src/hotspot/cpu/sparc/c1_LIRAssembler_sparc.cpp
changeset 47216 71c04702a3d5
parent 46651 a0aef4e7599b
child 47698 d4bfafe600d0
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/cpu/sparc/c1_LIRAssembler_sparc.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,3356 @@
+/*
+ * Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "c1/c1_Compilation.hpp"
+#include "c1/c1_LIRAssembler.hpp"
+#include "c1/c1_MacroAssembler.hpp"
+#include "c1/c1_Runtime1.hpp"
+#include "c1/c1_ValueStack.hpp"
+#include "ci/ciArrayKlass.hpp"
+#include "ci/ciInstance.hpp"
+#include "gc/shared/barrierSet.hpp"
+#include "gc/shared/cardTableModRefBS.hpp"
+#include "gc/shared/collectedHeap.hpp"
+#include "nativeInst_sparc.hpp"
+#include "oops/objArrayKlass.hpp"
+#include "runtime/sharedRuntime.hpp"
+
+#define __ _masm->
+
+
+//------------------------------------------------------------
+
+
+bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
+  if (opr->is_constant()) {
+    LIR_Const* constant = opr->as_constant_ptr();
+    switch (constant->type()) {
+      case T_INT: {
+        jint value = constant->as_jint();
+        return Assembler::is_simm13(value);
+      }
+
+      default:
+        return false;
+    }
+  }
+  return false;
+}
+
+
+bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
+  switch (op->code()) {
+    case lir_null_check:
+    return true;
+
+
+    case lir_add:
+    case lir_ushr:
+    case lir_shr:
+    case lir_shl:
+      // integer shifts and adds are always one instruction
+      return op->result_opr()->is_single_cpu();
+
+
+    case lir_move: {
+      LIR_Op1* op1 = op->as_Op1();
+      LIR_Opr src = op1->in_opr();
+      LIR_Opr dst = op1->result_opr();
+
+      if (src == dst) {
+        NEEDS_CLEANUP;
+        // this works around a problem where moves with the same src and dst
+        // end up in the delay slot and then the assembler swallows the mov
+        // since it has no effect and then it complains because the delay slot
+        // is empty.  returning false stops the optimizer from putting this in
+        // the delay slot
+        return false;
+      }
+
+      // don't put moves involving oops into the delay slot since the VerifyOops code
+      // will make it much larger than a single instruction.
+      if (VerifyOops) {
+        return false;
+      }
+
+      if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
+          ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
+        return false;
+      }
+
+      if (UseCompressedOops) {
+        if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
+        if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
+      }
+
+      if (UseCompressedClassPointers) {
+        if (src->is_address() && !src->is_stack() && src->type() == T_ADDRESS &&
+            src->as_address_ptr()->disp() == oopDesc::klass_offset_in_bytes()) return false;
+      }
+
+      if (dst->is_register()) {
+        if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
+          return !PatchALot;
+        } else if (src->is_single_stack()) {
+          return true;
+        }
+      }
+
+      if (src->is_register()) {
+        if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
+          return !PatchALot;
+        } else if (dst->is_single_stack()) {
+          return true;
+        }
+      }
+
+      if (dst->is_register() &&
+          ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
+           (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
+        return true;
+      }
+
+      return false;
+    }
+
+    default:
+      return false;
+  }
+  ShouldNotReachHere();
+}
+
+
+LIR_Opr LIR_Assembler::receiverOpr() {
+  return FrameMap::O0_oop_opr;
+}
+
+
+LIR_Opr LIR_Assembler::osrBufferPointer() {
+  return FrameMap::I0_opr;
+}
+
+
+int LIR_Assembler::initial_frame_size_in_bytes() const {
+  return in_bytes(frame_map()->framesize_in_bytes());
+}
+
+
+// inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
+// we fetch the class of the receiver (O0) and compare it with the cached class.
+// If they do not match we jump to slow case.
+int LIR_Assembler::check_icache() {
+  int offset = __ offset();
+  __ inline_cache_check(O0, G5_inline_cache_reg);
+  return offset;
+}
+
+
+void LIR_Assembler::osr_entry() {
+  // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
+  //
+  //   1. Create a new compiled activation.
+  //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
+  //      at the osr_bci; it is not initialized.
+  //   3. Jump to the continuation address in compiled code to resume execution.
+
+  // OSR entry point
+  offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
+  BlockBegin* osr_entry = compilation()->hir()->osr_entry();
+  ValueStack* entry_state = osr_entry->end()->state();
+  int number_of_locks = entry_state->locks_size();
+
+  // Create a frame for the compiled activation.
+  __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
+
+  // OSR buffer is
+  //
+  // locals[nlocals-1..0]
+  // monitors[number_of_locks-1..0]
+  //
+  // locals is a direct copy of the interpreter frame so in the osr buffer
+  // so first slot in the local array is the last local from the interpreter
+  // and last slot is local[0] (receiver) from the interpreter
+  //
+  // Similarly with locks. The first lock slot in the osr buffer is the nth lock
+  // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
+  // in the interpreter frame (the method lock if a sync method)
+
+  // Initialize monitors in the compiled activation.
+  //   I0: pointer to osr buffer
+  //
+  // All other registers are dead at this point and the locals will be
+  // copied into place by code emitted in the IR.
+
+  Register OSR_buf = osrBufferPointer()->as_register();
+  { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
+    int monitor_offset = BytesPerWord * method()->max_locals() +
+      (2 * BytesPerWord) * (number_of_locks - 1);
+    // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
+    // the OSR buffer using 2 word entries: first the lock and then
+    // the oop.
+    for (int i = 0; i < number_of_locks; i++) {
+      int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
+#ifdef ASSERT
+      // verify the interpreter's monitor has a non-null object
+      {
+        Label L;
+        __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
+        __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
+        __ stop("locked object is NULL");
+        __ bind(L);
+      }
+#endif // ASSERT
+      // Copy the lock field into the compiled activation.
+      __ ld_ptr(OSR_buf, slot_offset + 0, O7);
+      __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
+      __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
+      __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
+    }
+  }
+}
+
+
+// --------------------------------------------------------------------------------------------
+
+void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
+  if (!GenerateSynchronizationCode) return;
+
+  Register obj_reg = obj_opr->as_register();
+  Register lock_reg = lock_opr->as_register();
+
+  Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
+  Register reg = mon_addr.base();
+  int offset = mon_addr.disp();
+  // compute pointer to BasicLock
+  if (mon_addr.is_simm13()) {
+    __ add(reg, offset, lock_reg);
+  }
+  else {
+    __ set(offset, lock_reg);
+    __ add(reg, lock_reg, lock_reg);
+  }
+  // unlock object
+  MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
+  // _slow_case_stubs->append(slow_case);
+  // temporary fix: must be created after exceptionhandler, therefore as call stub
+  _slow_case_stubs->append(slow_case);
+  if (UseFastLocking) {
+    // try inlined fast unlocking first, revert to slow locking if it fails
+    // note: lock_reg points to the displaced header since the displaced header offset is 0!
+    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
+    __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
+  } else {
+    // always do slow unlocking
+    // note: the slow unlocking code could be inlined here, however if we use
+    //       slow unlocking, speed doesn't matter anyway and this solution is
+    //       simpler and requires less duplicated code - additionally, the
+    //       slow unlocking code is the same in either case which simplifies
+    //       debugging
+    __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
+    __ delayed()->nop();
+  }
+  // done
+  __ bind(*slow_case->continuation());
+}
+
+
+int LIR_Assembler::emit_exception_handler() {
+  // if the last instruction is a call (typically to do a throw which
+  // is coming at the end after block reordering) the return address
+  // must still point into the code area in order to avoid assertion
+  // failures when searching for the corresponding bci => add a nop
+  // (was bug 5/14/1999 - gri)
+  __ nop();
+
+  // generate code for exception handler
+  ciMethod* method = compilation()->method();
+
+  address handler_base = __ start_a_stub(exception_handler_size());
+
+  if (handler_base == NULL) {
+    // not enough space left for the handler
+    bailout("exception handler overflow");
+    return -1;
+  }
+
+  int offset = code_offset();
+
+  __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
+  __ delayed()->nop();
+  __ should_not_reach_here();
+  guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
+  __ end_a_stub();
+
+  return offset;
+}
+
+
+// Emit the code to remove the frame from the stack in the exception
+// unwind path.
+int LIR_Assembler::emit_unwind_handler() {
+#ifndef PRODUCT
+  if (CommentedAssembly) {
+    _masm->block_comment("Unwind handler");
+  }
+#endif
+
+  int offset = code_offset();
+
+  // Fetch the exception from TLS and clear out exception related thread state
+  __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
+  __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
+  __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
+
+  __ bind(_unwind_handler_entry);
+  __ verify_not_null_oop(O0);
+  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
+    __ mov(O0, I0);  // Preserve the exception
+  }
+
+  // Preform needed unlocking
+  MonitorExitStub* stub = NULL;
+  if (method()->is_synchronized()) {
+    monitor_address(0, FrameMap::I1_opr);
+    stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
+    __ unlock_object(I3, I2, I1, *stub->entry());
+    __ bind(*stub->continuation());
+  }
+
+  if (compilation()->env()->dtrace_method_probes()) {
+    __ mov(G2_thread, O0);
+    __ save_thread(I1); // need to preserve thread in G2 across
+                        // runtime call
+    metadata2reg(method()->constant_encoding(), O1);
+    __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
+    __ delayed()->nop();
+    __ restore_thread(I1);
+  }
+
+  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
+    __ mov(I0, O0);  // Restore the exception
+  }
+
+  // dispatch to the unwind logic
+  __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
+  __ delayed()->nop();
+
+  // Emit the slow path assembly
+  if (stub != NULL) {
+    stub->emit_code(this);
+  }
+
+  return offset;
+}
+
+
+int LIR_Assembler::emit_deopt_handler() {
+  // if the last instruction is a call (typically to do a throw which
+  // is coming at the end after block reordering) the return address
+  // must still point into the code area in order to avoid assertion
+  // failures when searching for the corresponding bci => add a nop
+  // (was bug 5/14/1999 - gri)
+  __ nop();
+
+  // generate code for deopt handler
+  ciMethod* method = compilation()->method();
+  address handler_base = __ start_a_stub(deopt_handler_size());
+  if (handler_base == NULL) {
+    // not enough space left for the handler
+    bailout("deopt handler overflow");
+    return -1;
+  }
+
+  int offset = code_offset();
+  AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
+  __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
+  __ delayed()->nop();
+  guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
+  __ end_a_stub();
+
+  return offset;
+}
+
+
+void LIR_Assembler::jobject2reg(jobject o, Register reg) {
+  if (o == NULL) {
+    __ set(NULL_WORD, reg);
+  } else {
+    int oop_index = __ oop_recorder()->find_index(o);
+    assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(o)), "should be real oop");
+    RelocationHolder rspec = oop_Relocation::spec(oop_index);
+    __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
+  }
+}
+
+
+void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
+  // Allocate a new index in table to hold the object once it's been patched
+  int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
+  PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
+
+  AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
+  assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
+  // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
+  // NULL will be dynamically patched later and the patched value may be large.  We must
+  // therefore generate the sethi/add as a placeholders
+  __ patchable_set(addrlit, reg);
+
+  patching_epilog(patch, lir_patch_normal, reg, info);
+}
+
+
+void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
+  __ set_metadata_constant(o, reg);
+}
+
+void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
+  // Allocate a new index in table to hold the klass once it's been patched
+  int index = __ oop_recorder()->allocate_metadata_index(NULL);
+  PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
+  AddressLiteral addrlit(NULL, metadata_Relocation::spec(index));
+  assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
+  // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
+  // NULL will be dynamically patched later and the patched value may be large.  We must
+  // therefore generate the sethi/add as a placeholders
+  __ patchable_set(addrlit, reg);
+
+  patching_epilog(patch, lir_patch_normal, reg, info);
+}
+
+void LIR_Assembler::emit_op3(LIR_Op3* op) {
+  switch (op->code()) {
+    case lir_idiv:
+    case lir_irem:  // Both idiv & irem are handled after the switch (below).
