src/hotspot/cpu/s390/c1_LIRAssembler_s390.cpp
changeset 47216 71c04702a3d5
parent 46726 7801367e3cc9
child 47698 d4bfafe600d0
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/cpu/s390/c1_LIRAssembler_s390.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,3048 @@
+/*
+ * Copyright (c) 2016, 2017, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2016, 2017, SAP SE. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "c1/c1_Compilation.hpp"
+#include "c1/c1_LIRAssembler.hpp"
+#include "c1/c1_MacroAssembler.hpp"
+#include "c1/c1_Runtime1.hpp"
+#include "c1/c1_ValueStack.hpp"
+#include "ci/ciArrayKlass.hpp"
+#include "ci/ciInstance.hpp"
+#include "gc/shared/collectedHeap.hpp"
+#include "gc/shared/barrierSet.hpp"
+#include "gc/shared/cardTableModRefBS.hpp"
+#include "nativeInst_s390.hpp"
+#include "oops/objArrayKlass.hpp"
+#include "runtime/sharedRuntime.hpp"
+#include "vmreg_s390.inline.hpp"
+
+#define __ _masm->
+
+#ifndef PRODUCT
+#undef __
+#define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm) : _masm)->
+#endif
+
+//------------------------------------------------------------
+
+bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
+  // Not used on ZARCH_64
+  ShouldNotCallThis();
+  return false;
+}
+
+LIR_Opr LIR_Assembler::receiverOpr() {
+  return FrameMap::Z_R2_oop_opr;
+}
+
+LIR_Opr LIR_Assembler::osrBufferPointer() {
+  return FrameMap::Z_R2_opr;
+}
+
+int LIR_Assembler::initial_frame_size_in_bytes() const {
+  return in_bytes(frame_map()->framesize_in_bytes());
+}
+
+// Inline cache check: done before the frame is built.
+// The inline cached class is in Z_inline_cache(Z_R9).
+// We fetch the class of the receiver and compare it with the cached class.
+// If they do not match we jump to the slow case.
+int LIR_Assembler::check_icache() {
+  Register receiver = receiverOpr()->as_register();
+  int offset = __ offset();
+  __ inline_cache_check(receiver, Z_inline_cache);
+  return offset;
+}
+
+void LIR_Assembler::osr_entry() {
+  // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
+  //
+  //   1. Create a new compiled activation.
+  //   2. Initialize local variables in the compiled activation. The expression stack must be empty
+  //      at the osr_bci; it is not initialized.
+  //   3. Jump to the continuation address in compiled code to resume execution.
+
+  // OSR entry point
+  offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
+  BlockBegin* osr_entry = compilation()->hir()->osr_entry();
+  ValueStack* entry_state = osr_entry->end()->state();
+  int number_of_locks = entry_state->locks_size();
+
+  // Create a frame for the compiled activation.
+  __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
+
+  // OSR buffer is
+  //
+  // locals[nlocals-1..0]
+  // monitors[number_of_locks-1..0]
+  //
+  // Locals is a direct copy of the interpreter frame so in the osr buffer
+  // the first slot in the local array is the last local from the interpreter
+  // and the last slot is local[0] (receiver) from the interpreter
+  //
+  // Similarly with locks. The first lock slot in the osr buffer is the nth lock
+  // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
+  // in the interpreter frame (the method lock if a sync method)
+
+  // Initialize monitors in the compiled activation.
+  //   I0: pointer to osr buffer
+  //
+  // All other registers are dead at this point and the locals will be
+  // copied into place by code emitted in the IR.
+
+  Register OSR_buf = osrBufferPointer()->as_register();
+  { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
+    int monitor_offset = BytesPerWord * method()->max_locals() +
+      (2 * BytesPerWord) * (number_of_locks - 1);
+    // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
+    // the OSR buffer using 2 word entries: first the lock and then
+    // the oop.
+    for (int i = 0; i < number_of_locks; i++) {
+      int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
+      // Verify the interpreter's monitor has a non-null object.
+      __ asm_assert_mem8_isnot_zero(slot_offset + 1*BytesPerWord, OSR_buf, "locked object is NULL", __LINE__);
+      // Copy the lock field into the compiled activation.
+      __ z_lg(Z_R1_scratch, slot_offset + 0, OSR_buf);
+      __ z_stg(Z_R1_scratch, frame_map()->address_for_monitor_lock(i));
+      __ z_lg(Z_R1_scratch, slot_offset + 1*BytesPerWord, OSR_buf);
+      __ z_stg(Z_R1_scratch, frame_map()->address_for_monitor_object(i));
+    }
+  }
+}
+
+// --------------------------------------------------------------------------------------------
+
+address LIR_Assembler::emit_call_c(address a) {
+  __ align_call_far_patchable(__ pc());
+  address call_addr = __ call_c_opt(a);
+  if (call_addr == NULL) {
+    bailout("const section overflow");
+  }
+  return call_addr;
+}
+
+int LIR_Assembler::emit_exception_handler() {
+  // If the last instruction is a call (typically to do a throw which
+  // is coming at the end after block reordering) the return address
+  // must still point into the code area in order to avoid assertion
+  // failures when searching for the corresponding bci. => Add a nop.
+  // (was bug 5/14/1999 - gri)
+  __ nop();
+
+  // Generate code for exception handler.
+  address handler_base = __ start_a_stub(exception_handler_size());
+  if (handler_base == NULL) {
+    // Not enough space left for the handler.
+    bailout("exception handler overflow");
+    return -1;
+  }
+
+  int offset = code_offset();
+
+  address a = Runtime1::entry_for (Runtime1::handle_exception_from_callee_id);
+  address call_addr = emit_call_c(a);
+  CHECK_BAILOUT_(-1);
+  __ should_not_reach_here();
+  guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
+  __ end_a_stub();
+
+  return offset;
+}
+
+// Emit the code to remove the frame from the stack in the exception
+// unwind path.
+int LIR_Assembler::emit_unwind_handler() {
+#ifndef PRODUCT
+  if (CommentedAssembly) {
+    _masm->block_comment("Unwind handler");
+  }
+#endif
+
+  int offset = code_offset();
+  Register exception_oop_callee_saved = Z_R10; // Z_R10 is callee-saved.
+  Register Rtmp1                      = Z_R11;
+  Register Rtmp2                      = Z_R12;
+
+  // Fetch the exception from TLS and clear out exception related thread state.
+  Address exc_oop_addr = Address(Z_thread, JavaThread::exception_oop_offset());
+  Address exc_pc_addr  = Address(Z_thread, JavaThread::exception_pc_offset());
+  __ z_lg(Z_EXC_OOP, exc_oop_addr);
+  __ clear_mem(exc_oop_addr, sizeof(oop));
+  __ clear_mem(exc_pc_addr, sizeof(intptr_t));
+
+  __ bind(_unwind_handler_entry);
+  __ verify_not_null_oop(Z_EXC_OOP);
+  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
+    __ lgr_if_needed(exception_oop_callee_saved, Z_EXC_OOP); // Preserve the exception.
+  }
+
+  // Preform needed unlocking.
+  MonitorExitStub* stub = NULL;
+  if (method()->is_synchronized()) {
+    // Runtime1::monitorexit_id expects lock address in Z_R1_scratch.
+    LIR_Opr lock = FrameMap::as_opr(Z_R1_scratch);
+    monitor_address(0, lock);
+    stub = new MonitorExitStub(lock, true, 0);
+    __ unlock_object(Rtmp1, Rtmp2, lock->as_register(), *stub->entry());
+    __ bind(*stub->continuation());
+  }
+
+  if (compilation()->env()->dtrace_method_probes()) {
+    ShouldNotReachHere(); // Not supported.
+#if 0
+    __ mov(rdi, r15_thread);
+    __ mov_metadata(rsi, method()->constant_encoding());
+    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
+#endif
+  }
+
+  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
+    __ lgr_if_needed(Z_EXC_OOP, exception_oop_callee_saved);  // Restore the exception.
+  }
+
+  // Remove the activation and dispatch to the unwind handler.
+  __ pop_frame();
+  __ z_lg(Z_EXC_PC, _z_abi16(return_pc), Z_SP);
+
+  // Z_EXC_OOP: exception oop
+  // Z_EXC_PC: exception pc
+
+  // Dispatch to the unwind logic.
+  __ load_const_optimized(Z_R5, Runtime1::entry_for (Runtime1::unwind_exception_id));
+  __ z_br(Z_R5);
+
+  // Emit the slow path assembly.
+  if (stub != NULL) {
+    stub->emit_code(this);
+  }
+
+  return offset;
+}
+
+int LIR_Assembler::emit_deopt_handler() {
+  // If the last instruction is a call (typically to do a throw which
+  // is coming at the end after block reordering) the return address
+  // must still point into the code area in order to avoid assertion
+  // failures when searching for the corresponding bci. => Add a nop.
+  // (was bug 5/14/1999 - gri)
+  __ nop();
+
+  // Generate code for exception handler.
+  address handler_base = __ start_a_stub(deopt_handler_size());
+  if (handler_base == NULL) {
+    // Not enough space left for the handler.
+    bailout("deopt handler overflow");
+    return -1;
+  }  int offset = code_offset();
+  // Size must be constant (see HandlerImpl::emit_deopt_handler).
+  __ load_const(Z_R1_scratch, SharedRuntime::deopt_blob()->unpack());
+  __ call(Z_R1_scratch);
+  guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
+  __ end_a_stub();
+
+  return offset;
+}
+
+void LIR_Assembler::jobject2reg(jobject o, Register reg) {
+  if (o == NULL) {
+    __ clear_reg(reg, true/*64bit*/, false/*set cc*/); // Must not kill cc set by cmove.
+  } else {
+    AddressLiteral a = __ allocate_oop_address(o);
+    bool success = __ load_oop_from_toc(reg, a, reg);
+    if (!success) {
+      bailout("const section overflow");
+    }
+  }
+}
+
+void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
+  // Allocate a new index in table to hold the object once it's been patched.
+  int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
+  PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
+
+  AddressLiteral addrlit((intptr_t)0, oop_Relocation::spec(oop_index));
+  assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
+  // The NULL will be dynamically patched later so the sequence to
+  // load the address literal must not be optimized.
+  __ load_const(reg, addrlit);
+
+  patching_epilog(patch, lir_patch_normal, reg, info);
+}
+
+void LIR_Assembler::metadata2reg(Metadata* md, Register reg) {
+  bool success = __ set_metadata_constant(md, reg);
+  if (!success) {
+    bailout("const section overflow");
+    return;
+  }
+}
+
+void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
+  // Allocate a new index in table to hold the klass once it's been patched.
+  int index = __ oop_recorder()->allocate_metadata_index(NULL);
+  PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
+  AddressLiteral addrlit((intptr_t)0, metadata_Relocation::spec(index));
+  assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
+  // The NULL will be dynamically patched later so the sequence to
+  // load the address literal must not be optimized.
+  __ load_const(reg, addrlit);
+
+  patching_epilog(patch, lir_patch_normal, reg, info);
+}
+
+void LIR_Assembler::emit_op3(LIR_Op3* op) {
+  switch (op->code()) {
+    case lir_idiv:
+    case lir_irem:
+      arithmetic_idiv(op->code(),
+                      op->in_opr1(),
+                      op->in_opr2(),
+                      op->in_opr3(),
+                      op->result_opr(),
+                      op->info());
+      break;
+    case lir_fmad: {
+      const FloatRegister opr1 = op->in_opr1()->as_double_reg(),
+                          opr2 = op->in_opr2()->as_double_reg(),
+                          opr3 = op->in_opr3()->as_double_reg(),
+                          res  = op->result_opr()->as_double_reg();
+      __ z_madbr(opr3, opr1, opr2);
+      if (res != opr3) { __ z_ldr(res, opr3); }
+    } break;
+    case lir_fmaf: {
+      const FloatRegister opr1 = op->in_opr1()->as_float_reg(),
+                          opr2 = op->in_opr2()->as_float_reg(),
+                          opr3 = op->in_opr3()->as_float_reg(),
+                          res  = op->result_opr()->as_float_reg();
+      __ z_maebr(opr3, opr1, opr2);
+      if (res != opr3) { __ z_ler(res, opr3); }
+    } break;
+    default: ShouldNotReachHere(); break;
+  }
+}
+
+
+void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
+#ifdef ASSERT
+  assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
+  if (op->block() != NULL)  { _branch_target_blocks.append(op->block()); }
+  if (op->ublock() != NULL) { _branch_target_blocks.append(op->ublock()); }
+#endif
+
+  if (op->cond() == lir_cond_always) {
+    if (op->info() != NULL) { add_debug_info_for_branch(op->info()); }
+    __ branch_optimized(Assembler::bcondAlways, *(op->label()));
+  } else {
+    Assembler::branch_condition acond = Assembler::bcondZero;
+    if (op->code() == lir_cond_float_branch) {
+      assert(op->ublock() != NULL, "must have unordered successor");
+      __ branch_optimized(Assembler::bcondNotOrdered, *(op->ublock()->label()));
+    }
+    switch (op->cond()) {
+      case lir_cond_equal:        acond = Assembler::bcondEqual;     break;
+      case lir_cond_notEqual:     acond = Assembler::bcondNotEqual;  break;
+      case lir_cond_less:         acond = Assembler::bcondLow;       break;
+      case lir_cond_lessEqual:    acond = Assembler::bcondNotHigh;   break;
+      case lir_cond_greaterEqual: acond = Assembler::bcondNotLow;    break;
+      case lir_cond_greater:      acond = Assembler::bcondHigh;      break;
+      case lir_cond_belowEqual:   acond = Assembler::bcondNotHigh;   break;
+      case lir_cond_aboveEqual:   acond = Assembler::bcondNotLow;    break;
+      default:                         ShouldNotReachHere();
+    }
+    __ branch_optimized(acond,*(op->label()));
+  }
+}
+
+
+void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
+  LIR_Opr src  = op->in_opr();
+  LIR_Opr dest = op->result_opr();
+
+  switch (op->bytecode()) {
+    case Bytecodes::_i2l:
+      __ move_reg_if_needed(dest->as_register_lo(), T_LONG, src->as_register(), T_INT);
+      break;
+
+    case Bytecodes::_l2i:
+      __ move_reg_if_needed(dest->as_register(), T_INT, src->as_register_lo(), T_LONG);
+      break;
+
+    case Bytecodes::_i2b:
+      __ move_reg_if_needed(dest->as_register(), T_BYTE, src->as_register(), T_INT);
+      break;
+
+    case Bytecodes::_i2c:
+      __ move_reg_if_needed(dest->as_register(), T_CHAR, src->as_register(), T_INT);
+      break;
+
+    case Bytecodes::_i2s:
+      __ move_reg_if_needed(dest->as_register(), T_SHORT, src->as_register(), T_INT);
+      break;
+
+    case Bytecodes::_f2d:
+      assert(dest->is_double_fpu(), "check");
+      __ move_freg_if_needed(dest->as_double_reg(), T_DOUBLE, src->as_float_reg(), T_FLOAT);
+      break;
+
+    case Bytecodes::_d2f:
+      assert(dest->is_single_fpu(), "check");
+      __ move_freg_if_needed(dest->as_float_reg(), T_FLOAT, src->as_double_reg(), T_DOUBLE);
+      break;
+
+    case Bytecodes::_i2f:
+      __ z_cefbr(dest->as_float_reg(), src->as_register());
+      break;
+
+    case Bytecodes::_i2d:
+      __ z_cdfbr(dest->as_double_reg(), src->as_register());
+      break;
+
+    case Bytecodes::_l2f:
+      __ z_cegbr(dest->as_float_reg(), src->as_register_lo());
+      break;
+    case Bytecodes::_l2d:
+      __ z_cdgbr(dest->as_double_reg(), src->as_register_lo());
+      break;
+
+    case Bytecodes::_f2i:
+    case Bytecodes::_f2l: {
+      Label done;
+      FloatRegister Rsrc = src->as_float_reg();
+      Register Rdst = (op->bytecode() == Bytecodes::_f2i ? dest->as_register() : dest->as_register_lo());
+      __ clear_reg(Rdst, true, false);
+      __ z_cebr(Rsrc, Rsrc);
+      __ z_brno(done); // NaN -> 0
+      if (op->bytecode() == Bytecodes::_f2i) {
+        __ z_cfebr(Rdst, Rsrc, Assembler::to_zero);
+      } else { // op->bytecode() == Bytecodes::_f2l
+        __ z_cgebr(Rdst, Rsrc, Assembler::to_zero);
+      }
+      __ bind(done);
+    }
+    break;
+
+    case Bytecodes::_d2i:
+    case Bytecodes::_d2l: {
+      Label done;
+      FloatRegister Rsrc = src->as_double_reg();
+      Register Rdst = (op->bytecode() == Bytecodes::_d2i ? dest->as_register() : dest->as_register_lo());
+      __ clear_reg(Rdst, true, false);  // Don't set CC.
