--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/cpu/ppc/c1_LIRAssembler_ppc.cpp Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,3225 @@
+/*
+ * Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2012, 2017, SAP SE. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "c1/c1_Compilation.hpp"
+#include "c1/c1_LIRAssembler.hpp"
+#include "c1/c1_MacroAssembler.hpp"
+#include "c1/c1_Runtime1.hpp"
+#include "c1/c1_ValueStack.hpp"
+#include "ci/ciArrayKlass.hpp"
+#include "ci/ciInstance.hpp"
+#include "gc/shared/collectedHeap.hpp"
+#include "gc/shared/barrierSet.hpp"
+#include "gc/shared/cardTableModRefBS.hpp"
+#include "nativeInst_ppc.hpp"
+#include "oops/objArrayKlass.hpp"
+#include "runtime/sharedRuntime.hpp"
+
+#define __ _masm->
+
+
+const ConditionRegister LIR_Assembler::BOOL_RESULT = CCR5;
+
+
+bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
+ Unimplemented(); return false; // Currently not used on this platform.
+}
+
+
+LIR_Opr LIR_Assembler::receiverOpr() {
+ return FrameMap::R3_oop_opr;
+}
+
+
+LIR_Opr LIR_Assembler::osrBufferPointer() {
+ return FrameMap::R3_opr;
+}
+
+
+// This specifies the stack pointer decrement needed to build the frame.
+int LIR_Assembler::initial_frame_size_in_bytes() const {
+ return in_bytes(frame_map()->framesize_in_bytes());
+}
+
+
+// Inline cache check: the inline cached class is in inline_cache_reg;
+// we fetch the class of the receiver and compare it with the cached class.
+// If they do not match we jump to slow case.
+int LIR_Assembler::check_icache() {
+ int offset = __ offset();
+ __ inline_cache_check(R3_ARG1, R19_inline_cache_reg);
+ return offset;
+}
+
+
+void LIR_Assembler::osr_entry() {
+ // On-stack-replacement entry sequence:
+ //
+ // 1. Create a new compiled activation.
+ // 2. Initialize local variables in the compiled activation. The expression
+ // stack must be empty at the osr_bci; it is not initialized.
+ // 3. Jump to the continuation address in compiled code to resume execution.
+
+ // OSR entry point
+ offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
+ BlockBegin* osr_entry = compilation()->hir()->osr_entry();
+ ValueStack* entry_state = osr_entry->end()->state();
+ int number_of_locks = entry_state->locks_size();
+
+ // Create a frame for the compiled activation.
+ __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
+
+ // OSR buffer is
+ //
+ // locals[nlocals-1..0]
+ // monitors[number_of_locks-1..0]
+ //
+ // Locals is a direct copy of the interpreter frame so in the osr buffer
+ // the first slot in the local array is the last local from the interpreter
+ // and the last slot is local[0] (receiver) from the interpreter.
+ //
+ // Similarly with locks. The first lock slot in the osr buffer is the nth lock
+ // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
+ // in the interpreter frame (the method lock if a sync method).
+
+ // Initialize monitors in the compiled activation.
+ // R3: pointer to osr buffer
+ //
+ // All other registers are dead at this point and the locals will be
+ // copied into place by code emitted in the IR.
+
+ Register OSR_buf = osrBufferPointer()->as_register();
+ { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
+ int monitor_offset = BytesPerWord * method()->max_locals() +
+ (2 * BytesPerWord) * (number_of_locks - 1);
+ // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
+ // the OSR buffer using 2 word entries: first the lock and then
+ // the oop.
+ for (int i = 0; i < number_of_locks; i++) {
+ int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
+#ifdef ASSERT
+ // Verify the interpreter's monitor has a non-null object.
+ {
+ Label L;
+ __ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf);
+ __ cmpdi(CCR0, R0, 0);
+ __ bne(CCR0, L);
+ __ stop("locked object is NULL");
+ __ bind(L);
+ }
+#endif // ASSERT
+ // Copy the lock field into the compiled activation.
+ Address ml = frame_map()->address_for_monitor_lock(i),
+ mo = frame_map()->address_for_monitor_object(i);
+ assert(ml.index() == noreg && mo.index() == noreg, "sanity");
+ __ ld(R0, slot_offset + 0, OSR_buf);
+ __ std(R0, ml.disp(), ml.base());
+ __ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf);
+ __ std(R0, mo.disp(), mo.base());
+ }
+ }
+}
+
+
+int LIR_Assembler::emit_exception_handler() {
+ // If the last instruction is a call (typically to do a throw which
+ // is coming at the end after block reordering) the return address
+ // must still point into the code area in order to avoid assertion
+ // failures when searching for the corresponding bci => add a nop
+ // (was bug 5/14/1999 - gri).
+ __ nop();
+
+ // Generate code for the exception handler.
+ address handler_base = __ start_a_stub(exception_handler_size());
+
+ if (handler_base == NULL) {
+ // Not enough space left for the handler.
+ bailout("exception handler overflow");
+ return -1;
+ }
+
+ int offset = code_offset();
+ address entry_point = CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::handle_exception_from_callee_id));
+ //__ load_const_optimized(R0, entry_point);
+ __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(entry_point));
+ __ mtctr(R0);
+ __ bctr();
+
+ guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
+ __ end_a_stub();
+
+ return offset;
+}
+
+
+// Emit the code to remove the frame from the stack in the exception
+// unwind path.
+int LIR_Assembler::emit_unwind_handler() {
+ _masm->block_comment("Unwind handler");
+
+ int offset = code_offset();
+ bool preserve_exception = method()->is_synchronized() || compilation()->env()->dtrace_method_probes();
+ const Register Rexception = R3 /*LIRGenerator::exceptionOopOpr()*/, Rexception_save = R31;
+
+ // Fetch the exception from TLS and clear out exception related thread state.
+ __ ld(Rexception, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
+ __ li(R0, 0);
+ __ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
+ __ std(R0, in_bytes(JavaThread::exception_pc_offset()), R16_thread);
+
+ __ bind(_unwind_handler_entry);
+ __ verify_not_null_oop(Rexception);
+ if (preserve_exception) { __ mr(Rexception_save, Rexception); }
+
+ // Perform needed unlocking
+ MonitorExitStub* stub = NULL;
+ if (method()->is_synchronized()) {
+ monitor_address(0, FrameMap::R4_opr);
+ stub = new MonitorExitStub(FrameMap::R4_opr, true, 0);
+ __ unlock_object(R5, R6, R4, *stub->entry());
+ __ bind(*stub->continuation());
+ }
+
+ if (compilation()->env()->dtrace_method_probes()) {
+ Unimplemented();
+ }
+
+ // Dispatch to the unwind logic.
+ address unwind_stub = Runtime1::entry_for(Runtime1::unwind_exception_id);
+ //__ load_const_optimized(R0, unwind_stub);
+ __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(unwind_stub));
+ if (preserve_exception) { __ mr(Rexception, Rexception_save); }
+ __ mtctr(R0);
+ __ bctr();
+
+ // Emit the slow path assembly.
+ if (stub != NULL) {
+ stub->emit_code(this);
+ }
+
+ return offset;
+}
+
+
+int LIR_Assembler::emit_deopt_handler() {
+ // If the last instruction is a call (typically to do a throw which
+ // is coming at the end after block reordering) the return address
+ // must still point into the code area in order to avoid assertion
+ // failures when searching for the corresponding bci => add a nop
+ // (was bug 5/14/1999 - gri).
+ __ nop();
+
+ // Generate code for deopt handler.
+ address handler_base = __ start_a_stub(deopt_handler_size());
+
+ if (handler_base == NULL) {
+ // Not enough space left for the handler.
+ bailout("deopt handler overflow");
+ return -1;
+ }
+
+ int offset = code_offset();
+ __ bl64_patchable(SharedRuntime::deopt_blob()->unpack(), relocInfo::runtime_call_type);
+
+ guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
+ __ end_a_stub();
+
+ return offset;
+}
+
+
+void LIR_Assembler::jobject2reg(jobject o, Register reg) {
+ if (o == NULL) {
+ __ li(reg, 0);
+ } else {
+ AddressLiteral addrlit = __ constant_oop_address(o);
+ __ load_const(reg, addrlit, (reg != R0) ? R0 : noreg);
+ }
+}
+
+
+void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
+ // Allocate a new index in table to hold the object once it's been patched.
+ int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
+ PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
+
+ AddressLiteral addrlit((address)NULL, oop_Relocation::spec(oop_index));
+ __ load_const(reg, addrlit, R0);
+
+ patching_epilog(patch, lir_patch_normal, reg, info);
+}
+
+
+void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
+ AddressLiteral md = __ constant_metadata_address(o); // Notify OOP recorder (don't need the relocation)
+ __ load_const_optimized(reg, md.value(), (reg != R0) ? R0 : noreg);
+}
+
+
+void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
+ // Allocate a new index in table to hold the klass once it's been patched.
+ int index = __ oop_recorder()->allocate_metadata_index(NULL);
+ PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
+
+ AddressLiteral addrlit((address)NULL, metadata_Relocation::spec(index));
+ assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
+ __ load_const(reg, addrlit, R0);
+
+ patching_epilog(patch, lir_patch_normal, reg, info);
+}
+
+
+void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
+ const bool is_int = result->is_single_cpu();
+ Register Rdividend = is_int ? left->as_register() : left->as_register_lo();
+ Register Rdivisor = noreg;
+ Register Rscratch = temp->as_register();
+ Register Rresult = is_int ? result->as_register() : result->as_register_lo();
+ long divisor = -1;
+
+ if (right->is_register()) {
+ Rdivisor = is_int ? right->as_register() : right->as_register_lo();
+ } else {
+ divisor = is_int ? right->as_constant_ptr()->as_jint()
+ : right->as_constant_ptr()->as_jlong();
+ }
+
+ assert(Rdividend != Rscratch, "");
+ assert(Rdivisor != Rscratch, "");
+ assert(code == lir_idiv || code == lir_irem, "Must be irem or idiv");
+
+ if (Rdivisor == noreg) {
+ if (divisor == 1) { // stupid, but can happen
+ if (code == lir_idiv) {
+ __ mr_if_needed(Rresult, Rdividend);
+ } else {
+ __ li(Rresult, 0);
+ }
+
+ } else if (is_power_of_2(divisor)) {
+ // Convert division by a power of two into some shifts and logical operations.
+ int log2 = log2_intptr(divisor);
+
+ // Round towards 0.
+ if (divisor == 2) {
+ if (is_int) {
+ __ srwi(Rscratch, Rdividend, 31);
+ } else {
+ __ srdi(Rscratch, Rdividend, 63);
+ }
+ } else {
+ if (is_int) {
+ __ srawi(Rscratch, Rdividend, 31);
+ } else {
+ __ sradi(Rscratch, Rdividend, 63);
+ }
+ __ clrldi(Rscratch, Rscratch, 64-log2);
+ }
+ __ add(Rscratch, Rdividend, Rscratch);
+
+ if (code == lir_idiv) {
+ if (is_int) {
+ __ srawi(Rresult, Rscratch, log2);
+ } else {
+ __ sradi(Rresult, Rscratch, log2);
+ }
+ } else { // lir_irem
+ __ clrrdi(Rscratch, Rscratch, log2);
+ __ sub(Rresult, Rdividend, Rscratch);
+ }
+
+ } else if (divisor == -1) {
+ if (code == lir_idiv) {
+ __ neg(Rresult, Rdividend);
+ } else {
+ __ li(Rresult, 0);
+ }
+
+ } else {
+ __ load_const_optimized(Rscratch, divisor);
+ if (code == lir_idiv) {
+ if (is_int) {
+ __ divw(Rresult, Rdividend, Rscratch); // Can't divide minint/-1.
+ } else {
+ __ divd(Rresult, Rdividend, Rscratch); // Can't divide minint/-1.
+ }
+ } else {
+ assert(Rscratch != R0, "need both");
+ if (is_int) {
+ __ divw(R0, Rdividend, Rscratch); // Can't divide minint/-1.
+ __ mullw(Rscratch, R0, Rscratch);
+ } else {
+ __ divd(R0, Rdividend, Rscratch); // Can't divide minint/-1.
+ __ mulld(Rscratch, R0, Rscratch);
+ }
+ __ sub(Rresult, Rdividend, Rscratch);
+ }
+
+ }
+ return;
+ }
+
+ Label regular, done;
+ if (is_int) {
+ __ cmpwi(CCR0, Rdivisor, -1);
+ } else {
+ __ cmpdi(CCR0, Rdivisor, -1);
+ }
+ __ bne(CCR0, regular);
+ if (code == lir_idiv) {
+ __ neg(Rresult, Rdividend);
+ __ b(done);
+ __ bind(regular);
+ if (is_int) {
+ __ divw(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1.
+ } else {
+ __ divd(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1.
+ }
+ } else { // lir_irem
+ __ li(Rresult, 0);
+ __ b(done);
+ __ bind(regular);
+ if (is_int) {
+ __ divw(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1.
+ __ mullw(Rscratch, Rscratch, Rdivisor);
+ } else {
+ __ divd(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1.
