--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/cpu/arm/assembler_arm_64.hpp Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,1718 @@
+/*
+ * Copyright (c) 2008, 2016, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifndef CPU_ARM_VM_ASSEMBLER_ARM_64_HPP
+#define CPU_ARM_VM_ASSEMBLER_ARM_64_HPP
+
+enum AsmShift12 {
+ lsl0, lsl12
+};
+
+enum AsmPrefetchOp {
+ pldl1keep = 0b00000,
+ pldl1strm,
+ pldl2keep,
+ pldl2strm,
+ pldl3keep,
+ pldl3strm,
+
+ plil1keep = 0b01000,
+ plil1strm,
+ plil2keep,
+ plil2strm,
+ plil3keep,
+ plil3strm,
+
+ pstl1keep = 0b10000,
+ pstl1strm,
+ pstl2keep,
+ pstl2strm,
+ pstl3keep,
+ pstl3strm,
+};
+
+// Shifted register operand for data processing instructions.
+class AsmOperand VALUE_OBJ_CLASS_SPEC {
+ private:
+ Register _reg;
+ AsmShift _shift;
+ int _shift_imm;
+
+ public:
+ AsmOperand(Register reg) {
+ assert(reg != SP, "SP is not allowed in shifted register operand");
+ _reg = reg;
+ _shift = lsl;
+ _shift_imm = 0;
+ }
+
+ AsmOperand(Register reg, AsmShift shift, int shift_imm) {
+ assert(reg != SP, "SP is not allowed in shifted register operand");
+ assert(shift_imm >= 0, "shift amount should be non-negative");
+ _reg = reg;
+ _shift = shift;
+ _shift_imm = shift_imm;
+ }
+
+ Register reg() const {
+ return _reg;
+ }
+
+ AsmShift shift() const {
+ return _shift;
+ }
+
+ int shift_imm() const {
+ return _shift_imm;
+ }
+};
+
+
+class Assembler : public AbstractAssembler {
+
+ public:
+
+ static const int LogInstructionSize = 2;
+ static const int InstructionSize = 1 << LogInstructionSize;
+
+ Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
+
+ static inline AsmCondition inverse(AsmCondition cond) {
+ assert ((cond != al) && (cond != nv), "AL and NV conditions cannot be inversed");
+ return (AsmCondition)((int)cond ^ 1);
+ }
+
+ // Returns value of nzcv flags conforming to the given condition.
+ static inline int flags_for_condition(AsmCondition cond) {
+ switch(cond) { // NZCV
+ case mi: case lt: return 0b1000;
+ case eq: case le: return 0b0100;
+ case hs: case hi: return 0b0010;
+ case vs: return 0b0001;
+ default: return 0b0000;
+ }
+ }
+
+ // Immediate, encoded into logical instructions.
+ class LogicalImmediate {
+ private:
+ bool _encoded;
+ bool _is32bit;
+ int _immN;
+ int _immr;
+ int _imms;
+
+ static inline bool has_equal_subpatterns(uintx imm, int size);
+ static inline int least_pattern_size(uintx imm);
+ static inline int population_count(uintx x);
+ static inline uintx set_least_zeroes(uintx x);
+
+#ifdef ASSERT
+ uintx decode();
+#endif
+
+ void construct(uintx imm, bool is32);
+
+ public:
+ LogicalImmediate(uintx imm, bool is32 = false) { construct(imm, is32); }
+
+ // Returns true if given immediate can be used in AArch64 logical instruction.
+ bool is_encoded() const { return _encoded; }
+
+ bool is32bit() const { return _is32bit; }
+ int immN() const { assert(_encoded, "should be"); return _immN; }
+ int immr() const { assert(_encoded, "should be"); return _immr; }
+ int imms() const { assert(_encoded, "should be"); return _imms; }
+ };
+
+ // Immediate, encoded into arithmetic add/sub instructions.
+ class ArithmeticImmediate {
+ private:
+ bool _encoded;
+ int _imm;
+ AsmShift12 _shift;
+
+ public:
+ ArithmeticImmediate(intx x) {
+ if (is_unsigned_imm_in_range(x, 12, 0)) {
+ _encoded = true;
+ _imm = x;
+ _shift = lsl0;
+ } else if (is_unsigned_imm_in_range(x, 12, 12)) {
+ _encoded = true;
+ _imm = x >> 12;
+ _shift = lsl12;
+ } else {
+ _encoded = false;
+ }
+ }
+
+ ArithmeticImmediate(intx x, AsmShift12 sh) {
+ if (is_unsigned_imm_in_range(x, 12, 0)) {
+ _encoded = true;
+ _imm = x;
+ _shift = sh;
+ } else {
+ _encoded = false;
+ }
+ }
+
+ // Returns true if this immediate can be used in AArch64 arithmetic (add/sub/cmp/cmn) instructions.
+ bool is_encoded() const { return _encoded; }
+
+ int imm() const { assert(_encoded, "should be"); return _imm; }
+ AsmShift12 shift() const { assert(_encoded, "should be"); return _shift; }
+ };
+
+ static inline bool is_imm_in_range(intx value, int bits, int align_bits) {
+ intx sign_bits = (value >> (bits + align_bits - 1));
+ return ((value & right_n_bits(align_bits)) == 0) && ((sign_bits == 0) || (sign_bits == -1));
+ }
+
+ static inline int encode_imm(intx value, int bits, int align_bits, int low_bit_in_encoding) {
+ assert (is_imm_in_range(value, bits, align_bits), "immediate value is out of range");
+ return ((value >> align_bits) & right_n_bits(bits)) << low_bit_in_encoding;
+ }
+
+ static inline bool is_unsigned_imm_in_range(intx value, int bits, int align_bits) {
+ return (value >= 0) && ((value & right_n_bits(align_bits)) == 0) && ((value >> (align_bits + bits)) == 0);
+ }
+
+ static inline int encode_unsigned_imm(intx value, int bits, int align_bits, int low_bit_in_encoding) {
+ assert (is_unsigned_imm_in_range(value, bits, align_bits), "immediate value is out of range");
+ return (value >> align_bits) << low_bit_in_encoding;
+ }
+
+ static inline bool is_offset_in_range(intx offset, int bits) {
+ assert (bits == 14 || bits == 19 || bits == 26, "wrong bits number");
+ return is_imm_in_range(offset, bits, 2);
+ }
+
+ static inline int encode_offset(intx offset, int bits, int low_bit_in_encoding) {
+ return encode_imm(offset, bits, 2, low_bit_in_encoding);
+ }
+
+ // Returns true if given value can be used as immediate in arithmetic (add/sub/cmp/cmn) instructions.
