--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/cpu/sparc/abstractInterpreter_sparc.cpp Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,296 @@
+/*
+ * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "interpreter/interpreter.hpp"
+#include "oops/constMethod.hpp"
+#include "oops/method.hpp"
+#include "runtime/arguments.hpp"
+#include "runtime/frame.inline.hpp"
+#include "runtime/synchronizer.hpp"
+#include "utilities/align.hpp"
+#include "utilities/macros.hpp"
+
+
+int AbstractInterpreter::BasicType_as_index(BasicType type) {
+ int i = 0;
+ switch (type) {
+ case T_BOOLEAN: i = 0; break;
+ case T_CHAR : i = 1; break;
+ case T_BYTE : i = 2; break;
+ case T_SHORT : i = 3; break;
+ case T_INT : i = 4; break;
+ case T_LONG : i = 5; break;
+ case T_VOID : i = 6; break;
+ case T_FLOAT : i = 7; break;
+ case T_DOUBLE : i = 8; break;
+ case T_OBJECT : i = 9; break;
+ case T_ARRAY : i = 9; break;
+ default : ShouldNotReachHere();
+ }
+ assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
+ return i;
+}
+
+static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
+
+ // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
+ // expression stack, the callee will have callee_extra_locals (so we can account for
+ // frame extension) and monitor_size for monitors. Basically we need to calculate
+ // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
+ //
+ //
+ // The big complicating thing here is that we must ensure that the stack stays properly
+ // aligned. This would be even uglier if monitor size wasn't modulo what the stack
+ // needs to be aligned for). We are given that the sp (fp) is already aligned by
+ // the caller so we must ensure that it is properly aligned for our callee.
+ //
+ const int rounded_vm_local_words =
+ align_up((int)frame::interpreter_frame_vm_local_words,WordsPerLong);
+ // callee_locals and max_stack are counts, not the size in frame.
+ const int locals_size =
+ align_up(callee_extra_locals * Interpreter::stackElementWords, WordsPerLong);
+ const int max_stack_words = max_stack * Interpreter::stackElementWords;
+ return (align_up((max_stack_words
+ + rounded_vm_local_words
+ + frame::memory_parameter_word_sp_offset), WordsPerLong)
+ // already rounded
+ + locals_size + monitor_size);
+}
+
+// How much stack a method top interpreter activation needs in words.
+int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
+
+ // See call_stub code
+ int call_stub_size = align_up(7 + frame::memory_parameter_word_sp_offset,
+ WordsPerLong); // 7 + register save area
+
+ // Save space for one monitor to get into the interpreted method in case
+ // the method is synchronized
+ int monitor_size = method->is_synchronized() ?
+ 1*frame::interpreter_frame_monitor_size() : 0;
+ return size_activation_helper(method->max_locals(), method->max_stack(),
+ monitor_size) + call_stub_size;
+}
+
+int AbstractInterpreter::size_activation(int max_stack,
+ int temps,
+ int extra_args,
+ int monitors,
+ int callee_params,
+ int callee_locals,
+ bool is_top_frame) {
+ // Note: This calculation must exactly parallel the frame setup
+ // in TemplateInterpreterGenerator::generate_fixed_frame.
+
+ int monitor_size = monitors * frame::interpreter_frame_monitor_size();
+
+ assert(is_aligned(monitor_size, WordsPerLong), "must align");
+
+ //
+ // Note: if you look closely this appears to be doing something much different
+ // than generate_fixed_frame. What is happening is this. On sparc we have to do
+ // this dance with interpreter_sp_adjustment because the window save area would
+ // appear just below the bottom (tos) of the caller's java expression stack. Because
+ // the interpreter want to have the locals completely contiguous generate_fixed_frame
+ // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
+ // Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
+ // In this code the opposite occurs the caller adjusts it's own stack base on the callee.
+ // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
+ // because the oldest frame would have adjust its callers frame and yet that frame
+ // already exists and isn't part of this array of frames we are unpacking. So at first
+ // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
+ // will after it calculates all of the frame's on_stack_size()'s will then figure out the
+ // amount to adjust the caller of the initial (oldest) frame and the calculation will all
+ // add up. It does seem like it simpler to account for the adjustment here (and remove the
+ // callee... parameters here). However this would mean that this routine would have to take
+ // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
+ // and run the calling loop in the reverse order. This would also would appear to mean making
+ // this code aware of what the interactions are when that initial caller fram was an osr or
+ // other adapter frame. deoptimization is complicated enough and hard enough to debug that
+ // there is no sense in messing working code.
+ //
+
+ int rounded_cls = align_up((callee_locals - callee_params), WordsPerLong);
+ assert(is_aligned(rounded_cls, WordsPerLong), "must align");
+
+ int raw_frame_size = size_activation_helper(rounded_cls, max_stack, monitor_size);
+
+ return raw_frame_size;
+}
+
+void AbstractInterpreter::layout_activation(Method* method,
+ int tempcount,
+ int popframe_extra_args,
+ int moncount,
+ int caller_actual_parameters,
+ int callee_param_count,
+ int callee_local_count,
+ frame* caller,
+ frame* interpreter_frame,
+ bool is_top_frame,
+ bool is_bottom_frame) {
+ // Set up the following variables:
+ // - Lmethod
+ // - Llocals
+ // - Lmonitors (to the indicated number of monitors)
+ // - Lesp (to the indicated number of temps)
+ // The frame caller on entry is a description of the caller of the
+ // frame we are about to layout. We are guaranteed that we will be
+ // able to fill in a new interpreter frame as its callee (i.e. the
+ // stack space is allocated and the amount was determined by an
+ // earlier call to the size_activation() method). On return caller
+ // while describe the interpreter frame we just layed out.
