
+ public:
+  Flag_Register _eflags;
+  IU_Register   _rdi;
+  IU_Register   _rsi;
+  IU_Register   _rbp;
+  IU_Register   _rsp;
+  IU_Register   _rbx;
+  IU_Register   _rdx;
+  IU_Register   _rcx;
+  IU_Register   _rax;
+
+  void print() const {
+    // computation registers
+    printf("rax,  = "); _rax.print(); printf("\n");
+    printf("rbx,  = "); _rbx.print(); printf("\n");
+    printf("rcx  = "); _rcx.print(); printf("\n");
+    printf("rdx  = "); _rdx.print(); printf("\n");
+    printf("rdi  = "); _rdi.print(); printf("\n");
+    printf("rsi  = "); _rsi.print(); printf("\n");
+    printf("rbp,  = "); _rbp.print(); printf("\n");
+    printf("rsp  = "); _rsp.print(); printf("\n");
+    printf("\n");
+    // control registers
+    printf("flgs = "); _eflags.print(); printf("\n");
+  }
+};
+
+
+class CPU_State {
+ public:
+  FPU_State _fpu_state;
+  IU_State  _iu_state;
+
+  void print() const {
+    printf("--------------------------------------------------\n");
+    _iu_state .print();
+    printf("\n");
+    _fpu_state.print();
+    printf("--------------------------------------------------\n");
+  }
+
+};
+
+
+static void _print_CPU_state(CPU_State* state) {
+  state->print();
+};
+
+
+void MacroAssembler::print_CPU_state() {
+  push_CPU_state();
+  push(rsp);                // pass CPU state
+  call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
+  addptr(rsp, wordSize);       // discard argument
+  pop_CPU_state();
+}
+
+
+static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
+  static int counter = 0;
+  FPU_State* fs = &state->_fpu_state;
+  counter++;
+  // For leaf calls, only verify that the top few elements remain empty.
+  // We only need 1 empty at the top for C2 code.
+  if( stack_depth < 0 ) {
+    if( fs->tag_for_st(7) != 3 ) {
+      printf("FPR7 not empty\n");
+      state->print();
+      assert(false, "error");
+      return false;
+    }
+    return true;                // All other stack states do not matter
+  }
+
+  assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
+         "bad FPU control word");
+
+  // compute stack depth
+  int i = 0;
+  while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
+  int d = i;
+  while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
+  // verify findings
+  if (i != FPU_State::number_of_registers) {
+    // stack not contiguous
+    printf("%s: stack not contiguous at ST%d\n", s, i);
+    state->print();
+    assert(false, "error");
+    return false;
+  }
+  // check if computed stack depth corresponds to expected stack depth
+  if (stack_depth < 0) {
+    // expected stack depth is -stack_depth or less
+    if (d > -stack_depth) {
+      // too many elements on the stack
+      printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
+      state->print();
+      assert(false, "error");
+      return false;
+    }
+  } else {
+    // expected stack depth is stack_depth
+    if (d != stack_depth) {
+      // wrong stack depth
+      printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
+      state->print();
+      assert(false, "error");
+      return false;
+    }
+  }
+  // everything is cool
+  return true;
+}
+
+
+void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
+  if (!VerifyFPU) return;
+  push_CPU_state();
+  push(rsp);                // pass CPU state
+  ExternalAddress msg((address) s);
+  // pass message string s
+  pushptr(msg.addr());
+  push(stack_depth);        // pass stack depth
+  call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
+  addptr(rsp, 3 * wordSize);   // discard arguments
+  // check for error
+  { Label L;
+    testl(rax, rax);
+    jcc(Assembler::notZero, L);
+    int3();                  // break if error condition
+    bind(L);
+  }
+  pop_CPU_state();
+}
+
+void MacroAssembler::restore_cpu_control_state_after_jni() {
+  // Either restore the MXCSR register after returning from the JNI Call
+  // or verify that it wasn't changed (with -Xcheck:jni flag).
+  if (VM_Version::supports_sse()) {
+    if (RestoreMXCSROnJNICalls) {
+      ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
+    } else if (CheckJNICalls) {
+      call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
+    }
+  }
+  // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
+  vzeroupper();
+
+#ifndef _LP64
+  // Either restore the x87 floating pointer control word after returning
+  // from the JNI call or verify that it wasn't changed.
+  if (CheckJNICalls) {
+    call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
+  }
+#endif // _LP64
+}
+
+// ((OopHandle)result).resolve();
+void MacroAssembler::resolve_oop_handle(Register result) {
+  // OopHandle::resolve is an indirection.
+  movptr(result, Address(result, 0));
+}
+
+void MacroAssembler::load_mirror(Register mirror, Register method) {
+  // get mirror
+  const int mirror_offset = in_bytes(Klass::java_mirror_offset());
+  movptr(mirror, Address(method, Method::const_offset()));
+  movptr(mirror, Address(mirror, ConstMethod::constants_offset()));
+  movptr(mirror, Address(mirror, ConstantPool::pool_holder_offset_in_bytes()));
+  movptr(mirror, Address(mirror, mirror_offset));
+}
+
+void MacroAssembler::load_klass(Register dst, Register src) {
+#ifdef _LP64
+  if (UseCompressedClassPointers) {
+    movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
+    decode_klass_not_null(dst);
+  } else
+#endif
+    movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
+}
+
+void MacroAssembler::load_prototype_header(Register dst, Register src) {
+  load_klass(dst, src);
+  movptr(dst, Address(dst, Klass::prototype_header_offset()));
+}
+
+void MacroAssembler::store_klass(Register dst, Register src) {
+#ifdef _LP64
+  if (UseCompressedClassPointers) {
+    encode_klass_not_null(src);
+    movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
+  } else
+#endif
+    movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
+}
+
+void MacroAssembler::load_heap_oop(Register dst, Address src) {
+#ifdef _LP64
+  // FIXME: Must change all places where we try to load the klass.
+  if (UseCompressedOops) {
+    movl(dst, src);
+    decode_heap_oop(dst);
+  } else
+#endif
+    movptr(dst, src);
+}
+
+// Doesn't do verfication, generates fixed size code
+void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
+#ifdef _LP64
+  if (UseCompressedOops) {
+    movl(dst, src);
+    decode_heap_oop_not_null(dst);
+  } else
+#endif
+    movptr(dst, src);
+}
+
+void MacroAssembler::store_heap_oop(Address dst, Register src) {
+#ifdef _LP64
+  if (UseCompressedOops) {
+    assert(!dst.uses(src), "not enough registers");
+    encode_heap_oop(src);
+    movl(dst, src);
+  } else
+#endif
+    movptr(dst, src);
+}
+
+void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
+  assert_different_registers(src1, tmp);
+#ifdef _LP64
+  if (UseCompressedOops) {
+    bool did_push = false;
+    if (tmp == noreg) {
+      tmp = rax;
+      push(tmp);
+      did_push = true;
+      assert(!src2.uses(rsp), "can't push");
+    }
+    load_heap_oop(tmp, src2);
+    cmpptr(src1, tmp);
+    if (did_push)  pop(tmp);
+  } else
+#endif
+    cmpptr(src1, src2);
+}
+
+// Used for storing NULLs.
+void MacroAssembler::store_heap_oop_null(Address dst) {
+#ifdef _LP64
+  if (UseCompressedOops) {
+    movl(dst, (int32_t)NULL_WORD);
+  } else {
+    movslq(dst, (int32_t)NULL_WORD);
+  }
+#else
+  movl(dst, (int32_t)NULL_WORD);
+#endif
+}
+
+#ifdef _LP64
+void MacroAssembler::store_klass_gap(Register dst, Register src) {
+  if (UseCompressedClassPointers) {
+    // Store to klass gap in destination
+    movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
+  }
+}
+
+#ifdef ASSERT
+void MacroAssembler::verify_heapbase(const char* msg) {
+  assert (UseCompressedOops, "should be compressed");
+  assert (Universe::heap() != NULL, "java heap should be initialized");
+  if (CheckCompressedOops) {
+    Label ok;
+    push(rscratch1); // cmpptr trashes rscratch1
+    cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
+    jcc(Assembler::equal, ok);
+    STOP(msg);
+    bind(ok);
+    pop(rscratch1);
+  }
+}
+#endif
+
+// Algorithm must match oop.inline.hpp encode_heap_oop.
+void MacroAssembler::encode_heap_oop(Register r) {
+#ifdef ASSERT
+  verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
+#endif
+  verify_oop(r, "broken oop in encode_heap_oop");
+  if (Universe::narrow_oop_base() == NULL) {
+    if (Universe::narrow_oop_shift() != 0) {
+      assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
+      shrq(r, LogMinObjAlignmentInBytes);
+    }
+    return;
+  }
+  testq(r, r);
+  cmovq(Assembler::equal, r, r12_heapbase);
+  subq(r, r12_heapbase);
+  shrq(r, LogMinObjAlignmentInBytes);
+}
+
+void MacroAssembler::encode_heap_oop_not_null(Register r) {
+#ifdef ASSERT
+  verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
+  if (CheckCompressedOops) {
+    Label ok;
+    testq(r, r);
+    jcc(Assembler::notEqual, ok);
+    STOP("null oop passed to encode_heap_oop_not_null");
+    bind(ok);
+  }
+#endif
+  verify_oop(r, "broken oop in encode_heap_oop_not_null");
+  if (Universe::narrow_oop_base() != NULL) {
+    subq(r, r12_heapbase);
+  }
+  if (Universe::narrow_oop_shift() != 0) {
+    assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
+    shrq(r, LogMinObjAlignmentInBytes);
+  }
+}
+
+void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
+#ifdef ASSERT
+  verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
+  if (CheckCompressedOops) {
+    Label ok;
+    testq(src, src);
+    jcc(Assembler::notEqual, ok);
+    STOP("null oop passed to encode_heap_oop_not_null2");
+    bind(ok);
+  }
+#endif
+  verify_oop(src, "broken oop in encode_heap_oop_not_null2");
+  if (dst != src) {
+    movq(dst, src);
+  }
+  if (Universe::narrow_oop_base() != NULL) {
+    subq(dst, r12_heapbase);
+  }
+  if (Universe::narrow_oop_shift() != 0) {
+    assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
+    shrq(dst, LogMinObjAlignmentInBytes);
+  }
+}
+
+void  MacroAssembler::decode_heap_oop(Register r) {
+#ifdef ASSERT
+  verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
+#endif
+  if (Universe::narrow_oop_base() == NULL) {
+    if (Universe::narrow_oop_shift() != 0) {
+      assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
+      shlq(r, LogMinObjAlignmentInBytes);
+    }
+  } else {
+    Label done;
+    shlq(r, LogMinObjAlignmentInBytes);
+    jccb(Assembler::equal, done);
+    addq(r, r12_heapbase);
+    bind(done);
+  }
+  verify_oop(r, "broken oop in decode_heap_oop");
+}
+
+void  MacroAssembler::decode_heap_oop_not_null(Register r) {
+  // Note: it will change flags
+  assert (UseCompressedOops, "should only be used for compressed headers");
+  assert (Universe::heap() != NULL, "java heap should be initialized");
+  // Cannot assert, unverified entry point counts instructions (see .ad file)
+  // vtableStubs also counts instructions in pd_code_size_limit.
+  // Also do not verify_oop as this is called by verify_oop.
+  if (Universe::narrow_oop_shift() != 0) {
+    assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
+    shlq(r, LogMinObjAlignmentInBytes);
+    if (Universe::narrow_oop_base() != NULL) {
+      addq(r, r12_heapbase);
+    }
+  } else {
+    assert (Universe::narrow_oop_base() == NULL, "sanity");
+  }
+}
+
+void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
+  // Note: it will change flags
+  assert (UseCompressedOops, "should only be used for compressed headers");
+  assert (Universe::heap() != NULL, "java heap should be initialized");
+  // Cannot assert, unverified entry point counts instructions (see .ad file)
+  // vtableStubs also counts instructions in pd_code_size_limit.
+  // Also do not verify_oop as this is called by verify_oop.
+  if (Universe::narrow_oop_shift() != 0) {
+    assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
+    if (LogMinObjAlignmentInBytes == Address::times_8) {
+      leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
+    } else {
+      if (dst != src) {
+        movq(dst, src);
+      }
+      shlq(dst, LogMinObjAlignmentInBytes);
+      if (Universe::narrow_oop_base() != NULL) {
+        addq(dst, r12_heapbase);
+      }
+    }
+  } else {
+    assert (Universe::narrow_oop_base() == NULL, "sanity");
+    if (dst != src) {
+      movq(dst, src);
+    }
+  }
+}
+
+void MacroAssembler::encode_klass_not_null(Register r) {
+  if (Universe::narrow_klass_base() != NULL) {
+    // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
+    assert(r != r12_heapbase, "Encoding a klass in r12");
+    mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
+    subq(r, r12_heapbase);
+  }
+  if (Universe::narrow_klass_shift() != 0) {
+    assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
+    shrq(r, LogKlassAlignmentInBytes);
+  }
+  if (Universe::narrow_klass_base() != NULL) {
+    reinit_heapbase();
+  }
+}
+
+void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
+  if (dst == src) {
+    encode_klass_not_null(src);
+  } else {
+    if (Universe::narrow_klass_base() != NULL) {
+      mov64(dst, (int64_t)Universe::narrow_klass_base());
+      negq(dst);
+      addq(dst, src);
+    } else {
+      movptr(dst, src);
+    }
+    if (Universe::narrow_klass_shift() != 0) {
+      assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
+      shrq(dst, LogKlassAlignmentInBytes);
+    }
+  }
+}
+
+// Function instr_size_for_decode_klass_not_null() counts the instructions
+// generated by decode_klass_not_null(register r) and reinit_heapbase(),
+// when (Universe::heap() != NULL).  Hence, if the instructions they
+// generate change, then this method needs to be updated.
+int MacroAssembler::instr_size_for_decode_klass_not_null() {
+  assert (UseCompressedClassPointers, "only for compressed klass ptrs");
+  if (Universe::narrow_klass_base() != NULL) {
+    // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
+    return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
+  } else {
+    // longest load decode klass function, mov64, leaq
+    return 16;
+  }
+}
+
+// !!! If the instructions that get generated here change then function
+// instr_size_for_decode_klass_not_null() needs to get updated.
+void  MacroAssembler::decode_klass_not_null(Register r) {
+  // Note: it will change flags
+  assert (UseCompressedClassPointers, "should only be used for compressed headers");
+  assert(r != r12_heapbase, "Decoding a klass in r12");
+  // Cannot assert, unverified entry point counts instructions (see .ad file)
+  // vtableStubs also counts instructions in pd_code_size_limit.
+  // Also do not verify_oop as this is called by verify_oop.
+  if (Universe::narrow_klass_shift() != 0) {
+    assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
+    shlq(r, LogKlassAlignmentInBytes);
+  }
+  // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
+  if (Universe::narrow_klass_base() != NULL) {
+    mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
+    addq(r, r12_heapbase);
+    reinit_heapbase();
+  }
+}
+
+void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
+  // Note: it will change flags
+  assert (UseCompressedClassPointers, "should only be used for compressed headers");
+  if (dst == src) {
+    decode_klass_not_null(dst);
+  } else {
+    // Cannot assert, unverified entry point counts instructions (see .ad file)
+    // vtableStubs also counts instructions in pd_code_size_limit.
+    // Also do not verify_oop as this is called by verify_oop.
+    mov64(dst, (int64_t)Universe::narrow_klass_base());
+    if (Universe::narrow_klass_shift() != 0) {
+      assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
+      assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
+      leaq(dst, Address(dst, src, Address::times_8, 0));
+    } else {
+      addq(dst, src);
+    }
+  }
+}
+
+void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
+  assert (UseCompressedOops, "should only be used for compressed headers");
+  assert (Universe::heap() != NULL, "java heap should be initialized");
+  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
+  int oop_index = oop_recorder()->find_index(obj);
+  RelocationHolder rspec = oop_Relocation::spec(oop_index);
+  mov_narrow_oop(dst, oop_index, rspec);
+}
+
+void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
+  assert (UseCompressedOops, "should only be used for compressed headers");
+  assert (Universe::heap() != NULL, "java heap should be initialized");
+  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
+  int oop_index = oop_recorder()->find_index(obj);
+  RelocationHolder rspec = oop_Relocation::spec(oop_index);
+  mov_narrow_oop(dst, oop_index, rspec);
+}
+
+void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
+  assert (UseCompressedClassPointers, "should only be used for compressed headers");
+  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
+  int klass_index = oop_recorder()->find_index(k);
+  RelocationHolder rspec = metadata_Relocation::spec(klass_index);
+  mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
+}
+
+void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
+  assert (UseCompressedClassPointers, "should only be used for compressed headers");
+  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
+  int klass_index = oop_recorder()->find_index(k);
+  RelocationHolder rspec = metadata_Relocation::spec(klass_index);
+  mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
+}
+
+void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
+  assert (UseCompressedOops, "should only be used for compressed headers");
+  assert (Universe::heap() != NULL, "java heap should be initialized");
+  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
+  int oop_index = oop_recorder()->find_index(obj);
+  RelocationHolder rspec = oop_Relocation::spec(oop_index);
+  Assembler::cmp_narrow_oop(dst, oop_index, rspec);
+}
+
+void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
+  assert (UseCompressedOops, "should only be used for compressed headers");
+  assert (Universe::heap() != NULL, "java heap should be initialized");
+  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
+  int oop_index = oop_recorder()->find_index(obj);
+  RelocationHolder rspec = oop_Relocation::spec(oop_index);
+  Assembler::cmp_narrow_oop(dst, oop_index, rspec);
+}
+
+void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
+  assert (UseCompressedClassPointers, "should only be used for compressed headers");
+  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
+  int klass_index = oop_recorder()->find_index(k);
+  RelocationHolder rspec = metadata_Relocation::spec(klass_index);
+  Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
+}
+
+void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
+  assert (UseCompressedClassPointers, "should only be used for compressed headers");
+  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
+  int klass_index = oop_recorder()->find_index(k);
+  RelocationHolder rspec = metadata_Relocation::spec(klass_index);
+  Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
+}
+
+void MacroAssembler::reinit_heapbase() {
+  if (UseCompressedOops || UseCompressedClassPointers) {
+    if (Universe::heap() != NULL) {
+      if (Universe::narrow_oop_base() == NULL) {
+        MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
+      } else {
+        mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
+      }
+    } else {
+      movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
+    }
+  }
+}
+
+#endif // _LP64
+
+// C2 compiled method's prolog code.
+void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
+
+  // WARNING: Initial instruction MUST be 5 bytes or longer so that
+  // NativeJump::patch_verified_entry will be able to patch out the entry
+  // code safely. The push to verify stack depth is ok at 5 bytes,
+  // the frame allocation can be either 3 or 6 bytes. So if we don't do
+  // stack bang then we must use the 6 byte frame allocation even if
+  // we have no frame. :-(
+  assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
+
+  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
+  // Remove word for return addr
+  framesize -= wordSize;
+  stack_bang_size -= wordSize;
+
+  // Calls to C2R adapters often do not accept exceptional returns.
+  // We require that their callers must bang for them.  But be careful, because
+  // some VM calls (such as call site linkage) can use several kilobytes of
+  // stack.  But the stack safety zone should account for that.
+  // See bugs 4446381, 4468289, 4497237.
+  if (stack_bang_size > 0) {
+    generate_stack_overflow_check(stack_bang_size);
+
+    // We always push rbp, so that on return to interpreter rbp, will be
+    // restored correctly and we can correct the stack.