+ static inline bool is_arith_imm_in_range(intx value) {
+ return ArithmeticImmediate(value).is_encoded();
+ }
+
+
+ // Load/store instructions
+
+#define F(mnemonic, opc) \
+ void mnemonic(Register rd, address literal_addr) { \
+ intx offset = literal_addr - pc(); \
+ assert (opc != 0b01 || offset == 0 || ((uintx)literal_addr & 7) == 0, "ldr target should be aligned"); \
+ assert (is_offset_in_range(offset, 19), "offset is out of range"); \
+ emit_int32(opc << 30 | 0b011 << 27 | encode_offset(offset, 19, 5) | rd->encoding_with_zr()); \
+ }
+
+ F(ldr_w, 0b00)
+ F(ldr, 0b01)
+ F(ldrsw, 0b10)
+#undef F
+
+#define F(mnemonic, opc) \
+ void mnemonic(FloatRegister rt, address literal_addr) { \
+ intx offset = literal_addr - pc(); \
+ assert (offset == 0 || ((uintx)literal_addr & right_n_bits(2 + opc)) == 0, "ldr target should be aligned"); \
+ assert (is_offset_in_range(offset, 19), "offset is out of range"); \
+ emit_int32(opc << 30 | 0b011100 << 24 | encode_offset(offset, 19, 5) | rt->encoding()); \
+ }
+
+ F(ldr_s, 0b00)
+ F(ldr_d, 0b01)
+ F(ldr_q, 0b10)
+#undef F
+
+#define F(mnemonic, size, o2, L, o1, o0) \
+ void mnemonic(Register rt, Register rn) { \
+ emit_int32(size << 30 | 0b001000 << 24 | o2 << 23 | L << 22 | o1 << 21 | 0b11111 << 16 | \
+ o0 << 15 | 0b11111 << 10 | rn->encoding_with_sp() << 5 | rt->encoding_with_zr()); \
+ }
+
+ F(ldxrb, 0b00, 0, 1, 0, 0)
+ F(ldaxrb, 0b00, 0, 1, 0, 1)
+ F(ldarb, 0b00, 1, 1, 0, 1)
+ F(ldxrh, 0b01, 0, 1, 0, 0)
+ F(ldaxrh, 0b01, 0, 1, 0, 1)
+ F(ldarh, 0b01, 1, 1, 0, 1)
+ F(ldxr_w, 0b10, 0, 1, 0, 0)
+ F(ldaxr_w, 0b10, 0, 1, 0, 1)
+ F(ldar_w, 0b10, 1, 1, 0, 1)
+ F(ldxr, 0b11, 0, 1, 0, 0)
+ F(ldaxr, 0b11, 0, 1, 0, 1)
+ F(ldar, 0b11, 1, 1, 0, 1)
+
+ F(stlrb, 0b00, 1, 0, 0, 1)
+ F(stlrh, 0b01, 1, 0, 0, 1)
+ F(stlr_w, 0b10, 1, 0, 0, 1)
+ F(stlr, 0b11, 1, 0, 0, 1)
+#undef F
+
+#define F(mnemonic, size, o2, L, o1, o0) \
+ void mnemonic(Register rs, Register rt, Register rn) { \
+ assert (rs != rt, "should be different"); \
+ assert (rs != rn, "should be different"); \
+ emit_int32(size << 30 | 0b001000 << 24 | o2 << 23 | L << 22 | o1 << 21 | rs->encoding_with_zr() << 16 | \
+ o0 << 15 | 0b11111 << 10 | rn->encoding_with_sp() << 5 | rt->encoding_with_zr()); \
+ }
+
+ F(stxrb, 0b00, 0, 0, 0, 0)
+ F(stlxrb, 0b00, 0, 0, 0, 1)
+ F(stxrh, 0b01, 0, 0, 0, 0)
+ F(stlxrh, 0b01, 0, 0, 0, 1)
+ F(stxr_w, 0b10, 0, 0, 0, 0)
+ F(stlxr_w, 0b10, 0, 0, 0, 1)
+ F(stxr, 0b11, 0, 0, 0, 0)
+ F(stlxr, 0b11, 0, 0, 0, 1)
+#undef F
+
+#define F(mnemonic, size, o2, L, o1, o0) \
+ void mnemonic(Register rt, Register rt2, Register rn) { \
+ assert (rt != rt2, "should be different"); \
+ emit_int32(size << 30 | 0b001000 << 24 | o2 << 23 | L << 22 | o1 << 21 | 0b11111 << 16 | \
+ o0 << 15 | rt2->encoding_with_zr() << 10 | rn->encoding_with_sp() << 5 | rt->encoding_with_zr()); \
+ }
+
+ F(ldxp_w, 0b10, 0, 1, 1, 0)
+ F(ldaxp_w, 0b10, 0, 1, 1, 1)
+ F(ldxp, 0b11, 0, 1, 1, 0)
+ F(ldaxp, 0b11, 0, 1, 1, 1)
+#undef F
+
+#define F(mnemonic, size, o2, L, o1, o0) \
+ void mnemonic(Register rs, Register rt, Register rt2, Register rn) { \
+ assert (rs != rt, "should be different"); \
+ assert (rs != rt2, "should be different"); \
+ assert (rs != rn, "should be different"); \
+ emit_int32(size << 30 | 0b001000 << 24 | o2 << 23 | L << 22 | o1 << 21 | rs->encoding_with_zr() << 16 | \
+ o0 << 15 | rt2->encoding_with_zr() << 10 | rn->encoding_with_sp() << 5 | rt->encoding_with_zr()); \
+ }
+
+ F(stxp_w, 0b10, 0, 0, 1, 0)
+ F(stlxp_w, 0b10, 0, 0, 1, 1)
+ F(stxp, 0b11, 0, 0, 1, 0)
+ F(stlxp, 0b11, 0, 0, 1, 1)
+#undef F
+
+#define F(mnemonic, opc, V, L) \
+ void mnemonic(Register rt, Register rt2, Register rn, int offset = 0) { \
+ assert (!L || rt != rt2, "should be different"); \
+ int align_bits = 2 + (opc >> 1); \
+ assert (is_imm_in_range(offset, 7, align_bits), "offset is out of range"); \
+ emit_int32(opc << 30 | 0b101 << 27 | V << 26 | L << 22 | encode_imm(offset, 7, align_bits, 15) | \