+      __ z_cdbr(Rsrc, Rsrc);
+      __ z_brno(done); // NaN -> 0
+      if (op->bytecode() == Bytecodes::_d2i) {
+        __ z_cfdbr(Rdst, Rsrc, Assembler::to_zero);
+      } else { // Bytecodes::_d2l
+        __ z_cgdbr(Rdst, Rsrc, Assembler::to_zero);
+      }
+      __ bind(done);
+    }
+    break;
+
+    default: ShouldNotReachHere();
+  }
+}
+
+void LIR_Assembler::align_call(LIR_Code code) {
+  // End of call instruction must be 4 byte aligned.
+  int offset = __ offset();
+  switch (code) {
+    case lir_icvirtual_call:
+      offset += MacroAssembler::load_const_from_toc_size();
+      // no break
+    case lir_static_call:
+    case lir_optvirtual_call:
+    case lir_dynamic_call:
+      offset += NativeCall::call_far_pcrelative_displacement_offset;
+      break;
+    case lir_virtual_call:   // currently, sparc-specific for niagara
+    default: ShouldNotReachHere();
+  }
+  if ((offset & (NativeCall::call_far_pcrelative_displacement_alignment-1)) != 0) {
+    __ nop();
+  }
+}
+
+void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
+  assert((__ offset() + NativeCall::call_far_pcrelative_displacement_offset) % NativeCall::call_far_pcrelative_displacement_alignment == 0,
+         "must be aligned (offset=%d)", __ offset());
+  assert(rtype == relocInfo::none ||
+         rtype == relocInfo::opt_virtual_call_type ||
+         rtype == relocInfo::static_call_type, "unexpected rtype");
+  // Prepend each BRASL with a nop.
+  __ relocate(rtype);
+  __ z_nop();
+  __ z_brasl(Z_R14, op->addr());
+  add_call_info(code_offset(), op->info());
+}
+
+void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
+  address virtual_call_oop_addr = NULL;
+  AddressLiteral empty_ic((address) Universe::non_oop_word());
+  virtual_call_oop_addr = __ pc();
+  bool success = __ load_const_from_toc(Z_inline_cache, empty_ic);
+  if (!success) {
+    bailout("const section overflow");
+    return;
+  }
+
+  // CALL to fixup routine. Fixup routine uses ScopeDesc info
+  // to determine who we intended to call.
+  __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
+  call(op, relocInfo::none);
+}
+
+// not supported
+void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
+  ShouldNotReachHere();
+}
+
+void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
+  if (from_reg != to_reg) __ z_lgr(to_reg, from_reg);
+}
+
+void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
+  assert(src->is_constant(), "should not call otherwise");
+  assert(dest->is_stack(), "should not call otherwise");
+  LIR_Const* c = src->as_constant_ptr();
+
+  unsigned int lmem = 0;
+  unsigned int lcon = 0;
+  int64_t cbits = 0;
+  Address dest_addr;
+  switch (c->type()) {
+    case T_INT:  // fall through
+    case T_FLOAT:
+      dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
+      lmem = 4; lcon = 4; cbits = c->as_jint_bits();
+      break;
+
+    case T_ADDRESS:
+      dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
+      lmem = 8; lcon = 4; cbits = c->as_jint_bits();
+      break;
+
+    case T_OBJECT:
+      dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
+      if (c->as_jobject() == NULL) {
+        __ store_const(dest_addr, (int64_t)NULL_WORD, 8, 8);
+      } else {
+        jobject2reg(c->as_jobject(), Z_R1_scratch);
+        __ reg2mem_opt(Z_R1_scratch, dest_addr, true);
+      }
+      return;
+
+    case T_LONG:  // fall through
+    case T_DOUBLE:
+      dest_addr = frame_map()->address_for_slot(dest->double_stack_ix());
+      lmem = 8; lcon = 8; cbits = (int64_t)(c->as_jlong_bits());
+      break;
+
+    default:
+      ShouldNotReachHere();
+  }
+
+  __ store_const(dest_addr, cbits, lmem, lcon);
+}
+
+void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
+  assert(src->is_constant(), "should not call otherwise");
+  assert(dest->is_address(), "should not call otherwise");
+  // See special case in LIRGenerator::do_StoreIndexed.
+  // T_BYTE: Special case for card mark store.
+  assert(type == T_BYTE || !dest->as_address_ptr()->index()->is_valid(), "not supported");
+  LIR_Const* c = src->as_constant_ptr();
+  Address addr = as_Address(dest->as_address_ptr());
+
+  int store_offset = -1;
+  unsigned int lmem = 0;
+  unsigned int lcon = 0;
+  int64_t cbits = 0;
+  switch (type) {
+    case T_INT:    // fall through
+    case T_FLOAT:
+      lmem = 4; lcon = 4; cbits = c->as_jint_bits();
+      break;
+
+    case T_ADDRESS:
+      lmem = 8; lcon = 4; cbits = c->as_jint_bits();
+      break;
+
+    case T_OBJECT:  // fall through
+    case T_ARRAY:
+      if (c->as_jobject() == NULL) {
+        if (UseCompressedOops && !wide) {
+          store_offset = __ store_const(addr, (int32_t)NULL_WORD, 4, 4);
+        } else {
+          store_offset = __ store_const(addr, (int64_t)NULL_WORD, 8, 8);
+        }
+      } else {
+        jobject2reg(c->as_jobject(), Z_R1_scratch);
+        if (UseCompressedOops && !wide) {
+          __ encode_heap_oop(Z_R1_scratch);
+          store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false);
+        } else {
+          store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true);
+        }
+      }
+      assert(store_offset >= 0, "check");
+      break;
+
+    case T_LONG:    // fall through
+    case T_DOUBLE:
+      lmem = 8; lcon = 8; cbits = (int64_t)(c->as_jlong_bits());
+      break;
+
+    case T_BOOLEAN: // fall through
+    case T_BYTE:
+      lmem = 1; lcon = 1; cbits = (int8_t)(c->as_jint());
+      break;
+
+    case T_CHAR:    // fall through
+    case T_SHORT:
+      lmem = 2; lcon = 2; cbits = (int16_t)(c->as_jint());
+      break;
+
+    default:
+      ShouldNotReachHere();
+  };
+
+  // Index register is normally not supported, but for
+  // LIRGenerator::CardTableModRef_post_barrier we make an exception.
+  if (type == T_BYTE && dest->as_address_ptr()->index()->is_valid()) {
+    __ load_const_optimized(Z_R0_scratch, (int8_t)(c->as_jint()));
+    store_offset = __ offset();
+    if (Immediate::is_uimm12(addr.disp())) {
+      __ z_stc(Z_R0_scratch, addr);
+    } else {
+      __ z_stcy(Z_R0_scratch, addr);
+    }
+  }
+
+  if (store_offset == -1) {
+    store_offset = __ store_const(addr, cbits, lmem, lcon);
+    assert(store_offset >= 0, "check");
+  }
+
+  if (info != NULL) {
+    add_debug_info_for_null_check(store_offset, info);
+  }
+}
+
+void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
+  assert(src->is_constant(), "should not call otherwise");
+  assert(dest->is_register(), "should not call otherwise");
+  LIR_Const* c = src->as_constant_ptr();
+
+  switch (c->type()) {
+    case T_INT: {
+      assert(patch_code == lir_patch_none, "no patching handled here");
+      __ load_const_optimized(dest->as_register(), c->as_jint());
+      break;
+    }
+
+    case T_ADDRESS: {
+      assert(patch_code == lir_patch_none, "no patching handled here");
+      __ load_const_optimized(dest->as_register(), c->as_jint());
+      break;
+    }
+
+    case T_LONG: {
+      assert(patch_code == lir_patch_none, "no patching handled here");
+      __ load_const_optimized(dest->as_register_lo(), (intptr_t)c->as_jlong());
+      break;
+    }
+
+    case T_OBJECT: {
+      if (patch_code != lir_patch_none) {
+        jobject2reg_with_patching(dest->as_register(), info);
+      } else {
+        jobject2reg(c->as_jobject(), dest->as_register());
+      }
+      break;
+    }
+
+    case T_METADATA: {
+      if (patch_code != lir_patch_none) {
+        klass2reg_with_patching(dest->as_register(), info);
+      } else {
+        metadata2reg(c->as_metadata(), dest->as_register());
+      }
+      break;
+    }
+
+    case T_FLOAT: {
+      Register toc_reg = Z_R1_scratch;
+      __ load_toc(toc_reg);
+      address const_addr = __ float_constant(c->as_jfloat());
+      if (const_addr == NULL) {
+        bailout("const section overflow");
+        break;
+      }
+      int displ = const_addr - _masm->code()->consts()->start();
+      if (dest->is_single_fpu()) {
+        __ z_ley(dest->as_float_reg(), displ, toc_reg);
+      } else {
+        assert(dest->is_single_cpu(), "Must be a cpu register.");
+        __ z_ly(dest->as_register(), displ, toc_reg);
+      }
+    }
+    break;
+
+    case T_DOUBLE: {
+      Register toc_reg = Z_R1_scratch;
+      __ load_toc(toc_reg);
+      address const_addr = __ double_constant(c->as_jdouble());
+      if (const_addr == NULL) {
+        bailout("const section overflow");
+        break;
+      }
+      int displ = const_addr - _masm->code()->consts()->start();
+      if (dest->is_double_fpu()) {
+        __ z_ldy(dest->as_double_reg(), displ, toc_reg);
+      } else {
+        assert(dest->is_double_cpu(), "Must be a long register.");
+        __ z_lg(dest->as_register_lo(), displ, toc_reg);
+      }
+    }
+    break;
+
+    default:
+      ShouldNotReachHere();
+  }
+}
+
+Address LIR_Assembler::as_Address(LIR_Address* addr) {
+  if (addr->base()->is_illegal()) {
+    Unimplemented();
+  }
+
+  Register base = addr->base()->as_pointer_register();
+
+  if (addr->index()->is_illegal()) {
+    return Address(base, addr->disp());
+  } else if (addr->index()->is_cpu_register()) {
+    Register index = addr->index()->as_pointer_register();
+    return Address(base, index, addr->disp());
+  } else if (addr->index()->is_constant()) {
+    intptr_t addr_offset = addr->index()->as_constant_ptr()->as_jint() + addr->disp();
+    return Address(base, addr_offset);
+  } else {
+    ShouldNotReachHere();
+    return Address();
+  }
+}
+
+void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
+  switch (type) {
+    case T_INT:
+    case T_FLOAT: {
+      Register tmp = Z_R1_scratch;
+      Address from = frame_map()->address_for_slot(src->single_stack_ix());
+      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
+      __ mem2reg_opt(tmp, from, false);
+      __ reg2mem_opt(tmp, to, false);
+      break;
+    }
+    case T_ADDRESS:
+    case T_OBJECT: {
+      Register tmp = Z_R1_scratch;
+      Address from = frame_map()->address_for_slot(src->single_stack_ix());
+      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
+      __ mem2reg_opt(tmp, from, true);
+      __ reg2mem_opt(tmp, to, true);
+      break;
+    }
+    case T_LONG:
+    case T_DOUBLE: {
+      Register tmp = Z_R1_scratch;
+      Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
+      Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
+      __ mem2reg_opt(tmp, from, true);
+      __ reg2mem_opt(tmp, to, true);
+      break;
+    }
+
+    default:
+      ShouldNotReachHere();
+  }
+}
+
+// 4-byte accesses only! Don't use it to access 8 bytes!
+Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
+  ShouldNotCallThis();
+  return 0; // unused
+}
+
+// 4-byte accesses only! Don't use it to access 8 bytes!
+Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
+  ShouldNotCallThis();
+  return 0; // unused
+}
+
+void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code,
+                            CodeEmitInfo* info, bool wide, bool unaligned) {
+
+  assert(type != T_METADATA, "load of metadata ptr not supported");
+  LIR_Address* addr = src_opr->as_address_ptr();
+  LIR_Opr to_reg = dest;
+
+  Register src = addr->base()->as_pointer_register();
+  Register disp_reg = Z_R0;
+  int disp_value = addr->disp();
+  bool needs_patching = (patch_code != lir_patch_none);
+
+  if (addr->base()->type() == T_OBJECT) {
+    __ verify_oop(src);
+  }
+
+  PatchingStub* patch = NULL;
+  if (needs_patching) {
+    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
+    assert(!to_reg->is_double_cpu() ||
+           patch_code == lir_patch_none ||
+           patch_code == lir_patch_normal, "patching doesn't match register");
+  }
+
+  if (addr->index()->is_illegal()) {
+    if (!Immediate::is_simm20(disp_value)) {
+      if (needs_patching) {
+        __ load_const(Z_R1_scratch, (intptr_t)0);
+      } else {
+        __ load_const_optimized(Z_R1_scratch, disp_value);
+      }
+      disp_reg = Z_R1_scratch;
+      disp_value = 0;
+    }
+  } else {
+    if (!Immediate::is_simm20(disp_value)) {
+      __ load_const_optimized(Z_R1_scratch, disp_value);
+      __ z_la(Z_R1_scratch, 0, Z_R1_scratch, addr->index()->as_register());
+      disp_reg = Z_R1_scratch;
+      disp_value = 0;
+    }
+    disp_reg = addr->index()->as_pointer_register();
+  }
+
+  // Remember the offset of the load. The patching_epilog must be done
+  // before the call to add_debug_info, otherwise the PcDescs don't get
+  // entered in increasing order.
+  int offset = code_offset();
+
+  assert(disp_reg != Z_R0 || Immediate::is_simm20(disp_value), "should have set this up");
+
+  bool short_disp = Immediate::is_uimm12(disp_value);
+
+  switch (type) {
+    case T_BOOLEAN: // fall through
+    case T_BYTE  :  __ z_lb(dest->as_register(),   disp_value, disp_reg, src); break;
+    case T_CHAR  :  __ z_llgh(dest->as_register(), disp_value, disp_reg, src); break;
+    case T_SHORT :
+      if (short_disp) {
+                    __ z_lh(dest->as_register(),   disp_value, disp_reg, src);
+      } else {
+                    __ z_lhy(dest->as_register(),  disp_value, disp_reg, src);
+      }
+      break;
+    case T_INT   :
+      if (short_disp) {
+                    __ z_l(dest->as_register(),    disp_value, disp_reg, src);
+      } else {
+                    __ z_ly(dest->as_register(),   disp_value, disp_reg, src);
+      }
+      break;
+    case T_ADDRESS:
+      if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
+        __ z_llgf(dest->as_register(), disp_value, disp_reg, src);
+        __ decode_klass_not_null(dest->as_register());
+      } else {
+        __ z_lg(dest->as_register(), disp_value, disp_reg, src);
+      }
+      break;
+    case T_ARRAY : // fall through
+    case T_OBJECT:
+    {
+      if (UseCompressedOops && !wide) {
+        __ z_llgf(dest->as_register(), disp_value, disp_reg, src);
+        __ oop_decoder(dest->as_register(), dest->as_register(), true);
+      } else {
+        __ z_lg(dest->as_register(), disp_value, disp_reg, src);
+      }
+      break;
+    }
+    case T_FLOAT:
+      if (short_disp) {
+                    __ z_le(dest->as_float_reg(),  disp_value, disp_reg, src);
+      } else {
+                    __ z_ley(dest->as_float_reg(), disp_value, disp_reg, src);
+      }
+      break;
+    case T_DOUBLE:
+      if (short_disp) {
+                    __ z_ld(dest->as_double_reg(),  disp_value, disp_reg, src);
+      } else {
+                    __ z_ldy(dest->as_double_reg(), disp_value, disp_reg, src);
+      }
+      break;
+    case T_LONG  :  __ z_lg(dest->as_register_lo(), disp_value, disp_reg, src); break;
+    default      : ShouldNotReachHere();
+  }
+  if (type == T_ARRAY || type == T_OBJECT) {
+    __ verify_oop(dest->as_register());
+  }
+
+  if (patch != NULL) {
+    patching_epilog(patch, patch_code, src, info);
+  }
+  if (info != NULL) add_debug_info_for_null_check(offset, info);
+}
+
+void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
+  assert(src->is_stack(), "should not call otherwise");
+  assert(dest->is_register(), "should not call otherwise");
+
+  if (dest->is_single_cpu()) {
+    if (type == T_ARRAY || type == T_OBJECT) {
+      __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), true);
+      __ verify_oop(dest->as_register());
+    } else if (type == T_METADATA) {
+      __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), true);
+    } else {
+      __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), false);
+    }
+  } else if (dest->is_double_cpu()) {
+    Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix());
+    __ mem2reg_opt(dest->as_register_lo(), src_addr_LO, true);
+  } else if (dest->is_single_fpu()) {
+    Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
+    __ mem2freg_opt(dest->as_float_reg(), src_addr, false);
+  } else if (dest->is_double_fpu()) {
+    Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
+    __ mem2freg_opt(dest->as_double_reg(), src_addr, true);
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
+  assert(src->is_register(), "should not call otherwise");
+  assert(dest->is_stack(), "should not call otherwise");
+
+  if (src->is_single_cpu()) {
+    const Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
+    if (type == T_OBJECT || type == T_ARRAY) {
+      __ verify_oop(src->as_register());
+      __ reg2mem_opt(src->as_register(), dst, true);
+    } else if (type == T_METADATA) {
+      __ reg2mem_opt(src->as_register(), dst, true);
+    } else {
+      __ reg2mem_opt(src->as_register(), dst, false);
+    }
+  } else if (src->is_double_cpu()) {
+    Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix());
+    __ reg2mem_opt(src->as_register_lo(), dstLO, true);
+  } else if (src->is_single_fpu()) {
+    Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
+    __ freg2mem_opt(src->as_float_reg(), dst_addr, false);
+  } else if (src->is_double_fpu()) {
+    Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
+    __ freg2mem_opt(src->as_double_reg(), dst_addr, true);
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
+  if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
+    if (from_reg->is_double_fpu()) {
+      // double to double moves
+      assert(to_reg->is_double_fpu(), "should match");
+      __ z_ldr(to_reg->as_double_reg(), from_reg->as_double_reg());
+    } else {
+      // float to float moves
+      assert(to_reg->is_single_fpu(), "should match");
+      __ z_ler(to_reg->as_float_reg(), from_reg->as_float_reg());
+    }
+  } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
+    if (from_reg->is_double_cpu()) {
+      __ z_lgr(to_reg->as_pointer_register(), from_reg->as_pointer_register());
+    } else if (to_reg->is_double_cpu()) {
+      // int to int moves
+      __ z_lgr(to_reg->as_register_lo(), from_reg->as_register());
+    } else {
+      // int to int moves
+      __ z_lgr(to_reg->as_register(), from_reg->as_register());
+    }
+  } else {
+    ShouldNotReachHere();
+  }
+  if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
+    __ verify_oop(to_reg->as_register());
+  }
+}
+
+void LIR_Assembler::reg2mem(LIR_Opr from, LIR_Opr dest_opr, BasicType type,
+                            LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
+                            bool wide, bool unaligned) {
+  assert(type != T_METADATA, "store of metadata ptr not supported");
+  LIR_Address* addr = dest_opr->as_address_ptr();
+
+  Register dest = addr->base()->as_pointer_register();
+  Register disp_reg = Z_R0;
+  int disp_value = addr->disp();
+  bool needs_patching = (patch_code != lir_patch_none);
+
+  if (addr->base()->is_oop_register()) {
+    __ verify_oop(dest);
+  }
+
+  PatchingStub* patch = NULL;
+  if (needs_patching) {
+    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
+    assert(!from->is_double_cpu() ||
+           patch_code == lir_patch_none ||
+           patch_code == lir_patch_normal, "patching doesn't match register");
+  }
+
+  assert(!needs_patching || (!Immediate::is_simm20(disp_value) && addr->index()->is_illegal()), "assumption");
+  if (addr->index()->is_illegal()) {
+    if (!Immediate::is_simm20(disp_value)) {
+      if (needs_patching) {
+        __ load_const(Z_R1_scratch, (intptr_t)0);
+      } else {
+        __ load_const_optimized(Z_R1_scratch, disp_value);
+      }
+      disp_reg = Z_R1_scratch;
+      disp_value = 0;
+    }
+  } else {
+    if (!Immediate::is_simm20(disp_value)) {
+      __ load_const_optimized(Z_R1_scratch, disp_value);
+      __ z_la(Z_R1_scratch, 0, Z_R1_scratch, addr->index()->as_register());
+      disp_reg = Z_R1_scratch;
+      disp_value = 0;
+    }
+    disp_reg = addr->index()->as_pointer_register();
+  }
+
+  assert(disp_reg != Z_R0 || Immediate::is_simm20(disp_value), "should have set this up");
+
+  if (type == T_ARRAY || type == T_OBJECT) {
+    __ verify_oop(from->as_register());
+  }
+
+  bool short_disp = Immediate::is_uimm12(disp_value);
+
+  // Remember the offset of the store. The patching_epilog must be done
+  // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
+  // entered in increasing order.
+  int offset = code_offset();
+  switch (type) {
+    case T_BOOLEAN: // fall through
+    case T_BYTE  :
+      if (short_disp) {
+                    __ z_stc(from->as_register(),  disp_value, disp_reg, dest);
+      } else {
+                    __ z_stcy(from->as_register(), disp_value, disp_reg, dest);
+      }
+      break;
+    case T_CHAR  : // fall through
+    case T_SHORT :
+      if (short_disp) {
+                    __ z_sth(from->as_register(),  disp_value, disp_reg, dest);
+      } else {
+                    __ z_sthy(from->as_register(), disp_value, disp_reg, dest);
+      }
+      break;
+    case T_INT   :
+      if (short_disp) {
+                    __ z_st(from->as_register(),  disp_value, disp_reg, dest);
+      } else {
+                    __ z_sty(from->as_register(), disp_value, disp_reg, dest);
+      }
+      break;
+    case T_LONG  :  __ z_stg(from->as_register_lo(), disp_value, disp_reg, dest); break;
+    case T_ADDRESS: __ z_stg(from->as_register(),    disp_value, disp_reg, dest); break;
+      break;
+    case T_ARRAY : // fall through
+    case T_OBJECT:
+      {
+        if (UseCompressedOops && !wide) {
+          Register compressed_src = Z_R14;
+          __ oop_encoder(compressed_src, from->as_register(), true, (disp_reg != Z_R1) ? Z_R1 : Z_R0, -1, true);
+          offset = code_offset();
+          if (short_disp) {
+            __ z_st(compressed_src,  disp_value, disp_reg, dest);
+          } else {
+            __ z_sty(compressed_src, disp_value, disp_reg, dest);
+          }
+        } else {
+          __ z_stg(from->as_register(), disp_value, disp_reg, dest);
+        }
+        break;
+      }
+    case T_FLOAT :
+      if (short_disp) {
+        __ z_ste(from->as_float_reg(),  disp_value, disp_reg, dest);
+      } else {
+        __ z_stey(from->as_float_reg(), disp_value, disp_reg, dest);
+      }
+      break;
+    case T_DOUBLE:
+      if (short_disp) {
+        __ z_std(from->as_double_reg(),  disp_value, disp_reg, dest);
+      } else {
+        __ z_stdy(from->as_double_reg(), disp_value, disp_reg, dest);
+      }
+      break;
+    default: ShouldNotReachHere();
+  }
+
+  if (patch != NULL) {
+    patching_epilog(patch, patch_code, dest, info);
+  }
+
+  if (info != NULL) add_debug_info_for_null_check(offset, info);
+}
+
+
+void LIR_Assembler::return_op(LIR_Opr result) {
+  assert(result->is_illegal() ||
+         (result->is_single_cpu() && result->as_register() == Z_R2) ||
+         (result->is_double_cpu() && result->as_register_lo() == Z_R2) ||
+         (result->is_single_fpu() && result->as_float_reg() == Z_F0) ||
+         (result->is_double_fpu() && result->as_double_reg() == Z_F0), "convention");
+
+  AddressLiteral pp(os::get_polling_page());
+  __ load_const_optimized(Z_R1_scratch, pp);
+
+  // Pop the frame before the safepoint code.
+  __ pop_frame_restore_retPC(initial_frame_size_in_bytes());
+
+  if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
+    __ reserved_stack_check(Z_R14);
+  }
+
+  // We need to mark the code position where the load from the safepoint
+  // polling page was emitted as relocInfo::poll_return_type here.
+  __ relocate(relocInfo::poll_return_type);
+  __ load_from_polling_page(Z_R1_scratch);
+
+  __ z_br(Z_R14); // Return to caller.
+}
+
+int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
+  AddressLiteral pp(os::get_polling_page());
+  __ load_const_optimized(tmp->as_register_lo(), pp);
+  guarantee(info != NULL, "Shouldn't be NULL");
+  add_debug_info_for_branch(info);
+  int offset = __ offset();
+  __ relocate(relocInfo::poll_type);
+  __ load_from_polling_page(tmp->as_register_lo());
+  return offset;
+}
+
+void LIR_Assembler::emit_static_call_stub() {
+
+  // Stub is fixed up when the corresponding call is converted from calling
+  // compiled code to calling interpreted code.
+
+  address call_pc = __ pc();
+  address stub = __ start_a_stub(call_stub_size());
+  if (stub == NULL) {
+    bailout("static call stub overflow");
+    return;
+  }
+
+  int start = __ offset();
+
+  __ relocate(static_stub_Relocation::spec(call_pc));
+
+  // See also Matcher::interpreter_method_oop_reg().
+  AddressLiteral meta = __ allocate_metadata_address(NULL);
+  bool success = __ load_const_from_toc(Z_method, meta);
+
+  __ set_inst_mark();
+  AddressLiteral a((address)-1);
+  success = success && __ load_const_from_toc(Z_R1, a);
+  if (!success) {
+    bailout("const section overflow");
+    return;
+  }
+
+  __ z_br(Z_R1);
+  assert(__ offset() - start <= call_stub_size(), "stub too big");
+  __ end_a_stub(); // Update current stubs pointer and restore insts_end.