+    push(rbp);
+    // Save caller's stack pointer into RBP if the frame pointer is preserved.
+    if (PreserveFramePointer) {
+      mov(rbp, rsp);
+    }
+    // Remove word for ebp
+    framesize -= wordSize;
+
+    // Create frame
+    if (framesize) {
+      subptr(rsp, framesize);
+    }
+  } else {
+    // Create frame (force generation of a 4 byte immediate value)
+    subptr_imm32(rsp, framesize);
+
+    // Save RBP register now.
+    framesize -= wordSize;
+    movptr(Address(rsp, framesize), rbp);
+    // Save caller's stack pointer into RBP if the frame pointer is preserved.
+    if (PreserveFramePointer) {
+      movptr(rbp, rsp);
+      if (framesize > 0) {
+        addptr(rbp, framesize);
+      }
+    }
+  }
+
+  if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
+    framesize -= wordSize;
+    movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
+  }
+
+#ifndef _LP64
+  // If method sets FPU control word do it now
+  if (fp_mode_24b) {
+    fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
+  }
+  if (UseSSE >= 2 && VerifyFPU) {
+    verify_FPU(0, "FPU stack must be clean on entry");
+  }
+#endif
+
+#ifdef ASSERT
+  if (VerifyStackAtCalls) {
+    Label L;
+    push(rax);
+    mov(rax, rsp);
+    andptr(rax, StackAlignmentInBytes-1);
+    cmpptr(rax, StackAlignmentInBytes-wordSize);
+    pop(rax);
+    jcc(Assembler::equal, L);
+    STOP("Stack is not properly aligned!");
+    bind(L);
+  }
+#endif
+
+}
+
+void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, bool is_large) {
+  // cnt - number of qwords (8-byte words).
+  // base - start address, qword aligned.
+  // is_large - if optimizers know cnt is larger than InitArrayShortSize
+  assert(base==rdi, "base register must be edi for rep stos");
+  assert(tmp==rax,   "tmp register must be eax for rep stos");
+  assert(cnt==rcx,   "cnt register must be ecx for rep stos");
+  assert(InitArrayShortSize % BytesPerLong == 0,
+    "InitArrayShortSize should be the multiple of BytesPerLong");
+
+  Label DONE;
+
+  xorptr(tmp, tmp);
+
+  if (!is_large) {
+    Label LOOP, LONG;
+    cmpptr(cnt, InitArrayShortSize/BytesPerLong);
+    jccb(Assembler::greater, LONG);
+
+    NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
+
+    decrement(cnt);
+    jccb(Assembler::negative, DONE); // Zero length
+
+    // Use individual pointer-sized stores for small counts:
+    BIND(LOOP);
+    movptr(Address(base, cnt, Address::times_ptr), tmp);
+    decrement(cnt);
+    jccb(Assembler::greaterEqual, LOOP);
+    jmpb(DONE);
+
+    BIND(LONG);
+  }
+
+  // Use longer rep-prefixed ops for non-small counts:
+  if (UseFastStosb) {
+    shlptr(cnt, 3); // convert to number of bytes
+    rep_stosb();
+  } else {
+    NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
+    rep_stos();
+  }
+
+  BIND(DONE);
+}
+
+#ifdef COMPILER2
+
+// IndexOf for constant substrings with size >= 8 chars
+// which don't need to be loaded through stack.
+void MacroAssembler::string_indexofC8(Register str1, Register str2,
+                                      Register cnt1, Register cnt2,
+                                      int int_cnt2,  Register result,
+                                      XMMRegister vec, Register tmp,
+                                      int ae) {
+  ShortBranchVerifier sbv(this);
+  assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
+  assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
+
+  // This method uses the pcmpestri instruction with bound registers
+  //   inputs:
+  //     xmm - substring
+  //     rax - substring length (elements count)
+  //     mem - scanned string
+  //     rdx - string length (elements count)
+  //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
+  //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
+  //   outputs:
+  //     rcx - matched index in string
+  assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
+  int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
+  int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
+  Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
+  Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
+
+  Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
+        RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
+        MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
+
+  // Note, inline_string_indexOf() generates checks:
+  // if (substr.count > string.count) return -1;
+  // if (substr.count == 0) return 0;
+  assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
+
+  // Load substring.
+  if (ae == StrIntrinsicNode::UL) {
+    pmovzxbw(vec, Address(str2, 0));
+  } else {
+    movdqu(vec, Address(str2, 0));
+  }
+  movl(cnt2, int_cnt2);
+  movptr(result, str1); // string addr
+
+  if (int_cnt2 > stride) {
+    jmpb(SCAN_TO_SUBSTR);
+
+    // Reload substr for rescan, this code
+    // is executed only for large substrings (> 8 chars)
+    bind(RELOAD_SUBSTR);
+    if (ae == StrIntrinsicNode::UL) {
+      pmovzxbw(vec, Address(str2, 0));
+    } else {
+      movdqu(vec, Address(str2, 0));
+    }
+    negptr(cnt2); // Jumped here with negative cnt2, convert to positive
+
+    bind(RELOAD_STR);
+    // We came here after the beginning of the substring was
+    // matched but the rest of it was not so we need to search
+    // again. Start from the next element after the previous match.
+
+    // cnt2 is number of substring reminding elements and
+    // cnt1 is number of string reminding elements when cmp failed.
+    // Restored cnt1 = cnt1 - cnt2 + int_cnt2
+    subl(cnt1, cnt2);
+    addl(cnt1, int_cnt2);
+    movl(cnt2, int_cnt2); // Now restore cnt2
+
+    decrementl(cnt1);     // Shift to next element
+    cmpl(cnt1, cnt2);
+    jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
+
+    addptr(result, (1<<scale1));
+
+  } // (int_cnt2 > 8)
+
+  // Scan string for start of substr in 16-byte vectors
+  bind(SCAN_TO_SUBSTR);
+  pcmpestri(vec, Address(result, 0), mode);
+  jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
+  subl(cnt1, stride);
+  jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
+  cmpl(cnt1, cnt2);
+  jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
+  addptr(result, 16);
+  jmpb(SCAN_TO_SUBSTR);
+
+  // Found a potential substr
+  bind(FOUND_CANDIDATE);
+  // Matched whole vector if first element matched (tmp(rcx) == 0).
+  if (int_cnt2 == stride) {
+    jccb(Assembler::overflow, RET_FOUND);    // OF == 1
+  } else { // int_cnt2 > 8
+    jccb(Assembler::overflow, FOUND_SUBSTR);
+  }
+  // After pcmpestri tmp(rcx) contains matched element index
+  // Compute start addr of substr
+  lea(result, Address(result, tmp, scale1));
+
+  // Make sure string is still long enough
+  subl(cnt1, tmp);
+  cmpl(cnt1, cnt2);
+  if (int_cnt2 == stride) {
+    jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
+  } else { // int_cnt2 > 8
+    jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
+  }
+  // Left less then substring.
+
+  bind(RET_NOT_FOUND);
+  movl(result, -1);
+  jmp(EXIT);
+
+  if (int_cnt2 > stride) {
+    // This code is optimized for the case when whole substring
+    // is matched if its head is matched.
+    bind(MATCH_SUBSTR_HEAD);
+    pcmpestri(vec, Address(result, 0), mode);
+    // Reload only string if does not match
+    jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
+
+    Label CONT_SCAN_SUBSTR;
+    // Compare the rest of substring (> 8 chars).
+    bind(FOUND_SUBSTR);
+    // First 8 chars are already matched.
+    negptr(cnt2);
+    addptr(cnt2, stride);
+
+    bind(SCAN_SUBSTR);
+    subl(cnt1, stride);
+    cmpl(cnt2, -stride); // Do not read beyond substring
+    jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
+    // Back-up strings to avoid reading beyond substring:
+    // cnt1 = cnt1 - cnt2 + 8
+    addl(cnt1, cnt2); // cnt2 is negative
+    addl(cnt1, stride);
+    movl(cnt2, stride); negptr(cnt2);
+    bind(CONT_SCAN_SUBSTR);
+    if (int_cnt2 < (int)G) {
+      int tail_off1 = int_cnt2<<scale1;
+      int tail_off2 = int_cnt2<<scale2;
+      if (ae == StrIntrinsicNode::UL) {
+        pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
+      } else {
+        movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
+      }
+      pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
+    } else {
+      // calculate index in register to avoid integer overflow (int_cnt2*2)
+      movl(tmp, int_cnt2);
+      addptr(tmp, cnt2);
+      if (ae == StrIntrinsicNode::UL) {
+        pmovzxbw(vec, Address(str2, tmp, scale2, 0));
+      } else {
+        movdqu(vec, Address(str2, tmp, scale2, 0));
+      }
+      pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
+    }
+    // Need to reload strings pointers if not matched whole vector
+    jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
+    addptr(cnt2, stride);
+    jcc(Assembler::negative, SCAN_SUBSTR);
+    // Fall through if found full substring
+
+  } // (int_cnt2 > 8)
+
+  bind(RET_FOUND);
+  // Found result if we matched full small substring.
+  // Compute substr offset
+  subptr(result, str1);
+  if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
+    shrl(result, 1); // index
+  }
+  bind(EXIT);
+
+} // string_indexofC8
+
+// Small strings are loaded through stack if they cross page boundary.
+void MacroAssembler::string_indexof(Register str1, Register str2,
+                                    Register cnt1, Register cnt2,
+                                    int int_cnt2,  Register result,
+                                    XMMRegister vec, Register tmp,
+                                    int ae) {
+  ShortBranchVerifier sbv(this);
+  assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
+  assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
+
+  //
+  // int_cnt2 is length of small (< 8 chars) constant substring
+  // or (-1) for non constant substring in which case its length
+  // is in cnt2 register.
+  //
+  // Note, inline_string_indexOf() generates checks:
+  // if (substr.count > string.count) return -1;
+  // if (substr.count == 0) return 0;
+  //
+  int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
+  assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
+  // This method uses the pcmpestri instruction with bound registers
+  //   inputs:
+  //     xmm - substring
+  //     rax - substring length (elements count)
+  //     mem - scanned string
+  //     rdx - string length (elements count)
+  //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
+  //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
+  //   outputs:
+  //     rcx - matched index in string
+  assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
+  int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
+  Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
+  Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
+
+  Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
+        RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
+        FOUND_CANDIDATE;
+
+  { //========================================================
+    // We don't know where these strings are located
+    // and we can't read beyond them. Load them through stack.
+    Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
+
+    movptr(tmp, rsp); // save old SP
+
+    if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
+      if (int_cnt2 == (1>>scale2)) { // One byte
+        assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
+        load_unsigned_byte(result, Address(str2, 0));
+        movdl(vec, result); // move 32 bits
+      } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
+        // Not enough header space in 32-bit VM: 12+3 = 15.
+        movl(result, Address(str2, -1));
+        shrl(result, 8);
+        movdl(vec, result); // move 32 bits
+      } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
+        load_unsigned_short(result, Address(str2, 0));
+        movdl(vec, result); // move 32 bits
+      } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
+        movdl(vec, Address(str2, 0)); // move 32 bits
+      } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
+        movq(vec, Address(str2, 0));  // move 64 bits
+      } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
+        // Array header size is 12 bytes in 32-bit VM
+        // + 6 bytes for 3 chars == 18 bytes,
+        // enough space to load vec and shift.
+        assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
+        if (ae == StrIntrinsicNode::UL) {
+          int tail_off = int_cnt2-8;
+          pmovzxbw(vec, Address(str2, tail_off));
+          psrldq(vec, -2*tail_off);
+        }
+        else {
+          int tail_off = int_cnt2*(1<<scale2);
+          movdqu(vec, Address(str2, tail_off-16));
+          psrldq(vec, 16-tail_off);
+        }
+      }
+    } else { // not constant substring
+      cmpl(cnt2, stride);
+      jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
+
+      // We can read beyond string if srt+16 does not cross page boundary
+      // since heaps are aligned and mapped by pages.
+      assert(os::vm_page_size() < (int)G, "default page should be small");
+      movl(result, str2); // We need only low 32 bits
+      andl(result, (os::vm_page_size()-1));
+      cmpl(result, (os::vm_page_size()-16));
+      jccb(Assembler::belowEqual, CHECK_STR);
+
+      // Move small strings to stack to allow load 16 bytes into vec.
+      subptr(rsp, 16);
+      int stk_offset = wordSize-(1<<scale2);
+      push(cnt2);
+
+      bind(COPY_SUBSTR);
+      if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
+        load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
+        movb(Address(rsp, cnt2, scale2, stk_offset), result);
+      } else if (ae == StrIntrinsicNode::UU) {
+        load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
+        movw(Address(rsp, cnt2, scale2, stk_offset), result);
+      }
+      decrement(cnt2);
+      jccb(Assembler::notZero, COPY_SUBSTR);
+
+      pop(cnt2);
+      movptr(str2, rsp);  // New substring address
+    } // non constant
+
+    bind(CHECK_STR);
+    cmpl(cnt1, stride);
+    jccb(Assembler::aboveEqual, BIG_STRINGS);
+
+    // Check cross page boundary.
+    movl(result, str1); // We need only low 32 bits
+    andl(result, (os::vm_page_size()-1));
+    cmpl(result, (os::vm_page_size()-16));
+    jccb(Assembler::belowEqual, BIG_STRINGS);
+
+    subptr(rsp, 16);
+    int stk_offset = -(1<<scale1);
+    if (int_cnt2 < 0) { // not constant
+      push(cnt2);
+      stk_offset += wordSize;
+    }
+    movl(cnt2, cnt1);
+
+    bind(COPY_STR);
+    if (ae == StrIntrinsicNode::LL) {
+      load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
+      movb(Address(rsp, cnt2, scale1, stk_offset), result);
+    } else {
+      load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
+      movw(Address(rsp, cnt2, scale1, stk_offset), result);
+    }
+    decrement(cnt2);
+    jccb(Assembler::notZero, COPY_STR);
+
+    if (int_cnt2 < 0) { // not constant
+      pop(cnt2);
+    }
+    movptr(str1, rsp);  // New string address
+
+    bind(BIG_STRINGS);
+    // Load substring.
+    if (int_cnt2 < 0) { // -1
+      if (ae == StrIntrinsicNode::UL) {
+        pmovzxbw(vec, Address(str2, 0));
+      } else {
+        movdqu(vec, Address(str2, 0));
+      }
+      push(cnt2);       // substr count
+      push(str2);       // substr addr
+      push(str1);       // string addr
+    } else {
+      // Small (< 8 chars) constant substrings are loaded already.
+      movl(cnt2, int_cnt2);
+    }
+    push(tmp);  // original SP
+
+  } // Finished loading
+
+  //========================================================
+  // Start search
+  //
+
+  movptr(result, str1); // string addr
+
+  if (int_cnt2  < 0) {  // Only for non constant substring
+    jmpb(SCAN_TO_SUBSTR);
+
+    // SP saved at sp+0
+    // String saved at sp+1*wordSize
+    // Substr saved at sp+2*wordSize
+    // Substr count saved at sp+3*wordSize
+
+    // Reload substr for rescan, this code
+    // is executed only for large substrings (> 8 chars)
+    bind(RELOAD_SUBSTR);
+    movptr(str2, Address(rsp, 2*wordSize));
+    movl(cnt2, Address(rsp, 3*wordSize));
+    if (ae == StrIntrinsicNode::UL) {
+      pmovzxbw(vec, Address(str2, 0));
+    } else {
+      movdqu(vec, Address(str2, 0));
+    }
+    // We came here after the beginning of the substring was
+    // matched but the rest of it was not so we need to search
+    // again. Start from the next element after the previous match.
+    subptr(str1, result); // Restore counter
+    if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
+      shrl(str1, 1);
+    }
+    addl(cnt1, str1);
+    decrementl(cnt1);   // Shift to next element
+    cmpl(cnt1, cnt2);
+    jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
+
+    addptr(result, (1<<scale1));
+  } // non constant
+
+  // Scan string for start of substr in 16-byte vectors
+  bind(SCAN_TO_SUBSTR);
+  assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
+  pcmpestri(vec, Address(result, 0), mode);
+  jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
+  subl(cnt1, stride);
+  jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
+  cmpl(cnt1, cnt2);
+  jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
+  addptr(result, 16);
+
+  bind(ADJUST_STR);
+  cmpl(cnt1, stride); // Do not read beyond string
+  jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
+  // Back-up string to avoid reading beyond string.
+  lea(result, Address(result, cnt1, scale1, -16));
+  movl(cnt1, stride);
+  jmpb(SCAN_TO_SUBSTR);
+
+  // Found a potential substr
+  bind(FOUND_CANDIDATE);
+  // After pcmpestri tmp(rcx) contains matched element index
+
+  // Make sure string is still long enough
+  subl(cnt1, tmp);
+  cmpl(cnt1, cnt2);
+  jccb(Assembler::greaterEqual, FOUND_SUBSTR);
+  // Left less then substring.
+
+  bind(RET_NOT_FOUND);
+  movl(result, -1);
+  jmpb(CLEANUP);
+
+  bind(FOUND_SUBSTR);
+  // Compute start addr of substr
+  lea(result, Address(result, tmp, scale1));
+  if (int_cnt2 > 0) { // Constant substring
+    // Repeat search for small substring (< 8 chars)
+    // from new point without reloading substring.
+    // Have to check that we don't read beyond string.
+    cmpl(tmp, stride-int_cnt2);
+    jccb(Assembler::greater, ADJUST_STR);
+    // Fall through if matched whole substring.
+  } else { // non constant
+    assert(int_cnt2 == -1, "should be != 0");
+
+    addl(tmp, cnt2);
+    // Found result if we matched whole substring.
+    cmpl(tmp, stride);
+    jccb(Assembler::lessEqual, RET_FOUND);
+
+    // Repeat search for small substring (<= 8 chars)
+    // from new point 'str1' without reloading substring.
+    cmpl(cnt2, stride);
+    // Have to check that we don't read beyond string.
+    jccb(Assembler::lessEqual, ADJUST_STR);
+
+    Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
+    // Compare the rest of substring (> 8 chars).
+    movptr(str1, result);
+
+    cmpl(tmp, cnt2);
+    // First 8 chars are already matched.
+    jccb(Assembler::equal, CHECK_NEXT);
+
+    bind(SCAN_SUBSTR);
+    pcmpestri(vec, Address(str1, 0), mode);
+    // Need to reload strings pointers if not matched whole vector
+    jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
+
+    bind(CHECK_NEXT);
+    subl(cnt2, stride);
+    jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
+    addptr(str1, 16);
+    if (ae == StrIntrinsicNode::UL) {
+      addptr(str2, 8);
+    } else {
+      addptr(str2, 16);
+    }
+    subl(cnt1, stride);
+    cmpl(cnt2, stride); // Do not read beyond substring
+    jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
+    // Back-up strings to avoid reading beyond substring.