+ rt2->encoding_with_zr() << 10 | rn->encoding_with_sp() << 5 | rt->encoding_with_zr()); \
+ }
+
+ F(stnp_w, 0b00, 0, 0)
+ F(ldnp_w, 0b00, 0, 1)
+ F(stnp, 0b10, 0, 0)
+ F(ldnp, 0b10, 0, 1)
+#undef F
+
+#define F(mnemonic, opc, V, L) \
+ void mnemonic(FloatRegister rt, FloatRegister rt2, Register rn, int offset = 0) { \
+ assert (!L || (rt != rt2), "should be different"); \
+ int align_bits = 2 + opc; \
+ assert (is_imm_in_range(offset, 7, align_bits), "offset is out of range"); \
+ emit_int32(opc << 30 | 0b101 << 27 | V << 26 | L << 22 | encode_imm(offset, 7, align_bits, 15) | \
+ rt2->encoding() << 10 | rn->encoding_with_sp() << 5 | rt->encoding()); \
+ }
+
+ F(stnp_s, 0b00, 1, 0)
+ F(stnp_d, 0b01, 1, 0)
+ F(stnp_q, 0b10, 1, 0)
+ F(ldnp_s, 0b00, 1, 1)
+ F(ldnp_d, 0b01, 1, 1)
+ F(ldnp_q, 0b10, 1, 1)
+#undef F
+
+#define F(mnemonic, size, V, opc) \
+ void mnemonic(Register rt, Address addr) { \
+ assert((addr.mode() == basic_offset) || (rt != addr.base()), "should be different"); \
+ if (addr.index() == noreg) { \
+ if ((addr.mode() == basic_offset) && is_unsigned_imm_in_range(addr.disp(), 12, size)) { \
+ emit_int32(size << 30 | 0b111 << 27 | V << 26 | 0b01 << 24 | opc << 22 | \
+ encode_unsigned_imm(addr.disp(), 12, size, 10) | \
+ addr.base()->encoding_with_sp() << 5 | rt->encoding_with_zr()); \
+ } else { \
+ assert(is_imm_in_range(addr.disp(), 9, 0), "offset is out of range"); \
+ emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | encode_imm(addr.disp(), 9, 0, 12) | \
+ addr.mode() << 10 | addr.base()->encoding_with_sp() << 5 | rt->encoding_with_zr()); \
+ } \
+ } else { \
+ assert (addr.disp() == 0, "non-zero displacement for [reg + reg] address mode"); \
+ assert ((addr.shift_imm() == 0) || (addr.shift_imm() == size), "invalid shift amount"); \
+ emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | 1 << 21 | \
+ addr.index()->encoding_with_zr() << 16 | addr.extend() << 13 | (addr.shift_imm() != 0) << 12 | \
+ 0b10 << 10 | addr.base()->encoding_with_sp() << 5 | rt->encoding_with_zr()); \
+ } \
+ }
+
+ F(strb, 0b00, 0, 0b00)
+ F(ldrb, 0b00, 0, 0b01)
+ F(ldrsb, 0b00, 0, 0b10)
+ F(ldrsb_w, 0b00, 0, 0b11)
+
+ F(strh, 0b01, 0, 0b00)
+ F(ldrh, 0b01, 0, 0b01)
+ F(ldrsh, 0b01, 0, 0b10)
+ F(ldrsh_w, 0b01, 0, 0b11)
+
+ F(str_w, 0b10, 0, 0b00)
+ F(ldr_w, 0b10, 0, 0b01)
+ F(ldrsw, 0b10, 0, 0b10)
+
+ F(str, 0b11, 0, 0b00)
+ F(ldr, 0b11, 0, 0b01)
+#undef F
+
+#define F(mnemonic, size, V, opc) \
+ void mnemonic(AsmPrefetchOp prfop, Address addr) { \
+ assert (addr.mode() == basic_offset, #mnemonic " supports only basic_offset address mode"); \
+ if (addr.index() == noreg) { \
+ if (is_unsigned_imm_in_range(addr.disp(), 12, size)) { \
+ emit_int32(size << 30 | 0b111 << 27 | V << 26 | 0b01 << 24 | opc << 22 | \
+ encode_unsigned_imm(addr.disp(), 12, size, 10) | \
+ addr.base()->encoding_with_sp() << 5 | prfop); \
+ } else { \
+ assert(is_imm_in_range(addr.disp(), 9, 0), "offset is out of range"); \
+ emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | encode_imm(addr.disp(), 9, 0, 12) | \
+ addr.base()->encoding_with_sp() << 5 | prfop); \
+ } \
+ } else { \
+ assert (addr.disp() == 0, "non-zero displacement for [reg + reg] address mode"); \
+ assert ((addr.shift_imm() == 0) || (addr.shift_imm() == size), "invalid shift amount"); \
+ emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | 1 << 21 | \
+ addr.index()->encoding_with_zr() << 16 | addr.extend() << 13 | (addr.shift_imm() != 0) << 12 | \
+ 0b10 << 10 | addr.base()->encoding_with_sp() << 5 | prfop); \
+ } \
+ }
+
+ F(prfm, 0b11, 0, 0b10)
+#undef F
+
+#define F(mnemonic, size, V, opc) \
+ void mnemonic(FloatRegister rt, Address addr) { \
+ int align_bits = (((opc & 0b10) >> 1) << 2) | size; \
+ if (addr.index() == noreg) { \
+ if ((addr.mode() == basic_offset) && is_unsigned_imm_in_range(addr.disp(), 12, align_bits)) { \