+}
+
+void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
+  bool unsigned_comp = condition == lir_cond_belowEqual || condition == lir_cond_aboveEqual;
+  if (opr1->is_single_cpu()) {
+    Register reg1 = opr1->as_register();
+    if (opr2->is_single_cpu()) {
+      // cpu register - cpu register
+      if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
+        __ z_clgr(reg1, opr2->as_register());
+      } else {
+        assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
+        if (unsigned_comp) {
+          __ z_clr(reg1, opr2->as_register());
+        } else {
+          __ z_cr(reg1, opr2->as_register());
+        }
+      }
+    } else if (opr2->is_stack()) {
+      // cpu register - stack
+      if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
+        __ z_cg(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
+      } else {
+        if (unsigned_comp) {
+          __ z_cly(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
+        } else {
+          __ z_cy(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
+        }
+      }
+    } else if (opr2->is_constant()) {
+      // cpu register - constant
+      LIR_Const* c = opr2->as_constant_ptr();
+      if (c->type() == T_INT) {
+        if (unsigned_comp) {
+          __ z_clfi(reg1, c->as_jint());
+        } else {
+          __ z_cfi(reg1, c->as_jint());
+        }
+      } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
+        // In 64bit oops are single register.
+        jobject o = c->as_jobject();
+        if (o == NULL) {
+          __ z_ltgr(reg1, reg1);
+        } else {
+          jobject2reg(o, Z_R1_scratch);
+          __ z_cgr(reg1, Z_R1_scratch);
+        }
+      } else {
+        fatal("unexpected type: %s", basictype_to_str(c->type()));
+      }
+      // cpu register - address
+    } else if (opr2->is_address()) {
+      if (op->info() != NULL) {
+        add_debug_info_for_null_check_here(op->info());
+      }
+      if (unsigned_comp) {
+        __ z_cly(reg1, as_Address(opr2->as_address_ptr()));
+      } else {
+        __ z_cy(reg1, as_Address(opr2->as_address_ptr()));
+      }
+    } else {
+      ShouldNotReachHere();
+    }
+
+  } else if (opr1->is_double_cpu()) {
+    assert(!unsigned_comp, "unexpected");
+    Register xlo = opr1->as_register_lo();
+    Register xhi = opr1->as_register_hi();
+    if (opr2->is_double_cpu()) {
+      __ z_cgr(xlo, opr2->as_register_lo());
+    } else if (opr2->is_constant()) {
+      // cpu register - constant 0
+      assert(opr2->as_jlong() == (jlong)0, "only handles zero");
+      __ z_ltgr(xlo, xlo);
+    } else {
+      ShouldNotReachHere();
+    }
+
+  } else if (opr1->is_single_fpu()) {
+    if (opr2->is_single_fpu()) {
+      __ z_cebr(opr1->as_float_reg(), opr2->as_float_reg());
+    } else {
+      // stack slot
+      Address addr = frame_map()->address_for_slot(opr2->single_stack_ix());
+      if (Immediate::is_uimm12(addr.disp())) {
+        __ z_ceb(opr1->as_float_reg(), addr);
+      } else {
+        __ z_ley(Z_fscratch_1, addr);
+        __ z_cebr(opr1->as_float_reg(), Z_fscratch_1);
+      }
+    }
+  } else if (opr1->is_double_fpu()) {
+    if (opr2->is_double_fpu()) {
+    __ z_cdbr(opr1->as_double_reg(), opr2->as_double_reg());
+    } else {
+      // stack slot
+      Address addr = frame_map()->address_for_slot(opr2->double_stack_ix());
+      if (Immediate::is_uimm12(addr.disp())) {
+        __ z_cdb(opr1->as_double_reg(), addr);
+      } else {
+        __ z_ldy(Z_fscratch_1, addr);
+        __ z_cdbr(opr1->as_double_reg(), Z_fscratch_1);
+      }
+    }
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
+  Label    done;
+  Register dreg = dst->as_register();
+
+  if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
+    assert((left->is_single_fpu() && right->is_single_fpu()) ||
+           (left->is_double_fpu() && right->is_double_fpu()), "unexpected operand types");
+    bool is_single = left->is_single_fpu();
+    bool is_unordered_less = (code == lir_ucmp_fd2i);
+    FloatRegister lreg = is_single ? left->as_float_reg() : left->as_double_reg();
+    FloatRegister rreg = is_single ? right->as_float_reg() : right->as_double_reg();
+    if (is_single) {
+      __ z_cebr(lreg, rreg);
+    } else {
+      __ z_cdbr(lreg, rreg);
+    }
+    if (VM_Version::has_LoadStoreConditional()) {
+      Register one       = Z_R0_scratch;
+      Register minus_one = Z_R1_scratch;
+      __ z_lghi(minus_one, -1);
+      __ z_lghi(one,  1);
+      __ z_lghi(dreg, 0);
+      __ z_locgr(dreg, one,       is_unordered_less ? Assembler::bcondHigh            : Assembler::bcondHighOrNotOrdered);
+      __ z_locgr(dreg, minus_one, is_unordered_less ? Assembler::bcondLowOrNotOrdered : Assembler::bcondLow);
+    } else {
+      __ clear_reg(dreg, true, false);
+      __ z_bre(done); // if (left == right) dst = 0
+
+      // if (left > right || ((code ~= cmpg) && (left <> right)) dst := 1
+      __ z_lhi(dreg, 1);
+      __ z_brc(is_unordered_less ? Assembler::bcondHigh : Assembler::bcondHighOrNotOrdered, done);
+
+      // if (left < right || ((code ~= cmpl) && (left <> right)) dst := -1
+      __ z_lhi(dreg, -1);
+    }
+  } else {
+    assert(code == lir_cmp_l2i, "check");
+    if (VM_Version::has_LoadStoreConditional()) {
+      Register one       = Z_R0_scratch;
+      Register minus_one = Z_R1_scratch;
+      __ z_cgr(left->as_register_lo(), right->as_register_lo());
+      __ z_lghi(minus_one, -1);
+      __ z_lghi(one,  1);
+      __ z_lghi(dreg, 0);
+      __ z_locgr(dreg, one, Assembler::bcondHigh);
+      __ z_locgr(dreg, minus_one, Assembler::bcondLow);
+    } else {
+      __ z_cgr(left->as_register_lo(), right->as_register_lo());
+      __ z_lghi(dreg,  0);     // eq value
+      __ z_bre(done);
+      __ z_lghi(dreg,  1);     // gt value
+      __ z_brh(done);
+      __ z_lghi(dreg, -1);     // lt value
+    }
+  }
+  __ bind(done);
+}
+
+// result = condition ? opr1 : opr2
+void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
+  Assembler::branch_condition acond = Assembler::bcondEqual, ncond = Assembler::bcondNotEqual;
+  switch (condition) {
+    case lir_cond_equal:        acond = Assembler::bcondEqual;    ncond = Assembler::bcondNotEqual; break;
+    case lir_cond_notEqual:     acond = Assembler::bcondNotEqual; ncond = Assembler::bcondEqual;    break;
+    case lir_cond_less:         acond = Assembler::bcondLow;      ncond = Assembler::bcondNotLow;   break;
+    case lir_cond_lessEqual:    acond = Assembler::bcondNotHigh;  ncond = Assembler::bcondHigh;     break;
+    case lir_cond_greaterEqual: acond = Assembler::bcondNotLow;   ncond = Assembler::bcondLow;      break;
+    case lir_cond_greater:      acond = Assembler::bcondHigh;     ncond = Assembler::bcondNotHigh;  break;
+    case lir_cond_belowEqual:   acond = Assembler::bcondNotHigh;  ncond = Assembler::bcondHigh;     break;
+    case lir_cond_aboveEqual:   acond = Assembler::bcondNotLow;   ncond = Assembler::bcondLow;      break;
+    default:                    ShouldNotReachHere();
+  }
+
+  if (opr1->is_cpu_register()) {
+    reg2reg(opr1, result);
+  } else if (opr1->is_stack()) {
+    stack2reg(opr1, result, result->type());
+  } else if (opr1->is_constant()) {
+    const2reg(opr1, result, lir_patch_none, NULL);
+  } else {
+    ShouldNotReachHere();
+  }
+
+  if (VM_Version::has_LoadStoreConditional() && !opr2->is_constant()) {
+    // Optimized version that does not require a branch.
+    if (opr2->is_single_cpu()) {
+      assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
+      __ z_locgr(result->as_register(), opr2->as_register(), ncond);
+    } else if (opr2->is_double_cpu()) {
+      assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
+      assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
+      __ z_locgr(result->as_register_lo(), opr2->as_register_lo(), ncond);
+    } else if (opr2->is_single_stack()) {
+      __ z_loc(result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()), ncond);
+    } else if (opr2->is_double_stack()) {
+      __ z_locg(result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix()), ncond);
+    } else {
+      ShouldNotReachHere();
+    }
+  } else {
+    Label skip;
+    __ z_brc(acond, skip);
+    if (opr2->is_cpu_register()) {
+      reg2reg(opr2, result);
+    } else if (opr2->is_stack()) {
+      stack2reg(opr2, result, result->type());
+    } else if (opr2->is_constant()) {
+      const2reg(opr2, result, lir_patch_none, NULL);
+    } else {
+      ShouldNotReachHere();
+    }
+    __ bind(skip);
+  }
+}
+
+void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest,
+                             CodeEmitInfo* info, bool pop_fpu_stack) {
+  assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
+
+  if (left->is_single_cpu()) {
+    assert(left == dest, "left and dest must be equal");
+    Register lreg = left->as_register();
+
+    if (right->is_single_cpu()) {
+      // cpu register - cpu register
+      Register rreg = right->as_register();
+      switch (code) {
+        case lir_add: __ z_ar (lreg, rreg); break;
+        case lir_sub: __ z_sr (lreg, rreg); break;
+        case lir_mul: __ z_msr(lreg, rreg); break;
+        default: ShouldNotReachHere();
+      }
+
+    } else if (right->is_stack()) {
+      // cpu register - stack
+      Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
+      switch (code) {
+        case lir_add: __ z_ay(lreg, raddr); break;
+        case lir_sub: __ z_sy(lreg, raddr); break;
+        default: ShouldNotReachHere();
+      }
+
+    } else if (right->is_constant()) {
+      // cpu register - constant
+      jint c = right->as_constant_ptr()->as_jint();
+      switch (code) {
+        case lir_add: __ z_agfi(lreg, c);  break;
+        case lir_sub: __ z_agfi(lreg, -c); break; // note: -min_jint == min_jint
+        case lir_mul: __ z_msfi(lreg, c);  break;
+        default: ShouldNotReachHere();
+      }
+
+    } else {
+      ShouldNotReachHere();
+    }
+
+  } else if (left->is_double_cpu()) {
+    assert(left == dest, "left and dest must be equal");
+    Register lreg_lo = left->as_register_lo();
+    Register lreg_hi = left->as_register_hi();
+
+    if (right->is_double_cpu()) {
+      // cpu register - cpu register
+      Register rreg_lo = right->as_register_lo();
+      Register rreg_hi = right->as_register_hi();
+      assert_different_registers(lreg_lo, rreg_lo);
+      switch (code) {
+        case lir_add:
+          __ z_agr(lreg_lo, rreg_lo);
+          break;
+        case lir_sub:
+          __ z_sgr(lreg_lo, rreg_lo);
+          break;
+        case lir_mul:
+          __ z_msgr(lreg_lo, rreg_lo);
+          break;
+        default:
+          ShouldNotReachHere();
+      }
+
+    } else if (right->is_constant()) {
+      // cpu register - constant
+      jlong c = right->as_constant_ptr()->as_jlong_bits();
+      switch (code) {
+        case lir_add: __ z_agfi(lreg_lo, c); break;
+        case lir_sub:
+          if (c != min_jint) {
+                      __ z_agfi(lreg_lo, -c);
+          } else {
+            // -min_jint cannot be represented as simm32 in z_agfi
+            // min_jint sign extended:      0xffffffff80000000
+            // -min_jint as 64 bit integer: 0x0000000080000000
+            // 0x80000000 can be represented as uimm32 in z_algfi
+            // lreg_lo := lreg_lo + -min_jint == lreg_lo + 0x80000000
+                      __ z_algfi(lreg_lo, UCONST64(0x80000000));
+          }
+          break;
+        case lir_mul: __ z_msgfi(lreg_lo, c); break;
+        default:
+          ShouldNotReachHere();
+      }
+
+    } else {
+      ShouldNotReachHere();
+    }
+
+  } else if (left->is_single_fpu()) {
+    assert(left == dest, "left and dest must be equal");
+    FloatRegister lreg = left->as_float_reg();
+    FloatRegister rreg = right->is_single_fpu() ? right->as_float_reg() : fnoreg;
+    Address raddr;
+
+    if (rreg == fnoreg) {
+      assert(right->is_single_stack(), "constants should be loaded into register");
+      raddr = frame_map()->address_for_slot(right->single_stack_ix());
+      if (!Immediate::is_uimm12(raddr.disp())) {
+        __ mem2freg_opt(rreg = Z_fscratch_1, raddr, false);
+      }
+    }
+
+    if (rreg != fnoreg) {
+      switch (code) {
+        case lir_add: __ z_aebr(lreg, rreg);  break;
+        case lir_sub: __ z_sebr(lreg, rreg);  break;
+        case lir_mul_strictfp: // fall through
+        case lir_mul: __ z_meebr(lreg, rreg); break;
+        case lir_div_strictfp: // fall through
+        case lir_div: __ z_debr(lreg, rreg);  break;
+        default: ShouldNotReachHere();
+      }
+    } else {
+      switch (code) {
+        case lir_add: __ z_aeb(lreg, raddr);  break;
+        case lir_sub: __ z_seb(lreg, raddr);  break;
+        case lir_mul_strictfp: // fall through
+        case lir_mul: __ z_meeb(lreg, raddr);  break;
+        case lir_div_strictfp: // fall through
+        case lir_div: __ z_deb(lreg, raddr);  break;
+        default: ShouldNotReachHere();
+      }
+    }
+  } else if (left->is_double_fpu()) {
+    assert(left == dest, "left and dest must be equal");
+    FloatRegister lreg = left->as_double_reg();
+    FloatRegister rreg = right->is_double_fpu() ? right->as_double_reg() : fnoreg;
+    Address raddr;
+
+    if (rreg == fnoreg) {