+
+    if (ae == StrIntrinsicNode::UL) {
+      lea(str2, Address(str2, cnt2, scale2, -8));
+      lea(str1, Address(str1, cnt2, scale1, -16));
+    } else {
+      lea(str2, Address(str2, cnt2, scale2, -16));
+      lea(str1, Address(str1, cnt2, scale1, -16));
+    }
+    subl(cnt1, cnt2);
+    movl(cnt2, stride);
+    addl(cnt1, stride);
+    bind(CONT_SCAN_SUBSTR);
+    if (ae == StrIntrinsicNode::UL) {
+      pmovzxbw(vec, Address(str2, 0));
+    } else {
+      movdqu(vec, Address(str2, 0));
+    }
+    jmp(SCAN_SUBSTR);
+
+    bind(RET_FOUND_LONG);
+    movptr(str1, Address(rsp, wordSize));
+  } // non constant
+
+  bind(RET_FOUND);
+  // Compute substr offset
+  subptr(result, str1);
+  if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
+    shrl(result, 1); // index
+  }
+  bind(CLEANUP);
+  pop(rsp); // restore SP
+
+} // string_indexof
+
+void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
+                                         XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
+  ShortBranchVerifier sbv(this);
+  assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
+
+  int stride = 8;
+
+  Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
+        SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
+        RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
+        FOUND_SEQ_CHAR, DONE_LABEL;
+
+  movptr(result, str1);
+  if (UseAVX >= 2) {
+    cmpl(cnt1, stride);
+    jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
+    cmpl(cnt1, 2*stride);
+    jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
+    movdl(vec1, ch);
+    vpbroadcastw(vec1, vec1);
+    vpxor(vec2, vec2);
+    movl(tmp, cnt1);
+    andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
+    andl(cnt1,0x0000000F);  //tail count (in chars)
+
+    bind(SCAN_TO_16_CHAR_LOOP);
+    vmovdqu(vec3, Address(result, 0));
+    vpcmpeqw(vec3, vec3, vec1, 1);
+    vptest(vec2, vec3);
+    jcc(Assembler::carryClear, FOUND_CHAR);
+    addptr(result, 32);
+    subl(tmp, 2*stride);
+    jccb(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
+    jmp(SCAN_TO_8_CHAR);
+    bind(SCAN_TO_8_CHAR_INIT);
+    movdl(vec1, ch);
+    pshuflw(vec1, vec1, 0x00);
+    pshufd(vec1, vec1, 0);
+    pxor(vec2, vec2);
+  }
+  bind(SCAN_TO_8_CHAR);
+  cmpl(cnt1, stride);
+  if (UseAVX >= 2) {
+    jcc(Assembler::less, SCAN_TO_CHAR);
+  } else {
+    jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
+    movdl(vec1, ch);
+    pshuflw(vec1, vec1, 0x00);
+    pshufd(vec1, vec1, 0);
+    pxor(vec2, vec2);
+  }
+  movl(tmp, cnt1);
+  andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
+  andl(cnt1,0x00000007);  //tail count (in chars)
+
+  bind(SCAN_TO_8_CHAR_LOOP);
+  movdqu(vec3, Address(result, 0));
+  pcmpeqw(vec3, vec1);
+  ptest(vec2, vec3);
+  jcc(Assembler::carryClear, FOUND_CHAR);
+  addptr(result, 16);
+  subl(tmp, stride);
+  jccb(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
+  bind(SCAN_TO_CHAR);
+  testl(cnt1, cnt1);
+  jcc(Assembler::zero, RET_NOT_FOUND);
+  bind(SCAN_TO_CHAR_LOOP);
+  load_unsigned_short(tmp, Address(result, 0));
+  cmpl(ch, tmp);
+  jccb(Assembler::equal, FOUND_SEQ_CHAR);
+  addptr(result, 2);
+  subl(cnt1, 1);
+  jccb(Assembler::zero, RET_NOT_FOUND);
+  jmp(SCAN_TO_CHAR_LOOP);
+
+  bind(RET_NOT_FOUND);
+  movl(result, -1);
+  jmpb(DONE_LABEL);
+
+  bind(FOUND_CHAR);
+  if (UseAVX >= 2) {
+    vpmovmskb(tmp, vec3);
+  } else {
+    pmovmskb(tmp, vec3);
+  }
+  bsfl(ch, tmp);
+  addl(result, ch);
+
+  bind(FOUND_SEQ_CHAR);
+  subptr(result, str1);
+  shrl(result, 1);
+
+  bind(DONE_LABEL);
+} // string_indexof_char
+
+// helper function for string_compare
+void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
+                                        Address::ScaleFactor scale, Address::ScaleFactor scale1,
+                                        Address::ScaleFactor scale2, Register index, int ae) {
+  if (ae == StrIntrinsicNode::LL) {
+    load_unsigned_byte(elem1, Address(str1, index, scale, 0));
+    load_unsigned_byte(elem2, Address(str2, index, scale, 0));
+  } else if (ae == StrIntrinsicNode::UU) {
+    load_unsigned_short(elem1, Address(str1, index, scale, 0));
+    load_unsigned_short(elem2, Address(str2, index, scale, 0));
+  } else {
+    load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
+    load_unsigned_short(elem2, Address(str2, index, scale2, 0));
+  }
+}
+
+// Compare strings, used for char[] and byte[].
+void MacroAssembler::string_compare(Register str1, Register str2,
+                                    Register cnt1, Register cnt2, Register result,
+                                    XMMRegister vec1, int ae) {
+  ShortBranchVerifier sbv(this);
+  Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
+  Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
+  int stride, stride2, adr_stride, adr_stride1, adr_stride2;
+  int stride2x2 = 0x40;
+  Address::ScaleFactor scale = Address::no_scale;
+  Address::ScaleFactor scale1 = Address::no_scale;
+  Address::ScaleFactor scale2 = Address::no_scale;
+
+  if (ae != StrIntrinsicNode::LL) {
+    stride2x2 = 0x20;
+  }
+
+  if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
+    shrl(cnt2, 1);
+  }
+  // Compute the minimum of the string lengths and the
+  // difference of the string lengths (stack).
+  // Do the conditional move stuff
+  movl(result, cnt1);
+  subl(cnt1, cnt2);
+  push(cnt1);
+  cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
+
+  // Is the minimum length zero?
+  testl(cnt2, cnt2);
+  jcc(Assembler::zero, LENGTH_DIFF_LABEL);
+  if (ae == StrIntrinsicNode::LL) {
+    // Load first bytes
+    load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
+    load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
+  } else if (ae == StrIntrinsicNode::UU) {
+    // Load first characters
+    load_unsigned_short(result, Address(str1, 0));
+    load_unsigned_short(cnt1, Address(str2, 0));
+  } else {
+    load_unsigned_byte(result, Address(str1, 0));
+    load_unsigned_short(cnt1, Address(str2, 0));
+  }
+  subl(result, cnt1);
+  jcc(Assembler::notZero,  POP_LABEL);
+
+  if (ae == StrIntrinsicNode::UU) {
+    // Divide length by 2 to get number of chars
+    shrl(cnt2, 1);
+  }
+  cmpl(cnt2, 1);
+  jcc(Assembler::equal, LENGTH_DIFF_LABEL);
+
+  // Check if the strings start at the same location and setup scale and stride
+  if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
+    cmpptr(str1, str2);
+    jcc(Assembler::equal, LENGTH_DIFF_LABEL);
+    if (ae == StrIntrinsicNode::LL) {
+      scale = Address::times_1;
+      stride = 16;
+    } else {
+      scale = Address::times_2;
+      stride = 8;
+    }
+  } else {
+    scale1 = Address::times_1;
+    scale2 = Address::times_2;
+    // scale not used
+    stride = 8;
+  }
+
+  if (UseAVX >= 2 && UseSSE42Intrinsics) {
+    Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
+    Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
+    Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
+    Label COMPARE_TAIL_LONG;
+    Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
+
+    int pcmpmask = 0x19;
+    if (ae == StrIntrinsicNode::LL) {
+      pcmpmask &= ~0x01;
+    }
+
+    // Setup to compare 16-chars (32-bytes) vectors,
+    // start from first character again because it has aligned address.
+    if (ae == StrIntrinsicNode::LL) {
+      stride2 = 32;
+    } else {
+      stride2 = 16;
+    }
+    if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
+      adr_stride = stride << scale;
+    } else {
+      adr_stride1 = 8;  //stride << scale1;
+      adr_stride2 = 16; //stride << scale2;
+    }
+
+    assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
+    // rax and rdx are used by pcmpestri as elements counters
+    movl(result, cnt2);
+    andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
+    jcc(Assembler::zero, COMPARE_TAIL_LONG);
+
+    // fast path : compare first 2 8-char vectors.
+    bind(COMPARE_16_CHARS);
+    if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
+      movdqu(vec1, Address(str1, 0));
+    } else {
+      pmovzxbw(vec1, Address(str1, 0));
+    }
+    pcmpestri(vec1, Address(str2, 0), pcmpmask);
+    jccb(Assembler::below, COMPARE_INDEX_CHAR);
+
+    if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
+      movdqu(vec1, Address(str1, adr_stride));
+      pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
+    } else {
+      pmovzxbw(vec1, Address(str1, adr_stride1));
+      pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
+    }
+    jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
+    addl(cnt1, stride);
+
+    // Compare the characters at index in cnt1
+    bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
+    load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
+    subl(result, cnt2);
+    jmp(POP_LABEL);
+
+    // Setup the registers to start vector comparison loop
+    bind(COMPARE_WIDE_VECTORS);
+    if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
+      lea(str1, Address(str1, result, scale));
+      lea(str2, Address(str2, result, scale));
+    } else {
+      lea(str1, Address(str1, result, scale1));
+      lea(str2, Address(str2, result, scale2));
+    }
+    subl(result, stride2);
+    subl(cnt2, stride2);
+    jcc(Assembler::zero, COMPARE_WIDE_TAIL);
+    negptr(result);
+
+    //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
+    bind(COMPARE_WIDE_VECTORS_LOOP);
+
+#ifdef _LP64
+    if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
+      cmpl(cnt2, stride2x2);
+      jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
+      testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
+      jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
+
+      bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
+      if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
+        evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
+        evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
+      } else {
+        vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
+        evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
+      }
+      kortestql(k7, k7);
+      jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
+      addptr(result, stride2x2);  // update since we already compared at this addr
+      subl(cnt2, stride2x2);      // and sub the size too
+      jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
+
+      vpxor(vec1, vec1);
+      jmpb(COMPARE_WIDE_TAIL);
+    }//if (VM_Version::supports_avx512vlbw())
+#endif // _LP64
+
+
+    bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
+    if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
+      vmovdqu(vec1, Address(str1, result, scale));
+      vpxor(vec1, Address(str2, result, scale));
+    } else {
+      vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
+      vpxor(vec1, Address(str2, result, scale2));
+    }
+    vptest(vec1, vec1);
+    jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
+    addptr(result, stride2);
+    subl(cnt2, stride2);
+    jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
+    // clean upper bits of YMM registers
+    vpxor(vec1, vec1);
+
+    // compare wide vectors tail
+    bind(COMPARE_WIDE_TAIL);
+    testptr(result, result);
+    jcc(Assembler::zero, LENGTH_DIFF_LABEL);
+
+    movl(result, stride2);
+    movl(cnt2, result);
+    negptr(result);
+    jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
+
+    // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
+    bind(VECTOR_NOT_EQUAL);
+    // clean upper bits of YMM registers
+    vpxor(vec1, vec1);
+    if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
+      lea(str1, Address(str1, result, scale));
+      lea(str2, Address(str2, result, scale));
+    } else {
+      lea(str1, Address(str1, result, scale1));
+      lea(str2, Address(str2, result, scale2));
+    }
+    jmp(COMPARE_16_CHARS);
+
+    // Compare tail chars, length between 1 to 15 chars
+    bind(COMPARE_TAIL_LONG);
+    movl(cnt2, result);
+    cmpl(cnt2, stride);
+    jcc(Assembler::less, COMPARE_SMALL_STR);
+
+    if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
+      movdqu(vec1, Address(str1, 0));
+    } else {
+      pmovzxbw(vec1, Address(str1, 0));
+    }
+    pcmpestri(vec1, Address(str2, 0), pcmpmask);
+    jcc(Assembler::below, COMPARE_INDEX_CHAR);
+    subptr(cnt2, stride);
+    jcc(Assembler::zero, LENGTH_DIFF_LABEL);
+    if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
+      lea(str1, Address(str1, result, scale));
+      lea(str2, Address(str2, result, scale));
+    } else {
+      lea(str1, Address(str1, result, scale1));
+      lea(str2, Address(str2, result, scale2));
+    }
+    negptr(cnt2);
+    jmpb(WHILE_HEAD_LABEL);
+
+    bind(COMPARE_SMALL_STR);
+  } else if (UseSSE42Intrinsics) {
+    Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
+    int pcmpmask = 0x19;
+    // Setup to compare 8-char (16-byte) vectors,
+    // start from first character again because it has aligned address.
+    movl(result, cnt2);
+    andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
+    if (ae == StrIntrinsicNode::LL) {
+      pcmpmask &= ~0x01;
+    }
+    jcc(Assembler::zero, COMPARE_TAIL);
+    if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
+      lea(str1, Address(str1, result, scale));
+      lea(str2, Address(str2, result, scale));
+    } else {
+      lea(str1, Address(str1, result, scale1));
+      lea(str2, Address(str2, result, scale2));
+    }
+    negptr(result);
+
+    // pcmpestri
+    //   inputs:
+    //     vec1- substring
+    //     rax - negative string length (elements count)
+    //     mem - scanned string
+    //     rdx - string length (elements count)
+    //     pcmpmask - cmp mode: 11000 (string compare with negated result)
+    //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
+    //   outputs:
+    //     rcx - first mismatched element index
+    assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
+
+    bind(COMPARE_WIDE_VECTORS);
+    if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
+      movdqu(vec1, Address(str1, result, scale));
+      pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
+    } else {
+      pmovzxbw(vec1, Address(str1, result, scale1));
+      pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
+    }
+    // After pcmpestri cnt1(rcx) contains mismatched element index
+
+    jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
+    addptr(result, stride);
+    subptr(cnt2, stride);
+    jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
+
+    // compare wide vectors tail
+    testptr(result, result);
+    jcc(Assembler::zero, LENGTH_DIFF_LABEL);
+
+    movl(cnt2, stride);
+    movl(result, stride);
+    negptr(result);
+    if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
+      movdqu(vec1, Address(str1, result, scale));
+      pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
+    } else {
+      pmovzxbw(vec1, Address(str1, result, scale1));
+      pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
+    }
+    jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
+
+    // Mismatched characters in the vectors
+    bind(VECTOR_NOT_EQUAL);
+    addptr(cnt1, result);
+    load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
+    subl(result, cnt2);
+    jmpb(POP_LABEL);
+
+    bind(COMPARE_TAIL); // limit is zero
+    movl(cnt2, result);
+    // Fallthru to tail compare
+  }
+  // Shift str2 and str1 to the end of the arrays, negate min
+  if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
+    lea(str1, Address(str1, cnt2, scale));
+    lea(str2, Address(str2, cnt2, scale));
+  } else {
+    lea(str1, Address(str1, cnt2, scale1));
+    lea(str2, Address(str2, cnt2, scale2));
+  }
+  decrementl(cnt2);  // first character was compared already
+  negptr(cnt2);
+
+  // Compare the rest of the elements
+  bind(WHILE_HEAD_LABEL);
+  load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
+  subl(result, cnt1);
+  jccb(Assembler::notZero, POP_LABEL);
+  increment(cnt2);
+  jccb(Assembler::notZero, WHILE_HEAD_LABEL);
+
+  // Strings are equal up to min length.  Return the length difference.
+  bind(LENGTH_DIFF_LABEL);
+  pop(result);
+  if (ae == StrIntrinsicNode::UU) {
+    // Divide diff by 2 to get number of chars
+    sarl(result, 1);
+  }
+  jmpb(DONE_LABEL);
+
+#ifdef _LP64
+  if (VM_Version::supports_avx512vlbw()) {
+
+    bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
+
+    kmovql(cnt1, k7);
+    notq(cnt1);
+    bsfq(cnt2, cnt1);
+    if (ae != StrIntrinsicNode::LL) {
+      // Divide diff by 2 to get number of chars
+      sarl(cnt2, 1);
+    }
+    addq(result, cnt2);
+    if (ae == StrIntrinsicNode::LL) {
+      load_unsigned_byte(cnt1, Address(str2, result));
+      load_unsigned_byte(result, Address(str1, result));
+    } else if (ae == StrIntrinsicNode::UU) {
+      load_unsigned_short(cnt1, Address(str2, result, scale));
+      load_unsigned_short(result, Address(str1, result, scale));
+    } else {
+      load_unsigned_short(cnt1, Address(str2, result, scale2));
+      load_unsigned_byte(result, Address(str1, result, scale1));
+    }
+    subl(result, cnt1);
+    jmpb(POP_LABEL);
+  }//if (VM_Version::supports_avx512vlbw())
+#endif // _LP64
+
+  // Discard the stored length difference
+  bind(POP_LABEL);
+  pop(cnt1);
+
+  // That's it
+  bind(DONE_LABEL);
+  if(ae == StrIntrinsicNode::UL) {
+    negl(result);
+  }
+
+}
+
+// Search for Non-ASCII character (Negative byte value) in a byte array,
+// return true if it has any and false otherwise.
+//   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
+//   @HotSpotIntrinsicCandidate
+//   private static boolean hasNegatives(byte[] ba, int off, int len) {
+//     for (int i = off; i < off + len; i++) {
+//       if (ba[i] < 0) {
+//         return true;
+//       }
+//     }
+//     return false;
+//   }
+void MacroAssembler::has_negatives(Register ary1, Register len,
+  Register result, Register tmp1,
+  XMMRegister vec1, XMMRegister vec2) {
+  // rsi: byte array
+  // rcx: len
+  // rax: result
+  ShortBranchVerifier sbv(this);
+  assert_different_registers(ary1, len, result, tmp1);
+  assert_different_registers(vec1, vec2);
+  Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
+
+  // len == 0
+  testl(len, len);
+  jcc(Assembler::zero, FALSE_LABEL);
+
+  if ((UseAVX > 2) && // AVX512
+    VM_Version::supports_avx512vlbw() &&
+    VM_Version::supports_bmi2()) {
+
+    set_vector_masking();  // opening of the stub context for programming mask registers
+
+    Label test_64_loop, test_tail;
+    Register tmp3_aliased = len;
+
+    movl(tmp1, len);
+    vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
+
+    andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
+    andl(len, ~(64 - 1));    // vector count (in chars)
+    jccb(Assembler::zero, test_tail);
+
+    lea(ary1, Address(ary1, len, Address::times_1));
+    negptr(len);
+
+    bind(test_64_loop);
+    // Check whether our 64 elements of size byte contain negatives
+    evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
+    kortestql(k2, k2);
+    jcc(Assembler::notZero, TRUE_LABEL);
+
+    addptr(len, 64);
+    jccb(Assembler::notZero, test_64_loop);
+
+
+    bind(test_tail);
+    // bail out when there is nothing to be done
+    testl(tmp1, -1);
+    jcc(Assembler::zero, FALSE_LABEL);
+
+    // Save k1
+    kmovql(k3, k1);
+
+    // ~(~0 << len) applied up to two times (for 32-bit scenario)
+#ifdef _LP64
+    mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
+    shlxq(tmp3_aliased, tmp3_aliased, tmp1);
+    notq(tmp3_aliased);
+    kmovql(k1, tmp3_aliased);
+#else
+    Label k_init;
+    jmp(k_init);
+
+    // We could not read 64-bits from a general purpose register thus we move
+    // data required to compose 64 1's to the instruction stream
+    // We emit 64 byte wide series of elements from 0..63 which later on would
+    // be used as a compare targets with tail count contained in tmp1 register.
+    // Result would be a k1 register having tmp1 consecutive number or 1
+    // counting from least significant bit.