+
+ // The skeleton frame must already look like an interpreter frame
+ // even if not fully filled out.
+ assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
+
+ int rounded_vm_local_words = align_up((int)frame::interpreter_frame_vm_local_words,WordsPerLong);
+ int monitor_size = moncount * frame::interpreter_frame_monitor_size();
+ assert(is_aligned(monitor_size, WordsPerLong), "must align");
+
+ intptr_t* fp = interpreter_frame->fp();
+
+ JavaThread* thread = JavaThread::current();
+ RegisterMap map(thread, false);
+ // More verification that skeleton frame is properly walkable
+ assert(fp == caller->sp(), "fp must match");
+
+ intptr_t* montop = fp - rounded_vm_local_words;
+
+ // preallocate monitors (cf. __ add_monitor_to_stack)
+ intptr_t* monitors = montop - monitor_size;
+
+ // preallocate stack space
+ intptr_t* esp = monitors - 1 -
+ (tempcount * Interpreter::stackElementWords) -
+ popframe_extra_args;
+
+ int local_words = method->max_locals() * Interpreter::stackElementWords;
+ NEEDS_CLEANUP;
+ intptr_t* locals;
+ if (caller->is_interpreted_frame()) {
+ // Can force the locals area to end up properly overlapping the top of the expression stack.
+ intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
+ // Note that this computation means we replace size_of_parameters() values from the caller
+ // interpreter frame's expression stack with our argument locals
+ int parm_words = caller_actual_parameters * Interpreter::stackElementWords;
+ locals = Lesp_ptr + parm_words;
+ int delta = local_words - parm_words;
+ int computed_sp_adjustment = (delta > 0) ? align_up(delta, WordsPerLong) : 0;
+ *interpreter_frame->register_addr(I5_savedSP) = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
+ if (!is_bottom_frame) {
+ // Llast_SP is set below for the current frame to SP (with the
+ // extra space for the callee's locals). Here we adjust
+ // Llast_SP for the caller's frame, removing the extra space
+ // for the current method's locals.
+ *caller->register_addr(Llast_SP) = *interpreter_frame->register_addr(I5_savedSP);
+ } else {
+ assert(*caller->register_addr(Llast_SP) >= *interpreter_frame->register_addr(I5_savedSP), "strange Llast_SP");
+ }
+ } else {
+ assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases");
+ // Don't have Lesp available; lay out locals block in the caller
+ // adjacent to the register window save area.
+ //
+ // Compiled frames do not allocate a varargs area which is why this if
+ // statement is needed.
+ //
+ if (caller->is_compiled_frame()) {
+ locals = fp + frame::register_save_words + local_words - 1;
+ } else {
+ locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
+ }
+ if (!caller->is_entry_frame()) {
+ // Caller wants his own SP back
+ int caller_frame_size = caller->cb()->frame_size();
+ *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
+ }
+ }
+ if (TraceDeoptimization) {
+ if (caller->is_entry_frame()) {
+ // make sure I5_savedSP and the entry frames notion of saved SP
+ // agree. This assertion duplicate a check in entry frame code
+ // but catches the failure earlier.
+ assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
+ "would change callers SP");
+ }
+ if (caller->is_entry_frame()) {
+ tty->print("entry ");
+ }
+ if (caller->is_compiled_frame()) {
+ tty->print("compiled ");
+ if (caller->is_deoptimized_frame()) {
+ tty->print("(deopt) ");
+ }
+ }
+ if (caller->is_interpreted_frame()) {
+ tty->print("interpreted ");
+ }
+ tty->print_cr("caller fp=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(caller->fp()), p2i(caller->sp()));
+ tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(caller->sp()), p2i(caller->sp() + 16));
+ tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(caller->fp()), p2i(caller->fp() + 16));
+ tty->print_cr("interpreter fp=" INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(interpreter_frame->fp()), p2i(interpreter_frame->sp()));
+ tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(interpreter_frame->sp()), p2i(interpreter_frame->sp() + 16));
+ tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(interpreter_frame->fp()), p2i(interpreter_frame->fp() + 16));
+ tty->print_cr("Llocals = " INTPTR_FORMAT, p2i(locals));
+ tty->print_cr("Lesp = " INTPTR_FORMAT, p2i(esp));
+ tty->print_cr("Lmonitors = " INTPTR_FORMAT, p2i(monitors));
+ }
+
+ if (method->max_locals() > 0) {
+ assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
+ assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
+ assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
+ assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
+ }
+ assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
+
+ *interpreter_frame->register_addr(Lmethod) = (intptr_t) method;
+ *interpreter_frame->register_addr(Llocals) = (intptr_t) locals;
+ *interpreter_frame->register_addr(Lmonitors) = (intptr_t) monitors;
+ *interpreter_frame->register_addr(Lesp) = (intptr_t) esp;
+ // Llast_SP will be same as SP as there is no adapter space
+ *interpreter_frame->register_addr(Llast_SP) = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
+ *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
+ // save the mirror in the interpreter frame
+ *interpreter_frame->interpreter_frame_mirror_addr() = method->method_holder()->java_mirror();
+
+#ifdef ASSERT
+ BasicObjectLock* mp = (BasicObjectLock*)monitors;
+
+ assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
+ assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize)), "locals match");
+ assert(interpreter_frame->interpreter_frame_monitor_end() == mp, "monitor_end matches");
+ assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
+ assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
+
+ // check bounds
+ intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
+ intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
+ assert(lo < monitors && montop <= hi, "monitors in bounds");
+ assert(lo <= esp && esp < monitors, "esp in bounds");
+#endif // ASSERT
+}