+      assert(right->is_double_stack(), "constants should be loaded into register");
+      raddr = frame_map()->address_for_slot(right->double_stack_ix());
+      if (!Immediate::is_uimm12(raddr.disp())) {
+        __ mem2freg_opt(rreg = Z_fscratch_1, raddr, true);
+      }
+    }
+
+    if (rreg != fnoreg) {
+      switch (code) {
+        case lir_add: __ z_adbr(lreg, rreg); break;
+        case lir_sub: __ z_sdbr(lreg, rreg); break;
+        case lir_mul_strictfp: // fall through
+        case lir_mul: __ z_mdbr(lreg, rreg); break;
+        case lir_div_strictfp: // fall through
+        case lir_div: __ z_ddbr(lreg, rreg); break;
+        default: ShouldNotReachHere();
+      }
+    } else {
+      switch (code) {
+        case lir_add: __ z_adb(lreg, raddr); break;
+        case lir_sub: __ z_sdb(lreg, raddr); break;
+        case lir_mul_strictfp: // fall through
+        case lir_mul: __ z_mdb(lreg, raddr); break;
+        case lir_div_strictfp: // fall through
+        case lir_div: __ z_ddb(lreg, raddr); break;
+        default: ShouldNotReachHere();
+      }
+    }
+  } else if (left->is_address()) {
+    assert(left == dest, "left and dest must be equal");
+    assert(code == lir_add, "unsupported operation");
+    assert(right->is_constant(), "unsupported operand");
+    jint c = right->as_constant_ptr()->as_jint();
+    LIR_Address* lir_addr = left->as_address_ptr();
+    Address addr = as_Address(lir_addr);
+    switch (lir_addr->type()) {
+      case T_INT:
+        __ add2mem_32(addr, c, Z_R1_scratch);
+        break;
+      case T_LONG:
+        __ add2mem_64(addr, c, Z_R1_scratch);
+        break;
+      default:
+        ShouldNotReachHere();
+    }
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+void LIR_Assembler::fpop() {
+  // do nothing
+}
+
+void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
+  switch (code) {
+    case lir_sqrt: {
+      assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
+      FloatRegister src_reg = value->as_double_reg();
+      FloatRegister dst_reg = dest->as_double_reg();
+      __ z_sqdbr(dst_reg, src_reg);
+      break;
+    }
+    case lir_abs: {
+      assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
+      FloatRegister src_reg = value->as_double_reg();
+      FloatRegister dst_reg = dest->as_double_reg();
+      __ z_lpdbr(dst_reg, src_reg);
+      break;
+    }
+    default: {
+      ShouldNotReachHere();
+      break;
+    }
+  }
+}
+
+void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
+  if (left->is_single_cpu()) {
+    Register reg = left->as_register();
+    if (right->is_constant()) {
+      int val = right->as_constant_ptr()->as_jint();
+      switch (code) {
+        case lir_logic_and: __ z_nilf(reg, val); break;
+        case lir_logic_or:  __ z_oilf(reg, val); break;
+        case lir_logic_xor: __ z_xilf(reg, val); break;
+        default: ShouldNotReachHere();
+      }
+    } else if (right->is_stack()) {
+      Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
+      switch (code) {
+        case lir_logic_and: __ z_ny(reg, raddr); break;
+        case lir_logic_or:  __ z_oy(reg, raddr); break;
+        case lir_logic_xor: __ z_xy(reg, raddr); break;
+        default: ShouldNotReachHere();
+      }
+    } else {
+      Register rright = right->as_register();
+      switch (code) {
+        case lir_logic_and: __ z_nr(reg, rright); break;
+        case lir_logic_or : __ z_or(reg, rright); break;
+        case lir_logic_xor: __ z_xr(reg, rright); break;
+        default: ShouldNotReachHere();
+      }
+    }
+    move_regs(reg, dst->as_register());
+  } else {
+    Register l_lo = left->as_register_lo();
+    if (right->is_constant()) {
+      __ load_const_optimized(Z_R1_scratch, right->as_constant_ptr()->as_jlong());
+      switch (code) {
+        case lir_logic_and:
+          __ z_ngr(l_lo, Z_R1_scratch);
+          break;
+        case lir_logic_or:
+          __ z_ogr(l_lo, Z_R1_scratch);
+          break;
+        case lir_logic_xor:
+          __ z_xgr(l_lo, Z_R1_scratch);
+          break;
+        default: ShouldNotReachHere();
+      }
+    } else {
+      Register r_lo;
+      if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
+        r_lo = right->as_register();
+      } else {
+        r_lo = right->as_register_lo();
+      }
+      switch (code) {
+        case lir_logic_and:
+          __ z_ngr(l_lo, r_lo);
+          break;
+        case lir_logic_or:
+          __ z_ogr(l_lo, r_lo);
+          break;
+        case lir_logic_xor:
+          __ z_xgr(l_lo, r_lo);
+          break;
+        default: ShouldNotReachHere();
+      }
+    }
+
+    Register dst_lo = dst->as_register_lo();
+
+    move_regs(l_lo, dst_lo);
+  }
+}
+
+// See operand selection in LIRGenerator::do_ArithmeticOp_Int().
+void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
+  if (left->is_double_cpu()) {
+    // 64 bit integer case
+    assert(left->is_double_cpu(), "left must be register");
+    assert(right->is_double_cpu() || is_power_of_2_long(right->as_jlong()),
+           "right must be register or power of 2 constant");
+    assert(result->is_double_cpu(), "result must be register");
+
+    Register lreg = left->as_register_lo();
+    Register dreg = result->as_register_lo();
+
+    if (right->is_constant()) {
+      // Convert division by a power of two into some shifts and logical operations.
+      Register treg1 = Z_R0_scratch;
+      Register treg2 = Z_R1_scratch;
+      jlong divisor = right->as_jlong();
+      jlong log_divisor = log2_long(right->as_jlong());
+
+      if (divisor == min_jlong) {
+        // Min_jlong is special. Result is '0' except for min_jlong/min_jlong = 1.
+        if (dreg == lreg) {
+          NearLabel done;
+          __ load_const_optimized(treg2, min_jlong);
+          __ z_cgr(lreg, treg2);
+          __ z_lghi(dreg, 0);           // Preserves condition code.
+          __ z_brne(done);
+          __ z_lghi(dreg, 1);           // min_jlong / min_jlong = 1
+          __ bind(done);
+        } else {
+          assert_different_registers(dreg, lreg);
+          NearLabel done;
+          __ z_lghi(dreg, 0);
+          __ compare64_and_branch(lreg, min_jlong, Assembler::bcondNotEqual, done);
+          __ z_lghi(dreg, 1);
+          __ bind(done);
+        }
+        return;
+      }
+      __ move_reg_if_needed(dreg, T_LONG, lreg, T_LONG);
+      if (divisor == 2) {
+        __ z_srlg(treg2, dreg, 63);     // dividend < 0 ? 1 : 0
+      } else {
+        __ z_srag(treg2, dreg, 63);     // dividend < 0 ? -1 : 0
+        __ and_imm(treg2, divisor - 1, treg1, true);
+      }
+      if (code == lir_idiv) {
+        __ z_agr(dreg, treg2);
+        __ z_srag(dreg, dreg, log_divisor);
+      } else {
+        assert(code == lir_irem, "check");
+        __ z_agr(treg2, dreg);
+        __ and_imm(treg2, ~(divisor - 1), treg1, true);
+        __ z_sgr(dreg, treg2);
+      }
+      return;
+    }
+
+    // Divisor is not a power of 2 constant.
+    Register rreg = right->as_register_lo();
+    Register treg = temp->as_register_lo();
+    assert(right->is_double_cpu(), "right must be register");
+    assert(lreg == Z_R11, "see ldivInOpr()");
+    assert(rreg != lreg, "right register must not be same as left register");
+    assert((code == lir_idiv && dreg == Z_R11 && treg == Z_R10) ||
+           (code == lir_irem && dreg == Z_R10 && treg == Z_R11), "see ldivInOpr(), ldivOutOpr(), lremOutOpr()");
+
+    Register R1 = lreg->predecessor();
+    Register R2 = rreg;
+    assert(code != lir_idiv || lreg==dreg, "see code below");
+    if (code == lir_idiv) {
+      __ z_lcgr(lreg, lreg);
+    } else {
+      __ clear_reg(dreg, true, false);
+    }
+    NearLabel done;
+    __ compare64_and_branch(R2, -1, Assembler::bcondEqual, done);
+    if (code == lir_idiv) {
+      __ z_lcgr(lreg, lreg); // Revert lcgr above.
+    }
+    if (ImplicitDiv0Checks) {
+      // No debug info because the idiv won't trap.
+      // Add_debug_info_for_div0 would instantiate another DivByZeroStub,
+      // which is unnecessary, too.
+      add_debug_info_for_div0(__ offset(), info);
+    }
+    __ z_dsgr(R1, R2);
+    __ bind(done);
+    return;
+  }
+
+  // 32 bit integer case
+
+  assert(left->is_single_cpu(), "left must be register");
+  assert(right->is_single_cpu() || is_power_of_2(right->as_jint()), "right must be register or power of 2 constant");
+  assert(result->is_single_cpu(), "result must be register");
+
+  Register lreg = left->as_register();
+  Register dreg = result->as_register();
+
+  if (right->is_constant()) {
+    // Convert division by a power of two into some shifts and logical operations.
+    Register treg1 = Z_R0_scratch;
+    Register treg2 = Z_R1_scratch;
+    jlong divisor = right->as_jint();
+    jlong log_divisor = log2_long(right->as_jint());
+    __ move_reg_if_needed(dreg, T_LONG, lreg, T_INT); // sign extend
+    if (divisor == 2) {
+      __ z_srlg(treg2, dreg, 63);     // dividend < 0 ?  1 : 0
+    } else {
+      __ z_srag(treg2, dreg, 63);     // dividend < 0 ? -1 : 0
+      __ and_imm(treg2, divisor - 1, treg1, true);
+    }
+    if (code == lir_idiv) {
+      __ z_agr(dreg, treg2);
+      __ z_srag(dreg, dreg, log_divisor);
+    } else {
+      assert(code == lir_irem, "check");
+      __ z_agr(treg2, dreg);
+      __ and_imm(treg2, ~(divisor - 1), treg1, true);
+      __ z_sgr(dreg, treg2);
+    }
+    return;
+  }
+
+  // Divisor is not a power of 2 constant.
+  Register rreg = right->as_register();
+  Register treg = temp->as_register();
+  assert(right->is_single_cpu(), "right must be register");
+  assert(lreg == Z_R11, "left register must be rax,");
+  assert(rreg != lreg, "right register must not be same as left register");
+  assert((code == lir_idiv && dreg == Z_R11 && treg == Z_R10)
+      || (code == lir_irem && dreg == Z_R10 && treg == Z_R11), "see divInOpr(), divOutOpr(), remOutOpr()");
+
+  Register R1 = lreg->predecessor();
+  Register R2 = rreg;
+  __ move_reg_if_needed(lreg, T_LONG, lreg, T_INT); // sign extend
+  if (ImplicitDiv0Checks) {
+    // No debug info because the idiv won't trap.
+    // Add_debug_info_for_div0 would instantiate another DivByZeroStub,
+    // which is unnecessary, too.
+    add_debug_info_for_div0(__ offset(), info);
+  }
+  __ z_dsgfr(R1, R2);
+}
+
+void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
+  assert(exceptionOop->as_register() == Z_EXC_OOP, "should match");
+  assert(exceptionPC->as_register() == Z_EXC_PC, "should match");
+
+  // Exception object is not added to oop map by LinearScan
+  // (LinearScan assumes that no oops are in fixed registers).
+  info->add_register_oop(exceptionOop);
+
+  // Reuse the debug info from the safepoint poll for the throw op itself.
+  __ get_PC(Z_EXC_PC);
+  add_call_info(__ offset(), info); // for exception handler
+  address stub = Runtime1::entry_for (compilation()->has_fpu_code() ? Runtime1::handle_exception_id
+                                                                    : Runtime1::handle_exception_nofpu_id);
+  emit_call_c(stub);
+}
+
+void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
+  assert(exceptionOop->as_register() == Z_EXC_OOP, "should match");
+
+  __ branch_optimized(Assembler::bcondAlways, _unwind_handler_entry);
+}
+
+void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
+  ciArrayKlass* default_type = op->expected_type();
+  Register src = op->src()->as_register();
+  Register dst = op->dst()->as_register();
+  Register src_pos = op->src_pos()->as_register();
+  Register dst_pos = op->dst_pos()->as_register();
+  Register length  = op->length()->as_register();
+  Register tmp = op->tmp()->as_register();
+
+  CodeStub* stub = op->stub();
+  int flags = op->flags();
+  BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
+  if (basic_type == T_ARRAY) basic_type = T_OBJECT;
+
+  // If we don't know anything, just go through the generic arraycopy.
+  if (default_type == NULL) {
+    Label done;
+    // Save outgoing arguments in callee saved registers (C convention) in case
+    // a call to System.arraycopy is needed.
+    Register callee_saved_src     = Z_R10;
+    Register callee_saved_src_pos = Z_R11;
+    Register callee_saved_dst     = Z_R12;
+    Register callee_saved_dst_pos = Z_R13;
+    Register callee_saved_length  = Z_ARG5; // Z_ARG5 == Z_R6 is callee saved.
+
+    __ lgr_if_needed(callee_saved_src, src);
+    __ lgr_if_needed(callee_saved_src_pos, src_pos);
+    __ lgr_if_needed(callee_saved_dst, dst);
+    __ lgr_if_needed(callee_saved_dst_pos, dst_pos);
+    __ lgr_if_needed(callee_saved_length, length);
+
+    // C function requires 64 bit values.
+    __ z_lgfr(src_pos, src_pos);
+    __ z_lgfr(dst_pos, dst_pos);
+    __ z_lgfr(length, length);
+
+    address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
+
+    address copyfunc_addr = StubRoutines::generic_arraycopy();
+
+    // Pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint.
+
+    // The arguments are in the corresponding registers.
+    assert(Z_ARG1 == src,     "assumption");
+    assert(Z_ARG2 == src_pos, "assumption");
+    assert(Z_ARG3 == dst,     "assumption");
+    assert(Z_ARG4 == dst_pos, "assumption");
+    assert(Z_ARG5 == length,  "assumption");
+    if (copyfunc_addr == NULL) { // Use C version if stub was not generated.