+ __ mulld(Rscratch, Rscratch, Rdivisor);
+ }
+ __ sub(Rresult, Rdividend, Rscratch);
+ }
+ __ bind(done);
+}
+
+
+void LIR_Assembler::emit_op3(LIR_Op3* op) {
+ switch (op->code()) {
+ case lir_idiv:
+ case lir_irem:
+ arithmetic_idiv(op->code(), op->in_opr1(), op->in_opr2(), op->in_opr3(),
+ op->result_opr(), op->info());
+ break;
+ case lir_fmad:
+ __ fmadd(op->result_opr()->as_double_reg(), op->in_opr1()->as_double_reg(),
+ op->in_opr2()->as_double_reg(), op->in_opr3()->as_double_reg());
+ break;
+ case lir_fmaf:
+ __ fmadds(op->result_opr()->as_float_reg(), op->in_opr1()->as_float_reg(),
+ op->in_opr2()->as_float_reg(), op->in_opr3()->as_float_reg());
+ break;
+ default: ShouldNotReachHere(); break;
+ }
+}
+
+
+void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
+#ifdef ASSERT
+ assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
+ if (op->block() != NULL) _branch_target_blocks.append(op->block());
+ if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
+ assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
+#endif
+
+ Label *L = op->label();
+ if (op->cond() == lir_cond_always) {
+ __ b(*L);
+ } else {
+ Label done;
+ bool is_unordered = false;
+ if (op->code() == lir_cond_float_branch) {
+ assert(op->ublock() != NULL, "must have unordered successor");
+ is_unordered = true;
+ } else {
+ assert(op->code() == lir_branch, "just checking");
+ }
+
+ bool positive = false;
+ Assembler::Condition cond = Assembler::equal;
+ switch (op->cond()) {
+ case lir_cond_equal: positive = true ; cond = Assembler::equal ; is_unordered = false; break;
+ case lir_cond_notEqual: positive = false; cond = Assembler::equal ; is_unordered = false; break;
+ case lir_cond_less: positive = true ; cond = Assembler::less ; break;
+ case lir_cond_belowEqual: assert(op->code() != lir_cond_float_branch, ""); // fallthru
+ case lir_cond_lessEqual: positive = false; cond = Assembler::greater; break;
+ case lir_cond_greater: positive = true ; cond = Assembler::greater; break;
+ case lir_cond_aboveEqual: assert(op->code() != lir_cond_float_branch, ""); // fallthru
+ case lir_cond_greaterEqual: positive = false; cond = Assembler::less ; break;
+ default: ShouldNotReachHere();
+ }
+ int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0;
+ int bi = Assembler::bi0(BOOL_RESULT, cond);
+ if (is_unordered) {
+ if (positive) {
+ if (op->ublock() == op->block()) {
+ __ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(BOOL_RESULT, Assembler::summary_overflow), *L);
+ }
+ } else {
+ if (op->ublock() != op->block()) { __ bso(BOOL_RESULT, done); }
+ }
+ }
+ __ bc_far_optimized(bo, bi, *L);
+ __ bind(done);
+ }
+}
+
+
+void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
+ Bytecodes::Code code = op->bytecode();
+ LIR_Opr src = op->in_opr(),
+ dst = op->result_opr();
+
+ switch(code) {
+ case Bytecodes::_i2l: {
+ __ extsw(dst->as_register_lo(), src->as_register());
+ break;
+ }
+ case Bytecodes::_l2i: {
+ __ mr_if_needed(dst->as_register(), src->as_register_lo()); // high bits are garbage
+ break;
+ }
+ case Bytecodes::_i2b: {
+ __ extsb(dst->as_register(), src->as_register());
+ break;
+ }
+ case Bytecodes::_i2c: {
+ __ clrldi(dst->as_register(), src->as_register(), 64-16);
+ break;
+ }
+ case Bytecodes::_i2s: {
+ __ extsh(dst->as_register(), src->as_register());
+ break;
+ }
+ case Bytecodes::_i2d:
+ case Bytecodes::_l2d: {
+ bool src_in_memory = !VM_Version::has_mtfprd();
+ FloatRegister rdst = dst->as_double_reg();
+ FloatRegister rsrc;
+ if (src_in_memory) {
+ rsrc = src->as_double_reg(); // via mem
+ } else {
+ // move src to dst register
+ if (code == Bytecodes::_i2d) {
+ __ mtfprwa(rdst, src->as_register());
+ } else {
+ __ mtfprd(rdst, src->as_register_lo());
+ }
+ rsrc = rdst;
+ }
+ __ fcfid(rdst, rsrc);
+ break;
+ }
+ case Bytecodes::_i2f:
+ case Bytecodes::_l2f: {
+ bool src_in_memory = !VM_Version::has_mtfprd();
+ FloatRegister rdst = dst->as_float_reg();
+ FloatRegister rsrc;
+ if (src_in_memory) {
+ rsrc = src->as_double_reg(); // via mem
+ } else {
+ // move src to dst register
+ if (code == Bytecodes::_i2f) {
+ __ mtfprwa(rdst, src->as_register());
+ } else {
+ __ mtfprd(rdst, src->as_register_lo());
+ }
+ rsrc = rdst;
+ }
+ if (VM_Version::has_fcfids()) {
+ __ fcfids(rdst, rsrc);
+ } else {
+ assert(code == Bytecodes::_i2f, "fcfid+frsp needs fixup code to avoid rounding incompatibility");
+ __ fcfid(rdst, rsrc);
+ __ frsp(rdst, rdst);
+ }
+ break;
+ }
+ case Bytecodes::_f2d: {
+ __ fmr_if_needed(dst->as_double_reg(), src->as_float_reg());
+ break;
+ }
+ case Bytecodes::_d2f: {
+ __ frsp(dst->as_float_reg(), src->as_double_reg());
+ break;
+ }
+ case Bytecodes::_d2i:
+ case Bytecodes::_f2i: {
+ bool dst_in_memory = !VM_Version::has_mtfprd();
+ FloatRegister rsrc = (code == Bytecodes::_d2i) ? src->as_double_reg() : src->as_float_reg();
+ Address addr = dst_in_memory ? frame_map()->address_for_slot(dst->double_stack_ix()) : NULL;
+ Label L;
+ // Result must be 0 if value is NaN; test by comparing value to itself.
+ __ fcmpu(CCR0, rsrc, rsrc);
+ if (dst_in_memory) {
+ __ li(R0, 0); // 0 in case of NAN
+ __ std(R0, addr.disp(), addr.base());
+ } else {
+ __ li(dst->as_register(), 0);
+ }
+ __ bso(CCR0, L);
+ __ fctiwz(rsrc, rsrc); // USE_KILL
+ if (dst_in_memory) {
+ __ stfd(rsrc, addr.disp(), addr.base());
+ } else {
+ __ mffprd(dst->as_register(), rsrc);
+ }
+ __ bind(L);
+ break;
+ }
+ case Bytecodes::_d2l:
+ case Bytecodes::_f2l: {
+ bool dst_in_memory = !VM_Version::has_mtfprd();
+ FloatRegister rsrc = (code == Bytecodes::_d2l) ? src->as_double_reg() : src->as_float_reg();
+ Address addr = dst_in_memory ? frame_map()->address_for_slot(dst->double_stack_ix()) : NULL;
+ Label L;
+ // Result must be 0 if value is NaN; test by comparing value to itself.
+ __ fcmpu(CCR0, rsrc, rsrc);
+ if (dst_in_memory) {
+ __ li(R0, 0); // 0 in case of NAN
+ __ std(R0, addr.disp(), addr.base());
+ } else {
+ __ li(dst->as_register_lo(), 0);
+ }
+ __ bso(CCR0, L);
+ __ fctidz(rsrc, rsrc); // USE_KILL
+ if (dst_in_memory) {
+ __ stfd(rsrc, addr.disp(), addr.base());
+ } else {
+ __ mffprd(dst->as_register_lo(), rsrc);
+ }
+ __ bind(L);
+ break;
+ }
+
+ default: ShouldNotReachHere();
+ }
+}
+
+
+void LIR_Assembler::align_call(LIR_Code) {
+ // do nothing since all instructions are word aligned on ppc
+}
+
+
+bool LIR_Assembler::emit_trampoline_stub_for_call(address target, Register Rtoc) {
+ int start_offset = __ offset();
+ // Put the entry point as a constant into the constant pool.
+ const address entry_point_toc_addr = __ address_constant(target, RelocationHolder::none);
+ if (entry_point_toc_addr == NULL) {
+ bailout("const section overflow");
+ return false;
+ }
+ const int entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
+
+ // Emit the trampoline stub which will be related to the branch-and-link below.
+ address stub = __ emit_trampoline_stub(entry_point_toc_offset, start_offset, Rtoc);
+ if (!stub) {
+ bailout("no space for trampoline stub");
+ return false;
+ }
+ return true;
+}
+
+
+void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
+ assert(rtype==relocInfo::opt_virtual_call_type || rtype==relocInfo::static_call_type, "unexpected rtype");
+
+ bool success = emit_trampoline_stub_for_call(op->addr());
+ if (!success) { return; }
+
+ __ relocate(rtype);
+ // Note: At this point we do not have the address of the trampoline
+ // stub, and the entry point might be too far away for bl, so __ pc()
+ // serves as dummy and the bl will be patched later.
+ __ code()->set_insts_mark();
+ __ bl(__ pc());
+ add_call_info(code_offset(), op->info());
+}
+
+
+void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
+ __ calculate_address_from_global_toc(R2_TOC, __ method_toc());
+
+ // Virtual call relocation will point to ic load.
+ address virtual_call_meta_addr = __ pc();
+ // Load a clear inline cache.
+ AddressLiteral empty_ic((address) Universe::non_oop_word());
+ bool success = __ load_const_from_method_toc(R19_inline_cache_reg, empty_ic, R2_TOC);
+ if (!success) {
+ bailout("const section overflow");
+ return;
+ }
+ // Call to fixup routine. Fixup routine uses ScopeDesc info
+ // to determine who we intended to call.
+ __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr));
+
+ success = emit_trampoline_stub_for_call(op->addr(), R2_TOC);
+ if (!success) { return; }
+
+ // Note: At this point we do not have the address of the trampoline
+ // stub, and the entry point might be too far away for bl, so __ pc()
+ // serves as dummy and the bl will be patched later.
+ __ bl(__ pc());
+ add_call_info(code_offset(), op->info());
+}
+
+
+void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
+ ShouldNotReachHere(); // ic_call is used instead.
+}
+
+
+void LIR_Assembler::explicit_null_check(Register addr, CodeEmitInfo* info) {
+ ImplicitNullCheckStub* stub = new ImplicitNullCheckStub(code_offset(), info);
+ __ null_check(addr, stub->entry());
+ append_code_stub(stub);
+}
+
+
+// Attention: caller must encode oop if needed
+int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
+ int store_offset;
+ if (!Assembler::is_simm16(offset)) {
+ // For offsets larger than a simm16 we setup the offset.
+ assert(wide && !from_reg->is_same_register(FrameMap::R0_opr), "large offset only supported in special case");
+ __ load_const_optimized(R0, offset);
+ store_offset = store(from_reg, base, R0, type, wide);
+ } else {
+ store_offset = code_offset();
+ switch (type) {
+ case T_BOOLEAN: // fall through
+ case T_BYTE : __ stb(from_reg->as_register(), offset, base); break;
+ case T_CHAR :
+ case T_SHORT : __ sth(from_reg->as_register(), offset, base); break;
+ case T_INT : __ stw(from_reg->as_register(), offset, base); break;
+ case T_LONG : __ std(from_reg->as_register_lo(), offset, base); break;
+ case T_ADDRESS:
+ case T_METADATA: __ std(from_reg->as_register(), offset, base); break;
+ case T_ARRAY : // fall through
+ case T_OBJECT:
+ {
+ if (UseCompressedOops && !wide) {
+ // Encoding done in caller
+ __ stw(from_reg->as_register(), offset, base);
+ } else {
+ __ std(from_reg->as_register(), offset, base);
+ }
+ __ verify_oop(from_reg->as_register());
+ break;
+ }
+ case T_FLOAT : __ stfs(from_reg->as_float_reg(), offset, base); break;
+ case T_DOUBLE: __ stfd(from_reg->as_double_reg(), offset, base); break;
+ default : ShouldNotReachHere();
+ }
+ }
+ return store_offset;
+}
+
+
+// Attention: caller must encode oop if needed
+int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
+ int store_offset = code_offset();
+ switch (type) {
+ case T_BOOLEAN: // fall through
+ case T_BYTE : __ stbx(from_reg->as_register(), base, disp); break;
+ case T_CHAR :
+ case T_SHORT : __ sthx(from_reg->as_register(), base, disp); break;
+ case T_INT : __ stwx(from_reg->as_register(), base, disp); break;
+ case T_LONG :
+#ifdef _LP64
+ __ stdx(from_reg->as_register_lo(), base, disp);
+#else
+ Unimplemented();
+#endif
+ break;
+ case T_ADDRESS:
+ __ stdx(from_reg->as_register(), base, disp);
+ break;
+ case T_ARRAY : // fall through
+ case T_OBJECT:
+ {
+ if (UseCompressedOops && !wide) {
+ // Encoding done in caller.
+ __ stwx(from_reg->as_register(), base, disp);
+ } else {
+ __ stdx(from_reg->as_register(), base, disp);
+ }
+ __ verify_oop(from_reg->as_register()); // kills R0
+ break;
+ }
+ case T_FLOAT : __ stfsx(from_reg->as_float_reg(), base, disp); break;
+ case T_DOUBLE: __ stfdx(from_reg->as_double_reg(), base, disp); break;
+ default : ShouldNotReachHere();
+ }
+ return store_offset;
+}
+
+
+int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
+ int load_offset;
+ if (!Assembler::is_simm16(offset)) {
+ // For offsets larger than a simm16 we setup the offset.