+ emit_int32(size << 30 | 0b111 << 27 | V << 26 | 0b01 << 24 | opc << 22 | \
+ encode_unsigned_imm(addr.disp(), 12, align_bits, 10) | \
+ addr.base()->encoding_with_sp() << 5 | rt->encoding()); \
+ } else { \
+ assert(is_imm_in_range(addr.disp(), 9, 0), "offset is out of range"); \
+ emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | encode_imm(addr.disp(), 9, 0, 12) | \
+ addr.mode() << 10 | addr.base()->encoding_with_sp() << 5 | rt->encoding()); \
+ } \
+ } else { \
+ assert (addr.disp() == 0, "non-zero displacement for [reg + reg] address mode"); \
+ assert ((addr.shift_imm() == 0) || (addr.shift_imm() == align_bits), "invalid shift amount"); \
+ emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | 1 << 21 | \
+ addr.index()->encoding_with_zr() << 16 | addr.extend() << 13 | (addr.shift_imm() != 0) << 12 | \
+ 0b10 << 10 | addr.base()->encoding_with_sp() << 5 | rt->encoding()); \
+ } \
+ }
+
+ F(str_b, 0b00, 1, 0b00)
+ F(ldr_b, 0b00, 1, 0b01)
+ F(str_h, 0b01, 1, 0b00)
+ F(ldr_h, 0b01, 1, 0b01)
+ F(str_s, 0b10, 1, 0b00)
+ F(ldr_s, 0b10, 1, 0b01)
+ F(str_d, 0b11, 1, 0b00)
+ F(ldr_d, 0b11, 1, 0b01)
+ F(str_q, 0b00, 1, 0b10)
+ F(ldr_q, 0b00, 1, 0b11)
+#undef F
+
+#define F(mnemonic, opc, V, L) \
+ void mnemonic(Register rt, Register rt2, Address addr) { \
+ assert((addr.mode() == basic_offset) || ((rt != addr.base()) && (rt2 != addr.base())), "should be different"); \
+ assert(!L || (rt != rt2), "should be different"); \
+ assert(addr.index() == noreg, "[reg + reg] address mode is not available for load/store pair"); \
+ int align_bits = 2 + (opc >> 1); \
+ int mode_encoding = (addr.mode() == basic_offset) ? 0b10 : addr.mode(); \
+ assert(is_imm_in_range(addr.disp(), 7, align_bits), "offset is out of range"); \
+ emit_int32(opc << 30 | 0b101 << 27 | V << 26 | mode_encoding << 23 | L << 22 | \
+ encode_imm(addr.disp(), 7, align_bits, 15) | rt2->encoding_with_zr() << 10 | \
+ addr.base()->encoding_with_sp() << 5 | rt->encoding_with_zr()); \
+ }
+
+ F(stp_w, 0b00, 0, 0)
+ F(ldp_w, 0b00, 0, 1)
+ F(ldpsw, 0b01, 0, 1)
+ F(stp, 0b10, 0, 0)
+ F(ldp, 0b10, 0, 1)
+#undef F
+
+#define F(mnemonic, opc, V, L) \
+ void mnemonic(FloatRegister rt, FloatRegister rt2, Address addr) { \
+ assert(!L || (rt != rt2), "should be different"); \
+ assert(addr.index() == noreg, "[reg + reg] address mode is not available for load/store pair"); \
+ int align_bits = 2 + opc; \
+ int mode_encoding = (addr.mode() == basic_offset) ? 0b10 : addr.mode(); \
+ assert(is_imm_in_range(addr.disp(), 7, align_bits), "offset is out of range"); \
+ emit_int32(opc << 30 | 0b101 << 27 | V << 26 | mode_encoding << 23 | L << 22 | \
+ encode_imm(addr.disp(), 7, align_bits, 15) | rt2->encoding() << 10 | \
+ addr.base()->encoding_with_sp() << 5 | rt->encoding()); \
+ }
+
+ F(stp_s, 0b00, 1, 0)
+ F(ldp_s, 0b00, 1, 1)
+ F(stp_d, 0b01, 1, 0)
+ F(ldp_d, 0b01, 1, 1)
+ F(stp_q, 0b10, 1, 0)
+ F(ldp_q, 0b10, 1, 1)
+#undef F
+
+ // Data processing instructions
+
+#define F(mnemonic, sf, opc) \
+ void mnemonic(Register rd, Register rn, const LogicalImmediate& imm) { \
+ assert (imm.is_encoded(), "illegal immediate for logical instruction"); \
+ assert (imm.is32bit() == (sf == 0), "immediate size does not match instruction size"); \
+ emit_int32(sf << 31 | opc << 29 | 0b100100 << 23 | imm.immN() << 22 | imm.immr() << 16 | \
+ imm.imms() << 10 | rn->encoding_with_zr() << 5 | \
+ ((opc == 0b11) ? rd->encoding_with_zr() : rd->encoding_with_sp())); \
+ } \
+ void mnemonic(Register rd, Register rn, uintx imm) { \
+ LogicalImmediate limm(imm, (sf == 0)); \
+ mnemonic(rd, rn, limm); \
+ } \
+ void mnemonic(Register rd, Register rn, unsigned int imm) { \
+ mnemonic(rd, rn, (uintx)imm); \
+ }
+
+ F(andr_w, 0, 0b00)
+ F(orr_w, 0, 0b01)
+ F(eor_w, 0, 0b10)
+ F(ands_w, 0, 0b11)
+
+ F(andr, 1, 0b00)
+ F(orr, 1, 0b01)
+ F(eor, 1, 0b10)
+ F(ands, 1, 0b11)
+#undef F
+
+ void tst(Register rn, unsigned int imm) {