+      emit_call_c(C_entry);
+    } else {
+#ifndef PRODUCT
+      if (PrintC1Statistics) {
+        __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_generic_arraycopystub_cnt);
+        __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
+      }
+#endif
+      emit_call_c(copyfunc_addr);
+    }
+    CHECK_BAILOUT();
+
+    __ compare32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondEqual, *stub->continuation());
+
+    if (copyfunc_addr != NULL) {
+      __ z_lgr(tmp, Z_RET);
+      __ z_xilf(tmp, -1);
+    }
+
+    // Restore values from callee saved registers so they are where the stub
+    // expects them.
+    __ lgr_if_needed(src, callee_saved_src);
+    __ lgr_if_needed(src_pos, callee_saved_src_pos);
+    __ lgr_if_needed(dst, callee_saved_dst);
+    __ lgr_if_needed(dst_pos, callee_saved_dst_pos);
+    __ lgr_if_needed(length, callee_saved_length);
+
+    if (copyfunc_addr != NULL) {
+      __ z_sr(length, tmp);
+      __ z_ar(src_pos, tmp);
+      __ z_ar(dst_pos, tmp);
+    }
+    __ branch_optimized(Assembler::bcondAlways, *stub->entry());
+
+    __ bind(*stub->continuation());
+    return;
+  }
+
+  assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
+
+  int elem_size = type2aelembytes(basic_type);
+  int shift_amount;
+
+  switch (elem_size) {
+    case 1 :
+      shift_amount = 0;
+      break;
+    case 2 :
+      shift_amount = 1;
+      break;
+    case 4 :
+      shift_amount = 2;
+      break;
+    case 8 :
+      shift_amount = 3;
+      break;
+    default:
+      shift_amount = -1;
+      ShouldNotReachHere();
+  }
+
+  Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
+  Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
+  Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
+  Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
+
+  // Length and pos's are all sign extended at this point on 64bit.
+
+  // test for NULL
+  if (flags & LIR_OpArrayCopy::src_null_check) {
+    __ compareU64_and_branch(src, (intptr_t)0, Assembler::bcondZero, *stub->entry());
+  }
+  if (flags & LIR_OpArrayCopy::dst_null_check) {
+    __ compareU64_and_branch(dst, (intptr_t)0, Assembler::bcondZero, *stub->entry());
+  }
+
+  // Check if negative.
+  if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
+    __ compare32_and_branch(src_pos, (intptr_t)0, Assembler::bcondLow, *stub->entry());
+  }
+  if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
+    __ compare32_and_branch(dst_pos, (intptr_t)0, Assembler::bcondLow, *stub->entry());
+  }
+
+  // If the compiler was not able to prove that exact type of the source or the destination
+  // of the arraycopy is an array type, check at runtime if the source or the destination is
+  // an instance type.
+  if (flags & LIR_OpArrayCopy::type_check) {
+    assert(Klass::_lh_neutral_value == 0, "or replace z_lt instructions");
+
+    if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
+      __ load_klass(tmp, dst);
+      __ z_lt(tmp, Address(tmp, in_bytes(Klass::layout_helper_offset())));
+      __ branch_optimized(Assembler::bcondNotLow, *stub->entry());
+    }
+
+    if (!(flags & LIR_OpArrayCopy::src_objarray)) {
+      __ load_klass(tmp, src);
+      __ z_lt(tmp, Address(tmp, in_bytes(Klass::layout_helper_offset())));
+      __ branch_optimized(Assembler::bcondNotLow, *stub->entry());
+    }
+  }
+
+  if (flags & LIR_OpArrayCopy::src_range_check) {
+    __ z_la(tmp, Address(src_pos, length));
+    __ z_cl(tmp, src_length_addr);
+    __ branch_optimized(Assembler::bcondHigh, *stub->entry());
+  }
+  if (flags & LIR_OpArrayCopy::dst_range_check) {
+    __ z_la(tmp, Address(dst_pos, length));
+    __ z_cl(tmp, dst_length_addr);
+    __ branch_optimized(Assembler::bcondHigh, *stub->entry());
+  }
+
+  if (flags & LIR_OpArrayCopy::length_positive_check) {
+    __ z_ltr(length, length);
+    __ branch_optimized(Assembler::bcondNegative, *stub->entry());
+  }
+
+  // Stubs require 64 bit values.
+  __ z_lgfr(src_pos, src_pos); // int -> long
+  __ z_lgfr(dst_pos, dst_pos); // int -> long
+  __ z_lgfr(length, length);   // int -> long
+
+  if (flags & LIR_OpArrayCopy::type_check) {
+    // We don't know the array types are compatible.
+    if (basic_type != T_OBJECT) {
+      // Simple test for basic type arrays.
+      if (UseCompressedClassPointers) {
+        __ z_l(tmp, src_klass_addr);
+        __ z_c(tmp, dst_klass_addr);
+      } else {
+        __ z_lg(tmp, src_klass_addr);
+        __ z_cg(tmp, dst_klass_addr);
+      }
+      __ branch_optimized(Assembler::bcondNotEqual, *stub->entry());
+    } else {
+      // For object arrays, if src is a sub class of dst then we can
+      // safely do the copy.
+      NearLabel cont, slow;
+      Register src_klass = Z_R1_scratch;
+      Register dst_klass = Z_R10;
+
+      __ load_klass(src_klass, src);
+      __ load_klass(dst_klass, dst);
+
+      __ check_klass_subtype_fast_path(src_klass, dst_klass, tmp, &cont, &slow, NULL);
+
+      store_parameter(src_klass, 0); // sub
+      store_parameter(dst_klass, 1); // super
+      emit_call_c(Runtime1::entry_for (Runtime1::slow_subtype_check_id));
+      CHECK_BAILOUT();
+      // Sets condition code 0 for match (2 otherwise).
+      __ branch_optimized(Assembler::bcondEqual, cont);
+
+      __ bind(slow);
+
+      address copyfunc_addr = StubRoutines::checkcast_arraycopy();
+      if (copyfunc_addr != NULL) { // use stub if available
+        // Src is not a sub class of dst so we have to do a
+        // per-element check.
+
+        int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
+        if ((flags & mask) != mask) {
+          // Check that at least both of them object arrays.
+          assert(flags & mask, "one of the two should be known to be an object array");
+
+          if (!(flags & LIR_OpArrayCopy::src_objarray)) {
+            __ load_klass(tmp, src);
+          } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
+            __ load_klass(tmp, dst);
+          }
+          Address klass_lh_addr(tmp, Klass::layout_helper_offset());
+          jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
+          __ load_const_optimized(Z_R1_scratch, objArray_lh);
+          __ z_c(Z_R1_scratch, klass_lh_addr);
+          __ branch_optimized(Assembler::bcondNotEqual, *stub->entry());
+        }
+
+        // Save outgoing arguments in callee saved registers (C convention) in case
+        // a call to System.arraycopy is needed.
+        Register callee_saved_src     = Z_R10;
+        Register callee_saved_src_pos = Z_R11;
+        Register callee_saved_dst     = Z_R12;
+        Register callee_saved_dst_pos = Z_R13;
+        Register callee_saved_length  = Z_ARG5; // Z_ARG5 == Z_R6 is callee saved.
+
+        __ lgr_if_needed(callee_saved_src, src);
+        __ lgr_if_needed(callee_saved_src_pos, src_pos);
+        __ lgr_if_needed(callee_saved_dst, dst);
+        __ lgr_if_needed(callee_saved_dst_pos, dst_pos);
+        __ lgr_if_needed(callee_saved_length, length);
+
+        __ z_llgfr(length, length); // Higher 32bits must be null.
+
+        __ z_sllg(Z_ARG1, src_pos, shift_amount); // index -> byte offset
+        __ z_sllg(Z_ARG2, dst_pos, shift_amount); // index -> byte offset
+
+        __ z_la(Z_ARG1, Address(src, Z_ARG1, arrayOopDesc::base_offset_in_bytes(basic_type)));
+        assert_different_registers(Z_ARG1, dst, dst_pos, length);
+        __ z_la(Z_ARG2, Address(dst, Z_ARG2, arrayOopDesc::base_offset_in_bytes(basic_type)));
+        assert_different_registers(Z_ARG2, dst, length);
+
+        __ z_lgr(Z_ARG3, length);
+        assert_different_registers(Z_ARG3, dst);
+
+        __ load_klass(Z_ARG5, dst);
+        __ z_lg(Z_ARG5, Address(Z_ARG5, ObjArrayKlass::element_klass_offset()));
+        __ z_lg(Z_ARG4, Address(Z_ARG5, Klass::super_check_offset_offset()));
+        emit_call_c(copyfunc_addr);
+        CHECK_BAILOUT();
+
+#ifndef PRODUCT
+        if (PrintC1Statistics) {
+          NearLabel failed;
+          __ compareU32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondNotEqual, failed);
+          __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_checkcast_cnt);
+          __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
+          __ bind(failed);
+        }
+#endif
+
+        __ compareU32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondEqual, *stub->continuation());
+
+#ifndef PRODUCT
+        if (PrintC1Statistics) {
+          __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_checkcast_attempt_cnt);
+          __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
+        }
+#endif
+
+        __ z_lgr(tmp, Z_RET);
+        __ z_xilf(tmp, -1);
+
+        // Restore previously spilled arguments
+        __ lgr_if_needed(src, callee_saved_src);
+        __ lgr_if_needed(src_pos, callee_saved_src_pos);
+        __ lgr_if_needed(dst, callee_saved_dst);
+        __ lgr_if_needed(dst_pos, callee_saved_dst_pos);
+        __ lgr_if_needed(length, callee_saved_length);
+
+        __ z_sr(length, tmp);
+        __ z_ar(src_pos, tmp);
+        __ z_ar(dst_pos, tmp);
+      }
+
+      __ branch_optimized(Assembler::bcondAlways, *stub->entry());
+
+      __ bind(cont);
+    }
+  }
+
+#ifdef ASSERT
+  if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
+    // Sanity check the known type with the incoming class. For the
+    // primitive case the types must match exactly with src.klass and
+    // dst.klass each exactly matching the default type. For the
+    // object array case, if no type check is needed then either the
+    // dst type is exactly the expected type and the src type is a
+    // subtype which we can't check or src is the same array as dst
+    // but not necessarily exactly of type default_type.
+    NearLabel known_ok, halt;
+    metadata2reg(default_type->constant_encoding(), tmp);
+    if (UseCompressedClassPointers) {
+      __ encode_klass_not_null(tmp);
+    }
+
+    if (basic_type != T_OBJECT) {
+      if (UseCompressedClassPointers)         { __ z_c (tmp, dst_klass_addr); }
+      else                                    { __ z_cg(tmp, dst_klass_addr); }
+      __ branch_optimized(Assembler::bcondNotEqual, halt);
+      if (UseCompressedClassPointers)         { __ z_c (tmp, src_klass_addr); }
+      else                                    { __ z_cg(tmp, src_klass_addr); }
+      __ branch_optimized(Assembler::bcondEqual, known_ok);
+    } else {
+      if (UseCompressedClassPointers)         { __ z_c (tmp, dst_klass_addr); }
+      else                                    { __ z_cg(tmp, dst_klass_addr); }
+      __ branch_optimized(Assembler::bcondEqual, known_ok);
+      __ compareU64_and_branch(src, dst, Assembler::bcondEqual, known_ok);
+    }
+    __ bind(halt);
+    __ stop("incorrect type information in arraycopy");
+    __ bind(known_ok);
+  }
+#endif
+
+#ifndef PRODUCT
+  if (PrintC1Statistics) {
+    __ load_const_optimized(Z_R1_scratch, Runtime1::arraycopy_count_address(basic_type));
+    __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
+  }
+#endif
+
+  __ z_sllg(tmp, src_pos, shift_amount); // index -> byte offset
+  __ z_sllg(Z_R1_scratch, dst_pos, shift_amount); // index -> byte offset
+
+  assert_different_registers(Z_ARG1, dst, dst_pos, length);
+  __ z_la(Z_ARG1, Address(src, tmp, arrayOopDesc::base_offset_in_bytes(basic_type)));
+  assert_different_registers(Z_ARG2, length);
+  __ z_la(Z_ARG2, Address(dst, Z_R1_scratch, arrayOopDesc::base_offset_in_bytes(basic_type)));
+  __ lgr_if_needed(Z_ARG3, length);
+
+  bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
+  bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
+  const char *name;
+  address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
+  __ call_VM_leaf(entry);
+
+  __ bind(*stub->continuation());
+}
+
+void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
+  if (dest->is_single_cpu()) {
+    if (left->type() == T_OBJECT) {
+      switch (code) {
+        case lir_shl:  __ z_sllg (dest->as_register(), left->as_register(), 0, count->as_register()); break;
+        case lir_shr:  __ z_srag (dest->as_register(), left->as_register(), 0, count->as_register()); break;
+        case lir_ushr: __ z_srlg (dest->as_register(), left->as_register(), 0, count->as_register()); break;
+        default: ShouldNotReachHere();
+      }
+    } else {
+      assert(code == lir_shl || left == dest, "left and dest must be equal for 2 operand form right shifts");
+      Register masked_count = Z_R1_scratch;
+      __ z_lr(masked_count, count->as_register());
+      __ z_nill(masked_count, 31);
+      switch (code) {
+        case lir_shl:  __ z_sllg (dest->as_register(), left->as_register(), 0, masked_count); break;
+        case lir_shr:  __ z_sra  (dest->as_register(), 0, masked_count); break;
+        case lir_ushr: __ z_srl  (dest->as_register(), 0, masked_count); break;
+        default: ShouldNotReachHere();
+      }
+    }
+  } else {
+    switch (code) {
+      case lir_shl:  __ z_sllg (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break;
+      case lir_shr:  __ z_srag (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break;
+      case lir_ushr: __ z_srlg (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break;
+      default: ShouldNotReachHere();
+    }
+  }
+}
+
+void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
+  if (left->type() == T_OBJECT) {
+    count = count & 63;  // Shouldn't shift by more than sizeof(intptr_t).