+ __ load_const_optimized(R0, offset);
+ load_offset = load(base, R0, to_reg, type, wide);
+ } else {
+ load_offset = code_offset();
+ switch(type) {
+ case T_BOOLEAN: // fall through
+ case T_BYTE : __ lbz(to_reg->as_register(), offset, base);
+ __ extsb(to_reg->as_register(), to_reg->as_register()); break;
+ case T_CHAR : __ lhz(to_reg->as_register(), offset, base); break;
+ case T_SHORT : __ lha(to_reg->as_register(), offset, base); break;
+ case T_INT : __ lwa(to_reg->as_register(), offset, base); break;
+ case T_LONG : __ ld(to_reg->as_register_lo(), offset, base); break;
+ case T_METADATA: __ ld(to_reg->as_register(), offset, base); break;
+ case T_ADDRESS:
+ if (offset == oopDesc::klass_offset_in_bytes() && UseCompressedClassPointers) {
+ __ lwz(to_reg->as_register(), offset, base);
+ __ decode_klass_not_null(to_reg->as_register());
+ } else {
+ __ ld(to_reg->as_register(), offset, base);
+ }
+ break;
+ case T_ARRAY : // fall through
+ case T_OBJECT:
+ {
+ if (UseCompressedOops && !wide) {
+ __ lwz(to_reg->as_register(), offset, base);
+ __ decode_heap_oop(to_reg->as_register());
+ } else {
+ __ ld(to_reg->as_register(), offset, base);
+ }
+ __ verify_oop(to_reg->as_register());
+ break;
+ }
+ case T_FLOAT: __ lfs(to_reg->as_float_reg(), offset, base); break;
+ case T_DOUBLE: __ lfd(to_reg->as_double_reg(), offset, base); break;
+ default : ShouldNotReachHere();
+ }
+ }
+ return load_offset;
+}
+
+
+int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
+ int load_offset = code_offset();
+ switch(type) {
+ case T_BOOLEAN: // fall through
+ case T_BYTE : __ lbzx(to_reg->as_register(), base, disp);
+ __ extsb(to_reg->as_register(), to_reg->as_register()); break;
+ case T_CHAR : __ lhzx(to_reg->as_register(), base, disp); break;
+ case T_SHORT : __ lhax(to_reg->as_register(), base, disp); break;
+ case T_INT : __ lwax(to_reg->as_register(), base, disp); break;
+ case T_ADDRESS: __ ldx(to_reg->as_register(), base, disp); break;
+ case T_ARRAY : // fall through
+ case T_OBJECT:
+ {
+ if (UseCompressedOops && !wide) {
+ __ lwzx(to_reg->as_register(), base, disp);
+ __ decode_heap_oop(to_reg->as_register());
+ } else {
+ __ ldx(to_reg->as_register(), base, disp);
+ }
+ __ verify_oop(to_reg->as_register());
+ break;
+ }
+ case T_FLOAT: __ lfsx(to_reg->as_float_reg() , base, disp); break;
+ case T_DOUBLE: __ lfdx(to_reg->as_double_reg(), base, disp); break;
+ case T_LONG :
+#ifdef _LP64
+ __ ldx(to_reg->as_register_lo(), base, disp);
+#else
+ Unimplemented();
+#endif
+ break;
+ default : ShouldNotReachHere();
+ }
+ return load_offset;
+}
+
+
+void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
+ LIR_Const* c = src->as_constant_ptr();
+ Register src_reg = R0;
+ switch (c->type()) {
+ case T_INT:
+ case T_FLOAT: {
+ int value = c->as_jint_bits();
+ __ load_const_optimized(src_reg, value);
+ Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
+ __ stw(src_reg, addr.disp(), addr.base());
+ break;
+ }
+ case T_ADDRESS: {
+ int value = c->as_jint_bits();
+ __ load_const_optimized(src_reg, value);
+ Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
+ __ std(src_reg, addr.disp(), addr.base());
+ break;
+ }
+ case T_OBJECT: {
+ jobject2reg(c->as_jobject(), src_reg);
+ Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
+ __ std(src_reg, addr.disp(), addr.base());
+ break;
+ }
+ case T_LONG:
+ case T_DOUBLE: {
+ int value = c->as_jlong_bits();
+ __ load_const_optimized(src_reg, value);
+ Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
+ __ std(src_reg, addr.disp(), addr.base());
+ break;
+ }
+ default:
+ Unimplemented();
+ }
+}
+
+
+void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
+ LIR_Const* c = src->as_constant_ptr();
+ LIR_Address* addr = dest->as_address_ptr();
+ Register base = addr->base()->as_pointer_register();
+ LIR_Opr tmp = LIR_OprFact::illegalOpr;
+ int offset = -1;
+ // Null check for large offsets in LIRGenerator::do_StoreField.
+ bool needs_explicit_null_check = !ImplicitNullChecks;
+
+ if (info != NULL && needs_explicit_null_check) {
+ explicit_null_check(base, info);
+ }
+
+ switch (c->type()) {
+ case T_FLOAT: type = T_INT;
+ case T_INT:
+ case T_ADDRESS: {
+ tmp = FrameMap::R0_opr;
+ __ load_const_optimized(tmp->as_register(), c->as_jint_bits());
+ break;
+ }
+ case T_DOUBLE: type = T_LONG;
+ case T_LONG: {
+ tmp = FrameMap::R0_long_opr;
+ __ load_const_optimized(tmp->as_register_lo(), c->as_jlong_bits());
+ break;
+ }
+ case T_OBJECT: {
+ tmp = FrameMap::R0_opr;
+ if (UseCompressedOops && !wide && c->as_jobject() != NULL) {
+ AddressLiteral oop_addr = __ constant_oop_address(c->as_jobject());
+ __ lis(R0, oop_addr.value() >> 16); // Don't care about sign extend (will use stw).
+ __ relocate(oop_addr.rspec(), /*compressed format*/ 1);
+ __ ori(R0, R0, oop_addr.value() & 0xffff);
+ } else {
+ jobject2reg(c->as_jobject(), R0);
+ }
+ break;
+ }
+ default:
+ Unimplemented();
+ }
+
+ // Handle either reg+reg or reg+disp address.
+ if (addr->index()->is_valid()) {
+ assert(addr->disp() == 0, "must be zero");
+ offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
+ } else {
+ assert(Assembler::is_simm16(addr->disp()), "can't handle larger addresses");
+ offset = store(tmp, base, addr->disp(), type, wide, false);
+ }
+
+ if (info != NULL) {
+ assert(offset != -1, "offset should've been set");
+ if (!needs_explicit_null_check) {
+ add_debug_info_for_null_check(offset, info);
+ }
+ }
+}
+
+
+void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
+ LIR_Const* c = src->as_constant_ptr();
+ LIR_Opr to_reg = dest;
+
+ switch (c->type()) {
+ case T_INT: {
+ assert(patch_code == lir_patch_none, "no patching handled here");
+ __ load_const_optimized(dest->as_register(), c->as_jint(), R0);
+ break;
+ }
+ case T_ADDRESS: {
+ assert(patch_code == lir_patch_none, "no patching handled here");
+ __ load_const_optimized(dest->as_register(), c->as_jint(), R0); // Yes, as_jint ...
+ break;
+ }
+ case T_LONG: {
+ assert(patch_code == lir_patch_none, "no patching handled here");
+ __ load_const_optimized(dest->as_register_lo(), c->as_jlong(), R0);
+ break;
+ }
+
+ case T_OBJECT: {
+ if (patch_code == lir_patch_none) {
+ jobject2reg(c->as_jobject(), to_reg->as_register());
+ } else {
+ jobject2reg_with_patching(to_reg->as_register(), info);
+ }
+ break;
+ }
+
+ case T_METADATA:
+ {
+ if (patch_code == lir_patch_none) {
+ metadata2reg(c->as_metadata(), to_reg->as_register());
+ } else {
+ klass2reg_with_patching(to_reg->as_register(), info);
+ }
+ }
+ break;
+
+ case T_FLOAT:
+ {
+ if (to_reg->is_single_fpu()) {
+ address const_addr = __ float_constant(c->as_jfloat());
+ if (const_addr == NULL) {
+ bailout("const section overflow");
+ break;
+ }
+ RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
+ __ relocate(rspec);
+ __ load_const(R0, const_addr);
+ __ lfsx(to_reg->as_float_reg(), R0);
+ } else {
+ assert(to_reg->is_single_cpu(), "Must be a cpu register.");
+ __ load_const_optimized(to_reg->as_register(), jint_cast(c->as_jfloat()), R0);
+ }
+ }
+ break;
+
+ case T_DOUBLE:
+ {
+ if (to_reg->is_double_fpu()) {
+ address const_addr = __ double_constant(c->as_jdouble());
+ if (const_addr == NULL) {
+ bailout("const section overflow");
+ break;
+ }
+ RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
+ __ relocate(rspec);
+ __ load_const(R0, const_addr);
+ __ lfdx(to_reg->as_double_reg(), R0);
+ } else {
+ assert(to_reg->is_double_cpu(), "Must be a long register.");
+ __ load_const_optimized(to_reg->as_register_lo(), jlong_cast(c->as_jdouble()), R0);
+ }
+ }
+ break;
+
+ default:
+ ShouldNotReachHere();
+ }
+}
+
+
+Address LIR_Assembler::as_Address(LIR_Address* addr) {
+ Unimplemented(); return Address();
+}
+
+
+inline RegisterOrConstant index_or_disp(LIR_Address* addr) {
+ if (addr->index()->is_illegal()) {
+ return (RegisterOrConstant)(addr->disp());
+ } else {
+ return (RegisterOrConstant)(addr->index()->as_pointer_register());
+ }
+}
+
+
+void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
+ const Register tmp = R0;
+ switch (type) {
+ case T_INT:
+ case T_FLOAT: {
+ Address from = frame_map()->address_for_slot(src->single_stack_ix());
+ Address to = frame_map()->address_for_slot(dest->single_stack_ix());
+ __ lwz(tmp, from.disp(), from.base());
+ __ stw(tmp, to.disp(), to.base());
+ break;
+ }
+ case T_ADDRESS:
+ case T_OBJECT: {
+ Address from = frame_map()->address_for_slot(src->single_stack_ix());
+ Address to = frame_map()->address_for_slot(dest->single_stack_ix());
+ __ ld(tmp, from.disp(), from.base());
+ __ std(tmp, to.disp(), to.base());
+ break;
+ }
+ case T_LONG:
+ case T_DOUBLE: {
+ Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
+ Address to = frame_map()->address_for_double_slot(dest->double_stack_ix());
+ __ ld(tmp, from.disp(), from.base());
+ __ std(tmp, to.disp(), to.base());
+ break;
+ }
+
+ default:
+ ShouldNotReachHere();
+ }
+}
+
+
+Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
+ Unimplemented(); return Address();
+}
+
+
+Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
+ Unimplemented(); return Address();
+}
+
+
+void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
+ LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
+
+ assert(type != T_METADATA, "load of metadata ptr not supported");
+ LIR_Address* addr = src_opr->as_address_ptr();
+ LIR_Opr to_reg = dest;
+
+ Register src = addr->base()->as_pointer_register();
+ Register disp_reg = noreg;
+ int disp_value = addr->disp();
+ bool needs_patching = (patch_code != lir_patch_none);
+ // null check for large offsets in LIRGenerator::do_LoadField
+ bool needs_explicit_null_check = !os::zero_page_read_protected() || !ImplicitNullChecks;
+
+ if (info != NULL && needs_explicit_null_check) {
+ explicit_null_check(src, info);
+ }
+
+ if (addr->base()->type() == T_OBJECT) {
+ __ verify_oop(src);
+ }
+
+ PatchingStub* patch = NULL;
+ if (needs_patching) {
+ patch = new PatchingStub(_masm, PatchingStub::access_field_id);
+ assert(!to_reg->is_double_cpu() ||
+ patch_code == lir_patch_none ||
+ patch_code == lir_patch_normal, "patching doesn't match register");
+ }
+
+ if (addr->index()->is_illegal()) {
+ if (!Assembler::is_simm16(disp_value)) {
+ if (needs_patching) {
+ __ load_const32(R0, 0); // patchable int
+ } else {
+ __ load_const_optimized(R0, disp_value);
+ }
+ disp_reg = R0;
+ }
+ } else {
+ disp_reg = addr->index()->as_pointer_register();
+ assert(disp_value == 0, "can't handle 3 operand addresses");
+ }
+
+ // Remember the offset of the load. The patching_epilog must be done
+ // before the call to add_debug_info, otherwise the PcDescs don't get
+ // entered in increasing order.
+ int offset;
+
+ if (disp_reg == noreg) {
+ assert(Assembler::is_simm16(disp_value), "should have set this up");
+ offset = load(src, disp_value, to_reg, type, wide, unaligned);
+ } else {
+ assert(!unaligned, "unexpected");
+ offset = load(src, disp_reg, to_reg, type, wide);
+ }
+
+ if (patch != NULL) {
+ patching_epilog(patch, patch_code, src, info);
+ }
+ if (info != NULL && !needs_explicit_null_check) {
+ add_debug_info_for_null_check(offset, info);
+ }
+}
+
+
+void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
+ Address addr;
+ if (src->is_single_word()) {
+ addr = frame_map()->address_for_slot(src->single_stack_ix());
+ } else if (src->is_double_word()) {
+ addr = frame_map()->address_for_double_slot(src->double_stack_ix());
+ }
+
+ bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
+ load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
+}
+
+
+void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
+ Address addr;
+ if (dest->is_single_word()) {
+ addr = frame_map()->address_for_slot(dest->single_stack_ix());
+ } else if (dest->is_double_word()) {
+ addr = frame_map()->address_for_slot(dest->double_stack_ix());
+ }
+ bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
+ store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
+}
+
+
+void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
+ if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
+ if (from_reg->is_double_fpu()) {
+ // double to double moves
+ assert(to_reg->is_double_fpu(), "should match");
+ __ fmr_if_needed(to_reg->as_double_reg(), from_reg->as_double_reg());
+ } else {
+ // float to float moves
+ assert(to_reg->is_single_fpu(), "should match");
+ __ fmr_if_needed(to_reg->as_float_reg(), from_reg->as_float_reg());
+ }
+ } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
+ if (from_reg->is_double_cpu()) {
+ __ mr_if_needed(to_reg->as_pointer_register(), from_reg->as_pointer_register());
+ } else if (to_reg->is_double_cpu()) {
+ // int to int moves
+ __ mr_if_needed(to_reg->as_register_lo(), from_reg->as_register());
+ } else {
+ // int to int moves
+ __ mr_if_needed(to_reg->as_register(), from_reg->as_register());
+ }
+ } else {
+ ShouldNotReachHere();
+ }
+ if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
+ __ verify_oop(to_reg->as_register());
+ }
+}
+
+
+void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
+ LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
+ bool wide, bool unaligned) {
+ assert(type != T_METADATA, "store of metadata ptr not supported");
+ LIR_Address* addr = dest->as_address_ptr();
+
+ Register src = addr->base()->as_pointer_register();
+ Register disp_reg = noreg;
+ int disp_value = addr->disp();
+ bool needs_patching = (patch_code != lir_patch_none);
+ bool compress_oop = (type == T_ARRAY || type == T_OBJECT) && UseCompressedOops && !wide &&
+ Universe::narrow_oop_mode() != Universe::UnscaledNarrowOop;
+ bool load_disp = addr->index()->is_illegal() && !Assembler::is_simm16(disp_value);
+ bool use_R29 = compress_oop && load_disp; // Avoid register conflict, also do null check before killing R29.