+    address tmp = pc();
+    emit_int64(0x0706050403020100);
+    emit_int64(0x0F0E0D0C0B0A0908);
+    emit_int64(0x1716151413121110);
+    emit_int64(0x1F1E1D1C1B1A1918);
+    emit_int64(0x2726252423222120);
+    emit_int64(0x2F2E2D2C2B2A2928);
+    emit_int64(0x3736353433323130);
+    emit_int64(0x3F3E3D3C3B3A3938);
+
+    bind(k_init);
+    lea(len, InternalAddress(tmp));
+    // create mask to test for negative byte inside a vector
+    evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
+    evpcmpgtb(k1, vec1, Address(len, 0), Assembler::AVX_512bit);
+
+#endif
+    evpcmpgtb(k2, k1, vec2, Address(ary1, 0), Assembler::AVX_512bit);
+    ktestq(k2, k1);
+    // Restore k1
+    kmovql(k1, k3);
+    jcc(Assembler::notZero, TRUE_LABEL);
+
+    jmp(FALSE_LABEL);
+
+    clear_vector_masking();   // closing of the stub context for programming mask registers
+  } else {
+    movl(result, len); // copy
+
+    if (UseAVX == 2 && UseSSE >= 2) {
+      // With AVX2, use 32-byte vector compare
+      Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
+
+      // Compare 32-byte vectors
+      andl(result, 0x0000001f);  //   tail count (in bytes)
+      andl(len, 0xffffffe0);   // vector count (in bytes)
+      jccb(Assembler::zero, COMPARE_TAIL);
+
+      lea(ary1, Address(ary1, len, Address::times_1));
+      negptr(len);
+
+      movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
+      movdl(vec2, tmp1);
+      vpbroadcastd(vec2, vec2);
+
+      bind(COMPARE_WIDE_VECTORS);
+      vmovdqu(vec1, Address(ary1, len, Address::times_1));
+      vptest(vec1, vec2);
+      jccb(Assembler::notZero, TRUE_LABEL);
+      addptr(len, 32);
+      jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
+
+      testl(result, result);
+      jccb(Assembler::zero, FALSE_LABEL);
+
+      vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
+      vptest(vec1, vec2);
+      jccb(Assembler::notZero, TRUE_LABEL);
+      jmpb(FALSE_LABEL);
+
+      bind(COMPARE_TAIL); // len is zero
+      movl(len, result);
+      // Fallthru to tail compare
+    } else if (UseSSE42Intrinsics) {
+      // With SSE4.2, use double quad vector compare
+      Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
+
+      // Compare 16-byte vectors
+      andl(result, 0x0000000f);  //   tail count (in bytes)
+      andl(len, 0xfffffff0);   // vector count (in bytes)
+      jccb(Assembler::zero, COMPARE_TAIL);
+
+      lea(ary1, Address(ary1, len, Address::times_1));
+      negptr(len);
+
+      movl(tmp1, 0x80808080);
+      movdl(vec2, tmp1);
+      pshufd(vec2, vec2, 0);
+
+      bind(COMPARE_WIDE_VECTORS);
+      movdqu(vec1, Address(ary1, len, Address::times_1));
+      ptest(vec1, vec2);
+      jccb(Assembler::notZero, TRUE_LABEL);
+      addptr(len, 16);
+      jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
+
+      testl(result, result);
+      jccb(Assembler::zero, FALSE_LABEL);
+
+      movdqu(vec1, Address(ary1, result, Address::times_1, -16));
+      ptest(vec1, vec2);
+      jccb(Assembler::notZero, TRUE_LABEL);
+      jmpb(FALSE_LABEL);
+
+      bind(COMPARE_TAIL); // len is zero
+      movl(len, result);
+      // Fallthru to tail compare
+    }
+  }
+  // Compare 4-byte vectors
+  andl(len, 0xfffffffc); // vector count (in bytes)
+  jccb(Assembler::zero, COMPARE_CHAR);
+
+  lea(ary1, Address(ary1, len, Address::times_1));
+  negptr(len);
+
+  bind(COMPARE_VECTORS);
+  movl(tmp1, Address(ary1, len, Address::times_1));
+  andl(tmp1, 0x80808080);
+  jccb(Assembler::notZero, TRUE_LABEL);
+  addptr(len, 4);
+  jcc(Assembler::notZero, COMPARE_VECTORS);
+
+  // Compare trailing char (final 2 bytes), if any
+  bind(COMPARE_CHAR);
+  testl(result, 0x2);   // tail  char
+  jccb(Assembler::zero, COMPARE_BYTE);
+  load_unsigned_short(tmp1, Address(ary1, 0));
+  andl(tmp1, 0x00008080);
+  jccb(Assembler::notZero, TRUE_LABEL);
+  subptr(result, 2);
+  lea(ary1, Address(ary1, 2));
+
+  bind(COMPARE_BYTE);
+  testl(result, 0x1);   // tail  byte
+  jccb(Assembler::zero, FALSE_LABEL);
+  load_unsigned_byte(tmp1, Address(ary1, 0));
+  andl(tmp1, 0x00000080);
+  jccb(Assembler::notEqual, TRUE_LABEL);
+  jmpb(FALSE_LABEL);
+
+  bind(TRUE_LABEL);
+  movl(result, 1);   // return true
+  jmpb(DONE);
+
+  bind(FALSE_LABEL);
+  xorl(result, result); // return false
+
+  // That's it
+  bind(DONE);
+  if (UseAVX >= 2 && UseSSE >= 2) {
+    // clean upper bits of YMM registers
+    vpxor(vec1, vec1);
+    vpxor(vec2, vec2);
+  }
+}
+// Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
+void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
+                                   Register limit, Register result, Register chr,
+                                   XMMRegister vec1, XMMRegister vec2, bool is_char) {
+  ShortBranchVerifier sbv(this);
+  Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
+
+  int length_offset  = arrayOopDesc::length_offset_in_bytes();
+  int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
+
+  if (is_array_equ) {
+    // Check the input args
+    cmpptr(ary1, ary2);
+    jcc(Assembler::equal, TRUE_LABEL);
+
+    // Need additional checks for arrays_equals.
+    testptr(ary1, ary1);
+    jcc(Assembler::zero, FALSE_LABEL);
+    testptr(ary2, ary2);
+    jcc(Assembler::zero, FALSE_LABEL);
+
+    // Check the lengths
+    movl(limit, Address(ary1, length_offset));
+    cmpl(limit, Address(ary2, length_offset));
+    jcc(Assembler::notEqual, FALSE_LABEL);
+  }
+
+  // count == 0
+  testl(limit, limit);
+  jcc(Assembler::zero, TRUE_LABEL);
+
+  if (is_array_equ) {
+    // Load array address
+    lea(ary1, Address(ary1, base_offset));
+    lea(ary2, Address(ary2, base_offset));
+  }
+
+  if (is_array_equ && is_char) {
+    // arrays_equals when used for char[].
+    shll(limit, 1);      // byte count != 0
+  }
+  movl(result, limit); // copy
+
+  if (UseAVX >= 2) {
+    // With AVX2, use 32-byte vector compare
+    Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
+
+    // Compare 32-byte vectors
+    andl(result, 0x0000001f);  //   tail count (in bytes)
+    andl(limit, 0xffffffe0);   // vector count (in bytes)
+    jcc(Assembler::zero, COMPARE_TAIL);
+
+    lea(ary1, Address(ary1, limit, Address::times_1));
+    lea(ary2, Address(ary2, limit, Address::times_1));
+    negptr(limit);
+
+    bind(COMPARE_WIDE_VECTORS);
+
+#ifdef _LP64
+    if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
+      Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
+
+      cmpl(limit, -64);
+      jccb(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
+
+      bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
+
+      evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
+      evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
+      kortestql(k7, k7);
+      jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
+      addptr(limit, 64);  // update since we already compared at this addr
+      cmpl(limit, -64);
+      jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
+
+      // At this point we may still need to compare -limit+result bytes.
+      // We could execute the next two instruction and just continue via non-wide path:
+      //  cmpl(limit, 0);
+      //  jcc(Assembler::equal, COMPARE_TAIL);  // true
+      // But since we stopped at the points ary{1,2}+limit which are
+      // not farther than 64 bytes from the ends of arrays ary{1,2}+result
+      // (|limit| <= 32 and result < 32),
+      // we may just compare the last 64 bytes.
+      //
+      addptr(result, -64);   // it is safe, bc we just came from this area
+      evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
+      evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
+      kortestql(k7, k7);
+      jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
+
+      jmp(TRUE_LABEL);
+
+      bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
+
+    }//if (VM_Version::supports_avx512vlbw())
+#endif //_LP64
+
+    vmovdqu(vec1, Address(ary1, limit, Address::times_1));
+    vmovdqu(vec2, Address(ary2, limit, Address::times_1));
+    vpxor(vec1, vec2);
+
+    vptest(vec1, vec1);
+    jcc(Assembler::notZero, FALSE_LABEL);
+    addptr(limit, 32);
+    jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
+
+    testl(result, result);
+    jcc(Assembler::zero, TRUE_LABEL);
+
+    vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
+    vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
+    vpxor(vec1, vec2);
+
+    vptest(vec1, vec1);
+    jccb(Assembler::notZero, FALSE_LABEL);
+    jmpb(TRUE_LABEL);
+
+    bind(COMPARE_TAIL); // limit is zero
+    movl(limit, result);
+    // Fallthru to tail compare
+  } else if (UseSSE42Intrinsics) {
+    // With SSE4.2, use double quad vector compare
+    Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
+
+    // Compare 16-byte vectors
+    andl(result, 0x0000000f);  //   tail count (in bytes)
+    andl(limit, 0xfffffff0);   // vector count (in bytes)
+    jcc(Assembler::zero, COMPARE_TAIL);
+
+    lea(ary1, Address(ary1, limit, Address::times_1));
+    lea(ary2, Address(ary2, limit, Address::times_1));
+    negptr(limit);
+
+    bind(COMPARE_WIDE_VECTORS);
+    movdqu(vec1, Address(ary1, limit, Address::times_1));
+    movdqu(vec2, Address(ary2, limit, Address::times_1));
+    pxor(vec1, vec2);
+
+    ptest(vec1, vec1);
+    jcc(Assembler::notZero, FALSE_LABEL);
+    addptr(limit, 16);
+    jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
+
+    testl(result, result);
+    jcc(Assembler::zero, TRUE_LABEL);
+
+    movdqu(vec1, Address(ary1, result, Address::times_1, -16));
+    movdqu(vec2, Address(ary2, result, Address::times_1, -16));
+    pxor(vec1, vec2);
+
+    ptest(vec1, vec1);
+    jccb(Assembler::notZero, FALSE_LABEL);
+    jmpb(TRUE_LABEL);
+
+    bind(COMPARE_TAIL); // limit is zero
+    movl(limit, result);
+    // Fallthru to tail compare
+  }
+
+  // Compare 4-byte vectors
+  andl(limit, 0xfffffffc); // vector count (in bytes)
+  jccb(Assembler::zero, COMPARE_CHAR);
+
+  lea(ary1, Address(ary1, limit, Address::times_1));
+  lea(ary2, Address(ary2, limit, Address::times_1));
+  negptr(limit);
+
+  bind(COMPARE_VECTORS);
+  movl(chr, Address(ary1, limit, Address::times_1));
+  cmpl(chr, Address(ary2, limit, Address::times_1));
+  jccb(Assembler::notEqual, FALSE_LABEL);
+  addptr(limit, 4);
+  jcc(Assembler::notZero, COMPARE_VECTORS);
+
+  // Compare trailing char (final 2 bytes), if any
+  bind(COMPARE_CHAR);
+  testl(result, 0x2);   // tail  char
+  jccb(Assembler::zero, COMPARE_BYTE);
+  load_unsigned_short(chr, Address(ary1, 0));
+  load_unsigned_short(limit, Address(ary2, 0));
+  cmpl(chr, limit);
+  jccb(Assembler::notEqual, FALSE_LABEL);
+
+  if (is_array_equ && is_char) {
+    bind(COMPARE_BYTE);
+  } else {
+    lea(ary1, Address(ary1, 2));
+    lea(ary2, Address(ary2, 2));
+
+    bind(COMPARE_BYTE);
+    testl(result, 0x1);   // tail  byte
+    jccb(Assembler::zero, TRUE_LABEL);
+    load_unsigned_byte(chr, Address(ary1, 0));
+    load_unsigned_byte(limit, Address(ary2, 0));
+    cmpl(chr, limit);
+    jccb(Assembler::notEqual, FALSE_LABEL);
+  }
+  bind(TRUE_LABEL);
+  movl(result, 1);   // return true
+  jmpb(DONE);
+
+  bind(FALSE_LABEL);
+  xorl(result, result); // return false
+
+  // That's it
+  bind(DONE);
+  if (UseAVX >= 2) {
+    // clean upper bits of YMM registers
+    vpxor(vec1, vec1);
+    vpxor(vec2, vec2);
+  }
+}
+
+#endif
+
+void MacroAssembler::generate_fill(BasicType t, bool aligned,
+                                   Register to, Register value, Register count,
+                                   Register rtmp, XMMRegister xtmp) {
+  ShortBranchVerifier sbv(this);
+  assert_different_registers(to, value, count, rtmp);
+  Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
+  Label L_fill_2_bytes, L_fill_4_bytes;
+
+  int shift = -1;
+  switch (t) {
+    case T_BYTE:
+      shift = 2;
+      break;
+    case T_SHORT:
+      shift = 1;
+      break;
+    case T_INT:
+      shift = 0;
+      break;
+    default: ShouldNotReachHere();
+  }
+
+  if (t == T_BYTE) {
+    andl(value, 0xff);
+    movl(rtmp, value);
+    shll(rtmp, 8);
+    orl(value, rtmp);
+  }
+  if (t == T_SHORT) {
+    andl(value, 0xffff);
+  }
+  if (t == T_BYTE || t == T_SHORT) {
+    movl(rtmp, value);
+    shll(rtmp, 16);
+    orl(value, rtmp);
+  }
+
+  cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
+  jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
+  if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
+    // align source address at 4 bytes address boundary
+    if (t == T_BYTE) {
+      // One byte misalignment happens only for byte arrays
+      testptr(to, 1);
+      jccb(Assembler::zero, L_skip_align1);
+      movb(Address(to, 0), value);
+      increment(to);
+      decrement(count);
+      BIND(L_skip_align1);
+    }
+    // Two bytes misalignment happens only for byte and short (char) arrays
+    testptr(to, 2);
+    jccb(Assembler::zero, L_skip_align2);
+    movw(Address(to, 0), value);
+    addptr(to, 2);
+    subl(count, 1<<(shift-1));
+    BIND(L_skip_align2);
+  }
+  if (UseSSE < 2) {
+    Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
+    // Fill 32-byte chunks
+    subl(count, 8 << shift);
+    jcc(Assembler::less, L_check_fill_8_bytes);
+    align(16);
+
+    BIND(L_fill_32_bytes_loop);
+
+    for (int i = 0; i < 32; i += 4) {
+      movl(Address(to, i), value);
+    }
+
+    addptr(to, 32);
+    subl(count, 8 << shift);
+    jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
+    BIND(L_check_fill_8_bytes);
+    addl(count, 8 << shift);
+    jccb(Assembler::zero, L_exit);
+    jmpb(L_fill_8_bytes);
+
+    //
+    // length is too short, just fill qwords
+    //
+    BIND(L_fill_8_bytes_loop);
+    movl(Address(to, 0), value);
+    movl(Address(to, 4), value);
+    addptr(to, 8);
+    BIND(L_fill_8_bytes);
+    subl(count, 1 << (shift + 1));
+    jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
+    // fall through to fill 4 bytes
+  } else {
+    Label L_fill_32_bytes;
+    if (!UseUnalignedLoadStores) {
+      // align to 8 bytes, we know we are 4 byte aligned to start
+      testptr(to, 4);
+      jccb(Assembler::zero, L_fill_32_bytes);
+      movl(Address(to, 0), value);
+      addptr(to, 4);
+      subl(count, 1<<shift);
+    }
+    BIND(L_fill_32_bytes);
+    {
+      assert( UseSSE >= 2, "supported cpu only" );
+      Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
+      if (UseAVX > 2) {
+        movl(rtmp, 0xffff);
+        kmovwl(k1, rtmp);
+      }
+      movdl(xtmp, value);
+      if (UseAVX > 2 && UseUnalignedLoadStores) {
+        // Fill 64-byte chunks
+        Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
+        evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
+
+        subl(count, 16 << shift);
+        jcc(Assembler::less, L_check_fill_32_bytes);
+        align(16);
+
+        BIND(L_fill_64_bytes_loop);
+        evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
+        addptr(to, 64);
+        subl(count, 16 << shift);
+        jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
+
+        BIND(L_check_fill_32_bytes);
+        addl(count, 8 << shift);
+        jccb(Assembler::less, L_check_fill_8_bytes);
+        vmovdqu(Address(to, 0), xtmp);
+        addptr(to, 32);
+        subl(count, 8 << shift);
+
+        BIND(L_check_fill_8_bytes);
+      } else if (UseAVX == 2 && UseUnalignedLoadStores) {
+        // Fill 64-byte chunks
+        Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
+        vpbroadcastd(xtmp, xtmp);
+
+        subl(count, 16 << shift);
+        jcc(Assembler::less, L_check_fill_32_bytes);
+        align(16);
+
+        BIND(L_fill_64_bytes_loop);
+        vmovdqu(Address(to, 0), xtmp);
+        vmovdqu(Address(to, 32), xtmp);
+        addptr(to, 64);
+        subl(count, 16 << shift);
+        jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
+
+        BIND(L_check_fill_32_bytes);
+        addl(count, 8 << shift);
+        jccb(Assembler::less, L_check_fill_8_bytes);
+        vmovdqu(Address(to, 0), xtmp);
+        addptr(to, 32);
+        subl(count, 8 << shift);
+
+        BIND(L_check_fill_8_bytes);
+        // clean upper bits of YMM registers
+        movdl(xtmp, value);
+        pshufd(xtmp, xtmp, 0);
+      } else {
+        // Fill 32-byte chunks
+        pshufd(xtmp, xtmp, 0);
+
+        subl(count, 8 << shift);
+        jcc(Assembler::less, L_check_fill_8_bytes);
+        align(16);
+
+        BIND(L_fill_32_bytes_loop);
+
+        if (UseUnalignedLoadStores) {
+          movdqu(Address(to, 0), xtmp);
+          movdqu(Address(to, 16), xtmp);
+        } else {
+          movq(Address(to, 0), xtmp);
+          movq(Address(to, 8), xtmp);
+          movq(Address(to, 16), xtmp);
+          movq(Address(to, 24), xtmp);
+        }
+
+        addptr(to, 32);
+        subl(count, 8 << shift);
+        jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
+
+        BIND(L_check_fill_8_bytes);
+      }
+      addl(count, 8 << shift);
+      jccb(Assembler::zero, L_exit);
+      jmpb(L_fill_8_bytes);
+
+      //
+      // length is too short, just fill qwords
+      //
+      BIND(L_fill_8_bytes_loop);
+      movq(Address(to, 0), xtmp);
+      addptr(to, 8);
+      BIND(L_fill_8_bytes);
+      subl(count, 1 << (shift + 1));
+      jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
+    }
+  }
+  // fill trailing 4 bytes
+  BIND(L_fill_4_bytes);
+  testl(count, 1<<shift);
+  jccb(Assembler::zero, L_fill_2_bytes);
+  movl(Address(to, 0), value);
+  if (t == T_BYTE || t == T_SHORT) {
+    addptr(to, 4);
+    BIND(L_fill_2_bytes);
+    // fill trailing 2 bytes
+    testl(count, 1<<(shift-1));
+    jccb(Assembler::zero, L_fill_byte);
+    movw(Address(to, 0), value);
+    if (t == T_BYTE) {
+      addptr(to, 2);
+      BIND(L_fill_byte);
+      // fill trailing byte
+      testl(count, 1);
+      jccb(Assembler::zero, L_exit);
+      movb(Address(to, 0), value);
+    } else {
+      BIND(L_fill_byte);
+    }
+  } else {
+    BIND(L_fill_2_bytes);
+  }
+  BIND(L_exit);
+}
+
+// encode char[] to byte[] in ISO_8859_1
+   //@HotSpotIntrinsicCandidate
+   //private static int implEncodeISOArray(byte[] sa, int sp,
+   //byte[] da, int dp, int len) {
+   //  int i = 0;
+   //  for (; i < len; i++) {
+   //    char c = StringUTF16.getChar(sa, sp++);
+   //    if (c > '\u00FF')
+   //      break;
+   //    da[dp++] = (byte)c;
+   //  }
+   //  return i;
+   //}
+void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
+  XMMRegister tmp1Reg, XMMRegister tmp2Reg,
+  XMMRegister tmp3Reg, XMMRegister tmp4Reg,
+  Register tmp5, Register result) {
+
+  // rsi: src
+  // rdi: dst
+  // rdx: len
+  // rcx: tmp5
+  // rax: result
+  ShortBranchVerifier sbv(this);
+  assert_different_registers(src, dst, len, tmp5, result);
+  Label L_done, L_copy_1_char, L_copy_1_char_exit;
+
+  // set result
+  xorl(result, result);
+  // check for zero length
+  testl(len, len);
+  jcc(Assembler::zero, L_done);
+
+  movl(result, len);
+
+  // Setup pointers
+  lea(src, Address(src, len, Address::times_2)); // char[]
+  lea(dst, Address(dst, len, Address::times_1)); // byte[]
+  negptr(len);
+
+  if (UseSSE42Intrinsics || UseAVX >= 2) {
+    Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
+    Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
+
+    if (UseAVX >= 2) {
+      Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
+      movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
+      movdl(tmp1Reg, tmp5);
+      vpbroadcastd(tmp1Reg, tmp1Reg);
+      jmp(L_chars_32_check);
+
+      bind(L_copy_32_chars);
+      vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
+      vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
+      vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
+      vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
+      jccb(Assembler::notZero, L_copy_32_chars_exit);
+      vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
+      vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
+      vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
+
+      bind(L_chars_32_check);
+      addptr(len, 32);
+      jcc(Assembler::lessEqual, L_copy_32_chars);
+
+      bind(L_copy_32_chars_exit);
+      subptr(len, 16);
+      jccb(Assembler::greater, L_copy_16_chars_exit);
+
+    } else if (UseSSE42Intrinsics) {
+      movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
+      movdl(tmp1Reg, tmp5);
+      pshufd(tmp1Reg, tmp1Reg, 0);
+      jmpb(L_chars_16_check);
+    }
+
+    bind(L_copy_16_chars);
+    if (UseAVX >= 2) {
+      vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
+      vptest(tmp2Reg, tmp1Reg);
+      jcc(Assembler::notZero, L_copy_16_chars_exit);
+      vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
+      vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
+    } else {
+      if (UseAVX > 0) {
+        movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
+        movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
+        vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
+      } else {
+        movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
+        por(tmp2Reg, tmp3Reg);
+        movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
+        por(tmp2Reg, tmp4Reg);
+      }
+      ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
+      jccb(Assembler::notZero, L_copy_16_chars_exit);
+      packuswb(tmp3Reg, tmp4Reg);
+    }
+    movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
+
+    bind(L_chars_16_check);
+    addptr(len, 16);
+    jcc(Assembler::lessEqual, L_copy_16_chars);
+
+    bind(L_copy_16_chars_exit);
+    if (UseAVX >= 2) {
+      // clean upper bits of YMM registers
+      vpxor(tmp2Reg, tmp2Reg);
+      vpxor(tmp3Reg, tmp3Reg);
+      vpxor(tmp4Reg, tmp4Reg);
+      movdl(tmp1Reg, tmp5);
+      pshufd(tmp1Reg, tmp1Reg, 0);
+    }
+    subptr(len, 8);
+    jccb(Assembler::greater, L_copy_8_chars_exit);
+
+    bind(L_copy_8_chars);
+    movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
+    ptest(tmp3Reg, tmp1Reg);
+    jccb(Assembler::notZero, L_copy_8_chars_exit);
+    packuswb(tmp3Reg, tmp1Reg);
+    movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
+    addptr(len, 8);
+    jccb(Assembler::lessEqual, L_copy_8_chars);
+
+    bind(L_copy_8_chars_exit);
+    subptr(len, 8);
+    jccb(Assembler::zero, L_done);
+  }
+
+  bind(L_copy_1_char);
+  load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
+  testl(tmp5, 0xff00);      // check if Unicode char
+  jccb(Assembler::notZero, L_copy_1_char_exit);
+  movb(Address(dst, len, Address::times_1, 0), tmp5);
+  addptr(len, 1);
+  jccb(Assembler::less, L_copy_1_char);
+
+  bind(L_copy_1_char_exit);
+  addptr(result, len); // len is negative count of not processed elements
+
+  bind(L_done);
+}
+
+#ifdef _LP64
+/**
+ * Helper for multiply_to_len().