+ ands(ZR, rn, imm);
+ }
+
+ void tst_w(Register rn, unsigned int imm) {
+ ands_w(ZR, rn, imm);
+ }
+
+#define F(mnemonic, sf, opc, N) \
+ void mnemonic(Register rd, Register rn, AsmOperand operand) { \
+ assert (operand.shift_imm() >> (5 + sf) == 0, "shift amount is too large"); \
+ emit_int32(sf << 31 | opc << 29 | 0b01010 << 24 | operand.shift() << 22 | N << 21 | \
+ operand.reg()->encoding_with_zr() << 16 | operand.shift_imm() << 10 | \
+ rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \
+ }
+
+ F(andr_w, 0, 0b00, 0)
+ F(bic_w, 0, 0b00, 1)
+ F(orr_w, 0, 0b01, 0)
+ F(orn_w, 0, 0b01, 1)
+ F(eor_w, 0, 0b10, 0)
+ F(eon_w, 0, 0b10, 1)
+ F(ands_w, 0, 0b11, 0)
+ F(bics_w, 0, 0b11, 1)
+
+ F(andr, 1, 0b00, 0)
+ F(bic, 1, 0b00, 1)
+ F(orr, 1, 0b01, 0)
+ F(orn, 1, 0b01, 1)
+ F(eor, 1, 0b10, 0)
+ F(eon, 1, 0b10, 1)
+ F(ands, 1, 0b11, 0)
+ F(bics, 1, 0b11, 1)
+#undef F
+
+ void tst(Register rn, AsmOperand operand) {
+ ands(ZR, rn, operand);
+ }
+
+ void tst_w(Register rn, AsmOperand operand) {
+ ands_w(ZR, rn, operand);
+ }
+
+ void mvn(Register rd, AsmOperand operand) {
+ orn(rd, ZR, operand);
+ }
+
+ void mvn_w(Register rd, AsmOperand operand) {
+ orn_w(rd, ZR, operand);
+ }
+
+#define F(mnemonic, sf, op, S) \
+ void mnemonic(Register rd, Register rn, const ArithmeticImmediate& imm) { \
+ assert(imm.is_encoded(), "immediate is out of range"); \
+ emit_int32(sf << 31 | op << 30 | S << 29 | 0b10001 << 24 | imm.shift() << 22 | \
+ imm.imm() << 10 | rn->encoding_with_sp() << 5 | \
+ (S == 1 ? rd->encoding_with_zr() : rd->encoding_with_sp())); \
+ } \
+ void mnemonic(Register rd, Register rn, int imm) { \
+ mnemonic(rd, rn, ArithmeticImmediate(imm)); \
+ } \
+ void mnemonic(Register rd, Register rn, int imm, AsmShift12 shift) { \
+ mnemonic(rd, rn, ArithmeticImmediate(imm, shift)); \
+ } \
+ void mnemonic(Register rd, Register rn, Register rm, AsmExtendOp extend, int shift_imm = 0) { \
+ assert ((0 <= shift_imm) && (shift_imm <= 4), "shift amount is out of range"); \
+ emit_int32(sf << 31 | op << 30 | S << 29 | 0b01011001 << 21 | rm->encoding_with_zr() << 16 | \
+ extend << 13 | shift_imm << 10 | rn->encoding_with_sp() << 5 | \
+ (S == 1 ? rd->encoding_with_zr() : rd->encoding_with_sp())); \
+ } \
+ void mnemonic(Register rd, Register rn, AsmOperand operand) { \
+ assert (operand.shift() != ror, "illegal shift type"); \
+ assert (operand.shift_imm() >> (5 + sf) == 0, "shift amount is too large"); \
+ emit_int32(sf << 31 | op << 30 | S << 29 | 0b01011 << 24 | operand.shift() << 22 | \
+ operand.reg()->encoding_with_zr() << 16 | operand.shift_imm() << 10 | \
+ rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \
+ }
+
+ F(add_w, 0, 0, 0)
+ F(adds_w, 0, 0, 1)
+ F(sub_w, 0, 1, 0)
+ F(subs_w, 0, 1, 1)
+
+ F(add, 1, 0, 0)
+ F(adds, 1, 0, 1)
+ F(sub, 1, 1, 0)
+ F(subs, 1, 1, 1)
+#undef F
+
+ void mov(Register rd, Register rm) {
+ if ((rd == SP) || (rm == SP)) {
+ add(rd, rm, 0);
+ } else {
+ orr(rd, ZR, rm);
+ }
+ }
+
+ void mov_w(Register rd, Register rm) {
+ if ((rd == SP) || (rm == SP)) {
+ add_w(rd, rm, 0);
+ } else {
+ orr_w(rd, ZR, rm);
+ }
+ }
+
+ void cmp(Register rn, int imm) {
+ subs(ZR, rn, imm);
+ }
+
+ void cmp_w(Register rn, int imm) {
+ subs_w(ZR, rn, imm);
+ }
+
+ void cmp(Register rn, Register rm) {
+ assert (rm != SP, "SP should not be used as the 2nd operand of cmp");
+ if (rn == SP) {
+ subs(ZR, rn, rm, ex_uxtx);
+ } else {
+ subs(ZR, rn, rm);
+ }
+ }
+
+ void cmp_w(Register rn, Register rm) {
+ assert ((rn != SP) && (rm != SP), "SP should not be used in 32-bit cmp");
+ subs_w(ZR, rn, rm);
+ }
+
+ void cmp(Register rn, AsmOperand operand) {
+ assert (rn != SP, "SP is not allowed in cmp with shifted register (AsmOperand)");
+ subs(ZR, rn, operand);
+ }
+
+ void cmn(Register rn, int imm) {
+ adds(ZR, rn, imm);
+ }
+
+ void cmn_w(Register rn, int imm) {
+ adds_w(ZR, rn, imm);
+ }
+