+ // Null check for large offsets in LIRGenerator::do_StoreField.
+ bool needs_explicit_null_check = !ImplicitNullChecks || use_R29;
+
+ if (info != NULL && needs_explicit_null_check) {
+ explicit_null_check(src, info);
+ }
+
+ if (addr->base()->is_oop_register()) {
+ __ verify_oop(src);
+ }
+
+ PatchingStub* patch = NULL;
+ if (needs_patching) {
+ patch = new PatchingStub(_masm, PatchingStub::access_field_id);
+ assert(!from_reg->is_double_cpu() ||
+ patch_code == lir_patch_none ||
+ patch_code == lir_patch_normal, "patching doesn't match register");
+ }
+
+ if (addr->index()->is_illegal()) {
+ if (load_disp) {
+ disp_reg = use_R29 ? R29_TOC : R0;
+ if (needs_patching) {
+ __ load_const32(disp_reg, 0); // patchable int
+ } else {
+ __ load_const_optimized(disp_reg, disp_value);
+ }
+ }
+ } else {
+ disp_reg = addr->index()->as_pointer_register();
+ assert(disp_value == 0, "can't handle 3 operand addresses");
+ }
+
+ // remember the offset of the store. The patching_epilog must be done
+ // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
+ // entered in increasing order.
+ int offset;
+
+ if (compress_oop) {
+ Register co = __ encode_heap_oop(R0, from_reg->as_register());
+ from_reg = FrameMap::as_opr(co);
+ }
+
+ if (disp_reg == noreg) {
+ assert(Assembler::is_simm16(disp_value), "should have set this up");
+ offset = store(from_reg, src, disp_value, type, wide, unaligned);
+ } else {
+ assert(!unaligned, "unexpected");
+ offset = store(from_reg, src, disp_reg, type, wide);
+ }
+
+ if (use_R29) {
+ __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); // reinit
+ }
+
+ if (patch != NULL) {
+ patching_epilog(patch, patch_code, src, info);
+ }
+
+ if (info != NULL && !needs_explicit_null_check) {
+ add_debug_info_for_null_check(offset, info);
+ }
+}
+
+
+void LIR_Assembler::return_op(LIR_Opr result) {
+ const Register return_pc = R31; // Must survive C-call to enable_stack_reserved_zone().
+ const Register polling_page = R12;
+
+ // Pop the stack before the safepoint code.
+ int frame_size = initial_frame_size_in_bytes();
+ if (Assembler::is_simm(frame_size, 16)) {
+ __ addi(R1_SP, R1_SP, frame_size);
+ } else {
+ __ pop_frame();
+ }
+
+ if (LoadPollAddressFromThread) {
+ // TODO: PPC port __ ld(polling_page, in_bytes(JavaThread::poll_address_offset()), R16_thread);
+ Unimplemented();
+ } else {
+ __ load_const_optimized(polling_page, (long)(address) os::get_polling_page(), R0); // TODO: PPC port: get_standard_polling_page()
+ }
+
+ // Restore return pc relative to callers' sp.
+ __ ld(return_pc, _abi(lr), R1_SP);
+ // Move return pc to LR.
+ __ mtlr(return_pc);
+
+ if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
+ __ reserved_stack_check(return_pc);
+ }
+
+ // We need to mark the code position where the load from the safepoint
+ // polling page was emitted as relocInfo::poll_return_type here.
+ __ relocate(relocInfo::poll_return_type);
+ __ load_from_polling_page(polling_page);
+
+ // Return.
+ __ blr();
+}
+
+
+int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
+
+ if (LoadPollAddressFromThread) {
+ const Register poll_addr = tmp->as_register();
+ // TODO: PPC port __ ld(poll_addr, in_bytes(JavaThread::poll_address_offset()), R16_thread);
+ Unimplemented();
+ __ relocate(relocInfo::poll_type); // XXX
+ guarantee(info != NULL, "Shouldn't be NULL");
+ int offset = __ offset();
+ add_debug_info_for_branch(info);
+ __ load_from_polling_page(poll_addr);
+ return offset;
+ }
+
+ __ load_const_optimized(tmp->as_register(), (intptr_t)os::get_polling_page(), R0); // TODO: PPC port: get_standard_polling_page()
+ if (info != NULL) {
+ add_debug_info_for_branch(info);
+ }
+ int offset = __ offset();
+ __ relocate(relocInfo::poll_type);
+ __ load_from_polling_page(tmp->as_register());
+
+ return offset;
+}
+
+
+void LIR_Assembler::emit_static_call_stub() {
+ address call_pc = __ pc();
+ address stub = __ start_a_stub(static_call_stub_size());
+ if (stub == NULL) {
+ bailout("static call stub overflow");
+ return;
+ }
+
+ // For java_to_interp stubs we use R11_scratch1 as scratch register
+ // and in call trampoline stubs we use R12_scratch2. This way we
+ // can distinguish them (see is_NativeCallTrampolineStub_at()).
+ const Register reg_scratch = R11_scratch1;
+
+ // Create a static stub relocation which relates this stub
+ // with the call instruction at insts_call_instruction_offset in the
+ // instructions code-section.
+ int start = __ offset();
+ __ relocate(static_stub_Relocation::spec(call_pc));
+
+ // Now, create the stub's code:
+ // - load the TOC
+ // - load the inline cache oop from the constant pool
+ // - load the call target from the constant pool
+ // - call
+ __ calculate_address_from_global_toc(reg_scratch, __ method_toc());
+ AddressLiteral ic = __ allocate_metadata_address((Metadata *)NULL);
+ bool success = __ load_const_from_method_toc(R19_inline_cache_reg, ic, reg_scratch, /*fixed_size*/ true);
+
+ if (ReoptimizeCallSequences) {
+ __ b64_patchable((address)-1, relocInfo::none);
+ } else {
+ AddressLiteral a((address)-1);
+ success = success && __ load_const_from_method_toc(reg_scratch, a, reg_scratch, /*fixed_size*/ true);
+ __ mtctr(reg_scratch);
+ __ bctr();
+ }
+ if (!success) {
+ bailout("const section overflow");
+ return;
+ }
+
+ assert(__ offset() - start <= static_call_stub_size(), "stub too big");
+ __ end_a_stub();
+}
+
+
+void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
+ bool unsigned_comp = (condition == lir_cond_belowEqual || condition == lir_cond_aboveEqual);
+ if (opr1->is_single_fpu()) {
+ __ fcmpu(BOOL_RESULT, opr1->as_float_reg(), opr2->as_float_reg());
+ } else if (opr1->is_double_fpu()) {
+ __ fcmpu(BOOL_RESULT, opr1->as_double_reg(), opr2->as_double_reg());
+ } else if (opr1->is_single_cpu()) {
+ if (opr2->is_constant()) {
+ switch (opr2->as_constant_ptr()->type()) {
+ case T_INT:
+ {
+ jint con = opr2->as_constant_ptr()->as_jint();
+ if (unsigned_comp) {
+ if (Assembler::is_uimm(con, 16)) {
+ __ cmplwi(BOOL_RESULT, opr1->as_register(), con);
+ } else {
+ __ load_const_optimized(R0, con);
+ __ cmplw(BOOL_RESULT, opr1->as_register(), R0);
+ }
+ } else {
+ if (Assembler::is_simm(con, 16)) {
+ __ cmpwi(BOOL_RESULT, opr1->as_register(), con);
+ } else {
+ __ load_const_optimized(R0, con);
+ __ cmpw(BOOL_RESULT, opr1->as_register(), R0);
+ }
+ }
+ }
+ break;
+
+ case T_OBJECT:
+ // There are only equal/notequal comparisons on objects.
+ {
+ assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
+ jobject con = opr2->as_constant_ptr()->as_jobject();
+ if (con == NULL) {
+ __ cmpdi(BOOL_RESULT, opr1->as_register(), 0);
+ } else {
+ jobject2reg(con, R0);
+ __ cmpd(BOOL_RESULT, opr1->as_register(), R0);
+ }
+ }
+ break;
+
+ default:
+ ShouldNotReachHere();
+ break;
+ }
+ } else {
+ if (opr2->is_address()) {
+ DEBUG_ONLY( Unimplemented(); ) // Seems to be unused at the moment.
+ LIR_Address *addr = opr2->as_address_ptr();
+ BasicType type = addr->type();
+ if (type == T_OBJECT) { __ ld(R0, index_or_disp(addr), addr->base()->as_register()); }
+ else { __ lwa(R0, index_or_disp(addr), addr->base()->as_register()); }
+ __ cmpd(BOOL_RESULT, opr1->as_register(), R0);
+ } else {
+ if (unsigned_comp) {
+ __ cmplw(BOOL_RESULT, opr1->as_register(), opr2->as_register());
+ } else {
+ __ cmpw(BOOL_RESULT, opr1->as_register(), opr2->as_register());
+ }
+ }
+ }
+ } else if (opr1->is_double_cpu()) {
+ if (opr2->is_constant()) {
+ jlong con = opr2->as_constant_ptr()->as_jlong();
+ if (unsigned_comp) {
+ if (Assembler::is_uimm(con, 16)) {
+ __ cmpldi(BOOL_RESULT, opr1->as_register_lo(), con);
+ } else {
+ __ load_const_optimized(R0, con);
+ __ cmpld(BOOL_RESULT, opr1->as_register_lo(), R0);
+ }
+ } else {
+ if (Assembler::is_simm(con, 16)) {
+ __ cmpdi(BOOL_RESULT, opr1->as_register_lo(), con);
+ } else {
+ __ load_const_optimized(R0, con);
+ __ cmpd(BOOL_RESULT, opr1->as_register_lo(), R0);
+ }
+ }
+ } else if (opr2->is_register()) {
+ if (unsigned_comp) {
+ __ cmpld(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo());
+ } else {
+ __ cmpd(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo());
+ }
+ } else {
+ ShouldNotReachHere();
+ }
+ } else if (opr1->is_address()) {
+ DEBUG_ONLY( Unimplemented(); ) // Seems to be unused at the moment.
+ LIR_Address * addr = opr1->as_address_ptr();
+ BasicType type = addr->type();
+ assert (opr2->is_constant(), "Checking");
+ if (type == T_OBJECT) { __ ld(R0, index_or_disp(addr), addr->base()->as_register()); }
+ else { __ lwa(R0, index_or_disp(addr), addr->base()->as_register()); }
+ __ cmpdi(BOOL_RESULT, R0, opr2->as_constant_ptr()->as_jint());
+ } else {
+ ShouldNotReachHere();
+ }
+}
+
+
+void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
+ const Register Rdst = dst->as_register();
+ Label done;
+ if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
+ bool is_unordered_less = (code == lir_ucmp_fd2i);
+ if (left->is_single_fpu()) {
+ __ fcmpu(CCR0, left->as_float_reg(), right->as_float_reg());
+ } else if (left->is_double_fpu()) {
+ __ fcmpu(CCR0, left->as_double_reg(), right->as_double_reg());
+ } else {
+ ShouldNotReachHere();
+ }
+ __ li(Rdst, is_unordered_less ? -1 : 1);
+ __ bso(CCR0, done);
+ } else if (code == lir_cmp_l2i) {
+ __ cmpd(CCR0, left->as_register_lo(), right->as_register_lo());
+ } else {
+ ShouldNotReachHere();
+ }
+ __ mfcr(R0); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
+ __ srwi(Rdst, R0, 30);
+ __ srawi(R0, R0, 31);
+ __ orr(Rdst, R0, Rdst); // set result as follows: <: -1, =: 0, >: 1
+ __ bind(done);
+}
+
+
+inline void load_to_reg(LIR_Assembler *lasm, LIR_Opr src, LIR_Opr dst) {
+ if (src->is_constant()) {
+ lasm->const2reg(src, dst, lir_patch_none, NULL);
+ } else if (src->is_register()) {
+ lasm->reg2reg(src, dst);
+ } else if (src->is_stack()) {
+ lasm->stack2reg(src, dst, dst->type());
+ } else {
+ ShouldNotReachHere();
+ }
+}
+
+
+void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
+ if (opr1->is_equal(opr2) || opr1->is_same_register(opr2)) {
+ load_to_reg(this, opr1, result); // Condition doesn't matter.
+ return;
+ }
+
+ bool positive = false;
+ Assembler::Condition cond = Assembler::equal;
+ switch (condition) {
+ case lir_cond_equal: positive = true ; cond = Assembler::equal ; break;
+ case lir_cond_notEqual: positive = false; cond = Assembler::equal ; break;
+ case lir_cond_less: positive = true ; cond = Assembler::less ; break;
+ case lir_cond_belowEqual:
+ case lir_cond_lessEqual: positive = false; cond = Assembler::greater; break;
+ case lir_cond_greater: positive = true ; cond = Assembler::greater; break;
+ case lir_cond_aboveEqual:
+ case lir_cond_greaterEqual: positive = false; cond = Assembler::less ; break;
+ default: ShouldNotReachHere();
+ }
+
+ // Try to use isel on >=Power7.
+ if (VM_Version::has_isel() && result->is_cpu_register()) {
+ bool o1_is_reg = opr1->is_cpu_register(), o2_is_reg = opr2->is_cpu_register();
+ const Register result_reg = result->is_single_cpu() ? result->as_register() : result->as_register_lo();
+
+ // We can use result_reg to load one operand if not already in register.