+      break;
+    case lir_fmaf:
+      __ fmadd(FloatRegisterImpl::S,
+               op->in_opr1()->as_float_reg(),
+               op->in_opr2()->as_float_reg(),
+               op->in_opr3()->as_float_reg(),
+               op->result_opr()->as_float_reg());
+      return;
+    case lir_fmad:
+      __ fmadd(FloatRegisterImpl::D,
+               op->in_opr1()->as_double_reg(),
+               op->in_opr2()->as_double_reg(),
+               op->in_opr3()->as_double_reg(),
+               op->result_opr()->as_double_reg());
+      return;
+    default:
+      ShouldNotReachHere();
+      break;
+  }
+
+  // Handle idiv & irem:
+
+  Register Rdividend = op->in_opr1()->as_register();
+  Register Rdivisor  = noreg;
+  Register Rscratch  = op->in_opr3()->as_register();
+  Register Rresult   = op->result_opr()->as_register();
+  int divisor = -1;
+
+  if (op->in_opr2()->is_register()) {
+    Rdivisor = op->in_opr2()->as_register();
+  } else {
+    divisor = op->in_opr2()->as_constant_ptr()->as_jint();
+    assert(Assembler::is_simm13(divisor), "can only handle simm13");
+  }
+
+  assert(Rdividend != Rscratch, "");
+  assert(Rdivisor  != Rscratch, "");
+  assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
+
+  if (Rdivisor == noreg && is_power_of_2(divisor)) {
+    // convert division by a power of two into some shifts and logical operations
+    if (op->code() == lir_idiv) {
+      if (divisor == 2) {
+        __ srl(Rdividend, 31, Rscratch);
+      } else {
+        __ sra(Rdividend, 31, Rscratch);
+        __ and3(Rscratch, divisor - 1, Rscratch);
+      }
+      __ add(Rdividend, Rscratch, Rscratch);
+      __ sra(Rscratch, log2_intptr(divisor), Rresult);
+      return;
+    } else {
+      if (divisor == 2) {
+        __ srl(Rdividend, 31, Rscratch);
+      } else {
+        __ sra(Rdividend, 31, Rscratch);
+        __ and3(Rscratch, divisor - 1,Rscratch);
+      }
+      __ add(Rdividend, Rscratch, Rscratch);
+      __ andn(Rscratch, divisor - 1,Rscratch);
+      __ sub(Rdividend, Rscratch, Rresult);
+      return;
+    }
+  }
+
+  __ sra(Rdividend, 31, Rscratch);
+  __ wry(Rscratch);
+
+  add_debug_info_for_div0_here(op->info());
+
+  if (Rdivisor != noreg) {
+    __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
+  } else {
+    assert(Assembler::is_simm13(divisor), "can only handle simm13");
+    __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
+  }
+
+  Label skip;
+  __ br(Assembler::overflowSet, true, Assembler::pn, skip);
+  __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
+  __ bind(skip);
+
+  if (op->code() == lir_irem) {
+    if (Rdivisor != noreg) {
+      __ smul(Rscratch, Rdivisor, Rscratch);
+    } else {
+      __ smul(Rscratch, divisor, Rscratch);
+    }
+    __ sub(Rdividend, Rscratch, Rresult);
+  }
+}
+
+
+void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
+#ifdef ASSERT
+  assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
+  if (op->block() != NULL)  _branch_target_blocks.append(op->block());
+  if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
+#endif
+  assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
+
+  if (op->cond() == lir_cond_always) {
+    __ br(Assembler::always, false, Assembler::pt, *(op->label()));
+  } else if (op->code() == lir_cond_float_branch) {
+    assert(op->ublock() != NULL, "must have unordered successor");
+    bool is_unordered = (op->ublock() == op->block());
+    Assembler::Condition acond;
+    switch (op->cond()) {
+      case lir_cond_equal:         acond = Assembler::f_equal;    break;
+      case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
+      case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
+      case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
+      case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
+      case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
+      default :                         ShouldNotReachHere();
+    }
+    __ fb( acond, false, Assembler::pn, *(op->label()));
+  } else {
+    assert (op->code() == lir_branch, "just checking");
+
+    Assembler::Condition acond;
+    switch (op->cond()) {
+      case lir_cond_equal:        acond = Assembler::equal;                break;
+      case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
+      case lir_cond_less:         acond = Assembler::less;                 break;
+      case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
+      case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
+      case lir_cond_greater:      acond = Assembler::greater;              break;
+      case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
+      case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
+      default:                         ShouldNotReachHere();
+    };
+
+    // sparc has different condition codes for testing 32-bit
+    // vs. 64-bit values.  We could always test xcc is we could
+    // guarantee that 32-bit loads always sign extended but that isn't
+    // true and since sign extension isn't free, it would impose a
+    // slight cost.
+    if  (op->type() == T_INT) {
+      __ br(acond, false, Assembler::pn, *(op->label()));
+    } else
+      __ brx(acond, false, Assembler::pn, *(op->label()));
+  }
+  // The peephole pass fills the delay slot
+}
+
+
+void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
+  Bytecodes::Code code = op->bytecode();
+  LIR_Opr dst = op->result_opr();
+
+  switch(code) {
+    case Bytecodes::_i2l: {
+      Register rlo  = dst->as_register_lo();
+      Register rhi  = dst->as_register_hi();
+      Register rval = op->in_opr()->as_register();
+      __ sra(rval, 0, rlo);
+      break;
+    }
+    case Bytecodes::_i2d:
+    case Bytecodes::_i2f: {
+      bool is_double = (code == Bytecodes::_i2d);
+      FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
+      FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
+      FloatRegister rsrc = op->in_opr()->as_float_reg();
+      if (rsrc != rdst) {
+        __ fmov(FloatRegisterImpl::S, rsrc, rdst);
+      }
+      __ fitof(w, rdst, rdst);
+      break;
+    }
+    case Bytecodes::_f2i:{
+      FloatRegister rsrc = op->in_opr()->as_float_reg();
+      Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
+      Label L;
+      // result must be 0 if value is NaN; test by comparing value to itself
+      __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
+      __ fb(Assembler::f_unordered, true, Assembler::pn, L);
+      __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
+      __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
+      // move integer result from float register to int register
+      __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
+      __ bind (L);
+      break;
+    }
+    case Bytecodes::_l2i: {
+      Register rlo  = op->in_opr()->as_register_lo();
+      Register rhi  = op->in_opr()->as_register_hi();
+      Register rdst = dst->as_register();
+      __ sra(rlo, 0, rdst);
+      break;
+    }
+    case Bytecodes::_d2f:
+    case Bytecodes::_f2d: {
+      bool is_double = (code == Bytecodes::_f2d);
+      assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
+      LIR_Opr val = op->in_opr();
+      FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
+      FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
+      FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
+      FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
+      __ ftof(vw, dw, rval, rdst);
+      break;
+    }
+    case Bytecodes::_i2s:
+    case Bytecodes::_i2b: {
+      Register rval = op->in_opr()->as_register();
+      Register rdst = dst->as_register();
+      int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
+      __ sll (rval, shift, rdst);
+      __ sra (rdst, shift, rdst);
+      break;
+    }
+    case Bytecodes::_i2c: {
+      Register rval = op->in_opr()->as_register();
+      Register rdst = dst->as_register();
+      int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
+      __ sll (rval, shift, rdst);
+      __ srl (rdst, shift, rdst);
+      break;
+    }
+
+    default: ShouldNotReachHere();
+  }
+}
+
+
+void LIR_Assembler::align_call(LIR_Code) {
+  // do nothing since all instructions are word aligned on sparc
+}
+
+
+void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
+  __ call(op->addr(), rtype);
+  // The peephole pass fills the delay slot, add_call_info is done in
+  // LIR_Assembler::emit_delay.
+}
+
+
+void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
+  __ ic_call(op->addr(), false);
+  // The peephole pass fills the delay slot, add_call_info is done in
+  // LIR_Assembler::emit_delay.
+}
+
+
+void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
+  add_debug_info_for_null_check_here(op->info());
+  __ load_klass(O0, G3_scratch);
+  if (Assembler::is_simm13(op->vtable_offset())) {
+    __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
+  } else {
+    // This will generate 2 instructions
+    __ set(op->vtable_offset(), G5_method);
+    // ld_ptr, set_hi, set
+    __ ld_ptr(G3_scratch, G5_method, G5_method);
+  }
+  __ ld_ptr(G5_method, Method::from_compiled_offset(), G3_scratch);
+  __ callr(G3_scratch, G0);
+  // the peephole pass fills the delay slot
+}
+
+int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
+  int store_offset;
+  if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
+    assert(base != O7, "destroying register");
+    assert(!unaligned, "can't handle this");
+    // for offsets larger than a simm13 we setup the offset in O7
+    __ set(offset, O7);
+    store_offset = store(from_reg, base, O7, type, wide);
+  } else {
+    if (type == T_ARRAY || type == T_OBJECT) {
+      __ verify_oop(from_reg->as_register());
+    }
+    store_offset = code_offset();
+    switch (type) {
+      case T_BOOLEAN: // fall through
+      case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
+      case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
+      case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
+      case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
+      case T_LONG  :
+        if (unaligned || PatchALot) {
+          // Don't use O7 here because it may be equal to 'base' (see LIR_Assembler::reg2mem)
+          assert(G3_scratch != base, "can't handle this");
+          assert(G3_scratch != from_reg->as_register_lo(), "can't handle this");
+          __ srax(from_reg->as_register_lo(), 32, G3_scratch);
+          __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
+          __ stw(G3_scratch,                 base, offset + hi_word_offset_in_bytes);
+        } else {
+          __ stx(from_reg->as_register_lo(), base, offset);
+        }
+        break;
+      case T_ADDRESS:
+      case T_METADATA:
+        __ st_ptr(from_reg->as_register(), base, offset);
+        break;
+      case T_ARRAY : // fall through
+      case T_OBJECT:
+        {
+          if (UseCompressedOops && !wide) {
+            __ encode_heap_oop(from_reg->as_register(), G3_scratch);
+            store_offset = code_offset();
+            __ stw(G3_scratch, base, offset);
+          } else {
+            __ st_ptr(from_reg->as_register(), base, offset);
+          }
+          break;
+        }
+
+      case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
+      case T_DOUBLE:
+        {
+          FloatRegister reg = from_reg->as_double_reg();
+          // split unaligned stores
+          if (unaligned || PatchALot) {
+            assert(Assembler::is_simm13(offset + 4), "must be");
+            __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
+            __ stf(FloatRegisterImpl::S, reg,              base, offset);
+          } else {
+            __ stf(FloatRegisterImpl::D, reg, base, offset);
+          }
+          break;
+        }
+      default      : ShouldNotReachHere();
+    }
+  }
+  return store_offset;
+}
+
+
+int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
+  if (type == T_ARRAY || type == T_OBJECT) {
+    __ verify_oop(from_reg->as_register());
+  }
+  int store_offset = code_offset();
+  switch (type) {
+    case T_BOOLEAN: // fall through
+    case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
+    case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
+    case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
+    case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
+    case T_LONG  :
+      __ stx(from_reg->as_register_lo(), base, disp);
+      break;
+    case T_ADDRESS:
+      __ st_ptr(from_reg->as_register(), base, disp);
+      break;
+    case T_ARRAY : // fall through
+    case T_OBJECT:
+      {
+        if (UseCompressedOops && !wide) {
+          __ encode_heap_oop(from_reg->as_register(), G3_scratch);
+          store_offset = code_offset();
+          __ stw(G3_scratch, base, disp);
+        } else {
+          __ st_ptr(from_reg->as_register(), base, disp);
+        }
+        break;
+      }
+    case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
+    case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
+    default      : ShouldNotReachHere();
+  }
+  return store_offset;
+}
+
+
+int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
+  int load_offset;
+  if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
+    assert(base != O7, "destroying register");
+    assert(!unaligned, "can't handle this");
+    // for offsets larger than a simm13 we setup the offset in O7
+    __ set(offset, O7);
+    load_offset = load(base, O7, to_reg, type, wide);
+  } else {
+    load_offset = code_offset();
+    switch(type) {
+      case T_BOOLEAN: // fall through
+      case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
+      case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
+      case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
+      case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
+      case T_LONG  :
+        if (!unaligned && !PatchALot) {
+          __ ldx(base, offset, to_reg->as_register_lo());