+ void cmn(Register rn, Register rm) {
+ assert (rm != SP, "SP should not be used as the 2nd operand of cmp");
+ if (rn == SP) {
+ adds(ZR, rn, rm, ex_uxtx);
+ } else {
+ adds(ZR, rn, rm);
+ }
+ }
+
+ void cmn_w(Register rn, Register rm) {
+ assert ((rn != SP) && (rm != SP), "SP should not be used in 32-bit cmp");
+ adds_w(ZR, rn, rm);
+ }
+
+ void neg(Register rd, Register rm) {
+ sub(rd, ZR, rm);
+ }
+
+ void neg_w(Register rd, Register rm) {
+ sub_w(rd, ZR, rm);
+ }
+
+#define F(mnemonic, sf, op, S) \
+ void mnemonic(Register rd, Register rn, Register rm) { \
+ emit_int32(sf << 31 | op << 30 | S << 29 | 0b11010000 << 21 | rm->encoding_with_zr() << 16 | \
+ rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \
+ }
+
+ F(adc_w, 0, 0, 0)
+ F(adcs_w, 0, 0, 1)
+ F(sbc_w, 0, 1, 0)
+ F(sbcs_w, 0, 1, 1)
+
+ F(adc, 1, 0, 0)
+ F(adcs, 1, 0, 1)
+ F(sbc, 1, 1, 0)
+ F(sbcs, 1, 1, 1)
+#undef F
+
+#define F(mnemonic, sf, N) \
+ void mnemonic(Register rd, Register rn, Register rm, int lsb) { \
+ assert ((lsb >> (5 + sf)) == 0, "illegal least significant bit position"); \
+ emit_int32(sf << 31 | 0b100111 << 23 | N << 22 | rm->encoding_with_zr() << 16 | \
+ lsb << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \
+ }
+
+ F(extr_w, 0, 0)
+ F(extr, 1, 1)
+#undef F
+
+#define F(mnemonic, sf, opc) \
+ void mnemonic(Register rd, int imm, int shift) { \
+ assert ((imm >> 16) == 0, "immediate is out of range"); \
+ assert (((shift & 0xf) == 0) && ((shift >> (5 + sf)) == 0), "invalid shift"); \
+ emit_int32(sf << 31 | opc << 29 | 0b100101 << 23 | (shift >> 4) << 21 | \
+ imm << 5 | rd->encoding_with_zr()); \
+ }
+
+ F(movn_w, 0, 0b00)
+ F(movz_w, 0, 0b10)
+ F(movk_w, 0, 0b11)
+ F(movn, 1, 0b00)
+ F(movz, 1, 0b10)
+ F(movk, 1, 0b11)
+#undef F
+
+ void mov(Register rd, int imm) {
+ assert ((imm >> 16) == 0, "immediate is out of range");
+ movz(rd, imm, 0);
+ }
+
+ void mov_w(Register rd, int imm) {
+ assert ((imm >> 16) == 0, "immediate is out of range");
+ movz_w(rd, imm, 0);
+ }
+
+#define F(mnemonic, sf, op, S) \
+ void mnemonic(Register rn, int imm, int nzcv, AsmCondition cond) { \
+ assert ((imm >> 5) == 0, "immediate is out of range"); \
+ assert ((nzcv >> 4) == 0, "illegal nzcv"); \
+ emit_int32(sf << 31 | op << 30 | S << 29 | 0b11010010 << 21 | imm << 16 | \
+ cond << 12 | 1 << 11 | rn->encoding_with_zr() << 5 | nzcv); \
+ }
+
+ F(ccmn_w, 0, 0, 1)
+ F(ccmp_w, 0, 1, 1)
+ F(ccmn, 1, 0, 1)
+ F(ccmp, 1, 1, 1)
+#undef F
+
+#define F(mnemonic, sf, op, S) \
+ void mnemonic(Register rn, Register rm, int nzcv, AsmCondition cond) { \
+ assert ((nzcv >> 4) == 0, "illegal nzcv"); \
+ emit_int32(sf << 31 | op << 30 | S << 29 | 0b11010010 << 21 | rm->encoding_with_zr() << 16 | \
+ cond << 12 | rn->encoding_with_zr() << 5 | nzcv); \
+ }
+
+ F(ccmn_w, 0, 0, 1)
+ F(ccmp_w, 0, 1, 1)
+ F(ccmn, 1, 0, 1)
+ F(ccmp, 1, 1, 1)
+#undef F
+
+#define F(mnemonic, sf, op, S, op2) \
+ void mnemonic(Register rd, Register rn, Register rm, AsmCondition cond) { \
+ emit_int32(sf << 31 | op << 30 | S << 29 | 0b11010100 << 21 | rm->encoding_with_zr() << 16 | \
+ cond << 12 | op2 << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \
+ }
+
+ F(csel_w, 0, 0, 0, 0b00)
+ F(csinc_w, 0, 0, 0, 0b01)
+ F(csinv_w, 0, 1, 0, 0b00)
+ F(csneg_w, 0, 1, 0, 0b01)
+
+ F(csel, 1, 0, 0, 0b00)
+ F(csinc, 1, 0, 0, 0b01)
+ F(csinv, 1, 1, 0, 0b00)
+ F(csneg, 1, 1, 0, 0b01)
+#undef F
+
+ void cset(Register rd, AsmCondition cond) {
+ csinc(rd, ZR, ZR, inverse(cond));
+ }
+
+ void cset_w(Register rd, AsmCondition cond) {
+ csinc_w(rd, ZR, ZR, inverse(cond));
+ }
+
+ void csetm(Register rd, AsmCondition cond) {
+ csinv(rd, ZR, ZR, inverse(cond));
+ }
+
+ void csetm_w(Register rd, AsmCondition cond) {
+ csinv_w(rd, ZR, ZR, inverse(cond));
+ }
+
+ void cinc(Register rd, Register rn, AsmCondition cond) {
+ csinc(rd, rn, rn, inverse(cond));
+ }
+
+ void cinc_w(Register rd, Register rn, AsmCondition cond) {