+ Register first = o1_is_reg ? (opr1->is_single_cpu() ? opr1->as_register() : opr1->as_register_lo()) : result_reg,
+ second = o2_is_reg ? (opr2->is_single_cpu() ? opr2->as_register() : opr2->as_register_lo()) : result_reg;
+
+ if (first != second) {
+ if (!o1_is_reg) {
+ load_to_reg(this, opr1, result);
+ }
+
+ if (!o2_is_reg) {
+ load_to_reg(this, opr2, result);
+ }
+
+ __ isel(result_reg, BOOL_RESULT, cond, !positive, first, second);
+ return;
+ }
+ } // isel
+
+ load_to_reg(this, opr1, result);
+
+ Label skip;
+ int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0;
+ int bi = Assembler::bi0(BOOL_RESULT, cond);
+ __ bc(bo, bi, skip);
+
+ load_to_reg(this, opr2, result);
+ __ bind(skip);
+}
+
+
+void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest,
+ CodeEmitInfo* info, bool pop_fpu_stack) {
+ assert(info == NULL, "unused on this code path");
+ assert(left->is_register(), "wrong items state");
+ assert(dest->is_register(), "wrong items state");
+
+ if (right->is_register()) {
+ if (dest->is_float_kind()) {
+
+ FloatRegister lreg, rreg, res;
+ if (right->is_single_fpu()) {
+ lreg = left->as_float_reg();
+ rreg = right->as_float_reg();
+ res = dest->as_float_reg();
+ switch (code) {
+ case lir_add: __ fadds(res, lreg, rreg); break;
+ case lir_sub: __ fsubs(res, lreg, rreg); break;
+ case lir_mul: // fall through
+ case lir_mul_strictfp: __ fmuls(res, lreg, rreg); break;
+ case lir_div: // fall through
+ case lir_div_strictfp: __ fdivs(res, lreg, rreg); break;
+ default: ShouldNotReachHere();
+ }
+ } else {
+ lreg = left->as_double_reg();
+ rreg = right->as_double_reg();
+ res = dest->as_double_reg();
+ switch (code) {
+ case lir_add: __ fadd(res, lreg, rreg); break;
+ case lir_sub: __ fsub(res, lreg, rreg); break;
+ case lir_mul: // fall through
+ case lir_mul_strictfp: __ fmul(res, lreg, rreg); break;
+ case lir_div: // fall through
+ case lir_div_strictfp: __ fdiv(res, lreg, rreg); break;
+ default: ShouldNotReachHere();
+ }
+ }
+
+ } else if (dest->is_double_cpu()) {
+
+ Register dst_lo = dest->as_register_lo();
+ Register op1_lo = left->as_pointer_register();
+ Register op2_lo = right->as_pointer_register();
+
+ switch (code) {
+ case lir_add: __ add(dst_lo, op1_lo, op2_lo); break;
+ case lir_sub: __ sub(dst_lo, op1_lo, op2_lo); break;
+ case lir_mul: __ mulld(dst_lo, op1_lo, op2_lo); break;
+ default: ShouldNotReachHere();
+ }
+ } else {
+ assert (right->is_single_cpu(), "Just Checking");
+
+ Register lreg = left->as_register();
+ Register res = dest->as_register();
+ Register rreg = right->as_register();
+ switch (code) {
+ case lir_add: __ add (res, lreg, rreg); break;
+ case lir_sub: __ sub (res, lreg, rreg); break;
+ case lir_mul: __ mullw(res, lreg, rreg); break;
+ default: ShouldNotReachHere();
+ }
+ }
+ } else {
+ assert (right->is_constant(), "must be constant");
+
+ if (dest->is_single_cpu()) {
+ Register lreg = left->as_register();
+ Register res = dest->as_register();
+ int simm16 = right->as_constant_ptr()->as_jint();
+
+ switch (code) {
+ case lir_sub: assert(Assembler::is_simm16(-simm16), "cannot encode"); // see do_ArithmeticOp_Int
+ simm16 = -simm16;
+ case lir_add: if (res == lreg && simm16 == 0) break;
+ __ addi(res, lreg, simm16); break;
+ case lir_mul: if (res == lreg && simm16 == 1) break;
+ __ mulli(res, lreg, simm16); break;
+ default: ShouldNotReachHere();
+ }
+ } else {
+ Register lreg = left->as_pointer_register();
+ Register res = dest->as_register_lo();
+ long con = right->as_constant_ptr()->as_jlong();
+ assert(Assembler::is_simm16(con), "must be simm16");
+
+ switch (code) {
+ case lir_sub: assert(Assembler::is_simm16(-con), "cannot encode"); // see do_ArithmeticOp_Long
+ con = -con;
+ case lir_add: if (res == lreg && con == 0) break;
+ __ addi(res, lreg, (int)con); break;
+ case lir_mul: if (res == lreg && con == 1) break;
+ __ mulli(res, lreg, (int)con); break;
+ default: ShouldNotReachHere();
+ }
+ }
+ }
+}
+
+
+void LIR_Assembler::fpop() {
+ Unimplemented();
+ // do nothing
+}
+
+
+void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
+ switch (code) {
+ case lir_sqrt: {
+ __ fsqrt(dest->as_double_reg(), value->as_double_reg());
+ break;
+ }
+ case lir_abs: {
+ __ fabs(dest->as_double_reg(), value->as_double_reg());
+ break;
+ }
+ default: {
+ ShouldNotReachHere();
+ break;
+ }
+ }
+}
+
+
+void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
+ if (right->is_constant()) { // see do_LogicOp
+ long uimm;
+ Register d, l;
+ if (dest->is_single_cpu()) {
+ uimm = right->as_constant_ptr()->as_jint();
+ d = dest->as_register();
+ l = left->as_register();
+ } else {
+ uimm = right->as_constant_ptr()->as_jlong();
+ d = dest->as_register_lo();
+ l = left->as_register_lo();
+ }
+ long uimms = (unsigned long)uimm >> 16,
+ uimmss = (unsigned long)uimm >> 32;
+
+ switch (code) {
+ case lir_logic_and:
+ if (uimmss != 0 || (uimms != 0 && (uimm & 0xFFFF) != 0) || is_power_of_2_long(uimm)) {
+ __ andi(d, l, uimm); // special cases
+ } else if (uimms != 0) { __ andis_(d, l, uimms); }
+ else { __ andi_(d, l, uimm); }
+ break;
+
+ case lir_logic_or:
+ if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ oris(d, l, uimms); }
+ else { __ ori(d, l, uimm); }
+ break;
+
+ case lir_logic_xor:
+ if (uimm == -1) { __ nand(d, l, l); } // special case
+ else if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ xoris(d, l, uimms); }
+ else { __ xori(d, l, uimm); }
+ break;
+
+ default: ShouldNotReachHere();
+ }
+ } else {
+ assert(right->is_register(), "right should be in register");
+
+ if (dest->is_single_cpu()) {
+ switch (code) {
+ case lir_logic_and: __ andr(dest->as_register(), left->as_register(), right->as_register()); break;
+ case lir_logic_or: __ orr (dest->as_register(), left->as_register(), right->as_register()); break;
+ case lir_logic_xor: __ xorr(dest->as_register(), left->as_register(), right->as_register()); break;
+ default: ShouldNotReachHere();
+ }
+ } else {
+ Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
+ left->as_register_lo();
+ Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
+ right->as_register_lo();
+
+ switch (code) {
+ case lir_logic_and: __ andr(dest->as_register_lo(), l, r); break;
+ case lir_logic_or: __ orr (dest->as_register_lo(), l, r); break;
+ case lir_logic_xor: __ xorr(dest->as_register_lo(), l, r); break;
+ default: ShouldNotReachHere();
+ }
+ }
+ }
+}
+
+
+int LIR_Assembler::shift_amount(BasicType t) {
+ int elem_size = type2aelembytes(t);
+ switch (elem_size) {
+ case 1 : return 0;
+ case 2 : return 1;
+ case 4 : return 2;
+ case 8 : return 3;
+ }
+ ShouldNotReachHere();
+ return -1;
+}
+
+
+void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
+ info->add_register_oop(exceptionOop);
+
+ // Reuse the debug info from the safepoint poll for the throw op itself.
+ address pc_for_athrow = __ pc();
+ int pc_for_athrow_offset = __ offset();
+ //RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
+ //__ relocate(rspec);
+ //__ load_const(exceptionPC->as_register(), pc_for_athrow, R0);
+ __ calculate_address_from_global_toc(exceptionPC->as_register(), pc_for_athrow, true, true, /*add_relocation*/ true);
+ add_call_info(pc_for_athrow_offset, info); // for exception handler
+
+ address stub = Runtime1::entry_for(compilation()->has_fpu_code() ? Runtime1::handle_exception_id
+ : Runtime1::handle_exception_nofpu_id);
+ //__ load_const_optimized(R0, stub);
+ __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(stub));
+ __ mtctr(R0);
+ __ bctr();
+}
+
+
+void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
+ // Note: Not used with EnableDebuggingOnDemand.
+ assert(exceptionOop->as_register() == R3, "should match");
+ __ b(_unwind_handler_entry);
+}
+
+
+void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
+ Register src = op->src()->as_register();
+ Register dst = op->dst()->as_register();
+ Register src_pos = op->src_pos()->as_register();
+ Register dst_pos = op->dst_pos()->as_register();
+ Register length = op->length()->as_register();
+ Register tmp = op->tmp()->as_register();
+ Register tmp2 = R0;
+
+ int flags = op->flags();
+ ciArrayKlass* default_type = op->expected_type();
+ BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
+ if (basic_type == T_ARRAY) basic_type = T_OBJECT;
+
+ // Set up the arraycopy stub information.
+ ArrayCopyStub* stub = op->stub();
+ const int frame_resize = frame::abi_reg_args_size - sizeof(frame::jit_abi); // C calls need larger frame.
+
+ // Always do stub if no type information is available. It's ok if
+ // the known type isn't loaded since the code sanity checks
+ // in debug mode and the type isn't required when we know the exact type
+ // also check that the type is an array type.
+ if (op->expected_type() == NULL) {
+ assert(src->is_nonvolatile() && src_pos->is_nonvolatile() && dst->is_nonvolatile() && dst_pos->is_nonvolatile() &&
+ length->is_nonvolatile(), "must preserve");
+ // 3 parms are int. Convert to long.
+ __ mr(R3_ARG1, src);
+ __ extsw(R4_ARG2, src_pos);
+ __ mr(R5_ARG3, dst);
+ __ extsw(R6_ARG4, dst_pos);
+ __ extsw(R7_ARG5, length);
+ address copyfunc_addr = StubRoutines::generic_arraycopy();
+
+ if (copyfunc_addr == NULL) { // Use C version if stub was not generated.
+ address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
+ __ call_c_with_frame_resize(entry, frame_resize);
+ } else {
+#ifndef PRODUCT
+ if (PrintC1Statistics) {
+ address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
+ int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
+ __ lwz(R11_scratch1, simm16_offs, tmp);
+ __ addi(R11_scratch1, R11_scratch1, 1);
+ __ stw(R11_scratch1, simm16_offs, tmp);
+ }
+#endif
+ __ call_c_with_frame_resize(copyfunc_addr, /*stub does not need resized frame*/ 0);
+
+ __ nand(tmp, R3_RET, R3_RET);
+ __ subf(length, tmp, length);
+ __ add(src_pos, tmp, src_pos);
+ __ add(dst_pos, tmp, dst_pos);
+ }
+
+ __ cmpwi(CCR0, R3_RET, 0);
+ __ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(CCR0, Assembler::less), *stub->entry());
+ __ bind(*stub->continuation());
+ return;
+ }
+
+ assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
+ Label cont, slow, copyfunc;
+
+ bool simple_check_flag_set = flags & (LIR_OpArrayCopy::src_null_check |
+ LIR_OpArrayCopy::dst_null_check |
+ LIR_OpArrayCopy::src_pos_positive_check |
+ LIR_OpArrayCopy::dst_pos_positive_check |
+ LIR_OpArrayCopy::length_positive_check);
+
+ // Use only one conditional branch for simple checks.
+ if (simple_check_flag_set) {
+ ConditionRegister combined_check = CCR1, tmp_check = CCR1;
+
+ // Make sure src and dst are non-null.
+ if (flags & LIR_OpArrayCopy::src_null_check) {
+ __ cmpdi(combined_check, src, 0);
+ tmp_check = CCR0;
+ }
+
+ if (flags & LIR_OpArrayCopy::dst_null_check) {
+ __ cmpdi(tmp_check, dst, 0);
+ if (tmp_check != combined_check) {
+ __ cror(combined_check, Assembler::equal, tmp_check, Assembler::equal);
+ }
+ tmp_check = CCR0;
+ }
+
+ // Clear combined_check.eq if not already used.
+ if (tmp_check == combined_check) {
+ __ crandc(combined_check, Assembler::equal, combined_check, Assembler::equal);
+ tmp_check = CCR0;
+ }
+
+ if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
+ // Test src_pos register.
+ __ cmpwi(tmp_check, src_pos, 0);
+ __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less);
+ }
+
+ if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
+ // Test dst_pos register.
+ __ cmpwi(tmp_check, dst_pos, 0);
+ __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less);
+ }
+
+ if (flags & LIR_OpArrayCopy::length_positive_check) {
+ // Make sure length isn't negative.
+ __ cmpwi(tmp_check, length, 0);
+ __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less);
+ }
+
+ __ beq(combined_check, slow);
+ }
+
+ // If the compiler was not able to prove that exact type of the source or the destination
+ // of the arraycopy is an array type, check at runtime if the source or the destination is
+ // an instance type.
+ if (flags & LIR_OpArrayCopy::type_check) {
+ if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
+ __ load_klass(tmp, dst);
+ __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp);
+ __ cmpwi(CCR0, tmp2, Klass::_lh_neutral_value);
+ __ bge(CCR0, slow);
+ }
+
+ if (!(flags & LIR_OpArrayCopy::src_objarray)) {
+ __ load_klass(tmp, src);
+ __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp);
+ __ cmpwi(CCR0, tmp2, Klass::_lh_neutral_value);
+ __ bge(CCR0, slow);
+ }
+ }
+
+ // Higher 32bits must be null.