+        } else {
+          assert(base != to_reg->as_register_lo(), "can't handle this");
+          assert(O7 != to_reg->as_register_lo(), "can't handle this");
+          __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
+          __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
+          __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
+          __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
+        }
+        break;
+      case T_METADATA:  __ ld_ptr(base, offset, to_reg->as_register()); break;
+      case T_ADDRESS:
+        if (offset == oopDesc::klass_offset_in_bytes() && UseCompressedClassPointers) {
+          __ lduw(base, offset, to_reg->as_register());
+          __ decode_klass_not_null(to_reg->as_register());
+        } else
+        {
+          __ ld_ptr(base, offset, to_reg->as_register());
+        }
+        break;
+      case T_ARRAY : // fall through
+      case T_OBJECT:
+        {
+          if (UseCompressedOops && !wide) {
+            __ lduw(base, offset, to_reg->as_register());
+            __ decode_heap_oop(to_reg->as_register());
+          } else {
+            __ ld_ptr(base, offset, to_reg->as_register());
+          }
+          break;
+        }
+      case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
+      case T_DOUBLE:
+        {
+          FloatRegister reg = to_reg->as_double_reg();
+          // split unaligned loads
+          if (unaligned || PatchALot) {
+            __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
+            __ ldf(FloatRegisterImpl::S, base, offset,     reg);
+          } else {
+            __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
+          }
+          break;
+        }
+      default      : ShouldNotReachHere();
+    }
+    if (type == T_ARRAY || type == T_OBJECT) {
+      __ verify_oop(to_reg->as_register());
+    }
+  }
+  return load_offset;
+}
+
+
+int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
+  int load_offset = code_offset();
+  switch(type) {
+    case T_BOOLEAN: // fall through
+    case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
+    case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
+    case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
+    case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
+    case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
+    case T_ARRAY : // fall through
+    case T_OBJECT:
+      {
+          if (UseCompressedOops && !wide) {
+            __ lduw(base, disp, to_reg->as_register());
+            __ decode_heap_oop(to_reg->as_register());
+          } else {
+            __ ld_ptr(base, disp, to_reg->as_register());
+          }
+          break;
+      }
+    case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
+    case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
+    case T_LONG  :
+      __ ldx(base, disp, to_reg->as_register_lo());
+      break;
+    default      : ShouldNotReachHere();
+  }
+  if (type == T_ARRAY || type == T_OBJECT) {
+    __ verify_oop(to_reg->as_register());
+  }
+  return load_offset;
+}
+
+void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
+  LIR_Const* c = src->as_constant_ptr();
+  switch (c->type()) {
+    case T_INT:
+    case T_FLOAT: {
+      Register src_reg = O7;
+      int value = c->as_jint_bits();
+      if (value == 0) {
+        src_reg = G0;
+      } else {
+        __ set(value, O7);
+      }
+      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
+      __ stw(src_reg, addr.base(), addr.disp());
+      break;
+    }
+    case T_ADDRESS: {
+      Register src_reg = O7;
+      int value = c->as_jint_bits();
+      if (value == 0) {
+        src_reg = G0;
+      } else {
+        __ set(value, O7);
+      }
+      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
+      __ st_ptr(src_reg, addr.base(), addr.disp());
+      break;
+    }
+    case T_OBJECT: {
+      Register src_reg = O7;
+      jobject2reg(c->as_jobject(), src_reg);
+      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
+      __ st_ptr(src_reg, addr.base(), addr.disp());
+      break;
+    }
+    case T_LONG:
+    case T_DOUBLE: {
+      Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
+
+      Register tmp = O7;
+      int value_lo = c->as_jint_lo_bits();
+      if (value_lo == 0) {
+        tmp = G0;
+      } else {
+        __ set(value_lo, O7);
+      }
+      __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
+      int value_hi = c->as_jint_hi_bits();
+      if (value_hi == 0) {
+        tmp = G0;
+      } else {
+        __ set(value_hi, O7);
+      }
+      __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
+      break;
+    }
+    default:
+      Unimplemented();
+  }
+}
+
+
+void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
+  LIR_Const* c = src->as_constant_ptr();
+  LIR_Address* addr     = dest->as_address_ptr();
+  Register base = addr->base()->as_pointer_register();
+  int offset = -1;
+
+  switch (c->type()) {
+    case T_INT:
+    case T_FLOAT:
+    case T_ADDRESS: {
+      LIR_Opr tmp = FrameMap::O7_opr;
+      int value = c->as_jint_bits();
+      if (value == 0) {
+        tmp = FrameMap::G0_opr;
+      } else if (Assembler::is_simm13(value)) {
+        __ set(value, O7);
+      }
+      if (addr->index()->is_valid()) {
+        assert(addr->disp() == 0, "must be zero");
+        offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
+      } else {
+        assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
+        offset = store(tmp, base, addr->disp(), type, wide, false);
+      }
+      break;
+    }
+    case T_LONG:
+    case T_DOUBLE: {
+      assert(!addr->index()->is_valid(), "can't handle reg reg address here");
+      assert(Assembler::is_simm13(addr->disp()) &&
+             Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
+
+      LIR_Opr tmp = FrameMap::O7_opr;
+      int value_lo = c->as_jint_lo_bits();
+      if (value_lo == 0) {
+        tmp = FrameMap::G0_opr;
+      } else {
+        __ set(value_lo, O7);
+      }
+      offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
+      int value_hi = c->as_jint_hi_bits();
+      if (value_hi == 0) {
+        tmp = FrameMap::G0_opr;
+      } else {
+        __ set(value_hi, O7);
+      }
+      store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
+      break;
+    }
+    case T_OBJECT: {
+      jobject obj = c->as_jobject();
+      LIR_Opr tmp;
+      if (obj == NULL) {
+        tmp = FrameMap::G0_opr;
+      } else {
+        tmp = FrameMap::O7_opr;
+        jobject2reg(c->as_jobject(), O7);
+      }
+      // handle either reg+reg or reg+disp address
+      if (addr->index()->is_valid()) {
+        assert(addr->disp() == 0, "must be zero");
+        offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
+      } else {
+        assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
+        offset = store(tmp, base, addr->disp(), type, wide, false);
+      }
+
+      break;
+    }
+    default:
+      Unimplemented();
+  }
+  if (info != NULL) {
+    assert(offset != -1, "offset should've been set");
+    add_debug_info_for_null_check(offset, info);
+  }
+}
+
+
+void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
+  LIR_Const* c = src->as_constant_ptr();
+  LIR_Opr to_reg = dest;
+
+  switch (c->type()) {
+    case T_INT:
+    case T_ADDRESS:
+      {
+        jint con = c->as_jint();
+        if (to_reg->is_single_cpu()) {
+          assert(patch_code == lir_patch_none, "no patching handled here");
+          __ set(con, to_reg->as_register());
+        } else {
+          ShouldNotReachHere();
+          assert(to_reg->is_single_fpu(), "wrong register kind");
+
+          __ set(con, O7);
+          Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
+          __ st(O7, temp_slot);
+          __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
+        }
+      }
+      break;
+
+    case T_LONG:
+      {
+        jlong con = c->as_jlong();
+
+        if (to_reg->is_double_cpu()) {
+          __ set(con,  to_reg->as_register_lo());
+        } else if (to_reg->is_single_cpu()) {
+          __ set(con, to_reg->as_register());
+        } else {
+          ShouldNotReachHere();
+          assert(to_reg->is_double_fpu(), "wrong register kind");
+          Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
+          Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
+          __ set(low(con),  O7);
+          __ st(O7, temp_slot_lo);
+          __ set(high(con), O7);
+          __ st(O7, temp_slot_hi);
+          __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
+        }
+      }
+      break;
+
+    case T_OBJECT:
+      {
+        if (patch_code == lir_patch_none) {
+          jobject2reg(c->as_jobject(), to_reg->as_register());
+        } else {
+          jobject2reg_with_patching(to_reg->as_register(), info);
+        }
+      }
+      break;
+
+    case T_METADATA:
+      {
+        if (patch_code == lir_patch_none) {
+          metadata2reg(c->as_metadata(), to_reg->as_register());
+        } else {
+          klass2reg_with_patching(to_reg->as_register(), info);
+        }
+      }
+      break;
+
+    case T_FLOAT:
+      {
+        address const_addr = __ float_constant(c->as_jfloat());
+        if (const_addr == NULL) {
+          bailout("const section overflow");
+          break;
+        }
+        RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
+        AddressLiteral const_addrlit(const_addr, rspec);
+        if (to_reg->is_single_fpu()) {
+          __ patchable_sethi(const_addrlit, O7);
+          __ relocate(rspec);
+          __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
+
+        } else {
+          assert(to_reg->is_single_cpu(), "Must be a cpu register.");
+
+          __ set(const_addrlit, O7);
+          __ ld(O7, 0, to_reg->as_register());
+        }
+      }
+      break;
+
+    case T_DOUBLE:
+      {
+        address const_addr = __ double_constant(c->as_jdouble());
+        if (const_addr == NULL) {
+          bailout("const section overflow");
+          break;
+        }
+        RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
+
+        if (to_reg->is_double_fpu()) {
+          AddressLiteral const_addrlit(const_addr, rspec);
+          __ patchable_sethi(const_addrlit, O7);
+          __ relocate(rspec);
+          __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
+        } else {
+          assert(to_reg->is_double_cpu(), "Must be a long register.");
+          __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
+        }
+
+      }
+      break;
+
+    default:
+      ShouldNotReachHere();
+  }
+}
+
+Address LIR_Assembler::as_Address(LIR_Address* addr) {
+  Register reg = addr->base()->as_pointer_register();
+  LIR_Opr index = addr->index();
+  if (index->is_illegal()) {
+    return Address(reg, addr->disp());
+  } else {
+    assert (addr->disp() == 0, "unsupported address mode");
+    return Address(reg, index->as_pointer_register());
+  }
+}
+
+
+void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
+  switch (type) {
+    case T_INT:
+    case T_FLOAT: {
+      Register tmp = O7;
+      Address from = frame_map()->address_for_slot(src->single_stack_ix());
+      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
+      __ lduw(from.base(), from.disp(), tmp);
+      __ stw(tmp, to.base(), to.disp());
+      break;
+    }
+    case T_OBJECT: {
+      Register tmp = O7;
+      Address from = frame_map()->address_for_slot(src->single_stack_ix());
+      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
+      __ ld_ptr(from.base(), from.disp(), tmp);
+      __ st_ptr(tmp, to.base(), to.disp());
+      break;
+    }
+    case T_LONG:
+    case T_DOUBLE: {
+      Register tmp = O7;
+      Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
+      Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
+      __ lduw(from.base(), from.disp(), tmp);
+      __ stw(tmp, to.base(), to.disp());
+      __ lduw(from.base(), from.disp() + 4, tmp);
+      __ stw(tmp, to.base(), to.disp() + 4);
+      break;
+    }
+
+    default:
+      ShouldNotReachHere();
+  }
+}
+
+
+Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
+  Address base = as_Address(addr);
+  return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
+}
+
+
+Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
+  Address base = as_Address(addr);
+  return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
+}
+
+
+void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
+                            LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
+
+  assert(type != T_METADATA, "load of metadata ptr not supported");
+  LIR_Address* addr = src_opr->as_address_ptr();
+  LIR_Opr to_reg = dest;
+
+  Register src = addr->base()->as_pointer_register();
+  Register disp_reg = noreg;
+  int disp_value = addr->disp();
+  bool needs_patching = (patch_code != lir_patch_none);
+
+  if (addr->base()->type() == T_OBJECT) {
+    __ verify_oop(src);
+  }
+
+  PatchingStub* patch = NULL;
+  if (needs_patching) {
+    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
+    assert(!to_reg->is_double_cpu() ||
+           patch_code == lir_patch_none ||
+           patch_code == lir_patch_normal, "patching doesn't match register");
+  }
+
+  if (addr->index()->is_illegal()) {
+    if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
+      if (needs_patching) {
+        __ patchable_set(0, O7);
+      } else {
+        __ set(disp_value, O7);
+      }
+      disp_reg = O7;
+    }
+  } else if (unaligned || PatchALot) {
+    __ add(src, addr->index()->as_pointer_register(), O7);
+    src = O7;
+  } else {
+    disp_reg = addr->index()->as_pointer_register();
+    assert(disp_value == 0, "can't handle 3 operand addresses");
+  }
+
+  // remember the offset of the load.  The patching_epilog must be done
+  // before the call to add_debug_info, otherwise the PcDescs don't get
+  // entered in increasing order.