+ */
+void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
+  addq(dest_lo, src1);
+  adcq(dest_hi, 0);
+  addq(dest_lo, src2);
+  adcq(dest_hi, 0);
+}
+
+/**
+ * Multiply 64 bit by 64 bit first loop.
+ */
+void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
+                                           Register y, Register y_idx, Register z,
+                                           Register carry, Register product,
+                                           Register idx, Register kdx) {
+  //
+  //  jlong carry, x[], y[], z[];
+  //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
+  //    huge_128 product = y[idx] * x[xstart] + carry;
+  //    z[kdx] = (jlong)product;
+  //    carry  = (jlong)(product >>> 64);
+  //  }
+  //  z[xstart] = carry;
+  //
+
+  Label L_first_loop, L_first_loop_exit;
+  Label L_one_x, L_one_y, L_multiply;
+
+  decrementl(xstart);
+  jcc(Assembler::negative, L_one_x);
+
+  movq(x_xstart, Address(x, xstart, Address::times_4,  0));
+  rorq(x_xstart, 32); // convert big-endian to little-endian
+
+  bind(L_first_loop);
+  decrementl(idx);
+  jcc(Assembler::negative, L_first_loop_exit);
+  decrementl(idx);
+  jcc(Assembler::negative, L_one_y);
+  movq(y_idx, Address(y, idx, Address::times_4,  0));
+  rorq(y_idx, 32); // convert big-endian to little-endian
+  bind(L_multiply);
+  movq(product, x_xstart);
+  mulq(y_idx); // product(rax) * y_idx -> rdx:rax
+  addq(product, carry);
+  adcq(rdx, 0);
+  subl(kdx, 2);
+  movl(Address(z, kdx, Address::times_4,  4), product);
+  shrq(product, 32);
+  movl(Address(z, kdx, Address::times_4,  0), product);
+  movq(carry, rdx);
+  jmp(L_first_loop);
+
+  bind(L_one_y);
+  movl(y_idx, Address(y,  0));
+  jmp(L_multiply);
+
+  bind(L_one_x);
+  movl(x_xstart, Address(x,  0));
+  jmp(L_first_loop);
+
+  bind(L_first_loop_exit);
+}
+
+/**
+ * Multiply 64 bit by 64 bit and add 128 bit.
+ */
+void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
+                                            Register yz_idx, Register idx,
+                                            Register carry, Register product, int offset) {
+  //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
+  //     z[kdx] = (jlong)product;
+
+  movq(yz_idx, Address(y, idx, Address::times_4,  offset));
+  rorq(yz_idx, 32); // convert big-endian to little-endian
+  movq(product, x_xstart);
+  mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
+  movq(yz_idx, Address(z, idx, Address::times_4,  offset));
+  rorq(yz_idx, 32); // convert big-endian to little-endian
+
+  add2_with_carry(rdx, product, carry, yz_idx);
+
+  movl(Address(z, idx, Address::times_4,  offset+4), product);
+  shrq(product, 32);
+  movl(Address(z, idx, Address::times_4,  offset), product);
+
+}
+
+/**
+ * Multiply 128 bit by 128 bit. Unrolled inner loop.
+ */
+void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
+                                             Register yz_idx, Register idx, Register jdx,
+                                             Register carry, Register product,
+                                             Register carry2) {
+  //   jlong carry, x[], y[], z[];
+  //   int kdx = ystart+1;
+  //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
+  //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
+  //     z[kdx+idx+1] = (jlong)product;
+  //     jlong carry2  = (jlong)(product >>> 64);
+  //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
+  //     z[kdx+idx] = (jlong)product;
+  //     carry  = (jlong)(product >>> 64);
+  //   }
+  //   idx += 2;
+  //   if (idx > 0) {
+  //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
+  //     z[kdx+idx] = (jlong)product;
+  //     carry  = (jlong)(product >>> 64);
+  //   }
+  //
+
+  Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
+
+  movl(jdx, idx);
+  andl(jdx, 0xFFFFFFFC);
+  shrl(jdx, 2);
+
+  bind(L_third_loop);
+  subl(jdx, 1);
+  jcc(Assembler::negative, L_third_loop_exit);
+  subl(idx, 4);
+
+  multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
+  movq(carry2, rdx);
+
+  multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
+  movq(carry, rdx);
+  jmp(L_third_loop);
+
+  bind (L_third_loop_exit);
+
+  andl (idx, 0x3);
+  jcc(Assembler::zero, L_post_third_loop_done);
+
+  Label L_check_1;
+  subl(idx, 2);
+  jcc(Assembler::negative, L_check_1);
+
+  multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
+  movq(carry, rdx);
+
+  bind (L_check_1);
+  addl (idx, 0x2);
+  andl (idx, 0x1);
+  subl(idx, 1);
+  jcc(Assembler::negative, L_post_third_loop_done);
+
+  movl(yz_idx, Address(y, idx, Address::times_4,  0));
+  movq(product, x_xstart);
+  mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
+  movl(yz_idx, Address(z, idx, Address::times_4,  0));
+
+  add2_with_carry(rdx, product, yz_idx, carry);
+
+  movl(Address(z, idx, Address::times_4,  0), product);
+  shrq(product, 32);
+
+  shlq(rdx, 32);
+  orq(product, rdx);
+  movq(carry, product);
+
+  bind(L_post_third_loop_done);
+}
+
+/**
+ * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
+ *
+ */
+void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
+                                                  Register carry, Register carry2,
+                                                  Register idx, Register jdx,
+                                                  Register yz_idx1, Register yz_idx2,
+                                                  Register tmp, Register tmp3, Register tmp4) {
+  assert(UseBMI2Instructions, "should be used only when BMI2 is available");
+
+  //   jlong carry, x[], y[], z[];
+  //   int kdx = ystart+1;
+  //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
+  //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
+  //     jlong carry2  = (jlong)(tmp3 >>> 64);
+  //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
+  //     carry  = (jlong)(tmp4 >>> 64);
+  //     z[kdx+idx+1] = (jlong)tmp3;
+  //     z[kdx+idx] = (jlong)tmp4;
+  //   }
+  //   idx += 2;
+  //   if (idx > 0) {
+  //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
+  //     z[kdx+idx] = (jlong)yz_idx1;
+  //     carry  = (jlong)(yz_idx1 >>> 64);
+  //   }
+  //
+
+  Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
+
+  movl(jdx, idx);
+  andl(jdx, 0xFFFFFFFC);
+  shrl(jdx, 2);
+
+  bind(L_third_loop);
+  subl(jdx, 1);
+  jcc(Assembler::negative, L_third_loop_exit);
+  subl(idx, 4);
+
+  movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
+  rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
+  movq(yz_idx2, Address(y, idx, Address::times_4,  0));
+  rorxq(yz_idx2, yz_idx2, 32);
+
+  mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
+  mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
+
+  movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
+  rorxq(yz_idx1, yz_idx1, 32);
+  movq(yz_idx2, Address(z, idx, Address::times_4,  0));
+  rorxq(yz_idx2, yz_idx2, 32);
+
+  if (VM_Version::supports_adx()) {
+    adcxq(tmp3, carry);
+    adoxq(tmp3, yz_idx1);
+
+    adcxq(tmp4, tmp);
+    adoxq(tmp4, yz_idx2);
+
+    movl(carry, 0); // does not affect flags
+    adcxq(carry2, carry);
+    adoxq(carry2, carry);
+  } else {
+    add2_with_carry(tmp4, tmp3, carry, yz_idx1);
+    add2_with_carry(carry2, tmp4, tmp, yz_idx2);
+  }
+  movq(carry, carry2);
+
+  movl(Address(z, idx, Address::times_4, 12), tmp3);
+  shrq(tmp3, 32);
+  movl(Address(z, idx, Address::times_4,  8), tmp3);
+
+  movl(Address(z, idx, Address::times_4,  4), tmp4);
+  shrq(tmp4, 32);
+  movl(Address(z, idx, Address::times_4,  0), tmp4);
+
+  jmp(L_third_loop);
+
+  bind (L_third_loop_exit);
+
+  andl (idx, 0x3);
+  jcc(Assembler::zero, L_post_third_loop_done);
+
+  Label L_check_1;
+  subl(idx, 2);
+  jcc(Assembler::negative, L_check_1);
+
+  movq(yz_idx1, Address(y, idx, Address::times_4,  0));
+  rorxq(yz_idx1, yz_idx1, 32);
+  mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
+  movq(yz_idx2, Address(z, idx, Address::times_4,  0));
+  rorxq(yz_idx2, yz_idx2, 32);
+
+  add2_with_carry(tmp4, tmp3, carry, yz_idx2);
+
+  movl(Address(z, idx, Address::times_4,  4), tmp3);
+  shrq(tmp3, 32);
+  movl(Address(z, idx, Address::times_4,  0), tmp3);
+  movq(carry, tmp4);
+
+  bind (L_check_1);
+  addl (idx, 0x2);
+  andl (idx, 0x1);
+  subl(idx, 1);
+  jcc(Assembler::negative, L_post_third_loop_done);
+  movl(tmp4, Address(y, idx, Address::times_4,  0));
+  mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
+  movl(tmp4, Address(z, idx, Address::times_4,  0));
+
+  add2_with_carry(carry2, tmp3, tmp4, carry);
+
+  movl(Address(z, idx, Address::times_4,  0), tmp3);
+  shrq(tmp3, 32);
+
+  shlq(carry2, 32);
+  orq(tmp3, carry2);
+  movq(carry, tmp3);
+
+  bind(L_post_third_loop_done);
+}
+
+/**
+ * Code for BigInteger::multiplyToLen() instrinsic.
+ *
+ * rdi: x
+ * rax: xlen
+ * rsi: y
+ * rcx: ylen
+ * r8:  z
+ * r11: zlen
+ * r12: tmp1
+ * r13: tmp2
+ * r14: tmp3
+ * r15: tmp4
+ * rbx: tmp5
+ *
+ */
+void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
+                                     Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
+  ShortBranchVerifier sbv(this);
+  assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
+
+  push(tmp1);
+  push(tmp2);
+  push(tmp3);
+  push(tmp4);
+  push(tmp5);
+
+  push(xlen);
+  push(zlen);
+
+  const Register idx = tmp1;
+  const Register kdx = tmp2;
+  const Register xstart = tmp3;
+
+  const Register y_idx = tmp4;
+  const Register carry = tmp5;
+  const Register product  = xlen;
+  const Register x_xstart = zlen;  // reuse register
+
+  // First Loop.
+  //
+  //  final static long LONG_MASK = 0xffffffffL;
+  //  int xstart = xlen - 1;
+  //  int ystart = ylen - 1;
+  //  long carry = 0;
+  //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
+  //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
+  //    z[kdx] = (int)product;
+  //    carry = product >>> 32;
+  //  }
+  //  z[xstart] = (int)carry;
+  //
+
+  movl(idx, ylen);      // idx = ylen;
+  movl(kdx, zlen);      // kdx = xlen+ylen;
+  xorq(carry, carry);   // carry = 0;
+
+  Label L_done;
+
+  movl(xstart, xlen);
+  decrementl(xstart);
+  jcc(Assembler::negative, L_done);
+
+  multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
+
+  Label L_second_loop;
+  testl(kdx, kdx);
+  jcc(Assembler::zero, L_second_loop);
+
+  Label L_carry;
+  subl(kdx, 1);
+  jcc(Assembler::zero, L_carry);
+
+  movl(Address(z, kdx, Address::times_4,  0), carry);
+  shrq(carry, 32);
+  subl(kdx, 1);
+
+  bind(L_carry);
+  movl(Address(z, kdx, Address::times_4,  0), carry);
+
+  // Second and third (nested) loops.
+  //
+  // for (int i = xstart-1; i >= 0; i--) { // Second loop
+  //   carry = 0;
+  //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
+  //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
+  //                    (z[k] & LONG_MASK) + carry;
+  //     z[k] = (int)product;
+  //     carry = product >>> 32;
+  //   }
+  //   z[i] = (int)carry;
+  // }
+  //
+  // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
+
+  const Register jdx = tmp1;
+
+  bind(L_second_loop);
+  xorl(carry, carry);    // carry = 0;
+  movl(jdx, ylen);       // j = ystart+1
+
+  subl(xstart, 1);       // i = xstart-1;
+  jcc(Assembler::negative, L_done);
+
+  push (z);
+
+  Label L_last_x;
+  lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
+  subl(xstart, 1);       // i = xstart-1;
+  jcc(Assembler::negative, L_last_x);
+
+  if (UseBMI2Instructions) {
+    movq(rdx,  Address(x, xstart, Address::times_4,  0));
+    rorxq(rdx, rdx, 32); // convert big-endian to little-endian
+  } else {
+    movq(x_xstart, Address(x, xstart, Address::times_4,  0));
+    rorq(x_xstart, 32);  // convert big-endian to little-endian
+  }
+
+  Label L_third_loop_prologue;
+  bind(L_third_loop_prologue);
+
+  push (x);
+  push (xstart);
+  push (ylen);
+
+
+  if (UseBMI2Instructions) {
+    multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
+  } else { // !UseBMI2Instructions
+    multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
+  }
+
+  pop(ylen);
+  pop(xlen);
+  pop(x);
+  pop(z);
+
+  movl(tmp3, xlen);
+  addl(tmp3, 1);
+  movl(Address(z, tmp3, Address::times_4,  0), carry);
+  subl(tmp3, 1);
+  jccb(Assembler::negative, L_done);
+
+  shrq(carry, 32);
+  movl(Address(z, tmp3, Address::times_4,  0), carry);
+  jmp(L_second_loop);
+
+  // Next infrequent code is moved outside loops.
+  bind(L_last_x);
+  if (UseBMI2Instructions) {
+    movl(rdx, Address(x,  0));
+  } else {
+    movl(x_xstart, Address(x,  0));
+  }
+  jmp(L_third_loop_prologue);
+
+  bind(L_done);
+
+  pop(zlen);
+  pop(xlen);
+
+  pop(tmp5);
+  pop(tmp4);
+  pop(tmp3);
+  pop(tmp2);
+  pop(tmp1);
+}
+
+void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
+  Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
+  assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
+  Label VECTOR64_LOOP, VECTOR64_TAIL, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
+  Label VECTOR32_LOOP, VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
+  Label VECTOR16_TAIL, VECTOR8_TAIL, VECTOR4_TAIL;
+  Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
+  Label SAME_TILL_END, DONE;
+  Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
+
+  //scale is in rcx in both Win64 and Unix
+  ShortBranchVerifier sbv(this);
+
+  shlq(length);
+  xorq(result, result);
+
+  if ((UseAVX > 2) &&
+      VM_Version::supports_avx512vlbw()) {
+    set_vector_masking();  // opening of the stub context for programming mask registers
+    cmpq(length, 64);
+    jcc(Assembler::less, VECTOR32_TAIL);
+    movq(tmp1, length);
+    andq(tmp1, 0x3F);      // tail count
+    andq(length, ~(0x3F)); //vector count
+
+    bind(VECTOR64_LOOP);
+    // AVX512 code to compare 64 byte vectors.