+ __ extsw(length, length);
+
+ __ extsw(src_pos, src_pos);
+ if (flags & LIR_OpArrayCopy::src_range_check) {
+ __ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), src);
+ __ add(tmp, length, src_pos);
+ __ cmpld(CCR0, tmp2, tmp);
+ __ ble(CCR0, slow);
+ }
+
+ __ extsw(dst_pos, dst_pos);
+ if (flags & LIR_OpArrayCopy::dst_range_check) {
+ __ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), dst);
+ __ add(tmp, length, dst_pos);
+ __ cmpld(CCR0, tmp2, tmp);
+ __ ble(CCR0, slow);
+ }
+
+ int shift = shift_amount(basic_type);
+
+ if (!(flags & LIR_OpArrayCopy::type_check)) {
+ __ b(cont);
+ } else {
+ // We don't know the array types are compatible.
+ if (basic_type != T_OBJECT) {
+ // Simple test for basic type arrays.
+ if (UseCompressedClassPointers) {
+ // We don't need decode because we just need to compare.
+ __ lwz(tmp, oopDesc::klass_offset_in_bytes(), src);
+ __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), dst);
+ __ cmpw(CCR0, tmp, tmp2);
+ } else {
+ __ ld(tmp, oopDesc::klass_offset_in_bytes(), src);
+ __ ld(tmp2, oopDesc::klass_offset_in_bytes(), dst);
+ __ cmpd(CCR0, tmp, tmp2);
+ }
+ __ beq(CCR0, cont);
+ } else {
+ // For object arrays, if src is a sub class of dst then we can
+ // safely do the copy.
+ address copyfunc_addr = StubRoutines::checkcast_arraycopy();
+
+ const Register sub_klass = R5, super_klass = R4; // like CheckCast/InstanceOf
+ assert_different_registers(tmp, tmp2, sub_klass, super_klass);
+
+ __ load_klass(sub_klass, src);
+ __ load_klass(super_klass, dst);
+
+ __ check_klass_subtype_fast_path(sub_klass, super_klass, tmp, tmp2,
+ &cont, copyfunc_addr != NULL ? ©func : &slow, NULL);
+
+ address slow_stc = Runtime1::entry_for(Runtime1::slow_subtype_check_id);
+ //__ load_const_optimized(tmp, slow_stc, tmp2);
+ __ calculate_address_from_global_toc(tmp, slow_stc, true, true, false);
+ __ mtctr(tmp);
+ __ bctrl(); // sets CR0
+ __ beq(CCR0, cont);
+
+ if (copyfunc_addr != NULL) { // Use stub if available.
+ __ bind(copyfunc);
+ // Src is not a sub class of dst so we have to do a
+ // per-element check.
+ int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
+ if ((flags & mask) != mask) {
+ assert(flags & mask, "one of the two should be known to be an object array");
+
+ if (!(flags & LIR_OpArrayCopy::src_objarray)) {
+ __ load_klass(tmp, src);
+ } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
+ __ load_klass(tmp, dst);
+ }
+
+ __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp);
+
+ jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
+ __ load_const_optimized(tmp, objArray_lh);
+ __ cmpw(CCR0, tmp, tmp2);
+ __ bne(CCR0, slow);
+ }
+
+ Register src_ptr = R3_ARG1;
+ Register dst_ptr = R4_ARG2;
+ Register len = R5_ARG3;
+ Register chk_off = R6_ARG4;
+ Register super_k = R7_ARG5;
+
+ __ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type));
+ __ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type));
+ if (shift == 0) {
+ __ add(src_ptr, src_pos, src_ptr);
+ __ add(dst_ptr, dst_pos, dst_ptr);
+ } else {
+ __ sldi(tmp, src_pos, shift);
+ __ sldi(tmp2, dst_pos, shift);
+ __ add(src_ptr, tmp, src_ptr);
+ __ add(dst_ptr, tmp2, dst_ptr);
+ }
+
+ __ load_klass(tmp, dst);
+ __ mr(len, length);
+
+ int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
+ __ ld(super_k, ek_offset, tmp);
+
+ int sco_offset = in_bytes(Klass::super_check_offset_offset());
+ __ lwz(chk_off, sco_offset, super_k);
+
+ __ call_c_with_frame_resize(copyfunc_addr, /*stub does not need resized frame*/ 0);
+
+#ifndef PRODUCT
+ if (PrintC1Statistics) {
+ Label failed;
+ __ cmpwi(CCR0, R3_RET, 0);
+ __ bne(CCR0, failed);
+ address counter = (address)&Runtime1::_arraycopy_checkcast_cnt;
+ int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
+ __ lwz(R11_scratch1, simm16_offs, tmp);
+ __ addi(R11_scratch1, R11_scratch1, 1);
+ __ stw(R11_scratch1, simm16_offs, tmp);
+ __ bind(failed);
+ }
+#endif
+
+ __ nand(tmp, R3_RET, R3_RET);
+ __ cmpwi(CCR0, R3_RET, 0);
+ __ beq(CCR0, *stub->continuation());
+
+#ifndef PRODUCT
+ if (PrintC1Statistics) {
+ address counter = (address)&Runtime1::_arraycopy_checkcast_attempt_cnt;
+ int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
+ __ lwz(R11_scratch1, simm16_offs, tmp);
+ __ addi(R11_scratch1, R11_scratch1, 1);
+ __ stw(R11_scratch1, simm16_offs, tmp);
+ }
+#endif
+
+ __ subf(length, tmp, length);
+ __ add(src_pos, tmp, src_pos);
+ __ add(dst_pos, tmp, dst_pos);
+ }
+ }
+ }
+ __ bind(slow);
+ __ b(*stub->entry());
+ __ bind(cont);
+
+#ifdef ASSERT
+ if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
+ // Sanity check the known type with the incoming class. For the
+ // primitive case the types must match exactly with src.klass and
+ // dst.klass each exactly matching the default type. For the
+ // object array case, if no type check is needed then either the
+ // dst type is exactly the expected type and the src type is a
+ // subtype which we can't check or src is the same array as dst
+ // but not necessarily exactly of type default_type.
+ Label known_ok, halt;
+ metadata2reg(op->expected_type()->constant_encoding(), tmp);
+ if (UseCompressedClassPointers) {
+ // Tmp holds the default type. It currently comes uncompressed after the
+ // load of a constant, so encode it.
+ __ encode_klass_not_null(tmp);
+ // Load the raw value of the dst klass, since we will be comparing
+ // uncompressed values directly.
+ __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), dst);
+ __ cmpw(CCR0, tmp, tmp2);
+ if (basic_type != T_OBJECT) {
+ __ bne(CCR0, halt);
+ // Load the raw value of the src klass.
+ __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), src);
+ __ cmpw(CCR0, tmp, tmp2);
+ __ beq(CCR0, known_ok);
+ } else {
+ __ beq(CCR0, known_ok);
+ __ cmpw(CCR0, src, dst);
+ __ beq(CCR0, known_ok);
+ }
+ } else {
+ __ ld(tmp2, oopDesc::klass_offset_in_bytes(), dst);
+ __ cmpd(CCR0, tmp, tmp2);
+ if (basic_type != T_OBJECT) {
+ __ bne(CCR0, halt);
+ // Load the raw value of the src klass.
+ __ ld(tmp2, oopDesc::klass_offset_in_bytes(), src);
+ __ cmpd(CCR0, tmp, tmp2);
+ __ beq(CCR0, known_ok);
+ } else {
+ __ beq(CCR0, known_ok);
+ __ cmpd(CCR0, src, dst);
+ __ beq(CCR0, known_ok);
+ }
+ }
+ __ bind(halt);
+ __ stop("incorrect type information in arraycopy");
+ __ bind(known_ok);
+ }
+#endif
+
+#ifndef PRODUCT
+ if (PrintC1Statistics) {
+ address counter = Runtime1::arraycopy_count_address(basic_type);
+ int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
+ __ lwz(R11_scratch1, simm16_offs, tmp);
+ __ addi(R11_scratch1, R11_scratch1, 1);
+ __ stw(R11_scratch1, simm16_offs, tmp);
+ }
+#endif
+
+ Register src_ptr = R3_ARG1;
+ Register dst_ptr = R4_ARG2;
+ Register len = R5_ARG3;
+
+ __ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type));
+ __ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type));
+ if (shift == 0) {
+ __ add(src_ptr, src_pos, src_ptr);
+ __ add(dst_ptr, dst_pos, dst_ptr);
+ } else {
+ __ sldi(tmp, src_pos, shift);
+ __ sldi(tmp2, dst_pos, shift);
+ __ add(src_ptr, tmp, src_ptr);
+ __ add(dst_ptr, tmp2, dst_ptr);
+ }
+
+ bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
+ bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
+ const char *name;
+ address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
+
+ // Arraycopy stubs takes a length in number of elements, so don't scale it.
+ __ mr(len, length);
+ __ call_c_with_frame_resize(entry, /*stub does not need resized frame*/ 0);
+
+ __ bind(*stub->continuation());
+}
+
+
+void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
+ if (dest->is_single_cpu()) {
+ __ rldicl(tmp->as_register(), count->as_register(), 0, 64-5);
+#ifdef _LP64
+ if (left->type() == T_OBJECT) {
+ switch (code) {
+ case lir_shl: __ sld(dest->as_register(), left->as_register(), tmp->as_register()); break;
+ case lir_shr: __ srad(dest->as_register(), left->as_register(), tmp->as_register()); break;
+ case lir_ushr: __ srd(dest->as_register(), left->as_register(), tmp->as_register()); break;
+ default: ShouldNotReachHere();
+ }
+ } else
+#endif
+ switch (code) {
+ case lir_shl: __ slw(dest->as_register(), left->as_register(), tmp->as_register()); break;
+ case lir_shr: __ sraw(dest->as_register(), left->as_register(), tmp->as_register()); break;
+ case lir_ushr: __ srw(dest->as_register(), left->as_register(), tmp->as_register()); break;
+ default: ShouldNotReachHere();
+ }
+ } else {
+ __ rldicl(tmp->as_register(), count->as_register(), 0, 64-6);
+ switch (code) {
+ case lir_shl: __ sld(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break;
+ case lir_shr: __ srad(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break;
+ case lir_ushr: __ srd(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break;
+ default: ShouldNotReachHere();
+ }
+ }
+}
+
+
+void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
+#ifdef _LP64
+ if (left->type() == T_OBJECT) {
+ count = count & 63; // Shouldn't shift by more than sizeof(intptr_t).
+ if (count == 0) { __ mr_if_needed(dest->as_register_lo(), left->as_register()); }
+ else {
+ switch (code) {
+ case lir_shl: __ sldi(dest->as_register_lo(), left->as_register(), count); break;
+ case lir_shr: __ sradi(dest->as_register_lo(), left->as_register(), count); break;
+ case lir_ushr: __ srdi(dest->as_register_lo(), left->as_register(), count); break;
+ default: ShouldNotReachHere();
+ }
+ }
+ return;
+ }
+#endif
+
+ if (dest->is_single_cpu()) {
+ count = count & 0x1F; // Java spec
+ if (count == 0) { __ mr_if_needed(dest->as_register(), left->as_register()); }
+ else {
+ switch (code) {
+ case lir_shl: __ slwi(dest->as_register(), left->as_register(), count); break;
+ case lir_shr: __ srawi(dest->as_register(), left->as_register(), count); break;
+ case lir_ushr: __ srwi(dest->as_register(), left->as_register(), count); break;
+ default: ShouldNotReachHere();
+ }
+ }
+ } else if (dest->is_double_cpu()) {
+ count = count & 63; // Java spec
+ if (count == 0) { __ mr_if_needed(dest->as_pointer_register(), left->as_pointer_register()); }
+ else {
+ switch (code) {
+ case lir_shl: __ sldi(dest->as_pointer_register(), left->as_pointer_register(), count); break;
+ case lir_shr: __ sradi(dest->as_pointer_register(), left->as_pointer_register(), count); break;
+ case lir_ushr: __ srdi(dest->as_pointer_register(), left->as_pointer_register(), count); break;
+ default: ShouldNotReachHere();
+ }
+ }
+ } else {
+ ShouldNotReachHere();
+ }
+}
+
+
+void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
+ if (op->init_check()) {
+ if (!os::zero_page_read_protected() || !ImplicitNullChecks) {
+ explicit_null_check(op->klass()->as_register(), op->stub()->info());
+ } else {
+ add_debug_info_for_null_check_here(op->stub()->info());
+ }
+ __ lbz(op->tmp1()->as_register(),
+ in_bytes(InstanceKlass::init_state_offset()), op->klass()->as_register());
+ __ cmpwi(CCR0, op->tmp1()->as_register(), InstanceKlass::fully_initialized);
+ __ bc_far_optimized(Assembler::bcondCRbiIs0, __ bi0(CCR0, Assembler::equal), *op->stub()->entry());
+ }
+ __ allocate_object(op->obj()->as_register(),
+ op->tmp1()->as_register(),
+ op->tmp2()->as_register(),
+ op->tmp3()->as_register(),
+ op->header_size(),
+ op->object_size(),
+ op->klass()->as_register(),
+ *op->stub()->entry());
+
+ __ bind(*op->stub()->continuation());
+ __ verify_oop(op->obj()->as_register());
+}
+
+
+void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
+ LP64_ONLY( __ extsw(op->len()->as_register(), op->len()->as_register()); )
+ if (UseSlowPath ||
+ (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
+ (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
+ __ b(*op->stub()->entry());
+ } else {
+ __ allocate_array(op->obj()->as_register(),
+ op->len()->as_register(),
+ op->tmp1()->as_register(),
+ op->tmp2()->as_register(),
+ op->tmp3()->as_register(),
+ arrayOopDesc::header_size(op->type()),
+ type2aelembytes(op->type()),
+ op->klass()->as_register(),
+ *op->stub()->entry());
+ }
+ __ bind(*op->stub()->continuation());
+}
+
+
+void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
+ ciMethodData *md, ciProfileData *data,
+ Register recv, Register tmp1, Label* update_done) {
+ uint i;
+ for (i = 0; i < VirtualCallData::row_limit(); i++) {
+ Label next_test;
+ // See if the receiver is receiver[n].
+ __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo);
+ __ verify_klass_ptr(tmp1);
+ __ cmpd(CCR0, recv, tmp1);
+ __ bne(CCR0, next_test);
+
+ __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
+ __ addi(tmp1, tmp1, DataLayout::counter_increment);
+ __ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
+ __ b(*update_done);
+
+ __ bind(next_test);
+ }
+
+ // Didn't find receiver; find next empty slot and fill it in.