+  int offset = code_offset();
+
+  assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
+  if (disp_reg == noreg) {
+    offset = load(src, disp_value, to_reg, type, wide, unaligned);
+  } else {
+    assert(!unaligned, "can't handle this");
+    offset = load(src, disp_reg, to_reg, type, wide);
+  }
+
+  if (patch != NULL) {
+    patching_epilog(patch, patch_code, src, info);
+  }
+  if (info != NULL) add_debug_info_for_null_check(offset, info);
+}
+
+
+void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
+  Address addr;
+  if (src->is_single_word()) {
+    addr = frame_map()->address_for_slot(src->single_stack_ix());
+  } else if (src->is_double_word())  {
+    addr = frame_map()->address_for_double_slot(src->double_stack_ix());
+  }
+
+  bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
+  load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
+}
+
+
+void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
+  Address addr;
+  if (dest->is_single_word()) {
+    addr = frame_map()->address_for_slot(dest->single_stack_ix());
+  } else if (dest->is_double_word())  {
+    addr = frame_map()->address_for_slot(dest->double_stack_ix());
+  }
+  bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
+  store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
+}
+
+
+void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
+  if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
+    if (from_reg->is_double_fpu()) {
+      // double to double moves
+      assert(to_reg->is_double_fpu(), "should match");
+      __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
+    } else {
+      // float to float moves
+      assert(to_reg->is_single_fpu(), "should match");
+      __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
+    }
+  } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
+    if (from_reg->is_double_cpu()) {
+      __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
+    } else if (to_reg->is_double_cpu()) {
+      // int to int moves
+      __ mov(from_reg->as_register(), to_reg->as_register_lo());
+    } else {
+      // int to int moves
+      __ mov(from_reg->as_register(), to_reg->as_register());
+    }
+  } else {
+    ShouldNotReachHere();
+  }
+  if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
+    __ verify_oop(to_reg->as_register());
+  }
+}
+
+
+void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
+                            LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
+                            bool wide, bool unaligned) {
+  assert(type != T_METADATA, "store of metadata ptr not supported");
+  LIR_Address* addr = dest->as_address_ptr();
+
+  Register src = addr->base()->as_pointer_register();
+  Register disp_reg = noreg;
+  int disp_value = addr->disp();
+  bool needs_patching = (patch_code != lir_patch_none);
+
+  if (addr->base()->is_oop_register()) {
+    __ verify_oop(src);
+  }
+
+  PatchingStub* patch = NULL;
+  if (needs_patching) {
+    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
+    assert(!from_reg->is_double_cpu() ||
+           patch_code == lir_patch_none ||
+           patch_code == lir_patch_normal, "patching doesn't match register");
+  }
+
+  if (addr->index()->is_illegal()) {
+    if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
+      if (needs_patching) {
+        __ patchable_set(0, O7);
+      } else {
+        __ set(disp_value, O7);
+      }
+      disp_reg = O7;
+    }
+  } else if (unaligned || PatchALot) {
+    __ add(src, addr->index()->as_pointer_register(), O7);
+    src = O7;
+  } else {
+    disp_reg = addr->index()->as_pointer_register();
+    assert(disp_value == 0, "can't handle 3 operand addresses");
+  }
+
+  // remember the offset of the store.  The patching_epilog must be done
+  // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
+  // entered in increasing order.
+  int offset;
+
+  assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
+  if (disp_reg == noreg) {
+    offset = store(from_reg, src, disp_value, type, wide, unaligned);
+  } else {
+    assert(!unaligned, "can't handle this");
+    offset = store(from_reg, src, disp_reg, type, wide);
+  }
+
+  if (patch != NULL) {
+    patching_epilog(patch, patch_code, src, info);
+  }
+
+  if (info != NULL) add_debug_info_for_null_check(offset, info);
+}
+
+
+void LIR_Assembler::return_op(LIR_Opr result) {
+  if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
+    __ reserved_stack_check();
+  }
+  __ set((intptr_t)os::get_polling_page(), L0);
+  __ relocate(relocInfo::poll_return_type);
+  __ ld_ptr(L0, 0, G0);
+  __ ret();
+  __ delayed()->restore();
+}
+
+
+int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
+  __ set((intptr_t)os::get_polling_page(), tmp->as_register());
+  if (info != NULL) {
+    add_debug_info_for_branch(info);
+  }
+  int offset = __ offset();
+  __ relocate(relocInfo::poll_type);
+  __ ld_ptr(tmp->as_register(), 0, G0);
+  return offset;
+}
+
+
+void LIR_Assembler::emit_static_call_stub() {
+  address call_pc = __ pc();
+  address stub = __ start_a_stub(call_stub_size());
+  if (stub == NULL) {
+    bailout("static call stub overflow");
+    return;
+  }
+
+  int start = __ offset();
+  __ relocate(static_stub_Relocation::spec(call_pc));
+
+  __ set_metadata(NULL, G5);
+  // must be set to -1 at code generation time
+  AddressLiteral addrlit(-1);
+  __ jump_to(addrlit, G3);
+  __ delayed()->nop();
+
+  assert(__ offset() - start <= call_stub_size(), "stub too big");
+  __ end_a_stub();
+}
+
+
+void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
+  if (opr1->is_single_fpu()) {
+    __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
+  } else if (opr1->is_double_fpu()) {
+    __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
+  } else if (opr1->is_single_cpu()) {
+    if (opr2->is_constant()) {
+      switch (opr2->as_constant_ptr()->type()) {
+        case T_INT:
+          { jint con = opr2->as_constant_ptr()->as_jint();
+            if (Assembler::is_simm13(con)) {
+              __ cmp(opr1->as_register(), con);
+            } else {
+              __ set(con, O7);
+              __ cmp(opr1->as_register(), O7);
+            }
+          }
+          break;
+
+        case T_OBJECT:
+          // there are only equal/notequal comparisions on objects
+          { jobject con = opr2->as_constant_ptr()->as_jobject();
+            if (con == NULL) {
+              __ cmp(opr1->as_register(), 0);
+            } else {
+              jobject2reg(con, O7);
+              __ cmp(opr1->as_register(), O7);
+            }
+          }
+          break;
+
+        default:
+          ShouldNotReachHere();
+          break;
+      }
+    } else {
+      if (opr2->is_address()) {
+        LIR_Address * addr = opr2->as_address_ptr();
+        BasicType type = addr->type();
+        if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
+        else                    __ ld(as_Address(addr), O7);
+        __ cmp(opr1->as_register(), O7);
+      } else {
+        __ cmp(opr1->as_register(), opr2->as_register());
+      }
+    }
+  } else if (opr1->is_double_cpu()) {
+    Register xlo = opr1->as_register_lo();
+    Register xhi = opr1->as_register_hi();
+    if (opr2->is_constant() && opr2->as_jlong() == 0) {
+      assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
+      __ orcc(xhi, G0, G0);
+    } else if (opr2->is_register()) {
+      Register ylo = opr2->as_register_lo();
+      Register yhi = opr2->as_register_hi();
+      __ cmp(xlo, ylo);
+    } else {
+      ShouldNotReachHere();
+    }
+  } else if (opr1->is_address()) {
+    LIR_Address * addr = opr1->as_address_ptr();
+    BasicType type = addr->type();
+    assert (opr2->is_constant(), "Checking");
+    if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
+    else                    __ ld(as_Address(addr), O7);
+    __ cmp(O7, opr2->as_constant_ptr()->as_jint());
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+
+void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
+  if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
+    bool is_unordered_less = (code == lir_ucmp_fd2i);
+    if (left->is_single_fpu()) {
+      __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
+    } else if (left->is_double_fpu()) {
+      __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
+    } else {
+      ShouldNotReachHere();
+    }
+  } else if (code == lir_cmp_l2i) {
+    __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+
+void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
+  Assembler::Condition acond;
+  switch (condition) {
+    case lir_cond_equal:        acond = Assembler::equal;        break;
+    case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
+    case lir_cond_less:         acond = Assembler::less;         break;
+    case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
+    case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
+    case lir_cond_greater:      acond = Assembler::greater;      break;
+    case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
+    case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
+    default:                         ShouldNotReachHere();
+  };
+
+  if (opr1->is_constant() && opr1->type() == T_INT) {
+    Register dest = result->as_register();
+    // load up first part of constant before branch
+    // and do the rest in the delay slot.
+    if (!Assembler::is_simm13(opr1->as_jint())) {
+      __ sethi(opr1->as_jint(), dest);
+    }
+  } else if (opr1->is_constant()) {
+    const2reg(opr1, result, lir_patch_none, NULL);
+  } else if (opr1->is_register()) {
+    reg2reg(opr1, result);
+  } else if (opr1->is_stack()) {
+    stack2reg(opr1, result, result->type());
+  } else {
+    ShouldNotReachHere();
+  }
+  Label skip;
+    if  (type == T_INT) {
+      __ br(acond, false, Assembler::pt, skip);
+    } else {
+      __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
+    }
+  if (opr1->is_constant() && opr1->type() == T_INT) {
+    Register dest = result->as_register();
+    if (Assembler::is_simm13(opr1->as_jint())) {
+      __ delayed()->or3(G0, opr1->as_jint(), dest);
+    } else {
+      // the sethi has been done above, so just put in the low 10 bits
+      __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
+    }
+  } else {
+    // can't do anything useful in the delay slot
+    __ delayed()->nop();
+  }
+  if (opr2->is_constant()) {
+    const2reg(opr2, result, lir_patch_none, NULL);
+  } else if (opr2->is_register()) {
+    reg2reg(opr2, result);
+  } else if (opr2->is_stack()) {
+    stack2reg(opr2, result, result->type());
+  } else {
+    ShouldNotReachHere();
+  }
+  __ bind(skip);
+}
+
+
+void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
+  assert(info == NULL, "unused on this code path");
+  assert(left->is_register(), "wrong items state");
+  assert(dest->is_register(), "wrong items state");
+
+  if (right->is_register()) {
+    if (dest->is_float_kind()) {
+
+      FloatRegister lreg, rreg, res;
+      FloatRegisterImpl::Width w;
+      if (right->is_single_fpu()) {
+        w = FloatRegisterImpl::S;
+        lreg = left->as_float_reg();
+        rreg = right->as_float_reg();
+        res  = dest->as_float_reg();
+      } else {
+        w = FloatRegisterImpl::D;
+        lreg = left->as_double_reg();
+        rreg = right->as_double_reg();
+        res  = dest->as_double_reg();
+      }
+
+      switch (code) {
+        case lir_add: __ fadd(w, lreg, rreg, res); break;
+        case lir_sub: __ fsub(w, lreg, rreg, res); break;
+        case lir_mul: // fall through
+        case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
+        case lir_div: // fall through
+        case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
+        default: ShouldNotReachHere();
+      }
+
+    } else if (dest->is_double_cpu()) {
+      Register dst_lo = dest->as_register_lo();
+      Register op1_lo = left->as_pointer_register();
+      Register op2_lo = right->as_pointer_register();
+
+      switch (code) {
+        case lir_add:
+          __ add(op1_lo, op2_lo, dst_lo);
+          break;
+
+        case lir_sub:
+          __ sub(op1_lo, op2_lo, dst_lo);
+          break;
+
+        default: ShouldNotReachHere();
+      }
+    } else {
+      assert (right->is_single_cpu(), "Just Checking");
+
+      Register lreg = left->as_register();
+      Register res  = dest->as_register();
+      Register rreg = right->as_register();
+      switch (code) {
+        case lir_add:  __ add  (lreg, rreg, res); break;
+        case lir_sub:  __ sub  (lreg, rreg, res); break;
+        case lir_mul:  __ mulx (lreg, rreg, res); break;
+        default: ShouldNotReachHere();
+      }
+    }
+  } else {
+    assert (right->is_constant(), "must be constant");
+
+    if (dest->is_single_cpu()) {
+      Register lreg = left->as_register();
+      Register res  = dest->as_register();
+      int    simm13 = right->as_constant_ptr()->as_jint();
+
+      switch (code) {
+        case lir_add:  __ add  (lreg, simm13, res); break;
+        case lir_sub:  __ sub  (lreg, simm13, res); break;
+        case lir_mul:  __ mulx (lreg, simm13, res); break;
+        default: ShouldNotReachHere();
+      }
+    } else {
+      Register lreg = left->as_pointer_register();
+      Register res  = dest->as_register_lo();
+      long con = right->as_constant_ptr()->as_jlong();
+      assert(Assembler::is_simm13(con), "must be simm13");
+
+      switch (code) {
+        case lir_add:  __ add  (lreg, (int)con, res); break;
+        case lir_sub:  __ sub  (lreg, (int)con, res); break;
+        case lir_mul:  __ mulx (lreg, (int)con, res); break;
+        default: ShouldNotReachHere();
+      }
+    }
+  }
+}
+
+
+void LIR_Assembler::fpop() {
+  // do nothing
+}
+
+
+void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
+  switch (code) {
+    case lir_tan: {
+      assert(thread->is_valid(), "preserve the thread object for performance reasons");
+      assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
+      break;
+    }
+    case lir_sqrt: {
+      assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
+      FloatRegister src_reg = value->as_double_reg();
+      FloatRegister dst_reg = dest->as_double_reg();
+      __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
+      break;
+    }
+    case lir_abs: {
+      assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
+      FloatRegister src_reg = value->as_double_reg();
+      FloatRegister dst_reg = dest->as_double_reg();
+      __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
+      break;
+    }
+    default: {
+      ShouldNotReachHere();
+      break;
+    }
+  }
+}
+
+
+void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
+  if (right->is_constant()) {
+    if (dest->is_single_cpu()) {
+      int simm13 = right->as_constant_ptr()->as_jint();
+      switch (code) {
+        case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
+        case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
+        case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
+        default: ShouldNotReachHere();
+      }
+    } else {
+      long c = right->as_constant_ptr()->as_jlong();
+      assert(c == (int)c && Assembler::is_simm13(c), "out of range");
+      int simm13 = (int)c;
+      switch (code) {
+        case lir_logic_and:
+          __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
+          break;
+
+        case lir_logic_or:
+          __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
+          break;
+
+        case lir_logic_xor:
+          __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
+          break;
+
+        default: ShouldNotReachHere();
+      }
+    }
+  } else {
+    assert(right->is_register(), "right should be in register");
+
+    if (dest->is_single_cpu()) {
+      switch (code) {
+        case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
+        case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
+        case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
+        default: ShouldNotReachHere();
+      }
+    } else {
+      Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
+                                                                        left->as_register_lo();
+      Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
+                                                                          right->as_register_lo();
+
+      switch (code) {
+        case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
+        case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
+        case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
+        default: ShouldNotReachHere();
+      }
+    }
+  }
+}
+
+
+int LIR_Assembler::shift_amount(BasicType t) {
+  int elem_size = type2aelembytes(t);
+  switch (elem_size) {
+    case 1 : return 0;
+    case 2 : return 1;
+    case 4 : return 2;
+    case 8 : return 3;
+  }
+  ShouldNotReachHere();
+  return -1;
+}
+
+
+void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
+  assert(exceptionOop->as_register() == Oexception, "should match");
+  assert(exceptionPC->as_register() == Oissuing_pc, "should match");
+
+  info->add_register_oop(exceptionOop);
+
+  // reuse the debug info from the safepoint poll for the throw op itself
+  address pc_for_athrow  = __ pc();
+  int pc_for_athrow_offset = __ offset();
+  RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
+  __ set(pc_for_athrow, Oissuing_pc, rspec);
+  add_call_info(pc_for_athrow_offset, info); // for exception handler
+
+  __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
+  __ delayed()->nop();
+}
+
+
+void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
+  assert(exceptionOop->as_register() == Oexception, "should match");
+
+  __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
+  __ delayed()->nop();
+}
+
+void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
+  Register src = op->src()->as_register();
+  Register dst = op->dst()->as_register();
+  Register src_pos = op->src_pos()->as_register();
+  Register dst_pos = op->dst_pos()->as_register();
+  Register length  = op->length()->as_register();
+  Register tmp = op->tmp()->as_register();
+  Register tmp2 = O7;
+
+  int flags = op->flags();
+  ciArrayKlass* default_type = op->expected_type();
+  BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
+  if (basic_type == T_ARRAY) basic_type = T_OBJECT;
+
+  // higher 32bits must be null
+  __ sra(dst_pos, 0, dst_pos);
+  __ sra(src_pos, 0, src_pos);
+  __ sra(length, 0, length);
+
+  // set up the arraycopy stub information
+  ArrayCopyStub* stub = op->stub();
+
+  // always do stub if no type information is available.  it's ok if
+  // the known type isn't loaded since the code sanity checks
+  // in debug mode and the type isn't required when we know the exact type
+  // also check that the type is an array type.