+    Register l = left->as_register();
+    Register d = dest->as_register_lo();
+    switch (code) {
+      case lir_shl:  __ z_sllg (d, l, count); break;
+      case lir_shr:  __ z_srag (d, l, count); break;
+      case lir_ushr: __ z_srlg (d, l, count); break;
+      default: ShouldNotReachHere();
+    }
+    return;
+  }
+  if (dest->is_single_cpu()) {
+    assert(code == lir_shl || left == dest, "left and dest must be equal for 2 operand form right shifts");
+    count = count & 0x1F; // Java spec
+    switch (code) {
+      case lir_shl:  __ z_sllg (dest->as_register(), left->as_register(), count); break;
+      case lir_shr:  __ z_sra  (dest->as_register(), count); break;
+      case lir_ushr: __ z_srl  (dest->as_register(), count); break;
+      default: ShouldNotReachHere();
+    }
+  } else if (dest->is_double_cpu()) {
+    count = count & 63; // Java spec
+    Register l = left->as_pointer_register();
+    Register d = dest->as_pointer_register();
+    switch (code) {
+      case lir_shl:  __ z_sllg (d, l, count); break;
+      case lir_shr:  __ z_srag (d, l, count); break;
+      case lir_ushr: __ z_srlg (d, l, count); break;
+      default: ShouldNotReachHere();
+    }
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
+  if (op->init_check()) {
+    // Make sure klass is initialized & doesn't have finalizer.
+    const int state_offset = in_bytes(InstanceKlass::init_state_offset());
+    Register iklass = op->klass()->as_register();
+    add_debug_info_for_null_check_here(op->stub()->info());
+    if (Immediate::is_uimm12(state_offset)) {
+      __ z_cli(state_offset, iklass, InstanceKlass::fully_initialized);
+    } else {
+      __ z_cliy(state_offset, iklass, InstanceKlass::fully_initialized);
+    }
+    __ branch_optimized(Assembler::bcondNotEqual, *op->stub()->entry()); // Use long branch, because slow_case might be far.
+  }
+  __ allocate_object(op->obj()->as_register(),
+                     op->tmp1()->as_register(),
+                     op->tmp2()->as_register(),
+                     op->header_size(),
+                     op->object_size(),
+                     op->klass()->as_register(),
+                     *op->stub()->entry());
+  __ bind(*op->stub()->continuation());
+  __ verify_oop(op->obj()->as_register());
+}
+
+void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
+  Register len = op->len()->as_register();
+  __ move_reg_if_needed(len, T_LONG, len, T_INT); // sign extend
+
+  if (UseSlowPath ||
+      (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
+      (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
+    __ z_brul(*op->stub()->entry());
+  } else {
+    __ allocate_array(op->obj()->as_register(),
+                      op->len()->as_register(),
+                      op->tmp1()->as_register(),
+                      op->tmp2()->as_register(),
+                      arrayOopDesc::header_size(op->type()),
+                      type2aelembytes(op->type()),
+                      op->klass()->as_register(),
+                      *op->stub()->entry());
+  }
+  __ bind(*op->stub()->continuation());
+}
+
+void LIR_Assembler::type_profile_helper(Register mdo, ciMethodData *md, ciProfileData *data,
+                                        Register recv, Register tmp1, Label* update_done) {
+  uint i;
+  for (i = 0; i < VirtualCallData::row_limit(); i++) {
+    Label next_test;
+    // See if the receiver is receiver[n].
+    Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
+    __ z_cg(recv, receiver_addr);
+    __ z_brne(next_test);
+    Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
+    __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1);
+    __ branch_optimized(Assembler::bcondAlways, *update_done);
+    __ bind(next_test);
+  }
+
+  // Didn't find receiver; find next empty slot and fill it in.
+  for (i = 0; i < VirtualCallData::row_limit(); i++) {
+    Label next_test;
+    Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
+    __ z_ltg(Z_R0_scratch, recv_addr);
+    __ z_brne(next_test);
+    __ z_stg(recv, recv_addr);
+    __ load_const_optimized(tmp1, DataLayout::counter_increment);
+    __ z_stg(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)), mdo);
+    __ branch_optimized(Assembler::bcondAlways, *update_done);
+    __ bind(next_test);
+  }
+}
+
+void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
+                                    ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
+  Unimplemented();
+}
+
+void LIR_Assembler::store_parameter(Register r, int param_num) {
+  assert(param_num >= 0, "invalid num");
+  int offset_in_bytes = param_num * BytesPerWord + FrameMap::first_available_sp_in_frame;
+  assert(offset_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
+  __ z_stg(r, offset_in_bytes, Z_SP);
+}
+
+void LIR_Assembler::store_parameter(jint c, int param_num) {
+  assert(param_num >= 0, "invalid num");
+  int offset_in_bytes = param_num * BytesPerWord + FrameMap::first_available_sp_in_frame;
+  assert(offset_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
+  __ store_const(Address(Z_SP, offset_in_bytes), c, Z_R1_scratch, true);
+}
+
+void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
+  // We always need a stub for the failure case.
+  CodeStub* stub = op->stub();
+  Register obj = op->object()->as_register();
+  Register k_RInfo = op->tmp1()->as_register();
+  Register klass_RInfo = op->tmp2()->as_register();
+  Register dst = op->result_opr()->as_register();
+  Register Rtmp1 = Z_R1_scratch;
+  ciKlass* k = op->klass();
+
+  assert(!op->tmp3()->is_valid(), "tmp3's not needed");
+
+  // Check if it needs to be profiled.
+  ciMethodData* md = NULL;
+  ciProfileData* data = NULL;
+
+  if (op->should_profile()) {
+    ciMethod* method = op->profiled_method();
+    assert(method != NULL, "Should have method");
+    int bci = op->profiled_bci();
+    md = method->method_data_or_null();
+    assert(md != NULL, "Sanity");
+    data = md->bci_to_data(bci);
+    assert(data != NULL,                "need data for type check");
+    assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
+  }
+
+  // Temp operands do not overlap with inputs, if this is their last
+  // use (end of range is exclusive), so a register conflict is possible.
+  if (obj == k_RInfo) {
+    k_RInfo = dst;
+  } else if (obj == klass_RInfo) {
+    klass_RInfo = dst;
+  }
+  assert_different_registers(obj, k_RInfo, klass_RInfo);
+
+  if (op->should_profile()) {
+    NearLabel not_null;
+    __ compareU64_and_branch(obj, (intptr_t) 0, Assembler::bcondNotEqual, not_null);
+    // Object is null; update MDO and exit.
+    Register mdo = klass_RInfo;
+    metadata2reg(md->constant_encoding(), mdo);
+    Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
+    int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
+    __ or2mem_8(data_addr, header_bits);
+    __ branch_optimized(Assembler::bcondAlways, *obj_is_null);
+    __ bind(not_null);
+  } else {
+    __ compareU64_and_branch(obj, (intptr_t) 0, Assembler::bcondEqual, *obj_is_null);
+  }
+
+  NearLabel profile_cast_failure, profile_cast_success;
+  Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
+  Label *success_target = op->should_profile() ? &profile_cast_success : success;
+
+  // Patching may screw with our temporaries on sparc,
+  // so let's do it before loading the class.
+  if (k->is_loaded()) {
+    metadata2reg(k->constant_encoding(), k_RInfo);
+  } else {
+    klass2reg_with_patching(k_RInfo, op->info_for_patch());
+  }
+  assert(obj != k_RInfo, "must be different");
+
+  __ verify_oop(obj);
+
+  // Get object class.
+  // Not a safepoint as obj null check happens earlier.
+  if (op->fast_check()) {
+    if (UseCompressedClassPointers) {
+      __ load_klass(klass_RInfo, obj);
+      __ compareU64_and_branch(k_RInfo, klass_RInfo, Assembler::bcondNotEqual, *failure_target);
+    } else {
+      __ z_cg(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
+      __ branch_optimized(Assembler::bcondNotEqual, *failure_target);
+    }
+    // Successful cast, fall through to profile or jump.
+  } else {
+    bool need_slow_path = !k->is_loaded() ||
+                          ((int) k->super_check_offset() == in_bytes(Klass::secondary_super_cache_offset()));
+    intptr_t super_check_offset = k->is_loaded() ? k->super_check_offset() : -1L;
+    __ load_klass(klass_RInfo, obj);
+    // Perform the fast part of the checking logic.
+    __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1,
+                                     (need_slow_path ? success_target : NULL),
+                                     failure_target, NULL,
+                                     RegisterOrConstant(super_check_offset));
+    if (need_slow_path) {
+      // Call out-of-line instance of __ check_klass_subtype_slow_path(...):
+      address a = Runtime1::entry_for (Runtime1::slow_subtype_check_id);
+      store_parameter(klass_RInfo, 0); // sub
+      store_parameter(k_RInfo, 1);     // super
+      emit_call_c(a); // Sets condition code 0 for match (2 otherwise).
+      CHECK_BAILOUT();
+      __ branch_optimized(Assembler::bcondNotEqual, *failure_target);
+      // Fall through to success case.
+    }
+  }
+
+  if (op->should_profile()) {
+    Register mdo = klass_RInfo, recv = k_RInfo;
+    assert_different_registers(obj, mdo, recv);
+    __ bind(profile_cast_success);
+    metadata2reg(md->constant_encoding(), mdo);
+    __ load_klass(recv, obj);
+    type_profile_helper(mdo, md, data, recv, Rtmp1, success);
+    __ branch_optimized(Assembler::bcondAlways, *success);
+
+    __ bind(profile_cast_failure);
+    metadata2reg(md->constant_encoding(), mdo);
+    __ add2mem_64(Address(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())), -(int)DataLayout::counter_increment, Rtmp1);
+    __ branch_optimized(Assembler::bcondAlways, *failure);
+  } else {
+    __ branch_optimized(Assembler::bcondAlways, *success);
+  }
+}
+
+void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
+  LIR_Code code = op->code();
+  if (code == lir_store_check) {
+    Register value = op->object()->as_register();
+    Register array = op->array()->as_register();
+    Register k_RInfo = op->tmp1()->as_register();
+    Register klass_RInfo = op->tmp2()->as_register();
+    Register Rtmp1 = Z_R1_scratch;
+
+    CodeStub* stub = op->stub();
+
+    // Check if it needs to be profiled.
+    ciMethodData* md = NULL;
+    ciProfileData* data = NULL;
+
+    assert_different_registers(value, k_RInfo, klass_RInfo);
+
+    if (op->should_profile()) {
+      ciMethod* method = op->profiled_method();
+      assert(method != NULL, "Should have method");
+      int bci = op->profiled_bci();
+      md = method->method_data_or_null();
+      assert(md != NULL, "Sanity");
+      data = md->bci_to_data(bci);
+      assert(data != NULL,                "need data for type check");
+      assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
+    }
+    NearLabel profile_cast_success, profile_cast_failure, done;
+    Label *success_target = op->should_profile() ? &profile_cast_success : &done;
+    Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
+
+    if (op->should_profile()) {
+      NearLabel not_null;
+      __ compareU64_and_branch(value, (intptr_t) 0, Assembler::bcondNotEqual, not_null);
+      // Object is null; update MDO and exit.
+      Register mdo = klass_RInfo;
+      metadata2reg(md->constant_encoding(), mdo);
+      Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
+      int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
+      __ or2mem_8(data_addr, header_bits);
+      __ branch_optimized(Assembler::bcondAlways, done);
+      __ bind(not_null);
+    } else {
+      __ compareU64_and_branch(value, (intptr_t) 0, Assembler::bcondEqual, done);
+    }
+
+    add_debug_info_for_null_check_here(op->info_for_exception());
+    __ load_klass(k_RInfo, array);
+    __ load_klass(klass_RInfo, value);
+
+    // Get instance klass (it's already uncompressed).
+    __ z_lg(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
+    // Perform the fast part of the checking logic.
+    __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
+    // Call out-of-line instance of __ check_klass_subtype_slow_path(...):
+    address a = Runtime1::entry_for (Runtime1::slow_subtype_check_id);
+    store_parameter(klass_RInfo, 0); // sub
+    store_parameter(k_RInfo, 1);     // super
+    emit_call_c(a); // Sets condition code 0 for match (2 otherwise).
+    CHECK_BAILOUT();
+    __ branch_optimized(Assembler::bcondNotEqual, *failure_target);
+    // Fall through to success case.
+
+    if (op->should_profile()) {
+      Register mdo = klass_RInfo, recv = k_RInfo;
+      assert_different_registers(value, mdo, recv);
+      __ bind(profile_cast_success);
+      metadata2reg(md->constant_encoding(), mdo);
+      __ load_klass(recv, value);
+      type_profile_helper(mdo, md, data, recv, Rtmp1, &done);
+      __ branch_optimized(Assembler::bcondAlways, done);
+
+      __ bind(profile_cast_failure);
+      metadata2reg(md->constant_encoding(), mdo);
+      __ add2mem_64(Address(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())), -(int)DataLayout::counter_increment, Rtmp1);
+      __ branch_optimized(Assembler::bcondAlways, *stub->entry());
+    }
+
+    __ bind(done);
+  } else {
+    if (code == lir_checkcast) {
+      Register obj = op->object()->as_register();
+      Register dst = op->result_opr()->as_register();
+      NearLabel success;
+      emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
+      __ bind(success);
+      __ lgr_if_needed(dst, obj);
+    } else {
+      if (code == lir_instanceof) {
+        Register obj = op->object()->as_register();
+        Register dst = op->result_opr()->as_register();
+        NearLabel success, failure, done;
+        emit_typecheck_helper(op, &success, &failure, &failure);
+        __ bind(failure);
+        __ clear_reg(dst);
+        __ branch_optimized(Assembler::bcondAlways, done);
+        __ bind(success);
+        __ load_const_optimized(dst, 1);
+        __ bind(done);
+      } else {
+        ShouldNotReachHere();
+      }
+    }
+  }
+}
+
+void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
+  Register addr = op->addr()->as_pointer_register();
+  Register t1_cmp = Z_R1_scratch;
+  if (op->code() == lir_cas_long) {
+    assert(VM_Version::supports_cx8(), "wrong machine");
+    Register cmp_value_lo = op->cmp_value()->as_register_lo();
+    Register new_value_lo = op->new_value()->as_register_lo();
+    __ z_lgr(t1_cmp, cmp_value_lo);
+    // Perform the compare and swap operation.