+ for (i = 0; i < VirtualCallData::row_limit(); i++) {
+ Label next_test;
+ __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo);
+ __ cmpdi(CCR0, tmp1, 0);
+ __ bne(CCR0, next_test);
+ __ li(tmp1, DataLayout::counter_increment);
+ __ std(recv, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo);
+ __ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
+ __ b(*update_done);
+
+ __ bind(next_test);
+ }
+}
+
+
+void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
+ ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
+ md = method->method_data_or_null();
+ assert(md != NULL, "Sanity");
+ data = md->bci_to_data(bci);
+ assert(data != NULL, "need data for checkcast");
+ assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
+ if (!Assembler::is_simm16(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
+ // The offset is large so bias the mdo by the base of the slot so
+ // that the ld can use simm16s to reference the slots of the data.
+ mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
+ }
+}
+
+
+void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
+ Register obj = op->object()->as_register();
+ Register k_RInfo = op->tmp1()->as_register();
+ Register klass_RInfo = op->tmp2()->as_register();
+ Register Rtmp1 = op->tmp3()->as_register();
+ Register dst = op->result_opr()->as_register();
+ ciKlass* k = op->klass();
+ bool should_profile = op->should_profile();
+ bool move_obj_to_dst = (op->code() == lir_checkcast);
+ // Attention: do_temp(opTypeCheck->_object) is not used, i.e. obj may be same as one of the temps.
+ bool reg_conflict = (obj == k_RInfo || obj == klass_RInfo || obj == Rtmp1);
+ bool restore_obj = move_obj_to_dst && reg_conflict;
+
+ __ cmpdi(CCR0, obj, 0);
+ if (move_obj_to_dst || reg_conflict) {
+ __ mr_if_needed(dst, obj);
+ if (reg_conflict) { obj = dst; }
+ }
+
+ ciMethodData* md;
+ ciProfileData* data;
+ int mdo_offset_bias = 0;
+ if (should_profile) {
+ ciMethod* method = op->profiled_method();
+ assert(method != NULL, "Should have method");
+ setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
+
+ Register mdo = k_RInfo;
+ Register data_val = Rtmp1;
+ Label not_null;
+ __ bne(CCR0, not_null);
+ metadata2reg(md->constant_encoding(), mdo);
+ __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
+ __ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
+ __ ori(data_val, data_val, BitData::null_seen_byte_constant());
+ __ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
+ __ b(*obj_is_null);
+ __ bind(not_null);
+ } else {
+ __ beq(CCR0, *obj_is_null);
+ }
+
+ // get object class
+ __ load_klass(klass_RInfo, obj);
+
+ if (k->is_loaded()) {
+ metadata2reg(k->constant_encoding(), k_RInfo);
+ } else {
+ klass2reg_with_patching(k_RInfo, op->info_for_patch());
+ }
+
+ Label profile_cast_failure, failure_restore_obj, profile_cast_success;
+ Label *failure_target = should_profile ? &profile_cast_failure : failure;
+ Label *success_target = should_profile ? &profile_cast_success : success;
+
+ if (op->fast_check()) {
+ assert_different_registers(klass_RInfo, k_RInfo);
+ __ cmpd(CCR0, k_RInfo, klass_RInfo);
+ if (should_profile) {
+ __ bne(CCR0, *failure_target);
+ // Fall through to success case.
+ } else {
+ __ beq(CCR0, *success);
+ // Fall through to failure case.
+ }
+ } else {
+ bool need_slow_path = true;
+ if (k->is_loaded()) {
+ if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset())) {
+ need_slow_path = false;
+ }
+ // Perform the fast part of the checking logic.
+ __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, (need_slow_path ? success_target : NULL),
+ failure_target, NULL, RegisterOrConstant(k->super_check_offset()));
+ } else {
+ // Perform the fast part of the checking logic.
+ __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, success_target, failure_target);
+ }
+ if (!need_slow_path) {
+ if (!should_profile) { __ b(*success); }
+ } else {
+ // Call out-of-line instance of __ check_klass_subtype_slow_path(...):
+ address entry = Runtime1::entry_for(Runtime1::slow_subtype_check_id);
+ //__ load_const_optimized(Rtmp1, entry, R0);
+ __ calculate_address_from_global_toc(Rtmp1, entry, true, true, false);
+ __ mtctr(Rtmp1);
+ __ bctrl(); // sets CR0
+ if (should_profile) {
+ __ bne(CCR0, *failure_target);
+ // Fall through to success case.
+ } else {
+ __ beq(CCR0, *success);
+ // Fall through to failure case.
+ }
+ }
+ }
+
+ if (should_profile) {
+ Register mdo = k_RInfo, recv = klass_RInfo;
+ assert_different_registers(mdo, recv, Rtmp1);
+ __ bind(profile_cast_success);
+ metadata2reg(md->constant_encoding(), mdo);
+ __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
+ type_profile_helper(mdo, mdo_offset_bias, md, data, recv, Rtmp1, success);
+ __ b(*success);
+
+ // Cast failure case.
+ __ bind(profile_cast_failure);
+ metadata2reg(md->constant_encoding(), mdo);
+ __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
+ __ ld(Rtmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
+ __ addi(Rtmp1, Rtmp1, -DataLayout::counter_increment);
+ __ std(Rtmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
+ }
+
+ __ bind(*failure);
+
+ if (restore_obj) {
+ __ mr(op->object()->as_register(), dst);
+ // Fall through to failure case.
+ }
+}
+
+
+void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
+ LIR_Code code = op->code();
+ if (code == lir_store_check) {
+ Register value = op->object()->as_register();
+ Register array = op->array()->as_register();
+ Register k_RInfo = op->tmp1()->as_register();
+ Register klass_RInfo = op->tmp2()->as_register();
+ Register Rtmp1 = op->tmp3()->as_register();
+ bool should_profile = op->should_profile();
+
+ __ verify_oop(value);
+ CodeStub* stub = op->stub();
+ // Check if it needs to be profiled.
+ ciMethodData* md;
+ ciProfileData* data;
+ int mdo_offset_bias = 0;
+ if (should_profile) {
+ ciMethod* method = op->profiled_method();
+ assert(method != NULL, "Should have method");
+ setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
+ }
+ Label profile_cast_success, failure, done;
+ Label *success_target = should_profile ? &profile_cast_success : &done;
+
+ __ cmpdi(CCR0, value, 0);
+ if (should_profile) {
+ Label not_null;
+ __ bne(CCR0, not_null);
+ Register mdo = k_RInfo;
+ Register data_val = Rtmp1;
+ metadata2reg(md->constant_encoding(), mdo);
+ __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
+ __ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
+ __ ori(data_val, data_val, BitData::null_seen_byte_constant());
+ __ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
+ __ b(done);
+ __ bind(not_null);
+ } else {
+ __ beq(CCR0, done);
+ }
+ if (!os::zero_page_read_protected() || !ImplicitNullChecks) {
+ explicit_null_check(array, op->info_for_exception());
+ } else {
+ add_debug_info_for_null_check_here(op->info_for_exception());
+ }
+ __ load_klass(k_RInfo, array);
+ __ load_klass(klass_RInfo, value);
+
+ // Get instance klass.
+ __ ld(k_RInfo, in_bytes(ObjArrayKlass::element_klass_offset()), k_RInfo);
+ // Perform the fast part of the checking logic.
+ __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, success_target, &failure, NULL);
+
+ // Call out-of-line instance of __ check_klass_subtype_slow_path(...):
+ const address slow_path = Runtime1::entry_for(Runtime1::slow_subtype_check_id);
+ //__ load_const_optimized(R0, slow_path);
+ __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(slow_path));
+ __ mtctr(R0);
+ __ bctrl(); // sets CR0
+ if (!should_profile) {
+ __ beq(CCR0, done);
+ __ bind(failure);
+ } else {
+ __ bne(CCR0, failure);
+ // Fall through to the success case.
+
+ Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
+ assert_different_registers(value, mdo, recv, tmp1);
+ __ bind(profile_cast_success);
+ metadata2reg(md->constant_encoding(), mdo);
+ __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
+ __ load_klass(recv, value);
+ type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
+ __ b(done);
+
+ // Cast failure case.
+ __ bind(failure);
+ metadata2reg(md->constant_encoding(), mdo);
+ __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
+ Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
+ __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
+ __ addi(tmp1, tmp1, -DataLayout::counter_increment);
+ __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
+ }
+ __ b(*stub->entry());
+ __ bind(done);
+
+ } else if (code == lir_checkcast) {
+ Label success, failure;
+ emit_typecheck_helper(op, &success, /*fallthru*/&failure, &success); // Moves obj to dst.
+ __ b(*op->stub()->entry());
+ __ align(32, 12);
+ __ bind(success);
+ } else if (code == lir_instanceof) {
+ Register dst = op->result_opr()->as_register();
+ Label success, failure, done;
+ emit_typecheck_helper(op, &success, /*fallthru*/&failure, &failure);
+ __ li(dst, 0);
+ __ b(done);
+ __ align(32, 12);
+ __ bind(success);
+ __ li(dst, 1);
+ __ bind(done);
+ } else {
+ ShouldNotReachHere();
+ }
+}
+
+
+void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
+ Register addr = op->addr()->as_pointer_register();
+ Register cmp_value = noreg, new_value = noreg;
+ bool is_64bit = false;
+
+ if (op->code() == lir_cas_long) {
+ cmp_value = op->cmp_value()->as_register_lo();
+ new_value = op->new_value()->as_register_lo();
+ is_64bit = true;
+ } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
+ cmp_value = op->cmp_value()->as_register();
+ new_value = op->new_value()->as_register();
+ if (op->code() == lir_cas_obj) {
+ if (UseCompressedOops) {
+ Register t1 = op->tmp1()->as_register();
+ Register t2 = op->tmp2()->as_register();
+ cmp_value = __ encode_heap_oop(t1, cmp_value);
+ new_value = __ encode_heap_oop(t2, new_value);
+ } else {
+ is_64bit = true;
+ }
+ }
+ } else {
+ Unimplemented();
+ }
+
+ if (is_64bit) {
+ __ cmpxchgd(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr,
+ MacroAssembler::MemBarNone,
+ MacroAssembler::cmpxchgx_hint_atomic_update(),
+ noreg, NULL, /*check without ldarx first*/true);
+ } else {
+ __ cmpxchgw(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr,
+ MacroAssembler::MemBarNone,
+ MacroAssembler::cmpxchgx_hint_atomic_update(),
+ noreg, /*check without ldarx first*/true);
+ }
+
+ if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
+ __ isync();
+ } else {
+ __ sync();
+ }
+}
+
+
+void LIR_Assembler::set_24bit_FPU() {
+ Unimplemented();
+}
+
+void LIR_Assembler::reset_FPU() {
+ Unimplemented();
+}
+
+
+void LIR_Assembler::breakpoint() {
+ __ illtrap();
+}
+
+
+void LIR_Assembler::push(LIR_Opr opr) {
+ Unimplemented();
+}
+
+void LIR_Assembler::pop(LIR_Opr opr) {
+ Unimplemented();
+}
+
+
+void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
+ Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
+ Register dst = dst_opr->as_register();
+ Register reg = mon_addr.base();
+ int offset = mon_addr.disp();
+ // Compute pointer to BasicLock.
+ __ add_const_optimized(dst, reg, offset);
+}
+
+
+void LIR_Assembler::emit_lock(LIR_OpLock* op) {
+ Register obj = op->obj_opr()->as_register();
+ Register hdr = op->hdr_opr()->as_register();
+ Register lock = op->lock_opr()->as_register();
+
+ // Obj may not be an oop.
+ if (op->code() == lir_lock) {
+ MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
+ if (UseFastLocking) {
+ assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
+ // Add debug info for NullPointerException only if one is possible.
+ if (op->info() != NULL) {
+ if (!os::zero_page_read_protected() || !ImplicitNullChecks) {
+ explicit_null_check(obj, op->info());
+ } else {
+ add_debug_info_for_null_check_here(op->info());
+ }
+ }
+ __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
+ } else {
+ // always do slow locking
+ // note: The slow locking code could be inlined here, however if we use
+ // slow locking, speed doesn't matter anyway and this solution is
+ // simpler and requires less duplicated code - additionally, the
+ // slow locking code is the same in either case which simplifies
+ // debugging.
+ __ b(*op->stub()->entry());
+ }
+ } else {
+ assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
+ if (UseFastLocking) {
+ assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
+ __ unlock_object(hdr, obj, lock, *op->stub()->entry());
+ } else {
+ // always do slow unlocking
+ // note: The slow unlocking code could be inlined here, however if we use
+ // slow unlocking, speed doesn't matter anyway and this solution is
+ // simpler and requires less duplicated code - additionally, the
+ // slow unlocking code is the same in either case which simplifies
+ // debugging.
+ __ b(*op->stub()->entry());
+ }
+ }
+ __ bind(*op->stub()->continuation());
+}
+
+
+void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
+ ciMethod* method = op->profiled_method();
+ int bci = op->profiled_bci();
+ ciMethod* callee = op->profiled_callee();
+
+ // Update counter for all call types.
+ ciMethodData* md = method->method_data_or_null();
+ assert(md != NULL, "Sanity");
+ ciProfileData* data = md->bci_to_data(bci);
+ assert(data->is_CounterData(), "need CounterData for calls");
+ assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
+ Register mdo = op->mdo()->as_register();
+#ifdef _LP64
+ assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
+ Register tmp1 = op->tmp1()->as_register_lo();
+#else
+ assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
+ Register tmp1 = op->tmp1()->as_register();
+#endif
+ metadata2reg(md->constant_encoding(), mdo);
+ int mdo_offset_bias = 0;
+ if (!Assembler::is_simm16(md->byte_offset_of_slot(data, CounterData::count_offset()) +
+ data->size_in_bytes())) {
+ // The offset is large so bias the mdo by the base of the slot so
+ // that the ld can use simm16s to reference the slots of the data.
+ mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
+ __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
+ }
+
+ Bytecodes::Code bc = method->java_code_at_bci(bci);
+ const bool callee_is_static = callee->is_loaded() && callee->is_static();
+ // Perform additional virtual call profiling for invokevirtual and
+ // invokeinterface bytecodes.
+ if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
+ !callee_is_static && // Required for optimized MH invokes.
+ C1ProfileVirtualCalls) {
+ assert(op->recv()->is_single_cpu(), "recv must be allocated");
+ Register recv = op->recv()->as_register();
+ assert_different_registers(mdo, tmp1, recv);
+ assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
+ ciKlass* known_klass = op->known_holder();
+ if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
+ // We know the type that will be seen at this call site; we can
+ // statically update the MethodData* rather than needing to do
+ // dynamic tests on the receiver type.
+
+ // NOTE: we should probably put a lock around this search to
+ // avoid collisions by concurrent compilations.
+ ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
+ uint i;
+ for (i = 0; i < VirtualCallData::row_limit(); i++) {
+ ciKlass* receiver = vc_data->receiver(i);
+ if (known_klass->equals(receiver)) {
+ __ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
+ __ addi(tmp1, tmp1, DataLayout::counter_increment);
+ __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
+ return;
+ }
+ }
+
+ // Receiver type not found in profile data; select an empty slot.
+
+ // Note that this is less efficient than it should be because it
+ // always does a write to the receiver part of the
+ // VirtualCallData rather than just the first time.
+ for (i = 0; i < VirtualCallData::row_limit(); i++) {
+ ciKlass* receiver = vc_data->receiver(i);
+ if (receiver == NULL) {
+ metadata2reg(known_klass->constant_encoding(), tmp1);
+ __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) - mdo_offset_bias, mdo);
+
+ __ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
+ __ addi(tmp1, tmp1, DataLayout::counter_increment);
+ __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
+ return;
+ }
+ }
+ } else {
+ __ load_klass(recv, recv);
+ Label update_done;
+ type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
+ // Receiver did not match any saved receiver and there is no empty row for it.
+ // Increment total counter to indicate polymorphic case.
+ __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
+ __ addi(tmp1, tmp1, DataLayout::counter_increment);
+ __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
+
+ __ bind(update_done);
+ }
+ } else {
+ // Static call
+ __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
+ __ addi(tmp1, tmp1, DataLayout::counter_increment);
+ __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
+ }
+}
+
+
+void LIR_Assembler::align_backward_branch_target() {
+ __ align(32, 12); // Insert up to 3 nops to align with 32 byte boundary.
+}
+
+
+void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
+ Unimplemented();
+}
+
+
+void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
+ assert(left->is_register(), "can only handle registers");
+
+ if (left->is_single_cpu()) {
+ __ neg(dest->as_register(), left->as_register());
+ } else if (left->is_single_fpu()) {
+ __ fneg(dest->as_float_reg(), left->as_float_reg());
+ } else if (left->is_double_fpu()) {
+ __ fneg(dest->as_double_reg(), left->as_double_reg());
+ } else {
+ assert (left->is_double_cpu(), "Must be a long");
+ __ neg(dest->as_register_lo(), left->as_register_lo());
+ }
+}
+
+
+void LIR_Assembler::fxch(int i) {
+ Unimplemented();
+}
+
+void LIR_Assembler::fld(int i) {
+ Unimplemented();
+}
+
+void LIR_Assembler::ffree(int i) {
+ Unimplemented();
+}
+
+
+void LIR_Assembler::rt_call(LIR_Opr result, address dest,
+ const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
+ // Stubs: Called via rt_call, but dest is a stub address (no function descriptor).
+ if (dest == Runtime1::entry_for(Runtime1::register_finalizer_id) ||
+ dest == Runtime1::entry_for(Runtime1::new_multi_array_id )) {
+ //__ load_const_optimized(R0, dest);
+ __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(dest));
+ __ mtctr(R0);
+ __ bctrl();
+ assert(info != NULL, "sanity");
+ add_call_info_here(info);
+ return;
+ }
+
+ __ call_c_with_frame_resize(dest, /*no resizing*/ 0);
+ if (info != NULL) {
+ add_call_info_here(info);
+ }
+}
+
+
+void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
+ ShouldNotReachHere(); // Not needed on _LP64.
+}
+
+void LIR_Assembler::membar() {
+ __ fence();
+}
+
+void LIR_Assembler::membar_acquire() {
+ __ acquire();
+}
+
+void LIR_Assembler::membar_release() {
+ __ release();
+}
+
+void LIR_Assembler::membar_loadload() {
+ __ membar(Assembler::LoadLoad);
+}
+
+void LIR_Assembler::membar_storestore() {
+ __ membar(Assembler::StoreStore);
+}
+
+void LIR_Assembler::membar_loadstore() {
+ __ membar(Assembler::LoadStore);
+}
+
+void LIR_Assembler::membar_storeload() {
+ __ membar(Assembler::StoreLoad);
+}
+
+void LIR_Assembler::on_spin_wait() {
+ Unimplemented();
+}
+
+void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
+ LIR_Address* addr = addr_opr->as_address_ptr();
+ assert(addr->scale() == LIR_Address::times_1, "no scaling on this platform");
+ if (addr->index()->is_illegal()) {
+ __ add_const_optimized(dest->as_pointer_register(), addr->base()->as_pointer_register(), addr->disp());
+ } else {
+ assert(addr->disp() == 0, "can't have both: index and disp");
+ __ add(dest->as_pointer_register(), addr->index()->as_pointer_register(), addr->base()->as_pointer_register());
+ }
+}
+
+
+void LIR_Assembler::get_thread(LIR_Opr result_reg) {
+ ShouldNotReachHere();
+}
+
+
+#ifdef ASSERT
+// Emit run-time assertion.
+void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
+ Unimplemented();
+}
+#endif
+
+
+void LIR_Assembler::peephole(LIR_List* lir) {
+ // Optimize instruction pairs before emitting.
+ LIR_OpList* inst = lir->instructions_list();
+ for (int i = 1; i < inst->length(); i++) {
+ LIR_Op* op = inst->at(i);
+
+ // 2 register-register-moves
+ if (op->code() == lir_move) {
+ LIR_Opr in2 = ((LIR_Op1*)op)->in_opr(),
+ res2 = ((LIR_Op1*)op)->result_opr();
+ if (in2->is_register() && res2->is_register()) {
+ LIR_Op* prev = inst->at(i - 1);
+ if (prev && prev->code() == lir_move) {
+ LIR_Opr in1 = ((LIR_Op1*)prev)->in_opr(),
+ res1 = ((LIR_Op1*)prev)->result_opr();
+ if (in1->is_same_register(res2) && in2->is_same_register(res1)) {
+ inst->remove_at(i);
+ }
+ }
+ }
+ }
+
+ }
+ return;
+}
+
+
+void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
+ const Register Rptr = src->as_pointer_register(),
+ Rtmp = tmp->as_register();
+ Register Rco = noreg;
+ if (UseCompressedOops && data->is_oop()) {
+ Rco = __ encode_heap_oop(Rtmp, data->as_register());
+ }
+
+ Label Lretry;
+ __ bind(Lretry);
+
+ if (data->type() == T_INT) {
+ const Register Rold = dest->as_register(),
+ Rsrc = data->as_register();
+ assert_different_registers(Rptr, Rtmp, Rold, Rsrc);
+ __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
+ if (code == lir_xadd) {
+ __ add(Rtmp, Rsrc, Rold);
+ __ stwcx_(Rtmp, Rptr);
+ } else {
+ __ stwcx_(Rsrc, Rptr);
+ }
+ } else if (data->is_oop()) {
+ assert(code == lir_xchg, "xadd for oops");
+ const Register Rold = dest->as_register();
+ if (UseCompressedOops) {
+ assert_different_registers(Rptr, Rold, Rco);
+ __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
+ __ stwcx_(Rco, Rptr);
+ } else {
+ const Register Robj = data->as_register();
+ assert_different_registers(Rptr, Rold, Robj);
+ __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
+ __ stdcx_(Robj, Rptr);
+ }
+ } else if (data->type() == T_LONG) {
+ const Register Rold = dest->as_register_lo(),
+ Rsrc = data->as_register_lo();
+ assert_different_registers(Rptr, Rtmp, Rold, Rsrc);
+ __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
+ if (code == lir_xadd) {
+ __ add(Rtmp, Rsrc, Rold);
+ __ stdcx_(Rtmp, Rptr);
+ } else {
+ __ stdcx_(Rsrc, Rptr);
+ }
+ } else {
+ ShouldNotReachHere();
+ }
+
+ if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
+ __ bne_predict_not_taken(CCR0, Lretry);
+ } else {
+ __ bne( CCR0, Lretry);
+ }
+
+ if (UseCompressedOops && data->is_oop()) {
+ __ decode_heap_oop(dest->as_register());
+ }
+}
+
+
+void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
+ Register obj = op->obj()->as_register();
+ Register tmp = op->tmp()->as_pointer_register();
+ LIR_Address* mdo_addr = op->mdp()->as_address_ptr();
+ ciKlass* exact_klass = op->exact_klass();
+ intptr_t current_klass = op->current_klass();
+ bool not_null = op->not_null();
+ bool no_conflict = op->no_conflict();
+
+ Label Lupdate, Ldo_update, Ldone;
+
+ bool do_null = !not_null;
+ bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
+ bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
+
+ assert(do_null || do_update, "why are we here?");
+ assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
+
+ __ verify_oop(obj);
+
+ if (do_null) {
+ if (!TypeEntries::was_null_seen(current_klass)) {
+ __ cmpdi(CCR0, obj, 0);
+ __ bne(CCR0, Lupdate);
+ __ ld(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
+ __ ori(R0, R0, TypeEntries::null_seen);
+ if (do_update) {
+ __ b(Ldo_update);
+ } else {
+ __ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
+ }
+ } else {
+ if (do_update) {
+ __ cmpdi(CCR0, obj, 0);
+ __ beq(CCR0, Ldone);
+ }
+ }
+#ifdef ASSERT
+ } else {
+ __ cmpdi(CCR0, obj, 0);
+ __ bne(CCR0, Lupdate);
+ __ stop("unexpect null obj", 0x9652);
+#endif
+ }
+
+ __ bind(Lupdate);
+ if (do_update) {
+ Label Lnext;
+ const Register klass = R29_TOC; // kill and reload
+ bool klass_reg_used = false;
+#ifdef ASSERT
+ if (exact_klass != NULL) {
+ Label ok;
+ klass_reg_used = true;
+ __ load_klass(klass, obj);
+ metadata2reg(exact_klass->constant_encoding(), R0);
+ __ cmpd(CCR0, klass, R0);
+ __ beq(CCR0, ok);
+ __ stop("exact klass and actual klass differ", 0x8564);
+ __ bind(ok);
+ }
+#endif
+
+ if (!no_conflict) {
+ if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
+ klass_reg_used = true;
+ if (exact_klass != NULL) {
+ __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
+ metadata2reg(exact_klass->constant_encoding(), klass);
+ } else {
+ __ load_klass(klass, obj);
+ __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); // may kill obj
+ }
+
+ // Like InterpreterMacroAssembler::profile_obj_type
+ __ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask));
+ // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask);
+ __ cmpd(CCR1, R0, klass);
+ // Klass seen before, nothing to do (regardless of unknown bit).
+ //beq(CCR1, do_nothing);
+
+ __ andi_(R0, klass, TypeEntries::type_unknown);
+ // Already unknown. Nothing to do anymore.
+ //bne(CCR0, do_nothing);
+ __ crorc(CCR0, Assembler::equal, CCR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne
+ __ beq(CCR0, Lnext);
+
+ if (TypeEntries::is_type_none(current_klass)) {
+ __ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask));
+ __ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
+ __ beq(CCR0, Ldo_update); // First time here. Set profile type.
+ }
+
+ } else {
+ assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
+ ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
+
+ __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
+ __ andi_(R0, tmp, TypeEntries::type_unknown);
+ // Already unknown. Nothing to do anymore.
+ __ bne(CCR0, Lnext);
+ }
+
+ // Different than before. Cannot keep accurate profile.
+ __ ori(R0, tmp, TypeEntries::type_unknown);
+ } else {
+ // There's a single possible klass at this profile point
+ assert(exact_klass != NULL, "should be");
+ __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
+
+ if (TypeEntries::is_type_none(current_klass)) {
+ klass_reg_used = true;
+ metadata2reg(exact_klass->constant_encoding(), klass);
+
+ __ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask));
+ // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask);
+ __ cmpd(CCR1, R0, klass);
+ // Klass seen before, nothing to do (regardless of unknown bit).
+ __ beq(CCR1, Lnext);
+#ifdef ASSERT
+ {
+ Label ok;
+ __ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask));
+ __ beq(CCR0, ok); // First time here.
+
+ __ stop("unexpected profiling mismatch", 0x7865);
+ __ bind(ok);
+ }
+#endif
+ // First time here. Set profile type.
+ __ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
+ } else {
+ assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
+ ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
+
+ // Already unknown. Nothing to do anymore.
+ __ andi_(R0, tmp, TypeEntries::type_unknown);
+ __ bne(CCR0, Lnext);
+
+ // Different than before. Cannot keep accurate profile.
+ __ ori(R0, tmp, TypeEntries::type_unknown);
+ }
+ }
+
+ __ bind(Ldo_update);
+ __ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
+
+ __ bind(Lnext);
+ if (klass_reg_used) { __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); } // reinit
+ }
+ __ bind(Ldone);
+}
+
+
+void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
+ assert(op->crc()->is_single_cpu(), "crc must be register");
+ assert(op->val()->is_single_cpu(), "byte value must be register");
+ assert(op->result_opr()->is_single_cpu(), "result must be register");
+ Register crc = op->crc()->as_register();
+ Register val = op->val()->as_register();
+ Register res = op->result_opr()->as_register();
+
+ assert_different_registers(val, crc, res);
+
+ __ load_const_optimized(res, StubRoutines::crc_table_addr(), R0);
+ __ kernel_crc32_singleByteReg(crc, val, res, true);
+ __ mr(res, crc);
+}
+
+#undef __