+  if (op->expected_type() == NULL) {
+    __ mov(src,     O0);
+    __ mov(src_pos, O1);
+    __ mov(dst,     O2);
+    __ mov(dst_pos, O3);
+    __ mov(length,  O4);
+    address copyfunc_addr = StubRoutines::generic_arraycopy();
+
+    if (copyfunc_addr == NULL) { // Use C version if stub was not generated
+      __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
+    } else {
+#ifndef PRODUCT
+      if (PrintC1Statistics) {
+        address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
+        __ inc_counter(counter, G1, G3);
+      }
+#endif
+      __ call_VM_leaf(tmp, copyfunc_addr);
+    }
+
+    if (copyfunc_addr != NULL) {
+      __ xor3(O0, -1, tmp);
+      __ sub(length, tmp, length);
+      __ add(src_pos, tmp, src_pos);
+      __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
+      __ delayed()->add(dst_pos, tmp, dst_pos);
+    } else {
+      __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
+      __ delayed()->nop();
+    }
+    __ bind(*stub->continuation());
+    return;
+  }
+
+  assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
+
+  // make sure src and dst are non-null and load array length
+  if (flags & LIR_OpArrayCopy::src_null_check) {
+    __ tst(src);
+    __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
+    __ delayed()->nop();
+  }
+
+  if (flags & LIR_OpArrayCopy::dst_null_check) {
+    __ tst(dst);
+    __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
+    __ delayed()->nop();
+  }
+
+  // If the compiler was not able to prove that exact type of the source or the destination
+  // of the arraycopy is an array type, check at runtime if the source or the destination is
+  // an instance type.
+  if (flags & LIR_OpArrayCopy::type_check) {
+    if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
+      __ load_klass(dst, tmp);
+      __ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
+      __ cmp(tmp2, Klass::_lh_neutral_value);
+      __ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
+      __ delayed()->nop();
+    }
+
+    if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
+      __ load_klass(src, tmp);
+      __ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
+      __ cmp(tmp2, Klass::_lh_neutral_value);
+      __ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
+      __ delayed()->nop();
+    }
+  }
+
+  if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
+    // test src_pos register
+    __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
+    __ delayed()->nop();
+  }
+
+  if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
+    // test dst_pos register
+    __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
+    __ delayed()->nop();
+  }
+
+  if (flags & LIR_OpArrayCopy::length_positive_check) {
+    // make sure length isn't negative
+    __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
+    __ delayed()->nop();
+  }
+
+  if (flags & LIR_OpArrayCopy::src_range_check) {
+    __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
+    __ add(length, src_pos, tmp);
+    __ cmp(tmp2, tmp);
+    __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
+    __ delayed()->nop();
+  }
+
+  if (flags & LIR_OpArrayCopy::dst_range_check) {
+    __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
+    __ add(length, dst_pos, tmp);
+    __ cmp(tmp2, tmp);
+    __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
+    __ delayed()->nop();
+  }
+
+  int shift = shift_amount(basic_type);
+
+  if (flags & LIR_OpArrayCopy::type_check) {
+    // We don't know the array types are compatible
+    if (basic_type != T_OBJECT) {
+      // Simple test for basic type arrays
+      if (UseCompressedClassPointers) {
+        // We don't need decode because we just need to compare
+        __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
+        __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
+        __ cmp(tmp, tmp2);
+        __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
+      } else {
+        __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
+        __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
+        __ cmp(tmp, tmp2);
+        __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
+      }
+      __ delayed()->nop();
+    } else {
+      // For object arrays, if src is a sub class of dst then we can
+      // safely do the copy.
+      address copyfunc_addr = StubRoutines::checkcast_arraycopy();
+
+      Label cont, slow;
+      assert_different_registers(tmp, tmp2, G3, G1);
+
+      __ load_klass(src, G3);
+      __ load_klass(dst, G1);
+
+      __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
+
+      __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
+      __ delayed()->nop();
+
+      __ cmp(G3, 0);
+      if (copyfunc_addr != NULL) { // use stub if available
+        // src is not a sub class of dst so we have to do a
+        // per-element check.
+        __ br(Assembler::notEqual, false, Assembler::pt, cont);
+        __ delayed()->nop();
+
+        __ bind(slow);
+
+        int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
+        if ((flags & mask) != mask) {
+          // Check that at least both of them object arrays.
+          assert(flags & mask, "one of the two should be known to be an object array");
+
+          if (!(flags & LIR_OpArrayCopy::src_objarray)) {
+            __ load_klass(src, tmp);
+          } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
+            __ load_klass(dst, tmp);
+          }
+          int lh_offset = in_bytes(Klass::layout_helper_offset());
+
+          __ lduw(tmp, lh_offset, tmp2);
+
+          jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
+          __ set(objArray_lh, tmp);
+          __ cmp(tmp, tmp2);
+          __ br(Assembler::notEqual, false, Assembler::pt,  *stub->entry());
+          __ delayed()->nop();
+        }
+
+        Register src_ptr = O0;
+        Register dst_ptr = O1;
+        Register len     = O2;
+        Register chk_off = O3;
+        Register super_k = O4;
+
+        __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
+        if (shift == 0) {
+          __ add(src_ptr, src_pos, src_ptr);
+        } else {
+          __ sll(src_pos, shift, tmp);
+          __ add(src_ptr, tmp, src_ptr);
+        }
+
+        __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
+        if (shift == 0) {
+          __ add(dst_ptr, dst_pos, dst_ptr);
+        } else {
+          __ sll(dst_pos, shift, tmp);
+          __ add(dst_ptr, tmp, dst_ptr);
+        }
+        __ mov(length, len);
+        __ load_klass(dst, tmp);
+
+        int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
+        __ ld_ptr(tmp, ek_offset, super_k);
+
+        int sco_offset = in_bytes(Klass::super_check_offset_offset());
+        __ lduw(super_k, sco_offset, chk_off);
+
+        __ call_VM_leaf(tmp, copyfunc_addr);
+
+#ifndef PRODUCT
+        if (PrintC1Statistics) {
+          Label failed;
+          __ br_notnull_short(O0, Assembler::pn, failed);
+          __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
+          __ bind(failed);
+        }
+#endif
+
+        __ br_null(O0, false, Assembler::pt,  *stub->continuation());
+        __ delayed()->xor3(O0, -1, tmp);
+
+#ifndef PRODUCT
+        if (PrintC1Statistics) {
+          __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
+        }
+#endif
+
+        __ sub(length, tmp, length);
+        __ add(src_pos, tmp, src_pos);
+        __ br(Assembler::always, false, Assembler::pt, *stub->entry());
+        __ delayed()->add(dst_pos, tmp, dst_pos);
+
+        __ bind(cont);
+      } else {
+        __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
+        __ delayed()->nop();
+        __ bind(cont);
+      }
+    }
+  }
+
+#ifdef ASSERT
+  if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
+    // Sanity check the known type with the incoming class.  For the
+    // primitive case the types must match exactly with src.klass and
+    // dst.klass each exactly matching the default type.  For the
+    // object array case, if no type check is needed then either the
+    // dst type is exactly the expected type and the src type is a
+    // subtype which we can't check or src is the same array as dst
+    // but not necessarily exactly of type default_type.
+    Label known_ok, halt;
+    metadata2reg(op->expected_type()->constant_encoding(), tmp);
+    if (UseCompressedClassPointers) {
+      // tmp holds the default type. It currently comes uncompressed after the
+      // load of a constant, so encode it.
+      __ encode_klass_not_null(tmp);
+      // load the raw value of the dst klass, since we will be comparing
+      // uncompressed values directly.
+      __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
+      if (basic_type != T_OBJECT) {
+        __ cmp(tmp, tmp2);
+        __ br(Assembler::notEqual, false, Assembler::pn, halt);
+        // load the raw value of the src klass.
+        __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
+        __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
+      } else {
+        __ cmp(tmp, tmp2);
+        __ br(Assembler::equal, false, Assembler::pn, known_ok);
+        __ delayed()->cmp(src, dst);
+        __ brx(Assembler::equal, false, Assembler::pn, known_ok);
+        __ delayed()->nop();
+      }
+    } else {
+      __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
+      if (basic_type != T_OBJECT) {
+        __ cmp(tmp, tmp2);
+        __ brx(Assembler::notEqual, false, Assembler::pn, halt);
+        __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
+        __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
+      } else {
+        __ cmp(tmp, tmp2);
+        __ brx(Assembler::equal, false, Assembler::pn, known_ok);
+        __ delayed()->cmp(src, dst);
+        __ brx(Assembler::equal, false, Assembler::pn, known_ok);
+        __ delayed()->nop();
+      }
+    }
+    __ bind(halt);
+    __ stop("incorrect type information in arraycopy");
+    __ bind(known_ok);
+  }
+#endif
+
+#ifndef PRODUCT
+  if (PrintC1Statistics) {
+    address counter = Runtime1::arraycopy_count_address(basic_type);
+    __ inc_counter(counter, G1, G3);
+  }
+#endif
+
+  Register src_ptr = O0;
+  Register dst_ptr = O1;
+  Register len     = O2;
+
+  __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
+  if (shift == 0) {
+    __ add(src_ptr, src_pos, src_ptr);
+  } else {
+    __ sll(src_pos, shift, tmp);
+    __ add(src_ptr, tmp, src_ptr);
+  }
+
+  __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
+  if (shift == 0) {
+    __ add(dst_ptr, dst_pos, dst_ptr);
+  } else {
+    __ sll(dst_pos, shift, tmp);
+    __ add(dst_ptr, tmp, dst_ptr);
+  }
+
+  bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
+  bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
+  const char *name;
+  address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
+
+  // arraycopy stubs takes a length in number of elements, so don't scale it.