+    __ z_csg(t1_cmp, new_value_lo, 0, addr);
+  } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
+    Register cmp_value = op->cmp_value()->as_register();
+    Register new_value = op->new_value()->as_register();
+    if (op->code() == lir_cas_obj) {
+      if (UseCompressedOops) {
+                 t1_cmp = op->tmp1()->as_register();
+        Register t2_new = op->tmp2()->as_register();
+        assert_different_registers(cmp_value, new_value, addr, t1_cmp, t2_new);
+        __ oop_encoder(t1_cmp, cmp_value, true /*maybe null*/);
+        __ oop_encoder(t2_new, new_value, true /*maybe null*/);
+        __ z_cs(t1_cmp, t2_new, 0, addr);
+      } else {
+        __ z_lgr(t1_cmp, cmp_value);
+        __ z_csg(t1_cmp, new_value, 0, addr);
+      }
+    } else {
+      __ z_lr(t1_cmp, cmp_value);
+      __ z_cs(t1_cmp, new_value, 0, addr);
+    }
+  } else {
+    ShouldNotReachHere(); // new lir_cas_??
+  }
+}
+
+void LIR_Assembler::set_24bit_FPU() {
+  ShouldNotCallThis(); // x86 only
+}
+
+void LIR_Assembler::reset_FPU() {
+  ShouldNotCallThis(); // x86 only
+}
+
+void LIR_Assembler::breakpoint() {
+  Unimplemented();
+  //  __ breakpoint_trap();
+}
+
+void LIR_Assembler::push(LIR_Opr opr) {
+  ShouldNotCallThis(); // unused
+}
+
+void LIR_Assembler::pop(LIR_Opr opr) {
+  ShouldNotCallThis(); // unused
+}
+
+void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
+  Address addr = frame_map()->address_for_monitor_lock(monitor_no);
+  __ add2reg(dst_opr->as_register(), addr.disp(), addr.base());
+}
+
+void LIR_Assembler::emit_lock(LIR_OpLock* op) {
+  Register obj = op->obj_opr()->as_register();  // May not be an oop.
+  Register hdr = op->hdr_opr()->as_register();
+  Register lock = op->lock_opr()->as_register();
+  if (!UseFastLocking) {
+    __ branch_optimized(Assembler::bcondAlways, *op->stub()->entry());
+  } else if (op->code() == lir_lock) {
+    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
+    // Add debug info for NullPointerException only if one is possible.
+    if (op->info() != NULL) {
+      add_debug_info_for_null_check_here(op->info());
+    }
+    __ lock_object(hdr, obj, lock, *op->stub()->entry());
+    // done
+  } else if (op->code() == lir_unlock) {
+    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
+    __ unlock_object(hdr, obj, lock, *op->stub()->entry());
+  } else {
+    ShouldNotReachHere();
+  }
+  __ bind(*op->stub()->continuation());
+}
+
+void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
+  ciMethod* method = op->profiled_method();
+  int bci          = op->profiled_bci();
+  ciMethod* callee = op->profiled_callee();
+
+  // Update counter for all call types.
+  ciMethodData* md = method->method_data_or_null();
+  assert(md != NULL, "Sanity");
+  ciProfileData* data = md->bci_to_data(bci);
+  assert(data->is_CounterData(), "need CounterData for calls");
+  assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
+  Register mdo  = op->mdo()->as_register();
+  assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
+  Register tmp1 = op->tmp1()->as_register_lo();
+  metadata2reg(md->constant_encoding(), mdo);
+
+  Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
+  Bytecodes::Code bc = method->java_code_at_bci(bci);
+  const bool callee_is_static = callee->is_loaded() && callee->is_static();
+  // Perform additional virtual call profiling for invokevirtual and
+  // invokeinterface bytecodes.
+  if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
+      !callee_is_static &&  // Required for optimized MH invokes.
+      C1ProfileVirtualCalls) {
+    assert(op->recv()->is_single_cpu(), "recv must be allocated");
+    Register recv = op->recv()->as_register();
+    assert_different_registers(mdo, tmp1, recv);
+    assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
+    ciKlass* known_klass = op->known_holder();
+    if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
+      // We know the type that will be seen at this call site; we can
+      // statically update the MethodData* rather than needing to do
+      // dynamic tests on the receiver type.
+
+      // NOTE: we should probably put a lock around this search to
+      // avoid collisions by concurrent compilations.
+      ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
+      uint i;
+      for (i = 0; i < VirtualCallData::row_limit(); i++) {
+        ciKlass* receiver = vc_data->receiver(i);
+        if (known_klass->equals(receiver)) {
+          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
+          __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1);
+          return;
+        }
+      }
+
+      // Receiver type not found in profile data. Select an empty slot.
+
+      // Note that this is less efficient than it should be because it
+      // always does a write to the receiver part of the
+      // VirtualCallData rather than just the first time.
+      for (i = 0; i < VirtualCallData::row_limit(); i++) {
+        ciKlass* receiver = vc_data->receiver(i);
+        if (receiver == NULL) {
+          Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
+          metadata2reg(known_klass->constant_encoding(), tmp1);
+          __ z_stg(tmp1, recv_addr);
+          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
+          __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1);
+          return;
+        }
+      }
+    } else {
+      __ load_klass(recv, recv);
+      NearLabel update_done;
+      type_profile_helper(mdo, md, data, recv, tmp1, &update_done);
+      // Receiver did not match any saved receiver and there is no empty row for it.
+      // Increment total counter to indicate polymorphic case.
+      __ add2mem_64(counter_addr, DataLayout::counter_increment, tmp1);
+      __ bind(update_done);
+    }
+  } else {
+    // static call
+    __ add2mem_64(counter_addr, DataLayout::counter_increment, tmp1);
+  }
+}
+
+void LIR_Assembler::align_backward_branch_target() {
+  __ align(OptoLoopAlignment);
+}
+
+void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
+  ShouldNotCallThis(); // There are no delay slots on ZARCH_64.
+}
+
+void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
+  assert(left->is_register(), "can only handle registers");
+
+  if (left->is_single_cpu()) {
+    __ z_lcr(dest->as_register(), left->as_register());
+  } else if (left->is_single_fpu()) {
+    __ z_lcebr(dest->as_float_reg(), left->as_float_reg());
+  } else if (left->is_double_fpu()) {
+    __ z_lcdbr(dest->as_double_reg(), left->as_double_reg());
+  } else {
+    assert(left->is_double_cpu(), "Must be a long");
+    __ z_lcgr(dest->as_register_lo(), left->as_register_lo());
+  }
+}
+
+void LIR_Assembler::fxch(int i) {
+  ShouldNotCallThis(); // x86 only
+}
+
+void LIR_Assembler::fld(int i) {
+  ShouldNotCallThis(); // x86 only
+}
+
+void LIR_Assembler::ffree(int i) {
+  ShouldNotCallThis(); // x86 only
+}
+
+void LIR_Assembler::rt_call(LIR_Opr result, address dest,
+                            const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
+  assert(!tmp->is_valid(), "don't need temporary");
+  emit_call_c(dest);
+  CHECK_BAILOUT();
+  if (info != NULL) {
+    add_call_info_here(info);
+  }
+}
+
+void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
+  ShouldNotCallThis(); // not needed on ZARCH_64
+}
+
+void LIR_Assembler::membar() {
+  __ z_fence();
+}
+
+void LIR_Assembler::membar_acquire() {
+  __ z_acquire();
+}
+
+void LIR_Assembler::membar_release() {
+  __ z_release();
+}
+
+void LIR_Assembler::membar_loadload() {
+  __ z_acquire();
+}
+
+void LIR_Assembler::membar_storestore() {
+  __ z_release();
+}
+
+void LIR_Assembler::membar_loadstore() {
+  __ z_acquire();
+}
+
+void LIR_Assembler::membar_storeload() {
+  __ z_fence();
+}
+
+void LIR_Assembler::on_spin_wait() {
+  Unimplemented();
+}
+
+void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
+  LIR_Address* addr = addr_opr->as_address_ptr();
+  assert(addr->scale() == LIR_Address::times_1, "scaling unsupported");
+  __ load_address(dest->as_pointer_register(), as_Address(addr));
+}
+
+void LIR_Assembler::get_thread(LIR_Opr result_reg) {
+  ShouldNotCallThis(); // unused
+}
+
+#ifdef ASSERT
+// Emit run-time assertion.
+void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
+  Unimplemented();
+}
+#endif
+
+void LIR_Assembler::peephole(LIR_List*) {
+  // Do nothing for now.
+}
+
+void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
+  assert(code == lir_xadd, "lir_xchg not supported");
+  Address src_addr = as_Address(src->as_address_ptr());
+  Register base = src_addr.base();
+  intptr_t disp = src_addr.disp();
+  if (src_addr.index()->is_valid()) {
+    // LAA and LAAG do not support index register.
+    __ load_address(Z_R1_scratch, src_addr);
+    base = Z_R1_scratch;
+    disp = 0;
+  }
+  if (data->type() == T_INT) {
+    __ z_laa(dest->as_register(), data->as_register(), disp, base);
+  } else if (data->type() == T_LONG) {
+    assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
+    __ z_laag(dest->as_register_lo(), data->as_register_lo(), disp, base);
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
+  Register obj = op->obj()->as_register();
+  Register tmp1 = op->tmp()->as_pointer_register();
+  Register tmp2 = Z_R1_scratch;
+  Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
+  ciKlass* exact_klass = op->exact_klass();
+  intptr_t current_klass = op->current_klass();
+  bool not_null = op->not_null();
+  bool no_conflict = op->no_conflict();
+
+  Label update, next, none, null_seen, init_klass;
+
+  bool do_null = !not_null;
+  bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
+  bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
+
+  assert(do_null || do_update, "why are we here?");
+  assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
+
+  __ verify_oop(obj);
+
+  if (do_null || tmp1 != obj DEBUG_ONLY(|| true)) {
+    __ z_ltgr(tmp1, obj);
+  }
+  if (do_null) {
+    __ z_brnz(update);
+    if (!TypeEntries::was_null_seen(current_klass)) {
+      __ z_lg(tmp1, mdo_addr);
+      __ z_oill(tmp1, TypeEntries::null_seen);
+      __ z_stg(tmp1, mdo_addr);
+    }
+    if (do_update) {
+      __ z_bru(next);
+    }
+  } else {
+    __ asm_assert_ne("unexpect null obj", __LINE__);
+  }
+
+  __ bind(update);
+
+  if (do_update) {
+#ifdef ASSERT
+    if (exact_klass != NULL) {
+      __ load_klass(tmp1, tmp1);
+      metadata2reg(exact_klass->constant_encoding(), tmp2);
+      __ z_cgr(tmp1, tmp2);
+      __ asm_assert_eq("exact klass and actual klass differ", __LINE__);
+    }
+#endif
+
+    Label do_update;
+    __ z_lg(tmp2, mdo_addr);
+
+    if (!no_conflict) {
+      if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
+        if (exact_klass != NULL) {
+          metadata2reg(exact_klass->constant_encoding(), tmp1);
+        } else {
+          __ load_klass(tmp1, tmp1);
+        }
+
+        // Klass seen before: nothing to do (regardless of unknown bit).
+        __ z_lgr(Z_R0_scratch, tmp2);
+        assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction");
+        __ z_nill(Z_R0_scratch, TypeEntries::type_klass_mask & 0xFFFF);
+        __ compareU64_and_branch(Z_R0_scratch, tmp1, Assembler::bcondEqual, next);
+
+        // Already unknown: Nothing to do anymore.
+        __ z_tmll(tmp2, TypeEntries::type_unknown);
+        __ z_brc(Assembler::bcondAllOne, next);
+
+        if (TypeEntries::is_type_none(current_klass)) {
+          __ z_lgr(Z_R0_scratch, tmp2);
+          assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction");
+          __ z_nill(Z_R0_scratch, TypeEntries::type_mask & 0xFFFF);
+          __ compareU64_and_branch(Z_R0_scratch, (intptr_t)0, Assembler::bcondEqual, init_klass);
+        }
+      } else {
+        assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
+               ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
+
+        // Already unknown: Nothing to do anymore.
+        __ z_tmll(tmp2, TypeEntries::type_unknown);
+        __ z_brc(Assembler::bcondAllOne, next);
+      }
+
+      // Different than before. Cannot keep accurate profile.
+      __ z_oill(tmp2, TypeEntries::type_unknown);
+      __ z_bru(do_update);
+    } else {
+      // There's a single possible klass at this profile point.
+      assert(exact_klass != NULL, "should be");
+      if (TypeEntries::is_type_none(current_klass)) {
+        metadata2reg(exact_klass->constant_encoding(), tmp1);
+        __ z_lgr(Z_R0_scratch, tmp2);
+        assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction");
+        __ z_nill(Z_R0_scratch, TypeEntries::type_klass_mask & 0xFFFF);
+        __ compareU64_and_branch(Z_R0_scratch, tmp1, Assembler::bcondEqual, next);
+#ifdef ASSERT
+        {
+          Label ok;
+          __ z_lgr(Z_R0_scratch, tmp2);
+          assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction");
+          __ z_nill(Z_R0_scratch, TypeEntries::type_mask & 0xFFFF);
+          __ compareU64_and_branch(Z_R0_scratch, (intptr_t)0, Assembler::bcondEqual, ok);
+          __ stop("unexpected profiling mismatch");
+          __ bind(ok);
+        }
+#endif
+
+      } else {
+        assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
+               ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
+
+        // Already unknown: Nothing to do anymore.
+        __ z_tmll(tmp2, TypeEntries::type_unknown);
+        __ z_brc(Assembler::bcondAllOne, next);
+        __ z_oill(tmp2, TypeEntries::type_unknown);
+        __ z_bru(do_update);
+      }
+    }
+
+    __ bind(init_klass);
+    // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
+    __ z_ogr(tmp2, tmp1);
+
+    __ bind(do_update);
+    __ z_stg(tmp2, mdo_addr);
+
+    __ bind(next);
+  }
+}
+
+void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
+  assert(op->crc()->is_single_cpu(), "crc must be register");
+  assert(op->val()->is_single_cpu(), "byte value must be register");
+  assert(op->result_opr()->is_single_cpu(), "result must be register");
+  Register crc = op->crc()->as_register();
+  Register val = op->val()->as_register();
+  Register res = op->result_opr()->as_register();
+
+  assert_different_registers(val, crc, res);
+
+  __ load_const_optimized(res, StubRoutines::crc_table_addr());
+  __ kernel_crc32_singleByteReg(crc, val, res, true);
+  __ z_lgfr(res, crc);
+}
+
+#undef __