+ csinc_w(rd, rn, rn, inverse(cond));
+ }
+
+ void cinv(Register rd, Register rn, AsmCondition cond) {
+ csinv(rd, rn, rn, inverse(cond));
+ }
+
+ void cinv_w(Register rd, Register rn, AsmCondition cond) {
+ csinv_w(rd, rn, rn, inverse(cond));
+ }
+
+#define F(mnemonic, sf, S, opcode) \
+ void mnemonic(Register rd, Register rn) { \
+ emit_int32(sf << 31 | 1 << 30 | S << 29 | 0b11010110 << 21 | opcode << 10 | \
+ rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \
+ }
+
+ F(rbit_w, 0, 0, 0b000000)
+ F(rev16_w, 0, 0, 0b000001)
+ F(rev_w, 0, 0, 0b000010)
+ F(clz_w, 0, 0, 0b000100)
+ F(cls_w, 0, 0, 0b000101)
+
+ F(rbit, 1, 0, 0b000000)
+ F(rev16, 1, 0, 0b000001)
+ F(rev32, 1, 0, 0b000010)
+ F(rev, 1, 0, 0b000011)
+ F(clz, 1, 0, 0b000100)
+ F(cls, 1, 0, 0b000101)
+#undef F
+
+#define F(mnemonic, sf, S, opcode) \
+ void mnemonic(Register rd, Register rn, Register rm) { \
+ emit_int32(sf << 31 | S << 29 | 0b11010110 << 21 | rm->encoding_with_zr() << 16 | \
+ opcode << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \
+ }
+
+ F(udiv_w, 0, 0, 0b000010)
+ F(sdiv_w, 0, 0, 0b000011)
+ F(lslv_w, 0, 0, 0b001000)
+ F(lsrv_w, 0, 0, 0b001001)
+ F(asrv_w, 0, 0, 0b001010)
+ F(rorv_w, 0, 0, 0b001011)
+
+ F(udiv, 1, 0, 0b000010)
+ F(sdiv, 1, 0, 0b000011)
+ F(lslv, 1, 0, 0b001000)
+ F(lsrv, 1, 0, 0b001001)
+ F(asrv, 1, 0, 0b001010)
+ F(rorv, 1, 0, 0b001011)
+#undef F
+
+#define F(mnemonic, sf, op31, o0) \
+ void mnemonic(Register rd, Register rn, Register rm, Register ra) { \
+ emit_int32(sf << 31 | 0b11011 << 24 | op31 << 21 | rm->encoding_with_zr() << 16 | \
+ o0 << 15 | ra->encoding_with_zr() << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \
+ }
+
+ F(madd_w, 0, 0b000, 0)
+ F(msub_w, 0, 0b000, 1)
+ F(madd, 1, 0b000, 0)
+ F(msub, 1, 0b000, 1)
+
+ F(smaddl, 1, 0b001, 0)
+ F(smsubl, 1, 0b001, 1)
+ F(umaddl, 1, 0b101, 0)
+ F(umsubl, 1, 0b101, 1)
+#undef F
+
+ void mul(Register rd, Register rn, Register rm) {
+ madd(rd, rn, rm, ZR);
+ }
+
+ void mul_w(Register rd, Register rn, Register rm) {
+ madd_w(rd, rn, rm, ZR);
+ }
+
+#define F(mnemonic, sf, op31, o0) \
+ void mnemonic(Register rd, Register rn, Register rm) { \
+ emit_int32(sf << 31 | 0b11011 << 24 | op31 << 21 | rm->encoding_with_zr() << 16 | \
+ o0 << 15 | 0b11111 << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \
+ }
+
+ F(smulh, 1, 0b010, 0)
+ F(umulh, 1, 0b110, 0)
+#undef F
+
+#define F(mnemonic, op) \
+ void mnemonic(Register rd, address addr) { \
+ intx offset; \
+ if (op == 0) { \
+ offset = addr - pc(); \
+ } else { \
+ offset = (((intx)addr) - (((intx)pc()) & ~0xfff)) >> 12; \
+ } \
+ assert (is_imm_in_range(offset, 21, 0), "offset is out of range"); \
+ emit_int32(op << 31 | (offset & 3) << 29 | 0b10000 << 24 | \
+ encode_imm(offset >> 2, 19, 0, 5) | rd->encoding_with_zr()); \
+ } \
+
+ F(adr, 0)
+ F(adrp, 1)
+#undef F
+
+ void adr(Register rd, Label& L) {
+ adr(rd, target(L));
+ }
+
+#define F(mnemonic, sf, opc, N) \
+ void mnemonic(Register rd, Register rn, int immr, int imms) { \
+ assert ((immr >> (5 + sf)) == 0, "immr is out of range"); \
+ assert ((imms >> (5 + sf)) == 0, "imms is out of range"); \
+ emit_int32(sf << 31 | opc << 29 | 0b100110 << 23 | N << 22 | immr << 16 | \
+ imms << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \
+ }
+
+ F(sbfm_w, 0, 0b00, 0)
+ F(bfm_w, 0, 0b01, 0)
+ F(ubfm_w, 0, 0b10, 0)
+
+ F(sbfm, 1, 0b00, 1)
+ F(bfm, 1, 0b01, 1)
+ F(ubfm, 1, 0b10, 1)
+#undef F
+
+#define F(alias, mnemonic, sf, immr, imms) \
+ void alias(Register rd, Register rn, int lsb, int width) { \
+ assert ((lsb >> (5 + sf)) == 0, "lsb is out of range"); \
+ assert ((1 <= width) && (width <= (32 << sf) - lsb), "width is out of range"); \
+ mnemonic(rd, rn, immr, imms); \
+ }
+
+ F(bfi_w, bfm_w, 0, (-lsb) & 0x1f, width - 1)
+ F(bfi, bfm, 1, (-lsb) & 0x3f, width - 1)
+ F(bfxil_w, bfm_w, 0, lsb, lsb + width - 1)
+ F(bfxil, bfm, 1, lsb, lsb + width - 1)