+  __ mov(length, len);
+  __ call_VM_leaf(tmp, entry);
+
+  __ bind(*stub->continuation());
+}
+
+
+void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
+  if (dest->is_single_cpu()) {
+    if (left->type() == T_OBJECT) {
+      switch (code) {
+        case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
+        case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
+        case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
+        default: ShouldNotReachHere();
+      }
+    } else
+      switch (code) {
+        case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
+        case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
+        case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
+        default: ShouldNotReachHere();
+      }
+  } else {
+    switch (code) {
+      case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
+      case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
+      case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
+      default: ShouldNotReachHere();
+    }
+  }
+}
+
+
+void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
+  if (left->type() == T_OBJECT) {
+    count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
+    Register l = left->as_register();
+    Register d = dest->as_register_lo();
+    switch (code) {
+      case lir_shl:  __ sllx  (l, count, d); break;
+      case lir_shr:  __ srax  (l, count, d); break;
+      case lir_ushr: __ srlx  (l, count, d); break;
+      default: ShouldNotReachHere();
+    }
+    return;
+  }
+
+  if (dest->is_single_cpu()) {
+    count = count & 0x1F; // Java spec
+    switch (code) {
+      case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
+      case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
+      case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
+      default: ShouldNotReachHere();
+    }
+  } else if (dest->is_double_cpu()) {
+    count = count & 63; // Java spec
+    switch (code) {
+      case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
+      case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
+      case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
+      default: ShouldNotReachHere();
+    }
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+
+void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
+  assert(op->tmp1()->as_register()  == G1 &&
+         op->tmp2()->as_register()  == G3 &&
+         op->tmp3()->as_register()  == G4 &&
+         op->obj()->as_register()   == O0 &&
+         op->klass()->as_register() == G5, "must be");
+  if (op->init_check()) {
+    __ ldub(op->klass()->as_register(),
+          in_bytes(InstanceKlass::init_state_offset()),
+          op->tmp1()->as_register());
+    add_debug_info_for_null_check_here(op->stub()->info());
+    __ cmp(op->tmp1()->as_register(), InstanceKlass::fully_initialized);
+    __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
+    __ delayed()->nop();
+  }
+  __ allocate_object(op->obj()->as_register(),
+                     op->tmp1()->as_register(),
+                     op->tmp2()->as_register(),
+                     op->tmp3()->as_register(),
+                     op->header_size(),
+                     op->object_size(),
+                     op->klass()->as_register(),
+                     *op->stub()->entry());
+  __ bind(*op->stub()->continuation());
+  __ verify_oop(op->obj()->as_register());
+}
+
+
+void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
+  assert(op->tmp1()->as_register()  == G1 &&
+         op->tmp2()->as_register()  == G3 &&
+         op->tmp3()->as_register()  == G4 &&
+         op->tmp4()->as_register()  == O1 &&
+         op->klass()->as_register() == G5, "must be");
+
+  __ signx(op->len()->as_register());
+  if (UseSlowPath ||
+      (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
+      (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
+    __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
+    __ delayed()->nop();
+  } else {
+    __ allocate_array(op->obj()->as_register(),
+                      op->len()->as_register(),
+                      op->tmp1()->as_register(),
+                      op->tmp2()->as_register(),
+                      op->tmp3()->as_register(),
+                      arrayOopDesc::header_size(op->type()),
+                      type2aelembytes(op->type()),
+                      op->klass()->as_register(),
+                      *op->stub()->entry());
+  }
+  __ bind(*op->stub()->continuation());
+}
+
+
+void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
+                                        ciMethodData *md, ciProfileData *data,
+                                        Register recv, Register tmp1, Label* update_done) {
+  uint i;
+  for (i = 0; i < VirtualCallData::row_limit(); i++) {
+    Label next_test;
+    // See if the receiver is receiver[n].
+    Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
+                          mdo_offset_bias);
+    __ ld_ptr(receiver_addr, tmp1);
+    __ verify_klass_ptr(tmp1);
+    __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
+    Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
+                      mdo_offset_bias);
+    __ ld_ptr(data_addr, tmp1);
+    __ add(tmp1, DataLayout::counter_increment, tmp1);
+    __ st_ptr(tmp1, data_addr);
+    __ ba(*update_done);
+    __ delayed()->nop();
+    __ bind(next_test);
+  }
+
+  // Didn't find receiver; find next empty slot and fill it in
+  for (i = 0; i < VirtualCallData::row_limit(); i++) {
+    Label next_test;
+    Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
+                      mdo_offset_bias);
+    __ ld_ptr(recv_addr, tmp1);
+    __ br_notnull_short(tmp1, Assembler::pt, next_test);
+    __ st_ptr(recv, recv_addr);
+    __ set(DataLayout::counter_increment, tmp1);
+    __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
+              mdo_offset_bias);
+    __ ba(*update_done);
+    __ delayed()->nop();
+    __ bind(next_test);
+  }
+}
+
+
+void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
+                                    ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
+  md = method->method_data_or_null();
+  assert(md != NULL, "Sanity");
+  data = md->bci_to_data(bci);
+  assert(data != NULL,       "need data for checkcast");
+  assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
+  if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
+    // The offset is large so bias the mdo by the base of the slot so
+    // that the ld can use simm13s to reference the slots of the data
+    mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
+  }
+}
+
+void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
+  // we always need a stub for the failure case.
+  CodeStub* stub = op->stub();
+  Register obj = op->object()->as_register();
+  Register k_RInfo = op->tmp1()->as_register();
+  Register klass_RInfo = op->tmp2()->as_register();
+  Register dst = op->result_opr()->as_register();
+  Register Rtmp1 = op->tmp3()->as_register();
+  ciKlass* k = op->klass();
+
+
+  if (obj == k_RInfo) {
+    k_RInfo = klass_RInfo;
+    klass_RInfo = obj;
+  }
+
+  ciMethodData* md;
+  ciProfileData* data;
+  int mdo_offset_bias = 0;
+  if (op->should_profile()) {
+    ciMethod* method = op->profiled_method();
+    assert(method != NULL, "Should have method");
+    setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
+
+    Label not_null;
+    __ br_notnull_short(obj, Assembler::pn, not_null);
+    Register mdo      = k_RInfo;
+    Register data_val = Rtmp1;
+    metadata2reg(md->constant_encoding(), mdo);
+    if (mdo_offset_bias > 0) {
+      __ set(mdo_offset_bias, data_val);
+      __ add(mdo, data_val, mdo);
+    }
+    Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
+    __ ldub(flags_addr, data_val);
+    __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
+    __ stb(data_val, flags_addr);
+    __ ba(*obj_is_null);
+    __ delayed()->nop();
+    __ bind(not_null);
+  } else {
+    __ br_null(obj, false, Assembler::pn, *obj_is_null);
+    __ delayed()->nop();
+  }
+
+  Label profile_cast_failure, profile_cast_success;
+  Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
+  Label *success_target = op->should_profile() ? &profile_cast_success : success;
+
+  // patching may screw with our temporaries on sparc,
+  // so let's do it before loading the class
+  if (k->is_loaded()) {
+    metadata2reg(k->constant_encoding(), k_RInfo);
+  } else {
+    klass2reg_with_patching(k_RInfo, op->info_for_patch());
+  }
+  assert(obj != k_RInfo, "must be different");
+
+  // get object class
+  // not a safepoint as obj null check happens earlier
+  __ load_klass(obj, klass_RInfo);
+  if (op->fast_check()) {
+    assert_different_registers(klass_RInfo, k_RInfo);
+    __ cmp(k_RInfo, klass_RInfo);
+    __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
+    __ delayed()->nop();
+  } else {
+    bool need_slow_path = true;
+    if (k->is_loaded()) {
+      if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
+        need_slow_path = false;
+      // perform the fast part of the checking logic
+      __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
+                                       (need_slow_path ? success_target : NULL),
+                                       failure_target, NULL,
+                                       RegisterOrConstant(k->super_check_offset()));
+    } else {
+      // perform the fast part of the checking logic
+      __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
+                                       failure_target, NULL);
+    }
+    if (need_slow_path) {
+      // call out-of-line instance of __ check_klass_subtype_slow_path(...):
+      assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
+      __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
+      __ delayed()->nop();
+      __ cmp(G3, 0);
+      __ br(Assembler::equal, false, Assembler::pn, *failure_target);
+      __ delayed()->nop();
+      // Fall through to success case
+    }
+  }
+
+  if (op->should_profile()) {
+    Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
+    assert_different_registers(obj, mdo, recv, tmp1);
+    __ bind(profile_cast_success);
+    metadata2reg(md->constant_encoding(), mdo);
+    if (mdo_offset_bias > 0) {
+      __ set(mdo_offset_bias, tmp1);
+      __ add(mdo, tmp1, mdo);
+    }
+    __ load_klass(obj, recv);
+    type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
+    // Jump over the failure case
+    __ ba(*success);
+    __ delayed()->nop();
+    // Cast failure case
+    __ bind(profile_cast_failure);
+    metadata2reg(md->constant_encoding(), mdo);
+    if (mdo_offset_bias > 0) {
+      __ set(mdo_offset_bias, tmp1);
+      __ add(mdo, tmp1, mdo);
+    }
+    Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
+    __ ld_ptr(data_addr, tmp1);
+    __ sub(tmp1, DataLayout::counter_increment, tmp1);
+    __ st_ptr(tmp1, data_addr);
+    __ ba(*failure);
+    __ delayed()->nop();
+  }
+  __ ba(*success);
+  __ delayed()->nop();
+}
+
+void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
+  LIR_Code code = op->code();
+  if (code == lir_store_check) {
+    Register value = op->object()->as_register();
+    Register array = op->array()->as_register();
+    Register k_RInfo = op->tmp1()->as_register();
+    Register klass_RInfo = op->tmp2()->as_register();
+    Register Rtmp1 = op->tmp3()->as_register();
+
+    __ verify_oop(value);
+    CodeStub* stub = op->stub();
+    // check if it needs to be profiled
+    ciMethodData* md;
+    ciProfileData* data;
+    int mdo_offset_bias = 0;
+    if (op->should_profile()) {
+      ciMethod* method = op->profiled_method();
+      assert(method != NULL, "Should have method");
+      setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
+    }
+    Label profile_cast_success, profile_cast_failure, done;
+    Label *success_target = op->should_profile() ? &profile_cast_success : &done;
+    Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
+
+    if (op->should_profile()) {
+      Label not_null;
+      __ br_notnull_short(value, Assembler::pn, not_null);
+      Register mdo      = k_RInfo;
+      Register data_val = Rtmp1;
+      metadata2reg(md->constant_encoding(), mdo);
+      if (mdo_offset_bias > 0) {
+        __ set(mdo_offset_bias, data_val);
+        __ add(mdo, data_val, mdo);
+      }
+      Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
+      __ ldub(flags_addr, data_val);
+      __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
+      __ stb(data_val, flags_addr);
+      __ ba_short(done);
+      __ bind(not_null);
+    } else {
+      __ br_null_short(value, Assembler::pn, done);
+    }
+    add_debug_info_for_null_check_here(op->info_for_exception());
+    __ load_klass(array, k_RInfo);
+    __ load_klass(value, klass_RInfo);
+
+    // get instance klass
+    __ ld_ptr(Address(k_RInfo, ObjArrayKlass::element_klass_offset()), k_RInfo);
+    // perform the fast part of the checking logic
+    __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
+
+    // call out-of-line instance of __ check_klass_subtype_slow_path(...):
+    assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
+    __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
+    __ delayed()->nop();
+    __ cmp(G3, 0);
+    __ br(Assembler::equal, false, Assembler::pn, *failure_target);
+    __ delayed()->nop();
+    // fall through to the success case
+
+    if (op->should_profile()) {
+      Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
+      assert_different_registers(value, mdo, recv, tmp1);
+      __ bind(profile_cast_success);
+      metadata2reg(md->constant_encoding(), mdo);
+      if (mdo_offset_bias > 0) {
+        __ set(mdo_offset_bias, tmp1);
+        __ add(mdo, tmp1, mdo);
+      }
+      __ load_klass(value, recv);
+      type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
+      __ ba_short(done);
+      // Cast failure case
+      __ bind(profile_cast_failure);
+      metadata2reg(md->constant_encoding(), mdo);
+      if (mdo_offset_bias > 0) {
+        __ set(mdo_offset_bias, tmp1);
+        __ add(mdo, tmp1, mdo);
+      }
+      Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
+      __ ld_ptr(data_addr, tmp1);
+      __ sub(tmp1, DataLayout::counter_increment, tmp1);
+      __ st_ptr(tmp1, data_addr);
+      __ ba(*stub->entry());
+      __ delayed()->nop();
+    }
+    __ bind(done);
+  } else if (code == lir_checkcast) {
+    Register obj = op->object()->as_register();
+    Register dst = op->result_opr()->as_register();
+    Label success;
+    emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
+    __ bind(success);
+    __ mov(obj, dst);
+  } else if (code == lir_instanceof) {
+    Register obj = op->object()->as_register();
+    Register dst = op->result_opr()->as_register();
+    Label success, failure, done;
+    emit_typecheck_helper(op, &success, &failure, &failure);
+    __ bind(failure);
+    __ set(0, dst);
+    __ ba_short(done);
+    __ bind(success);
+    __ set(1, dst);
+    __ bind(done);
+  } else {
+    ShouldNotReachHere();
+  }
+
+}
+
+
+void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
+  if (op->code() == lir_cas_long) {
+    assert(VM_Version::supports_cx8(), "wrong machine");
+    Register addr = op->addr()->as_pointer_register();
+    Register cmp_value_lo = op->cmp_value()->as_register_lo();
+    Register cmp_value_hi = op->cmp_value()->as_register_hi();
+    Register new_value_lo = op->new_value()->as_register_lo();
+    Register new_value_hi = op->new_value()->as_register_hi();
+    Register t1 = op->tmp1()->as_register();
+    Register t2 = op->tmp2()->as_register();
+    __ mov(cmp_value_lo, t1);
+    __ mov(new_value_lo, t2);
+    // perform the compare and swap operation
+    __ casx(addr, t1, t2);
+    // generate condition code - if the swap succeeded, t2 ("new value" reg) was
+    // overwritten with the original value in "addr" and will be equal to t1.