+    evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
+    evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
+    kortestql(k7, k7);
+    jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
+    addq(result, 64);
+    subq(length, 64);
+    jccb(Assembler::notZero, VECTOR64_LOOP);
+
+    //bind(VECTOR64_TAIL);
+    testq(tmp1, tmp1);
+    jcc(Assembler::zero, SAME_TILL_END);
+
+    bind(VECTOR64_TAIL);
+    // AVX512 code to compare upto 63 byte vectors.
+    // Save k1
+    kmovql(k3, k1);
+    mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
+    shlxq(tmp2, tmp2, tmp1);
+    notq(tmp2);
+    kmovql(k1, tmp2);
+
+    evmovdqub(rymm0, k1, Address(obja, result), Assembler::AVX_512bit);
+    evpcmpeqb(k7, k1, rymm0, Address(objb, result), Assembler::AVX_512bit);
+
+    ktestql(k7, k1);
+    // Restore k1
+    kmovql(k1, k3);
+    jcc(Assembler::below, SAME_TILL_END);     // not mismatch
+
+    bind(VECTOR64_NOT_EQUAL);
+    kmovql(tmp1, k7);
+    notq(tmp1);
+    tzcntq(tmp1, tmp1);
+    addq(result, tmp1);
+    shrq(result);
+    jmp(DONE);
+    bind(VECTOR32_TAIL);
+    clear_vector_masking();   // closing of the stub context for programming mask registers
+  }
+
+  cmpq(length, 8);
+  jcc(Assembler::equal, VECTOR8_LOOP);
+  jcc(Assembler::less, VECTOR4_TAIL);
+
+  if (UseAVX >= 2) {
+
+    cmpq(length, 16);
+    jcc(Assembler::equal, VECTOR16_LOOP);
+    jcc(Assembler::less, VECTOR8_LOOP);
+
+    cmpq(length, 32);
+    jccb(Assembler::less, VECTOR16_TAIL);
+
+    subq(length, 32);
+    bind(VECTOR32_LOOP);
+    vmovdqu(rymm0, Address(obja, result));
+    vmovdqu(rymm1, Address(objb, result));
+    vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
+    vptest(rymm2, rymm2);
+    jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
+    addq(result, 32);
+    subq(length, 32);
+    jccb(Assembler::greaterEqual, VECTOR32_LOOP);
+    addq(length, 32);
+    jcc(Assembler::equal, SAME_TILL_END);
+    //falling through if less than 32 bytes left //close the branch here.
+
+    bind(VECTOR16_TAIL);
+    cmpq(length, 16);
+    jccb(Assembler::less, VECTOR8_TAIL);
+    bind(VECTOR16_LOOP);
+    movdqu(rymm0, Address(obja, result));
+    movdqu(rymm1, Address(objb, result));
+    vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
+    ptest(rymm2, rymm2);
+    jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
+    addq(result, 16);
+    subq(length, 16);
+    jcc(Assembler::equal, SAME_TILL_END);
+    //falling through if less than 16 bytes left
+  } else {//regular intrinsics
+
+    cmpq(length, 16);
+    jccb(Assembler::less, VECTOR8_TAIL);
+
+    subq(length, 16);
+    bind(VECTOR16_LOOP);
+    movdqu(rymm0, Address(obja, result));
+    movdqu(rymm1, Address(objb, result));
+    pxor(rymm0, rymm1);
+    ptest(rymm0, rymm0);
+    jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
+    addq(result, 16);
+    subq(length, 16);
+    jccb(Assembler::greaterEqual, VECTOR16_LOOP);
+    addq(length, 16);
+    jcc(Assembler::equal, SAME_TILL_END);
+    //falling through if less than 16 bytes left
+  }
+
+  bind(VECTOR8_TAIL);
+  cmpq(length, 8);
+  jccb(Assembler::less, VECTOR4_TAIL);
+  bind(VECTOR8_LOOP);
+  movq(tmp1, Address(obja, result));
+  movq(tmp2, Address(objb, result));
+  xorq(tmp1, tmp2);
+  testq(tmp1, tmp1);
+  jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
+  addq(result, 8);
+  subq(length, 8);
+  jcc(Assembler::equal, SAME_TILL_END);
+  //falling through if less than 8 bytes left
+
+  bind(VECTOR4_TAIL);
+  cmpq(length, 4);
+  jccb(Assembler::less, BYTES_TAIL);
+  bind(VECTOR4_LOOP);
+  movl(tmp1, Address(obja, result));
+  xorl(tmp1, Address(objb, result));
+  testl(tmp1, tmp1);
+  jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
+  addq(result, 4);
+  subq(length, 4);
+  jcc(Assembler::equal, SAME_TILL_END);
+  //falling through if less than 4 bytes left
+
+  bind(BYTES_TAIL);
+  bind(BYTES_LOOP);
+  load_unsigned_byte(tmp1, Address(obja, result));
+  load_unsigned_byte(tmp2, Address(objb, result));
+  xorl(tmp1, tmp2);
+  testl(tmp1, tmp1);
+  jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
+  decq(length);
+  jccb(Assembler::zero, SAME_TILL_END);
+  incq(result);
+  load_unsigned_byte(tmp1, Address(obja, result));
+  load_unsigned_byte(tmp2, Address(objb, result));
+  xorl(tmp1, tmp2);
+  testl(tmp1, tmp1);
+  jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
+  decq(length);
+  jccb(Assembler::zero, SAME_TILL_END);
+  incq(result);
+  load_unsigned_byte(tmp1, Address(obja, result));
+  load_unsigned_byte(tmp2, Address(objb, result));
+  xorl(tmp1, tmp2);
+  testl(tmp1, tmp1);
+  jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
+  jmpb(SAME_TILL_END);
+
+  if (UseAVX >= 2) {
+    bind(VECTOR32_NOT_EQUAL);
+    vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
+    vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
+    vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
+    vpmovmskb(tmp1, rymm0);
+    bsfq(tmp1, tmp1);
+    addq(result, tmp1);
+    shrq(result);
+    jmpb(DONE);
+  }
+
+  bind(VECTOR16_NOT_EQUAL);
+  if (UseAVX >= 2) {
+    vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
+    vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
+    pxor(rymm0, rymm2);
+  } else {
+    pcmpeqb(rymm2, rymm2);
+    pxor(rymm0, rymm1);
+    pcmpeqb(rymm0, rymm1);
+    pxor(rymm0, rymm2);
+  }
+  pmovmskb(tmp1, rymm0);
+  bsfq(tmp1, tmp1);
+  addq(result, tmp1);
+  shrq(result);
+  jmpb(DONE);
+
+  bind(VECTOR8_NOT_EQUAL);
+  bind(VECTOR4_NOT_EQUAL);
+  bsfq(tmp1, tmp1);
+  shrq(tmp1, 3);
+  addq(result, tmp1);
+  bind(BYTES_NOT_EQUAL);
+  shrq(result);
+  jmpb(DONE);
+
+  bind(SAME_TILL_END);
+  mov64(result, -1);
+
+  bind(DONE);
+}
+
+//Helper functions for square_to_len()
+
+/**
+ * Store the squares of x[], right shifted one bit (divided by 2) into z[]
+ * Preserves x and z and modifies rest of the registers.
+ */
+void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
+  // Perform square and right shift by 1
+  // Handle odd xlen case first, then for even xlen do the following
+  // jlong carry = 0;
+  // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
+  //     huge_128 product = x[j:j+1] * x[j:j+1];
+  //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
+  //     z[i+2:i+3] = (jlong)(product >>> 1);
+  //     carry = (jlong)product;
+  // }
+
+  xorq(tmp5, tmp5);     // carry
+  xorq(rdxReg, rdxReg);
+  xorl(tmp1, tmp1);     // index for x
+  xorl(tmp4, tmp4);     // index for z
+
+  Label L_first_loop, L_first_loop_exit;
+
+  testl(xlen, 1);
+  jccb(Assembler::zero, L_first_loop); //jump if xlen is even
+
+  // Square and right shift by 1 the odd element using 32 bit multiply
+  movl(raxReg, Address(x, tmp1, Address::times_4, 0));
+  imulq(raxReg, raxReg);
+  shrq(raxReg, 1);
+  adcq(tmp5, 0);
+  movq(Address(z, tmp4, Address::times_4, 0), raxReg);
+  incrementl(tmp1);
+  addl(tmp4, 2);
+
+  // Square and  right shift by 1 the rest using 64 bit multiply
+  bind(L_first_loop);
+  cmpptr(tmp1, xlen);
+  jccb(Assembler::equal, L_first_loop_exit);
+
+  // Square
+  movq(raxReg, Address(x, tmp1, Address::times_4,  0));
+  rorq(raxReg, 32);    // convert big-endian to little-endian
+  mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
+
+  // Right shift by 1 and save carry
+  shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
+  rcrq(rdxReg, 1);
+  rcrq(raxReg, 1);
+  adcq(tmp5, 0);
+
+  // Store result in z
+  movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
+  movq(Address(z, tmp4, Address::times_4, 8), raxReg);
+
+  // Update indices for x and z
+  addl(tmp1, 2);
+  addl(tmp4, 4);
+  jmp(L_first_loop);
+
+  bind(L_first_loop_exit);
+}
+
+
+/**
+ * Perform the following multiply add operation using BMI2 instructions
+ * carry:sum = sum + op1*op2 + carry
+ * op2 should be in rdx
+ * op2 is preserved, all other registers are modified
+ */
+void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
+  // assert op2 is rdx
+  mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
+  addq(sum, carry);
+  adcq(tmp2, 0);
+  addq(sum, op1);
+  adcq(tmp2, 0);
+  movq(carry, tmp2);
+}
+
+/**
+ * Perform the following multiply add operation:
+ * carry:sum = sum + op1*op2 + carry
+ * Preserves op1, op2 and modifies rest of registers
+ */
+void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
+  // rdx:rax = op1 * op2
+  movq(raxReg, op2);
+  mulq(op1);
+
+  //  rdx:rax = sum + carry + rdx:rax
+  addq(sum, carry);
+  adcq(rdxReg, 0);
+  addq(sum, raxReg);
+  adcq(rdxReg, 0);
+
+  // carry:sum = rdx:sum
+  movq(carry, rdxReg);
+}
+
+/**
+ * Add 64 bit long carry into z[] with carry propogation.
+ * Preserves z and carry register values and modifies rest of registers.
+ *
+ */
+void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
+  Label L_fourth_loop, L_fourth_loop_exit;
+
+  movl(tmp1, 1);
+  subl(zlen, 2);
+  addq(Address(z, zlen, Address::times_4, 0), carry);
+
+  bind(L_fourth_loop);
+  jccb(Assembler::carryClear, L_fourth_loop_exit);
+  subl(zlen, 2);
+  jccb(Assembler::negative, L_fourth_loop_exit);
+  addq(Address(z, zlen, Address::times_4, 0), tmp1);
+  jmp(L_fourth_loop);
+  bind(L_fourth_loop_exit);
+}
+
+/**
+ * Shift z[] left by 1 bit.
+ * Preserves x, len, z and zlen registers and modifies rest of the registers.
+ *
+ */
+void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
+
+  Label L_fifth_loop, L_fifth_loop_exit;
+
+  // Fifth loop
+  // Perform primitiveLeftShift(z, zlen, 1)
+
+  const Register prev_carry = tmp1;
+  const Register new_carry = tmp4;
+  const Register value = tmp2;
+  const Register zidx = tmp3;
+
+  // int zidx, carry;
+  // long value;
+  // carry = 0;
+  // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
+  //    (carry:value)  = (z[i] << 1) | carry ;
+  //    z[i] = value;
+  // }
+
+  movl(zidx, zlen);
+  xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
+
+  bind(L_fifth_loop);
+  decl(zidx);  // Use decl to preserve carry flag
+  decl(zidx);
+  jccb(Assembler::negative, L_fifth_loop_exit);
+
+  if (UseBMI2Instructions) {
+     movq(value, Address(z, zidx, Address::times_4, 0));
+     rclq(value, 1);
+     rorxq(value, value, 32);
+     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
+  }
+  else {
+    // clear new_carry
+    xorl(new_carry, new_carry);
+
+    // Shift z[i] by 1, or in previous carry and save new carry
+    movq(value, Address(z, zidx, Address::times_4, 0));
+    shlq(value, 1);
+    adcl(new_carry, 0);
+
+    orq(value, prev_carry);
+    rorq(value, 0x20);
+    movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
+
+    // Set previous carry = new carry
+    movl(prev_carry, new_carry);
+  }
+  jmp(L_fifth_loop);
+
+  bind(L_fifth_loop_exit);
+}
+
+
+/**
+ * Code for BigInteger::squareToLen() intrinsic
+ *
+ * rdi: x
+ * rsi: len
+ * r8:  z
+ * rcx: zlen
+ * r12: tmp1
+ * r13: tmp2
+ * r14: tmp3
+ * r15: tmp4
+ * rbx: tmp5
+ *
+ */
+void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
+
+  Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
+  push(tmp1);
+  push(tmp2);
+  push(tmp3);
+  push(tmp4);
+  push(tmp5);
+
+  // First loop
+  // Store the squares, right shifted one bit (i.e., divided by 2).
+  square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
+
+  // Add in off-diagonal sums.
+  //
+  // Second, third (nested) and fourth loops.
+  // zlen +=2;
+  // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
+  //    carry = 0;
+  //    long op2 = x[xidx:xidx+1];
+  //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
+  //       k -= 2;
+  //       long op1 = x[j:j+1];
+  //       long sum = z[k:k+1];
+  //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
+  //       z[k:k+1] = sum;
+  //    }
+  //    add_one_64(z, k, carry, tmp_regs);
+  // }
+
+  const Register carry = tmp5;
+  const Register sum = tmp3;
+  const Register op1 = tmp4;
+  Register op2 = tmp2;
+
+  push(zlen);
+  push(len);
+  addl(zlen,2);
+  bind(L_second_loop);
+  xorq(carry, carry);
+  subl(zlen, 4);
+  subl(len, 2);
+  push(zlen);
+  push(len);
+  cmpl(len, 0);
+  jccb(Assembler::lessEqual, L_second_loop_exit);
+
+  // Multiply an array by one 64 bit long.
+  if (UseBMI2Instructions) {
+    op2 = rdxReg;
+    movq(op2, Address(x, len, Address::times_4,  0));
+    rorxq(op2, op2, 32);
+  }
+  else {
+    movq(op2, Address(x, len, Address::times_4,  0));
+    rorq(op2, 32);
+  }
+
+  bind(L_third_loop);
+  decrementl(len);
+  jccb(Assembler::negative, L_third_loop_exit);
+  decrementl(len);
+  jccb(Assembler::negative, L_last_x);
+
+  movq(op1, Address(x, len, Address::times_4,  0));
+  rorq(op1, 32);
+
+  bind(L_multiply);
+  subl(zlen, 2);
+  movq(sum, Address(z, zlen, Address::times_4,  0));
+
+  // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
+  if (UseBMI2Instructions) {
+    multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
+  }
+  else {
+    multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
+  }
+
+  movq(Address(z, zlen, Address::times_4, 0), sum);
+
+  jmp(L_third_loop);
+  bind(L_third_loop_exit);
+
+  // Fourth loop
+  // Add 64 bit long carry into z with carry propogation.
+  // Uses offsetted zlen.
+  add_one_64(z, zlen, carry, tmp1);
+
+  pop(len);
+  pop(zlen);
+  jmp(L_second_loop);
+
+  // Next infrequent code is moved outside loops.
+  bind(L_last_x);
+  movl(op1, Address(x, 0));
+  jmp(L_multiply);
+
+  bind(L_second_loop_exit);
+  pop(len);
+  pop(zlen);
+  pop(len);
+  pop(zlen);
+
+  // Fifth loop
+  // Shift z left 1 bit.
+  lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
+
+  // z[zlen-1] |= x[len-1] & 1;
+  movl(tmp3, Address(x, len, Address::times_4, -4));
+  andl(tmp3, 1);
+  orl(Address(z, zlen, Address::times_4,  -4), tmp3);
+
+  pop(tmp5);
+  pop(tmp4);
+  pop(tmp3);
+  pop(tmp2);
+  pop(tmp1);
+}
+
+/**
+ * Helper function for mul_add()
+ * Multiply the in[] by int k and add to out[] starting at offset offs using
+ * 128 bit by 32 bit multiply and return the carry in tmp5.
+ * Only quad int aligned length of in[] is operated on in this function.
+ * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
+ * This function preserves out, in and k registers.
+ * len and offset point to the appropriate index in "in" & "out" correspondingly
+ * tmp5 has the carry.
+ * other registers are temporary and are modified.
+ *
+ */
+void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
+  Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
+  Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
+
+  Label L_first_loop, L_first_loop_exit;
+
+  movl(tmp1, len);
+  shrl(tmp1, 2);
+
+  bind(L_first_loop);
+  subl(tmp1, 1);
+  jccb(Assembler::negative, L_first_loop_exit);
+
+  subl(len, 4);
+  subl(offset, 4);
+
+  Register op2 = tmp2;
+  const Register sum = tmp3;
+  const Register op1 = tmp4;
+  const Register carry = tmp5;
+
+  if (UseBMI2Instructions) {
+    op2 = rdxReg;
+  }
+
+  movq(op1, Address(in, len, Address::times_4,  8));
+  rorq(op1, 32);
+  movq(sum, Address(out, offset, Address::times_4,  8));
+  rorq(sum, 32);
+  if (UseBMI2Instructions) {
+    multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
+  }
+  else {
+    multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
+  }
+  // Store back in big endian from little endian
+  rorq(sum, 0x20);
+  movq(Address(out, offset, Address::times_4,  8), sum);
+
+  movq(op1, Address(in, len, Address::times_4,  0));
+  rorq(op1, 32);
+  movq(sum, Address(out, offset, Address::times_4,  0));
+  rorq(sum, 32);
+  if (UseBMI2Instructions) {
+    multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
+  }
+  else {
+    multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
+  }
+  // Store back in big endian from little endian
+  rorq(sum, 0x20);
+  movq(Address(out, offset, Address::times_4,  0), sum);
+
+  jmp(L_first_loop);
+  bind(L_first_loop_exit);
+}
+
+/**
+ * Code for BigInteger::mulAdd() intrinsic
+ *
+ * rdi: out
+ * rsi: in
+ * r11: offs (out.length - offset)
+ * rcx: len
+ * r8:  k
+ * r12: tmp1
+ * r13: tmp2
+ * r14: tmp3
+ * r15: tmp4
+ * rbx: tmp5
+ * Multiply the in[] by word k and add to out[], return the carry in rax
+ */
+void MacroAssembler::mul_add(Register out, Register in, Register offs,
+   Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
+   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
+
+  Label L_carry, L_last_in, L_done;
+
+// carry = 0;
+// for (int j=len-1; j >= 0; j--) {
+//    long product = (in[j] & LONG_MASK) * kLong +
+//                   (out[offs] & LONG_MASK) + carry;
+//    out[offs--] = (int)product;
+//    carry = product >>> 32;
+// }
+//
+  push(tmp1);
+  push(tmp2);
+  push(tmp3);
+  push(tmp4);
+  push(tmp5);
+
+  Register op2 = tmp2;
+  const Register sum = tmp3;
+  const Register op1 = tmp4;
+  const Register carry =  tmp5;
+
+  if (UseBMI2Instructions) {
+    op2 = rdxReg;
+    movl(op2, k);
+  }
+  else {
+    movl(op2, k);
+  }
+
+  xorq(carry, carry);
+
+  //First loop
+
+  //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
+  //The carry is in tmp5
+  mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
+
+  //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
+  decrementl(len);
+  jccb(Assembler::negative, L_carry);
+  decrementl(len);
+  jccb(Assembler::negative, L_last_in);
+
+  movq(op1, Address(in, len, Address::times_4,  0));
+  rorq(op1, 32);
+
+  subl(offs, 2);
+  movq(sum, Address(out, offs, Address::times_4,  0));
+  rorq(sum, 32);
+
+  if (UseBMI2Instructions) {
+    multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
+  }
+  else {
+    multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
+  }
+
+  // Store back in big endian from little endian
+  rorq(sum, 0x20);
+  movq(Address(out, offs, Address::times_4,  0), sum);
+
+  testl(len, len);
+  jccb(Assembler::zero, L_carry);
+
+  //Multiply the last in[] entry, if any
+  bind(L_last_in);
+  movl(op1, Address(in, 0));
+  movl(sum, Address(out, offs, Address::times_4,  -4));
+
+  movl(raxReg, k);
+  mull(op1); //tmp4 * eax -> edx:eax
+  addl(sum, carry);
+  adcl(rdxReg, 0);
+  addl(sum, raxReg);
+  adcl(rdxReg, 0);
+  movl(carry, rdxReg);
+
+  movl(Address(out, offs, Address::times_4,  -4), sum);
+
+  bind(L_carry);
+  //return tmp5/carry as carry in rax
+  movl(rax, carry);
+
+  bind(L_done);
+  pop(tmp5);
+  pop(tmp4);
+  pop(tmp3);
+  pop(tmp2);
+  pop(tmp1);
+}
+#endif
+
+/**
+ * Emits code to update CRC-32 with a byte value according to constants in table
+ *
+ * @param [in,out]crc   Register containing the crc.