+    __ cmp(t1, t2);
+  } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
+    Register addr = op->addr()->as_pointer_register();
+    Register cmp_value = op->cmp_value()->as_register();
+    Register new_value = op->new_value()->as_register();
+    Register t1 = op->tmp1()->as_register();
+    Register t2 = op->tmp2()->as_register();
+    __ mov(cmp_value, t1);
+    __ mov(new_value, t2);
+    if (op->code() == lir_cas_obj) {
+      if (UseCompressedOops) {
+        __ encode_heap_oop(t1);
+        __ encode_heap_oop(t2);
+        __ cas(addr, t1, t2);
+      } else {
+        __ cas_ptr(addr, t1, t2);
+      }
+    } else {
+      __ cas(addr, t1, t2);
+    }
+    __ cmp(t1, t2);
+  } else {
+    Unimplemented();
+  }
+}
+
+void LIR_Assembler::set_24bit_FPU() {
+  Unimplemented();
+}
+
+
+void LIR_Assembler::reset_FPU() {
+  Unimplemented();
+}
+
+
+void LIR_Assembler::breakpoint() {
+  __ breakpoint_trap();
+}
+
+
+void LIR_Assembler::push(LIR_Opr opr) {
+  Unimplemented();
+}
+
+
+void LIR_Assembler::pop(LIR_Opr opr) {
+  Unimplemented();
+}
+
+
+void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
+  Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
+  Register dst = dst_opr->as_register();
+  Register reg = mon_addr.base();
+  int offset = mon_addr.disp();
+  // compute pointer to BasicLock
+  if (mon_addr.is_simm13()) {
+    __ add(reg, offset, dst);
+  } else {
+    __ set(offset, dst);
+    __ add(dst, reg, dst);
+  }
+}
+
+void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
+  assert(op->crc()->is_single_cpu(),  "crc must be register");
+  assert(op->val()->is_single_cpu(),  "byte value must be register");
+  assert(op->result_opr()->is_single_cpu(), "result must be register");
+  Register crc = op->crc()->as_register();
+  Register val = op->val()->as_register();
+  Register table = op->result_opr()->as_register();
+  Register res   = op->result_opr()->as_register();
+
+  assert_different_registers(val, crc, table);
+
+  __ set(ExternalAddress(StubRoutines::crc_table_addr()), table);
+  __ not1(crc);
+  __ clruwu(crc);
+  __ update_byte_crc32(crc, val, table);
+  __ not1(crc);
+
+  __ mov(crc, res);
+}
+
+void LIR_Assembler::emit_lock(LIR_OpLock* op) {
+  Register obj = op->obj_opr()->as_register();
+  Register hdr = op->hdr_opr()->as_register();
+  Register lock = op->lock_opr()->as_register();
+
+  // obj may not be an oop
+  if (op->code() == lir_lock) {
+    MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
+    if (UseFastLocking) {
+      assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
+      // add debug info for NullPointerException only if one is possible
+      if (op->info() != NULL) {
+        add_debug_info_for_null_check_here(op->info());
+      }
+      __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
+    } else {
+      // always do slow locking
+      // note: the slow locking code could be inlined here, however if we use
+      //       slow locking, speed doesn't matter anyway and this solution is
+      //       simpler and requires less duplicated code - additionally, the
+      //       slow locking code is the same in either case which simplifies
+      //       debugging
+      __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
+      __ delayed()->nop();
+    }
+  } else {
+    assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
+    if (UseFastLocking) {
+      assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
+      __ unlock_object(hdr, obj, lock, *op->stub()->entry());
+    } else {
+      // always do slow unlocking
+      // note: the slow unlocking code could be inlined here, however if we use
+      //       slow unlocking, speed doesn't matter anyway and this solution is
+      //       simpler and requires less duplicated code - additionally, the
+      //       slow unlocking code is the same in either case which simplifies
+      //       debugging
+      __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
+      __ delayed()->nop();
+    }
+  }
+  __ bind(*op->stub()->continuation());
+}
+
+
+void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
+  ciMethod* method = op->profiled_method();
+  int bci          = op->profiled_bci();
+  ciMethod* callee = op->profiled_callee();
+
+  // Update counter for all call types
+  ciMethodData* md = method->method_data_or_null();
+  assert(md != NULL, "Sanity");
+  ciProfileData* data = md->bci_to_data(bci);
+  assert(data->is_CounterData(), "need CounterData for calls");
+  assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
+  Register mdo  = op->mdo()->as_register();
+  assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
+  Register tmp1 = op->tmp1()->as_register_lo();
+  metadata2reg(md->constant_encoding(), mdo);
+  int mdo_offset_bias = 0;
+  if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
+                            data->size_in_bytes())) {
+    // The offset is large so bias the mdo by the base of the slot so
+    // that the ld can use simm13s to reference the slots of the data
+    mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
+    __ set(mdo_offset_bias, O7);
+    __ add(mdo, O7, mdo);
+  }
+
+  Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
+  Bytecodes::Code bc = method->java_code_at_bci(bci);
+  const bool callee_is_static = callee->is_loaded() && callee->is_static();
+  // Perform additional virtual call profiling for invokevirtual and
+  // invokeinterface bytecodes
+  if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
+      !callee_is_static &&  // required for optimized MH invokes
+      C1ProfileVirtualCalls) {
+    assert(op->recv()->is_single_cpu(), "recv must be allocated");
+    Register recv = op->recv()->as_register();
+    assert_different_registers(mdo, tmp1, recv);
+    assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
+    ciKlass* known_klass = op->known_holder();
+    if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
+      // We know the type that will be seen at this call site; we can
+      // statically update the MethodData* rather than needing to do
+      // dynamic tests on the receiver type
+
+      // NOTE: we should probably put a lock around this search to
+      // avoid collisions by concurrent compilations
+      ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
+      uint i;
+      for (i = 0; i < VirtualCallData::row_limit(); i++) {
+        ciKlass* receiver = vc_data->receiver(i);
+        if (known_klass->equals(receiver)) {
+          Address data_addr(mdo, md->byte_offset_of_slot(data,
+                                                         VirtualCallData::receiver_count_offset(i)) -
+                            mdo_offset_bias);
+          __ ld_ptr(data_addr, tmp1);
+          __ add(tmp1, DataLayout::counter_increment, tmp1);
+          __ st_ptr(tmp1, data_addr);
+          return;
+        }
+      }
+
+      // Receiver type not found in profile data; select an empty slot
+
+      // Note that this is less efficient than it should be because it
+      // always does a write to the receiver part of the
+      // VirtualCallData rather than just the first time
+      for (i = 0; i < VirtualCallData::row_limit(); i++) {
+        ciKlass* receiver = vc_data->receiver(i);
+        if (receiver == NULL) {
+          Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
+                            mdo_offset_bias);
+          metadata2reg(known_klass->constant_encoding(), tmp1);
+          __ st_ptr(tmp1, recv_addr);
+          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
+                            mdo_offset_bias);
+          __ ld_ptr(data_addr, tmp1);
+          __ add(tmp1, DataLayout::counter_increment, tmp1);
+          __ st_ptr(tmp1, data_addr);
+          return;
+        }
+      }
+    } else {
+      __ load_klass(recv, recv);
+      Label update_done;
+      type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
+      // Receiver did not match any saved receiver and there is no empty row for it.
+      // Increment total counter to indicate polymorphic case.
+      __ ld_ptr(counter_addr, tmp1);
+      __ add(tmp1, DataLayout::counter_increment, tmp1);
+      __ st_ptr(tmp1, counter_addr);
+
+      __ bind(update_done);
+    }
+  } else {
+    // Static call
+    __ ld_ptr(counter_addr, tmp1);
+    __ add(tmp1, DataLayout::counter_increment, tmp1);
+    __ st_ptr(tmp1, counter_addr);
+  }
+}
+
+void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
+  Register obj = op->obj()->as_register();
+  Register tmp1 = op->tmp()->as_pointer_register();
+  Register tmp2 = G1;
+  Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
+  ciKlass* exact_klass = op->exact_klass();
+  intptr_t current_klass = op->current_klass();
+  bool not_null = op->not_null();
+  bool no_conflict = op->no_conflict();
+
+  Label update, next, none;
+
+  bool do_null = !not_null;
+  bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
+  bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
+
+  assert(do_null || do_update, "why are we here?");
+  assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
+
+  __ verify_oop(obj);
+
+  if (tmp1 != obj) {
+    __ mov(obj, tmp1);
+  }
+  if (do_null) {
+    __ br_notnull_short(tmp1, Assembler::pt, update);
+    if (!TypeEntries::was_null_seen(current_klass)) {
+      __ ld_ptr(mdo_addr, tmp1);
+      __ or3(tmp1, TypeEntries::null_seen, tmp1);
+      __ st_ptr(tmp1, mdo_addr);
+    }
+    if (do_update) {
+      __ ba(next);
+      __ delayed()->nop();
+    }
+#ifdef ASSERT
+  } else {
+    __ br_notnull_short(tmp1, Assembler::pt, update);
+    __ stop("unexpect null obj");
+#endif
+  }
+
+  __ bind(update);
+
+  if (do_update) {
+#ifdef ASSERT
+    if (exact_klass != NULL) {
+      Label ok;
+      __ load_klass(tmp1, tmp1);
+      metadata2reg(exact_klass->constant_encoding(), tmp2);
+      __ cmp_and_br_short(tmp1, tmp2, Assembler::equal, Assembler::pt, ok);
+      __ stop("exact klass and actual klass differ");
+      __ bind(ok);
+    }
+#endif
+
+    Label do_update;
+    __ ld_ptr(mdo_addr, tmp2);
+
+    if (!no_conflict) {
+      if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
+        if (exact_klass != NULL) {
+          metadata2reg(exact_klass->constant_encoding(), tmp1);
+        } else {
+          __ load_klass(tmp1, tmp1);
+        }
+
+        __ xor3(tmp1, tmp2, tmp1);
+        __ btst(TypeEntries::type_klass_mask, tmp1);
+        // klass seen before, nothing to do. The unknown bit may have been
+        // set already but no need to check.
+        __ brx(Assembler::zero, false, Assembler::pt, next);
+        __ delayed()->
+
+           btst(TypeEntries::type_unknown, tmp1);
+        // already unknown. Nothing to do anymore.
+        __ brx(Assembler::notZero, false, Assembler::pt, next);
+
+        if (TypeEntries::is_type_none(current_klass)) {
+          __ delayed()->btst(TypeEntries::type_mask, tmp2);
+          __ brx(Assembler::zero, true, Assembler::pt, do_update);
+          // first time here. Set profile type.
+          __ delayed()->or3(tmp2, tmp1, tmp2);
+        } else {
+          __ delayed()->nop();
+        }
+      } else {
+        assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
+               ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
+
+        __ btst(TypeEntries::type_unknown, tmp2);
+        // already unknown. Nothing to do anymore.
+        __ brx(Assembler::notZero, false, Assembler::pt, next);
+        __ delayed()->nop();
+      }
+
+      // different than before. Cannot keep accurate profile.