+ * @param [in]val       Register containing the byte to fold into the CRC.
+ * @param [in]table     Register containing the table of crc constants.
+ *
+ * uint32_t crc;
+ * val = crc_table[(val ^ crc) & 0xFF];
+ * crc = val ^ (crc >> 8);
+ *
+ */
+void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
+  xorl(val, crc);
+  andl(val, 0xFF);
+  shrl(crc, 8); // unsigned shift
+  xorl(crc, Address(table, val, Address::times_4, 0));
+}
+
+/**
+ * Fold 128-bit data chunk
+ */
+void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
+  if (UseAVX > 0) {
+    vpclmulhdq(xtmp, xK, xcrc); // [123:64]
+    vpclmulldq(xcrc, xK, xcrc); // [63:0]
+    vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
+    pxor(xcrc, xtmp);
+  } else {
+    movdqa(xtmp, xcrc);
+    pclmulhdq(xtmp, xK);   // [123:64]
+    pclmulldq(xcrc, xK);   // [63:0]
+    pxor(xcrc, xtmp);
+    movdqu(xtmp, Address(buf, offset));
+    pxor(xcrc, xtmp);
+  }
+}
+
+void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
+  if (UseAVX > 0) {
+    vpclmulhdq(xtmp, xK, xcrc);
+    vpclmulldq(xcrc, xK, xcrc);
+    pxor(xcrc, xbuf);
+    pxor(xcrc, xtmp);
+  } else {
+    movdqa(xtmp, xcrc);
+    pclmulhdq(xtmp, xK);
+    pclmulldq(xcrc, xK);
+    pxor(xcrc, xbuf);
+    pxor(xcrc, xtmp);
+  }
+}
+
+/**
+ * 8-bit folds to compute 32-bit CRC
+ *
+ * uint64_t xcrc;
+ * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
+ */
+void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
+  movdl(tmp, xcrc);
+  andl(tmp, 0xFF);
+  movdl(xtmp, Address(table, tmp, Address::times_4, 0));
+  psrldq(xcrc, 1); // unsigned shift one byte
+  pxor(xcrc, xtmp);
+}
+
+/**
+ * uint32_t crc;
+ * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
+ */
+void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
+  movl(tmp, crc);
+  andl(tmp, 0xFF);
+  shrl(crc, 8);
+  xorl(crc, Address(table, tmp, Address::times_4, 0));
+}
+
+/**
+ * @param crc   register containing existing CRC (32-bit)
+ * @param buf   register pointing to input byte buffer (byte*)
+ * @param len   register containing number of bytes
+ * @param table register that will contain address of CRC table
+ * @param tmp   scratch register
+ */
+void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
+  assert_different_registers(crc, buf, len, table, tmp, rax);
+
+  Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
+  Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
+
+  // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
+  // context for the registers used, where all instructions below are using 128-bit mode
+  // On EVEX without VL and BW, these instructions will all be AVX.
+  if (VM_Version::supports_avx512vlbw()) {
+    movl(tmp, 0xffff);
+    kmovwl(k1, tmp);
+  }
+
+  lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
+  notl(crc); // ~crc
+  cmpl(len, 16);
+  jcc(Assembler::less, L_tail);
+
+  // Align buffer to 16 bytes
+  movl(tmp, buf);
+  andl(tmp, 0xF);
+  jccb(Assembler::zero, L_aligned);
+  subl(tmp,  16);
+  addl(len, tmp);
+
+  align(4);
+  BIND(L_align_loop);
+  movsbl(rax, Address(buf, 0)); // load byte with sign extension
+  update_byte_crc32(crc, rax, table);
+  increment(buf);
+  incrementl(tmp);
+  jccb(Assembler::less, L_align_loop);
+
+  BIND(L_aligned);
+  movl(tmp, len); // save
+  shrl(len, 4);
+  jcc(Assembler::zero, L_tail_restore);
+
+  // Fold crc into first bytes of vector
+  movdqa(xmm1, Address(buf, 0));
+  movdl(rax, xmm1);
+  xorl(crc, rax);
+  if (VM_Version::supports_sse4_1()) {
+    pinsrd(xmm1, crc, 0);
+  } else {
+    pinsrw(xmm1, crc, 0);
+    shrl(crc, 16);
+    pinsrw(xmm1, crc, 1);
+  }
+  addptr(buf, 16);
+  subl(len, 4); // len > 0
+  jcc(Assembler::less, L_fold_tail);
+
+  movdqa(xmm2, Address(buf,  0));
+  movdqa(xmm3, Address(buf, 16));
+  movdqa(xmm4, Address(buf, 32));
+  addptr(buf, 48);
+  subl(len, 3);
+  jcc(Assembler::lessEqual, L_fold_512b);
+
+  // Fold total 512 bits of polynomial on each iteration,
+  // 128 bits per each of 4 parallel streams.
+  movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
+
+  align(32);
+  BIND(L_fold_512b_loop);
+  fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
+  fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
+  fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
+  fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
+  addptr(buf, 64);
+  subl(len, 4);
+  jcc(Assembler::greater, L_fold_512b_loop);
+
+  // Fold 512 bits to 128 bits.
+  BIND(L_fold_512b);
+  movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
+  fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
+  fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
+  fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
+
+  // Fold the rest of 128 bits data chunks
+  BIND(L_fold_tail);
+  addl(len, 3);
+  jccb(Assembler::lessEqual, L_fold_128b);
+  movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
+
+  BIND(L_fold_tail_loop);
+  fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
+  addptr(buf, 16);
+  decrementl(len);
+  jccb(Assembler::greater, L_fold_tail_loop);
+
+  // Fold 128 bits in xmm1 down into 32 bits in crc register.
+  BIND(L_fold_128b);
+  movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
+  if (UseAVX > 0) {
+    vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
+    vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
+    vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
+  } else {
+    movdqa(xmm2, xmm0);
+    pclmulqdq(xmm2, xmm1, 0x1);
+    movdqa(xmm3, xmm0);
+    pand(xmm3, xmm2);
+    pclmulqdq(xmm0, xmm3, 0x1);
+  }
+  psrldq(xmm1, 8);
+  psrldq(xmm2, 4);
+  pxor(xmm0, xmm1);
+  pxor(xmm0, xmm2);
+
+  // 8 8-bit folds to compute 32-bit CRC.
+  for (int j = 0; j < 4; j++) {
+    fold_8bit_crc32(xmm0, table, xmm1, rax);
+  }
+  movdl(crc, xmm0); // mov 32 bits to general register
+  for (int j = 0; j < 4; j++) {
+    fold_8bit_crc32(crc, table, rax);
+  }
+
+  BIND(L_tail_restore);
+  movl(len, tmp); // restore
+  BIND(L_tail);
+  andl(len, 0xf);
+  jccb(Assembler::zero, L_exit);
+
+  // Fold the rest of bytes
+  align(4);
+  BIND(L_tail_loop);
+  movsbl(rax, Address(buf, 0)); // load byte with sign extension
+  update_byte_crc32(crc, rax, table);
+  increment(buf);
+  decrementl(len);
+  jccb(Assembler::greater, L_tail_loop);
+
+  BIND(L_exit);
+  notl(crc); // ~c
+}
+
+#ifdef _LP64
+// S. Gueron / Information Processing Letters 112 (2012) 184
+// Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
+// Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
+// Output: the 64-bit carry-less product of B * CONST
+void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
+                                     Register tmp1, Register tmp2, Register tmp3) {
+  lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
+  if (n > 0) {
+    addq(tmp3, n * 256 * 8);
+  }
+  //    Q1 = TABLEExt[n][B & 0xFF];
+  movl(tmp1, in);
+  andl(tmp1, 0x000000FF);
+  shll(tmp1, 3);
+  addq(tmp1, tmp3);
+  movq(tmp1, Address(tmp1, 0));
+
+  //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
+  movl(tmp2, in);
+  shrl(tmp2, 8);
+  andl(tmp2, 0x000000FF);
+  shll(tmp2, 3);
+  addq(tmp2, tmp3);
+  movq(tmp2, Address(tmp2, 0));
+
+  shlq(tmp2, 8);
+  xorq(tmp1, tmp2);
+
+  //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
+  movl(tmp2, in);
+  shrl(tmp2, 16);
+  andl(tmp2, 0x000000FF);
+  shll(tmp2, 3);
+  addq(tmp2, tmp3);
+  movq(tmp2, Address(tmp2, 0));
+
+  shlq(tmp2, 16);
+  xorq(tmp1, tmp2);
+
+  //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
+  shrl(in, 24);
+  andl(in, 0x000000FF);
+  shll(in, 3);
+  addq(in, tmp3);
+  movq(in, Address(in, 0));
+
+  shlq(in, 24);
+  xorq(in, tmp1);
+  //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
+}
+
+void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
+                                      Register in_out,
+                                      uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
+                                      XMMRegister w_xtmp2,
+                                      Register tmp1,
+                                      Register n_tmp2, Register n_tmp3) {
+  if (is_pclmulqdq_supported) {
+    movdl(w_xtmp1, in_out); // modified blindly
+
+    movl(tmp1, const_or_pre_comp_const_index);
+    movdl(w_xtmp2, tmp1);
+    pclmulqdq(w_xtmp1, w_xtmp2, 0);
+
+    movdq(in_out, w_xtmp1);
+  } else {
+    crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
+  }
+}
+
+// Recombination Alternative 2: No bit-reflections
+// T1 = (CRC_A * U1) << 1
+// T2 = (CRC_B * U2) << 1
+// C1 = T1 >> 32
+// C2 = T2 >> 32
+// T1 = T1 & 0xFFFFFFFF
+// T2 = T2 & 0xFFFFFFFF
+// T1 = CRC32(0, T1)
+// T2 = CRC32(0, T2)
+// C1 = C1 ^ T1
+// C2 = C2 ^ T2
+// CRC = C1 ^ C2 ^ CRC_C
+void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
+                                     XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
+                                     Register tmp1, Register tmp2,
+                                     Register n_tmp3) {
+  crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
+  crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
+  shlq(in_out, 1);
+  movl(tmp1, in_out);
+  shrq(in_out, 32);
+  xorl(tmp2, tmp2);
+  crc32(tmp2, tmp1, 4);
+  xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
+  shlq(in1, 1);
+  movl(tmp1, in1);
+  shrq(in1, 32);
+  xorl(tmp2, tmp2);
+  crc32(tmp2, tmp1, 4);
+  xorl(in1, tmp2);
+  xorl(in_out, in1);
+  xorl(in_out, in2);
+}
+
+// Set N to predefined value
+// Subtract from a lenght of a buffer
+// execute in a loop:
+// CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
+// for i = 1 to N do
+//  CRC_A = CRC32(CRC_A, A[i])
+//  CRC_B = CRC32(CRC_B, B[i])
+//  CRC_C = CRC32(CRC_C, C[i])
+// end for
+// Recombine
+void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
+                                       Register in_out1, Register in_out2, Register in_out3,
+                                       Register tmp1, Register tmp2, Register tmp3,
+                                       XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
+                                       Register tmp4, Register tmp5,
+                                       Register n_tmp6) {
+  Label L_processPartitions;
+  Label L_processPartition;
+  Label L_exit;
+
+  bind(L_processPartitions);
+  cmpl(in_out1, 3 * size);
+  jcc(Assembler::less, L_exit);
+    xorl(tmp1, tmp1);
+    xorl(tmp2, tmp2);
+    movq(tmp3, in_out2);
+    addq(tmp3, size);
+
+    bind(L_processPartition);
+      crc32(in_out3, Address(in_out2, 0), 8);
+      crc32(tmp1, Address(in_out2, size), 8);
+      crc32(tmp2, Address(in_out2, size * 2), 8);
+      addq(in_out2, 8);
+      cmpq(in_out2, tmp3);
+      jcc(Assembler::less, L_processPartition);
+    crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
+            w_xtmp1, w_xtmp2, w_xtmp3,
+            tmp4, tmp5,
+            n_tmp6);
+    addq(in_out2, 2 * size);
+    subl(in_out1, 3 * size);
+    jmp(L_processPartitions);
+
+  bind(L_exit);
+}
+#else
+void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
+                                     Register tmp1, Register tmp2, Register tmp3,
+                                     XMMRegister xtmp1, XMMRegister xtmp2) {
+  lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
+  if (n > 0) {
+    addl(tmp3, n * 256 * 8);
+  }
+  //    Q1 = TABLEExt[n][B & 0xFF];
+  movl(tmp1, in_out);
+  andl(tmp1, 0x000000FF);
+  shll(tmp1, 3);
+  addl(tmp1, tmp3);
+  movq(xtmp1, Address(tmp1, 0));
+
+  //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
+  movl(tmp2, in_out);
+  shrl(tmp2, 8);
+  andl(tmp2, 0x000000FF);
+  shll(tmp2, 3);
+  addl(tmp2, tmp3);
+  movq(xtmp2, Address(tmp2, 0));
+
+  psllq(xtmp2, 8);
+  pxor(xtmp1, xtmp2);
+
+  //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
+  movl(tmp2, in_out);
+  shrl(tmp2, 16);
+  andl(tmp2, 0x000000FF);
+  shll(tmp2, 3);
+  addl(tmp2, tmp3);
+  movq(xtmp2, Address(tmp2, 0));
+
+  psllq(xtmp2, 16);
+  pxor(xtmp1, xtmp2);
+
+  //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
+  shrl(in_out, 24);
+  andl(in_out, 0x000000FF);
+  shll(in_out, 3);
+  addl(in_out, tmp3);
+  movq(xtmp2, Address(in_out, 0));
+
+  psllq(xtmp2, 24);
+  pxor(xtmp1, xtmp2); // Result in CXMM
+  //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
+}
+
+void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
+                                      Register in_out,
+                                      uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
+                                      XMMRegister w_xtmp2,
+                                      Register tmp1,
+                                      Register n_tmp2, Register n_tmp3) {
+  if (is_pclmulqdq_supported) {
+    movdl(w_xtmp1, in_out);
+
+    movl(tmp1, const_or_pre_comp_const_index);
+    movdl(w_xtmp2, tmp1);
+    pclmulqdq(w_xtmp1, w_xtmp2, 0);
+    // Keep result in XMM since GPR is 32 bit in length
+  } else {
+    crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
+  }
+}
+
+void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
+                                     XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
+                                     Register tmp1, Register tmp2,
+                                     Register n_tmp3) {
+  crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
+  crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
+
+  psllq(w_xtmp1, 1);
+  movdl(tmp1, w_xtmp1);
+  psrlq(w_xtmp1, 32);
+  movdl(in_out, w_xtmp1);
+
+  xorl(tmp2, tmp2);
+  crc32(tmp2, tmp1, 4);
+  xorl(in_out, tmp2);
+
+  psllq(w_xtmp2, 1);
+  movdl(tmp1, w_xtmp2);
+  psrlq(w_xtmp2, 32);
+  movdl(in1, w_xtmp2);
+
+  xorl(tmp2, tmp2);
+  crc32(tmp2, tmp1, 4);
+  xorl(in1, tmp2);
+  xorl(in_out, in1);
+  xorl(in_out, in2);
+}
+
+void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
+                                       Register in_out1, Register in_out2, Register in_out3,
+                                       Register tmp1, Register tmp2, Register tmp3,
+                                       XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
+                                       Register tmp4, Register tmp5,
+                                       Register n_tmp6) {
+  Label L_processPartitions;
+  Label L_processPartition;
+  Label L_exit;
+
+  bind(L_processPartitions);
+  cmpl(in_out1, 3 * size);
+  jcc(Assembler::less, L_exit);
+    xorl(tmp1, tmp1);
+    xorl(tmp2, tmp2);
+    movl(tmp3, in_out2);
+    addl(tmp3, size);
+
+    bind(L_processPartition);
+      crc32(in_out3, Address(in_out2, 0), 4);
+      crc32(tmp1, Address(in_out2, size), 4);
+      crc32(tmp2, Address(in_out2, size*2), 4);
+      crc32(in_out3, Address(in_out2, 0+4), 4);
+      crc32(tmp1, Address(in_out2, size+4), 4);
+      crc32(tmp2, Address(in_out2, size*2+4), 4);
+      addl(in_out2, 8);
+      cmpl(in_out2, tmp3);
+      jcc(Assembler::less, L_processPartition);
+
+        push(tmp3);
+        push(in_out1);
+        push(in_out2);
+        tmp4 = tmp3;
+        tmp5 = in_out1;
+        n_tmp6 = in_out2;
+
+      crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
+            w_xtmp1, w_xtmp2, w_xtmp3,
+            tmp4, tmp5,
+            n_tmp6);
+
+        pop(in_out2);
+        pop(in_out1);
+        pop(tmp3);
+
+    addl(in_out2, 2 * size);
+    subl(in_out1, 3 * size);
+    jmp(L_processPartitions);
+
+  bind(L_exit);
+}
+#endif //LP64
+
+#ifdef _LP64
+// Algorithm 2: Pipelined usage of the CRC32 instruction.
+// Input: A buffer I of L bytes.
+// Output: the CRC32C value of the buffer.
+// Notations:
+// Write L = 24N + r, with N = floor (L/24).
+// r = L mod 24 (0 <= r < 24).
+// Consider I as the concatenation of A|B|C|R, where A, B, C, each,
+// N quadwords, and R consists of r bytes.
+// A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
+// B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
+// C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
+// if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
+void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
+                                          Register tmp1, Register tmp2, Register tmp3,
+                                          Register tmp4, Register tmp5, Register tmp6,
+                                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
+                                          bool is_pclmulqdq_supported) {
+  uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
+  Label L_wordByWord;
+  Label L_byteByByteProlog;
+  Label L_byteByByte;
+  Label L_exit;
+
+  if (is_pclmulqdq_supported ) {
+    const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
+    const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
+
+    const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
+    const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
+
+    const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
+    const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
+    assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
+  } else {
+    const_or_pre_comp_const_index[0] = 1;
+    const_or_pre_comp_const_index[1] = 0;
+
+    const_or_pre_comp_const_index[2] = 3;
+    const_or_pre_comp_const_index[3] = 2;
+
+    const_or_pre_comp_const_index[4] = 5;
+    const_or_pre_comp_const_index[5] = 4;
+   }
+  crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
+                    in2, in1, in_out,
+                    tmp1, tmp2, tmp3,
+                    w_xtmp1, w_xtmp2, w_xtmp3,
+                    tmp4, tmp5,
+                    tmp6);
+  crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
+                    in2, in1, in_out,
+                    tmp1, tmp2, tmp3,
+                    w_xtmp1, w_xtmp2, w_xtmp3,
+                    tmp4, tmp5,
+                    tmp6);
+  crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
+                    in2, in1, in_out,
+                    tmp1, tmp2, tmp3,
+                    w_xtmp1, w_xtmp2, w_xtmp3,
+                    tmp4, tmp5,
+                    tmp6);
+  movl(tmp1, in2);
+  andl(tmp1, 0x00000007);
+  negl(tmp1);
+  addl(tmp1, in2);
+  addq(tmp1, in1);
+
+  BIND(L_wordByWord);
+  cmpq(in1, tmp1);
+  jcc(Assembler::greaterEqual, L_byteByByteProlog);
+    crc32(in_out, Address(in1, 0), 4);
+    addq(in1, 4);
+    jmp(L_wordByWord);
+
+  BIND(L_byteByByteProlog);
+  andl(in2, 0x00000007);
+  movl(tmp2, 1);
+
+  BIND(L_byteByByte);
+  cmpl(tmp2, in2);
+  jccb(Assembler::greater, L_exit);
+    crc32(in_out, Address(in1, 0), 1);
+    incq(in1);
+    incl(tmp2);
+    jmp(L_byteByByte);
+
+  BIND(L_exit);
+}
+#else
+void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
+                                          Register tmp1, Register  tmp2, Register tmp3,
+                                          Register tmp4, Register  tmp5, Register tmp6,
+                                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
+                                          bool is_pclmulqdq_supported) {
+  uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
+  Label L_wordByWord;
+  Label L_byteByByteProlog;
+  Label L_byteByByte;
+  Label L_exit;
+
+  if (is_pclmulqdq_supported) {
+    const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
+    const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
+
+    const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
+    const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
+
+    const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
+    const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
+  } else {
+    const_or_pre_comp_const_index[0] = 1;
+    const_or_pre_comp_const_index[1] = 0;
+
+    const_or_pre_comp_const_index[2] = 3;
+    const_or_pre_comp_const_index[3] = 2;
+
+    const_or_pre_comp_const_index[4] = 5;
+    const_or_pre_comp_const_index[5] = 4;
+  }
+  crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
+                    in2, in1, in_out,
+                    tmp1, tmp2, tmp3,
+                    w_xtmp1, w_xtmp2, w_xtmp3,
+                    tmp4, tmp5,
+                    tmp6);
+  crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
+                    in2, in1, in_out,
+                    tmp1, tmp2, tmp3,
+                    w_xtmp1, w_xtmp2, w_xtmp3,
+                    tmp4, tmp5,
+                    tmp6);
+  crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
+                    in2, in1, in_out,
+                    tmp1, tmp2, tmp3,
+                    w_xtmp1, w_xtmp2, w_xtmp3,
+                    tmp4, tmp5,
+                    tmp6);
+  movl(tmp1, in2);
+  andl(tmp1, 0x00000007);
+  negl(tmp1);
+  addl(tmp1, in2);
+  addl(tmp1, in1);
+
+  BIND(L_wordByWord);
+  cmpl(in1, tmp1);
+  jcc(Assembler::greaterEqual, L_byteByByteProlog);
+    crc32(in_out, Address(in1,0), 4);
+    addl(in1, 4);
+    jmp(L_wordByWord);
+
+  BIND(L_byteByByteProlog);
+  andl(in2, 0x00000007);
+  movl(tmp2, 1);
+
+  BIND(L_byteByByte);
+  cmpl(tmp2, in2);
+  jccb(Assembler::greater, L_exit);
+    movb(tmp1, Address(in1, 0));
+    crc32(in_out, tmp1, 1);
+    incl(in1);
+    incl(tmp2);
+    jmp(L_byteByByte);
+
+  BIND(L_exit);
+}
+#endif // LP64
+#undef BIND
+#undef BLOCK_COMMENT
+
+// Compress char[] array to byte[].
+//   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
+//   @HotSpotIntrinsicCandidate
+//   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
+//     for (int i = 0; i < len; i++) {
+//       int c = src[srcOff++];
+//       if (c >>> 8 != 0) {
+//         return 0;
+//       }
+//       dst[dstOff++] = (byte)c;
+//     }
+//     return len;
+//   }
+void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
+  XMMRegister tmp1Reg, XMMRegister tmp2Reg,
+  XMMRegister tmp3Reg, XMMRegister tmp4Reg,
+  Register tmp5, Register result) {
+  Label copy_chars_loop, return_length, return_zero, done, below_threshold;
+
+  // rsi: src
+  // rdi: dst
+  // rdx: len
+  // rcx: tmp5
+  // rax: result
+
+  // rsi holds start addr of source char[] to be compressed
+  // rdi holds start addr of destination byte[]
+  // rdx holds length
+
+  assert(len != result, "");
+
+  // save length for return
+  push(len);
+
+  if ((UseAVX > 2) && // AVX512
+    VM_Version::supports_avx512vlbw() &&
+    VM_Version::supports_bmi2()) {
+
+    set_vector_masking();  // opening of the stub context for programming mask registers
+
+    Label copy_32_loop, copy_loop_tail, restore_k1_return_zero;
+
+    // alignement
+    Label post_alignement;
+
+    // if length of the string is less than 16, handle it in an old fashioned
+    // way
+    testl(len, -32);
+    jcc(Assembler::zero, below_threshold);
+
+    // First check whether a character is compressable ( <= 0xFF).
+    // Create mask to test for Unicode chars inside zmm vector
+    movl(result, 0x00FF);
+    evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
+
+    // Save k1
+    kmovql(k3, k1);
+
+    testl(len, -64);
+    jcc(Assembler::zero, post_alignement);
+
+    movl(tmp5, dst);
+    andl(tmp5, (32 - 1));
+    negl(tmp5);
+    andl(tmp5, (32 - 1));
+
+    // bail out when there is nothing to be done
+    testl(tmp5, 0xFFFFFFFF);
+    jcc(Assembler::zero, post_alignement);
+
+    // ~(~0 << len), where len is the # of remaining elements to process
+    movl(result, 0xFFFFFFFF);
+    shlxl(result, result, tmp5);
+    notl(result);
+    kmovdl(k1, result);
+
+    evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
+    evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
+    ktestd(k2, k1);
+    jcc(Assembler::carryClear, restore_k1_return_zero);
+
+    evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
+
+    addptr(src, tmp5);
+    addptr(src, tmp5);
+    addptr(dst, tmp5);
+    subl(len, tmp5);
+
+    bind(post_alignement);
+    // end of alignement
+
+    movl(tmp5, len);
+    andl(tmp5, (32 - 1));    // tail count (in chars)
+    andl(len, ~(32 - 1));    // vector count (in chars)
+    jcc(Assembler::zero, copy_loop_tail);
+
+    lea(src, Address(src, len, Address::times_2));
+    lea(dst, Address(dst, len, Address::times_1));
+    negptr(len);
+
+    bind(copy_32_loop);
+    evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
+    evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
+    kortestdl(k2, k2);
+    jcc(Assembler::carryClear, restore_k1_return_zero);
+
+    // All elements in current processed chunk are valid candidates for
+    // compression. Write a truncated byte elements to the memory.
+    evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
+    addptr(len, 32);
+    jcc(Assembler::notZero, copy_32_loop);
+
+    bind(copy_loop_tail);
+    // bail out when there is nothing to be done
+    testl(tmp5, 0xFFFFFFFF);
+    // Restore k1
+    kmovql(k1, k3);
+    jcc(Assembler::zero, return_length);
+
+    movl(len, tmp5);
+
+    // ~(~0 << len), where len is the # of remaining elements to process
+    movl(result, 0xFFFFFFFF);
+    shlxl(result, result, len);
+    notl(result);
+
+    kmovdl(k1, result);
+
+    evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
+    evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
+    ktestd(k2, k1);
+    jcc(Assembler::carryClear, restore_k1_return_zero);
+
+    evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
+    // Restore k1
+    kmovql(k1, k3);
+    jmp(return_length);
+
+    bind(restore_k1_return_zero);
+    // Restore k1
+    kmovql(k1, k3);
+    jmp(return_zero);
+
+    clear_vector_masking();   // closing of the stub context for programming mask registers
+  }
+  if (UseSSE42Intrinsics) {
+    Label copy_32_loop, copy_16, copy_tail;
+
+    bind(below_threshold);
+
+    movl(result, len);
+
+    movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
+
+    // vectored compression
+    andl(len, 0xfffffff0);    // vector count (in chars)
+    andl(result, 0x0000000f);    // tail count (in chars)
+    testl(len, len);
+    jccb(Assembler::zero, copy_16);
+
+    // compress 16 chars per iter
+    movdl(tmp1Reg, tmp5);
+    pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
+    pxor(tmp4Reg, tmp4Reg);
+
+    lea(src, Address(src, len, Address::times_2));
+    lea(dst, Address(dst, len, Address::times_1));
+    negptr(len);
+
+    bind(copy_32_loop);
+    movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
+    por(tmp4Reg, tmp2Reg);
+    movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
+    por(tmp4Reg, tmp3Reg);
+    ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
+    jcc(Assembler::notZero, return_zero);
+    packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
+    movdqu(Address(dst, len, Address::times_1), tmp2Reg);
+    addptr(len, 16);
+    jcc(Assembler::notZero, copy_32_loop);
+
+    // compress next vector of 8 chars (if any)
+    bind(copy_16);
+    movl(len, result);
+    andl(len, 0xfffffff8);    // vector count (in chars)
+    andl(result, 0x00000007);    // tail count (in chars)
+    testl(len, len);
+    jccb(Assembler::zero, copy_tail);
+
+    movdl(tmp1Reg, tmp5);
+    pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
+    pxor(tmp3Reg, tmp3Reg);
+
+    movdqu(tmp2Reg, Address(src, 0));
+    ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
+    jccb(Assembler::notZero, return_zero);
+    packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
+    movq(Address(dst, 0), tmp2Reg);
+    addptr(src, 16);
+    addptr(dst, 8);
+
+    bind(copy_tail);
+    movl(len, result);
+  }
+  // compress 1 char per iter
+  testl(len, len);
+  jccb(Assembler::zero, return_length);
+  lea(src, Address(src, len, Address::times_2));
+  lea(dst, Address(dst, len, Address::times_1));
+  negptr(len);
+
+  bind(copy_chars_loop);
+  load_unsigned_short(result, Address(src, len, Address::times_2));
+  testl(result, 0xff00);      // check if Unicode char
+  jccb(Assembler::notZero, return_zero);
+  movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
+  increment(len);
+  jcc(Assembler::notZero, copy_chars_loop);
+
+  // if compression succeeded, return length
+  bind(return_length);
+  pop(result);
+  jmpb(done);
+
+  // if compression failed, return 0
+  bind(return_zero);
+  xorl(result, result);
+  addptr(rsp, wordSize);
+
+  bind(done);
+}
+
+// Inflate byte[] array to char[].
+//   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
+//   @HotSpotIntrinsicCandidate
+//   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
+//     for (int i = 0; i < len; i++) {
+//       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
+//     }
+//   }
+void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
+  XMMRegister tmp1, Register tmp2) {
+  Label copy_chars_loop, done, below_threshold;
+  // rsi: src
+  // rdi: dst
+  // rdx: len
+  // rcx: tmp2
+
+  // rsi holds start addr of source byte[] to be inflated
+  // rdi holds start addr of destination char[]
+  // rdx holds length
+  assert_different_registers(src, dst, len, tmp2);
+
+  if ((UseAVX > 2) && // AVX512
+    VM_Version::supports_avx512vlbw() &&
+    VM_Version::supports_bmi2()) {
+
+    set_vector_masking();  // opening of the stub context for programming mask registers
+
+    Label copy_32_loop, copy_tail;
+    Register tmp3_aliased = len;
+
+    // if length of the string is less than 16, handle it in an old fashioned
+    // way
+    testl(len, -16);
+    jcc(Assembler::zero, below_threshold);
+
+    // In order to use only one arithmetic operation for the main loop we use
+    // this pre-calculation
+    movl(tmp2, len);
+    andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
+    andl(len, -32);     // vector count
+    jccb(Assembler::zero, copy_tail);
+
+    lea(src, Address(src, len, Address::times_1));
+    lea(dst, Address(dst, len, Address::times_2));
+    negptr(len);
+
+
+    // inflate 32 chars per iter
+    bind(copy_32_loop);
+    vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
+    evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
+    addptr(len, 32);
+    jcc(Assembler::notZero, copy_32_loop);
+
+    bind(copy_tail);
+    // bail out when there is nothing to be done
+    testl(tmp2, -1); // we don't destroy the contents of tmp2 here
+    jcc(Assembler::zero, done);
+
+    // Save k1
+    kmovql(k2, k1);
+
+    // ~(~0 << length), where length is the # of remaining elements to process
+    movl(tmp3_aliased, -1);
+    shlxl(tmp3_aliased, tmp3_aliased, tmp2);
+    notl(tmp3_aliased);
+    kmovdl(k1, tmp3_aliased);
+    evpmovzxbw(tmp1, k1, Address(src, 0), Assembler::AVX_512bit);
+    evmovdquw(Address(dst, 0), k1, tmp1, Assembler::AVX_512bit);
+
+    // Restore k1
+    kmovql(k1, k2);
+    jmp(done);
+
+    clear_vector_masking();   // closing of the stub context for programming mask registers
+  }
+  if (UseSSE42Intrinsics) {
+    Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
+
+    movl(tmp2, len);
+
+    if (UseAVX > 1) {
+      andl(tmp2, (16 - 1));
+      andl(len, -16);
+      jccb(Assembler::zero, copy_new_tail);
+    } else {
+      andl(tmp2, 0x00000007);   // tail count (in chars)
+      andl(len, 0xfffffff8);    // vector count (in chars)
+      jccb(Assembler::zero, copy_tail);
+    }
+
+    // vectored inflation
+    lea(src, Address(src, len, Address::times_1));
+    lea(dst, Address(dst, len, Address::times_2));
+    negptr(len);
+
+    if (UseAVX > 1) {
+      bind(copy_16_loop);
+      vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
+      vmovdqu(Address(dst, len, Address::times_2), tmp1);
+      addptr(len, 16);
+      jcc(Assembler::notZero, copy_16_loop);
+
+      bind(below_threshold);
+      bind(copy_new_tail);
+      if ((UseAVX > 2) &&
+        VM_Version::supports_avx512vlbw() &&
+        VM_Version::supports_bmi2()) {
+        movl(tmp2, len);
+      } else {
+        movl(len, tmp2);
+      }
+      andl(tmp2, 0x00000007);
+      andl(len, 0xFFFFFFF8);
+      jccb(Assembler::zero, copy_tail);
+
+      pmovzxbw(tmp1, Address(src, 0));
+      movdqu(Address(dst, 0), tmp1);
+      addptr(src, 8);
+      addptr(dst, 2 * 8);
+
+      jmp(copy_tail, true);
+    }
+
+    // inflate 8 chars per iter
+    bind(copy_8_loop);
+    pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
+    movdqu(Address(dst, len, Address::times_2), tmp1);
+    addptr(len, 8);
+    jcc(Assembler::notZero, copy_8_loop);
+
+    bind(copy_tail);
+    movl(len, tmp2);
+
+    cmpl(len, 4);
+    jccb(Assembler::less, copy_bytes);
+
+    movdl(tmp1, Address(src, 0));  // load 4 byte chars
+    pmovzxbw(tmp1, tmp1);
+    movq(Address(dst, 0), tmp1);
+    subptr(len, 4);
+    addptr(src, 4);
+    addptr(dst, 8);
+
+    bind(copy_bytes);
+  }
+  testl(len, len);
+  jccb(Assembler::zero, done);
+  lea(src, Address(src, len, Address::times_1));
+  lea(dst, Address(dst, len, Address::times_2));
+  negptr(len);
+
+  // inflate 1 char per iter
+  bind(copy_chars_loop);
+  load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
+  movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
+  increment(len);
+  jcc(Assembler::notZero, copy_chars_loop);
+
+  bind(done);
+}
+
+Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
+  switch (cond) {
+    // Note some conditions are synonyms for others
+    case Assembler::zero:         return Assembler::notZero;
+    case Assembler::notZero:      return Assembler::zero;
+    case Assembler::less:         return Assembler::greaterEqual;
+    case Assembler::lessEqual:    return Assembler::greater;
+    case Assembler::greater:      return Assembler::lessEqual;
+    case Assembler::greaterEqual: return Assembler::less;
+    case Assembler::below:        return Assembler::aboveEqual;
+    case Assembler::belowEqual:   return Assembler::above;
+    case Assembler::above:        return Assembler::belowEqual;
+    case Assembler::aboveEqual:   return Assembler::below;
+    case Assembler::overflow:     return Assembler::noOverflow;
+    case Assembler::noOverflow:   return Assembler::overflow;
+    case Assembler::negative:     return Assembler::positive;
+    case Assembler::positive:     return Assembler::negative;
+    case Assembler::parity:       return Assembler::noParity;
+    case Assembler::noParity:     return Assembler::parity;
+  }
+  ShouldNotReachHere(); return Assembler::overflow;
+}
+
+SkipIfEqual::SkipIfEqual(
+    MacroAssembler* masm, const bool* flag_addr, bool value) {
+  _masm = masm;
+  _masm->cmp8(ExternalAddress((address)flag_addr), value);
+  _masm->jcc(Assembler::equal, _label);
+}
+
+SkipIfEqual::~SkipIfEqual() {
+  _masm->bind(_label);
+}
+
+// 32-bit Windows has its own fast-path implementation
+// of get_thread
+#if !defined(WIN32) || defined(_LP64)
+
+// This is simply a call to Thread::current()
+void MacroAssembler::get_thread(Register thread) {
+  if (thread != rax) {
+    push(rax);
+  }
+  LP64_ONLY(push(rdi);)
+  LP64_ONLY(push(rsi);)
+  push(rdx);
+  push(rcx);
+#ifdef _LP64
+  push(r8);
+  push(r9);
+  push(r10);
+  push(r11);
+#endif
+
+  MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
+
+#ifdef _LP64
+  pop(r11);
+  pop(r10);
+  pop(r9);
+  pop(r8);
+#endif
+  pop(rcx);
+  pop(rdx);
+  LP64_ONLY(pop(rsi);)
+  LP64_ONLY(pop(rdi);)
+  if (thread != rax) {
+    mov(thread, rax);
+    pop(rax);
+  }
+}
+
+#endif