+      __ or3(tmp2, TypeEntries::type_unknown, tmp2);
+    } else {
+      // There's a single possible klass at this profile point
+      assert(exact_klass != NULL, "should be");
+      if (TypeEntries::is_type_none(current_klass)) {
+        metadata2reg(exact_klass->constant_encoding(), tmp1);
+        __ xor3(tmp1, tmp2, tmp1);
+        __ btst(TypeEntries::type_klass_mask, tmp1);
+        __ brx(Assembler::zero, false, Assembler::pt, next);
+#ifdef ASSERT
+
+        {
+          Label ok;
+          __ delayed()->btst(TypeEntries::type_mask, tmp2);
+          __ brx(Assembler::zero, true, Assembler::pt, ok);
+          __ delayed()->nop();
+
+          __ stop("unexpected profiling mismatch");
+          __ bind(ok);
+        }
+        // first time here. Set profile type.
+        __ or3(tmp2, tmp1, tmp2);
+#else
+        // first time here. Set profile type.
+        __ delayed()->or3(tmp2, tmp1, tmp2);
+#endif
+
+      } else {
+        assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
+               ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
+
+        // already unknown. Nothing to do anymore.
+        __ btst(TypeEntries::type_unknown, tmp2);
+        __ brx(Assembler::notZero, false, Assembler::pt, next);
+        __ delayed()->or3(tmp2, TypeEntries::type_unknown, tmp2);
+      }
+    }
+
+    __ bind(do_update);
+    __ st_ptr(tmp2, mdo_addr);
+
+    __ bind(next);
+  }
+}
+
+void LIR_Assembler::align_backward_branch_target() {
+  __ align(OptoLoopAlignment);
+}
+
+
+void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
+  // make sure we are expecting a delay
+  // this has the side effect of clearing the delay state
+  // so we can use _masm instead of _masm->delayed() to do the
+  // code generation.
+  __ delayed();
+
+  // make sure we only emit one instruction
+  int offset = code_offset();
+  op->delay_op()->emit_code(this);
+#ifdef ASSERT
+  if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
+    op->delay_op()->print();
+  }
+  assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
+         "only one instruction can go in a delay slot");
+#endif
+
+  // we may also be emitting the call info for the instruction
+  // which we are the delay slot of.
+  CodeEmitInfo* call_info = op->call_info();
+  if (call_info) {
+    add_call_info(code_offset(), call_info);
+  }
+
+  if (VerifyStackAtCalls) {
+    _masm->sub(FP, SP, O7);
+    _masm->cmp(O7, initial_frame_size_in_bytes());
+    _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
+  }
+}
+
+
+void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
+  assert(left->is_register(), "can only handle registers");
+
+  if (left->is_single_cpu()) {
+    __ neg(left->as_register(), dest->as_register());
+  } else if (left->is_single_fpu()) {
+    __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
+  } else if (left->is_double_fpu()) {
+    __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
+  } else {
+    assert (left->is_double_cpu(), "Must be a long");
+    Register Rlow = left->as_register_lo();
+    Register Rhi = left->as_register_hi();
+    __ sub(G0, Rlow, dest->as_register_lo());
+  }
+}
+
+
+void LIR_Assembler::fxch(int i) {
+  Unimplemented();
+}
+
+void LIR_Assembler::fld(int i) {
+  Unimplemented();
+}
+
+void LIR_Assembler::ffree(int i) {
+  Unimplemented();
+}
+
+void LIR_Assembler::rt_call(LIR_Opr result, address dest,
+                            const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
+
+  // if tmp is invalid, then the function being called doesn't destroy the thread
+  if (tmp->is_valid()) {
+    __ save_thread(tmp->as_pointer_register());
+  }
+  __ call(dest, relocInfo::runtime_call_type);
+  __ delayed()->nop();
+  if (info != NULL) {
+    add_call_info_here(info);
+  }
+  if (tmp->is_valid()) {
+    __ restore_thread(tmp->as_pointer_register());
+  }
+
+#ifdef ASSERT
+  __ verify_thread();
+#endif // ASSERT
+}
+
+
+void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
+  ShouldNotReachHere();
+
+  NEEDS_CLEANUP;
+  if (type == T_LONG) {
+    LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
+
+    // (extended to allow indexed as well as constant displaced for JSR-166)
+    Register idx = noreg; // contains either constant offset or index
+
+    int disp = mem_addr->disp();
+    if (mem_addr->index() == LIR_OprFact::illegalOpr) {
+      if (!Assembler::is_simm13(disp)) {
+        idx = O7;
+        __ set(disp, idx);
+      }
+    } else {
+      assert(disp == 0, "not both indexed and disp");
+      idx = mem_addr->index()->as_register();
+    }
+
+    int null_check_offset = -1;
+
+    Register base = mem_addr->base()->as_register();
+    if (src->is_register() && dest->is_address()) {
+      // G4 is high half, G5 is low half
+      // clear the top bits of G5, and scale up G4
+      __ srl (src->as_register_lo(),  0, G5);
+      __ sllx(src->as_register_hi(), 32, G4);
+      // combine the two halves into the 64 bits of G4
+      __ or3(G4, G5, G4);
+      null_check_offset = __ offset();
+      if (idx == noreg) {
+        __ stx(G4, base, disp);
+      } else {
+        __ stx(G4, base, idx);
+      }
+    } else if (src->is_address() && dest->is_register()) {
+      null_check_offset = __ offset();
+      if (idx == noreg) {
+        __ ldx(base, disp, G5);
+      } else {
+        __ ldx(base, idx, G5);
+      }
+      __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
+      __ mov (G5, dest->as_register_lo());     // copy low half into lo
+    } else {
+      Unimplemented();
+    }
+    if (info != NULL) {
+      add_debug_info_for_null_check(null_check_offset, info);
+    }
+
+  } else {
+    // use normal move for all other volatiles since they don't need
+    // special handling to remain atomic.
+    move_op(src, dest, type, lir_patch_none, info, false, false, false);
+  }
+}
+
+void LIR_Assembler::membar() {
+  // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
+  __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
+}
+
+void LIR_Assembler::membar_acquire() {
+  // no-op on TSO
+}
+
+void LIR_Assembler::membar_release() {
+  // no-op on TSO
+}
+
+void LIR_Assembler::membar_loadload() {
+  // no-op
+  //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
+}
+
+void LIR_Assembler::membar_storestore() {
+  // no-op
+  //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
+}
+
+void LIR_Assembler::membar_loadstore() {
+  // no-op
+  //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
+}
+
+void LIR_Assembler::membar_storeload() {
+  __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
+}
+
+void LIR_Assembler::on_spin_wait() {
+  Unimplemented();
+}
+
+// Pack two sequential registers containing 32 bit values
+// into a single 64 bit register.
+// src and src->successor() are packed into dst
+// src and dst may be the same register.
+// Note: src is destroyed
+void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
+  Register rs = src->as_register();
+  Register rd = dst->as_register_lo();
+  __ sllx(rs, 32, rs);
+  __ srl(rs->successor(), 0, rs->successor());
+  __ or3(rs, rs->successor(), rd);
+}
+
+// Unpack a 64 bit value in a register into
+// two sequential registers.
+// src is unpacked into dst and dst->successor()
+void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
+  Register rs = src->as_register_lo();
+  Register rd = dst->as_register_hi();
+  assert_different_registers(rs, rd, rd->successor());
+  __ srlx(rs, 32, rd);
+  __ srl (rs,  0, rd->successor());
+}
+
+void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
+  const LIR_Address* addr = addr_opr->as_address_ptr();
+  assert(addr->scale() == LIR_Address::times_1, "can't handle complex addresses yet");
+  const Register dest_reg = dest->as_pointer_register();
+  const Register base_reg = addr->base()->as_pointer_register();
+
+  if (Assembler::is_simm13(addr->disp())) {
+    if (addr->index()->is_valid()) {
+      const Register index_reg = addr->index()->as_pointer_register();
+      assert(index_reg != G3_scratch, "invariant");
+      __ add(base_reg, addr->disp(), G3_scratch);
+      __ add(index_reg, G3_scratch, dest_reg);
+    } else {
+      __ add(base_reg, addr->disp(), dest_reg);
+    }
+  } else {
+    __ set(addr->disp(), G3_scratch);
+    if (addr->index()->is_valid()) {
+      const Register index_reg = addr->index()->as_pointer_register();
+      assert(index_reg != G3_scratch, "invariant");
+      __ add(index_reg, G3_scratch, G3_scratch);
+    }
+    __ add(base_reg, G3_scratch, dest_reg);
+  }
+}
+
+
+void LIR_Assembler::get_thread(LIR_Opr result_reg) {
+  assert(result_reg->is_register(), "check");
+  __ mov(G2_thread, result_reg->as_register());
+}
+
+#ifdef ASSERT
+// emit run-time assertion
+void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
+  assert(op->code() == lir_assert, "must be");
+
+  if (op->in_opr1()->is_valid()) {
+    assert(op->in_opr2()->is_valid(), "both operands must be valid");
+    comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
+  } else {
+    assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
+    assert(op->condition() == lir_cond_always, "no other conditions allowed");
+  }
+
+  Label ok;
+  if (op->condition() != lir_cond_always) {
+    Assembler::Condition acond;
+    switch (op->condition()) {
+      case lir_cond_equal:        acond = Assembler::equal;                break;
+      case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
+      case lir_cond_less:         acond = Assembler::less;                 break;
+      case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
+      case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
+      case lir_cond_greater:      acond = Assembler::greater;              break;
+      case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
+      case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
+      default:                         ShouldNotReachHere();
+    };
+    __ br(acond, false, Assembler::pt, ok);
+    __ delayed()->nop();
+  }
+  if (op->halt()) {
+    const char* str = __ code_string(op->msg());
+    __ stop(str);
+  } else {
+    breakpoint();
+  }
+  __ bind(ok);
+}
+#endif
+
+void LIR_Assembler::peephole(LIR_List* lir) {
+  LIR_OpList* inst = lir->instructions_list();
+  for (int i = 0; i < inst->length(); i++) {
+    LIR_Op* op = inst->at(i);
+    switch (op->code()) {
+      case lir_cond_float_branch:
+      case lir_branch: {
+        LIR_OpBranch* branch = op->as_OpBranch();
+        assert(branch->info() == NULL, "shouldn't be state on branches anymore");
+        LIR_Op* delay_op = NULL;
+        // we'd like to be able to pull following instructions into
+        // this slot but we don't know enough to do it safely yet so
+        // only optimize block to block control flow.
+        if (LIRFillDelaySlots && branch->block()) {
+          LIR_Op* prev = inst->at(i - 1);
+          if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
+            // swap previous instruction into delay slot
+            inst->at_put(i - 1, op);
+            inst->at_put(i, new LIR_OpDelay(prev, op->info()));
+#ifndef PRODUCT
+            if (LIRTracePeephole) {
+              tty->print_cr("delayed");
+              inst->at(i - 1)->print();
+              inst->at(i)->print();
+              tty->cr();
+            }
+#endif
+            continue;
+          }
+        }
+
+        if (!delay_op) {
+          delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
+        }
+        inst->insert_before(i + 1, delay_op);
+        break;
+      }
+      case lir_static_call:
+      case lir_virtual_call:
+      case lir_icvirtual_call:
+      case lir_optvirtual_call:
+      case lir_dynamic_call: {
+        LIR_Op* prev = inst->at(i - 1);
+        if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
+            (op->code() != lir_virtual_call ||
+             !prev->result_opr()->is_single_cpu() ||
+             prev->result_opr()->as_register() != O0) &&
+            LIR_Assembler::is_single_instruction(prev)) {
+          // Only moves without info can be put into the delay slot.
+          // Also don't allow the setup of the receiver in the delay
+          // slot for vtable calls.
+          inst->at_put(i - 1, op);
+          inst->at_put(i, new LIR_OpDelay(prev, op->info()));
+#ifndef PRODUCT
+          if (LIRTracePeephole) {
+            tty->print_cr("delayed");
+            inst->at(i - 1)->print();
+            inst->at(i)->print();
+            tty->cr();
+          }
+#endif
+        } else {
+          LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
+          inst->insert_before(i + 1, delay_op);
+          i++;
+        }
+        break;
+      }
+    }
+  }
+}
+
+void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
+  LIR_Address* addr = src->as_address_ptr();
+
+  assert(data == dest, "swap uses only 2 operands");
+  assert (code == lir_xchg, "no xadd on sparc");
+
+  if (data->type() == T_INT) {
+    __ swap(as_Address(addr), data->as_register());
+  } else if (data->is_oop()) {
+    Register obj = data->as_register();
+    Register narrow = tmp->as_register();
+    assert(UseCompressedOops, "swap is 32bit only");
+    __ encode_heap_oop(obj, narrow);
+    __ swap(as_Address(addr), narrow);
+    __ decode_heap_oop(narrow, obj);
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+#undef __