+ F(sbfiz_w, sbfm_w, 0, (-lsb) & 0x1f, width - 1)
+ F(sbfiz, sbfm, 1, (-lsb) & 0x3f, width - 1)
+ F(sbfx_w, sbfm_w, 0, lsb, lsb + width - 1)
+ F(sbfx, sbfm, 1, lsb, lsb + width - 1)
+ F(ubfiz_w, ubfm_w, 0, (-lsb) & 0x1f, width - 1)
+ F(ubfiz, ubfm, 1, (-lsb) & 0x3f, width - 1)
+ F(ubfx_w, ubfm_w, 0, lsb, lsb + width - 1)
+ F(ubfx, ubfm, 1, lsb, lsb + width - 1)
+#undef F
+
+#define F(alias, mnemonic, sf, immr, imms) \
+ void alias(Register rd, Register rn, int shift) { \
+ assert ((shift >> (5 + sf)) == 0, "shift is out of range"); \
+ mnemonic(rd, rn, immr, imms); \
+ }
+
+ F(_asr_w, sbfm_w, 0, shift, 31)
+ F(_asr, sbfm, 1, shift, 63)
+ F(_lsl_w, ubfm_w, 0, (-shift) & 0x1f, 31 - shift)
+ F(_lsl, ubfm, 1, (-shift) & 0x3f, 63 - shift)
+ F(_lsr_w, ubfm_w, 0, shift, 31)
+ F(_lsr, ubfm, 1, shift, 63)
+#undef F
+
+#define F(alias, mnemonic, immr, imms) \
+ void alias(Register rd, Register rn) { \
+ mnemonic(rd, rn, immr, imms); \
+ }
+
+ F(sxtb_w, sbfm_w, 0, 7)
+ F(sxtb, sbfm, 0, 7)
+ F(sxth_w, sbfm_w, 0, 15)
+ F(sxth, sbfm, 0, 15)
+ F(sxtw, sbfm, 0, 31)
+ F(uxtb_w, ubfm_w, 0, 7)
+ F(uxtb, ubfm, 0, 7)
+ F(uxth_w, ubfm_w, 0, 15)
+ F(uxth, ubfm, 0, 15)
+#undef F
+
+ // Branch instructions
+
+#define F(mnemonic, op) \
+ void mnemonic(Register rn) { \
+ emit_int32(0b1101011 << 25 | op << 21 | 0b11111 << 16 | rn->encoding_with_zr() << 5); \
+ }
+
+ F(br, 0b00)
+ F(blr, 0b01)
+ F(ret, 0b10)
+#undef F
+
+ void ret() {
+ ret(LR);
+ }
+
+#define F(mnemonic, op) \
+ void mnemonic(address target) { \
+ intx offset = target - pc(); \
+ assert (is_offset_in_range(offset, 26), "offset is out of range"); \
+ emit_int32(op << 31 | 0b00101 << 26 | encode_offset(offset, 26, 0)); \
+ }
+
+ F(b, 0)
+ F(bl, 1)
+#undef F
+
+ void b(address target, AsmCondition cond) {
+ if (cond == al) {
+ b(target);
+ } else {
+ intx offset = target - pc();
+ assert (is_offset_in_range(offset, 19), "offset is out of range");
+ emit_int32(0b0101010 << 25 | encode_offset(offset, 19, 5) | cond);
+ }
+ }
+
+
+#define F(mnemonic, sf, op) \
+ void mnemonic(Register rt, address target) { \
+ intx offset = target - pc(); \
+ assert (is_offset_in_range(offset, 19), "offset is out of range"); \
+ emit_int32(sf << 31 | 0b011010 << 25 | op << 24 | encode_offset(offset, 19, 5) | rt->encoding_with_zr()); \
+ } \
+
+ F(cbz_w, 0, 0)
+ F(cbnz_w, 0, 1)
+ F(cbz, 1, 0)
+ F(cbnz, 1, 1)
+#undef F
+
+#define F(mnemonic, op) \
+ void mnemonic(Register rt, int bit, address target) { \
+ intx offset = target - pc(); \
+ assert (is_offset_in_range(offset, 14), "offset is out of range"); \
+ assert (0 <= bit && bit < 64, "bit number is out of range"); \
+ emit_int32((bit >> 5) << 31 | 0b011011 << 25 | op << 24 | (bit & 0x1f) << 19 | \
+ encode_offset(offset, 14, 5) | rt->encoding_with_zr()); \
+ } \
+
+ F(tbz, 0)
+ F(tbnz, 1)
+#undef F
+
+ // System instructions
+
+ enum DMB_Opt {
+ DMB_ld = 0b1101,
+ DMB_st = 0b1110,
+ DMB_all = 0b1111
+ };
+
+#define F(mnemonic, L, op0, op1, CRn, op2, Rt) \
+ void mnemonic(DMB_Opt option) { \
+ emit_int32(0b1101010100 << 22 | L << 21 | op0 << 19 | op1 << 16 | \
+ CRn << 12 | option << 8 | op2 << 5 | Rt); \
+ }
+
+ F(dsb, 0, 0b00, 0b011, 0b0011, 0b100, 0b11111)
+ F(dmb, 0, 0b00, 0b011, 0b0011, 0b101, 0b11111)
+#undef F
+
+#define F(mnemonic, L, op0, op1, CRn, Rt) \
+ void mnemonic(int imm) { \
+ assert ((imm >> 7) == 0, "immediate is out of range"); \
+ emit_int32(0b1101010100 << 22 | L << 21 | op0 << 19 | op1 << 16 | \
+ CRn << 12 | imm << 5 | Rt); \
+ }
+
+ F(hint, 0, 0b00, 0b011, 0b0010, 0b11111)
+#undef F
+
+ void nop() {
+ hint(0);
+ }
+
+ void yield() {
+ hint(1);
+ }
+
+#define F(mnemonic, opc, op2, LL) \
+ void mnemonic(int imm = 0) { \
+ assert ((imm >> 16) == 0, "immediate is out of range"); \
+ emit_int32(0b11010100 << 24 | opc << 21 | imm << 5 | op2 << 2 | LL); \
+ }
+
+ F(brk, 0b001, 0b000, 0b00)
+ F(hlt, 0b010, 0b000, 0b00)
+ F(dpcs1, 0b101, 0b000, 0b01)
+#undef F
+
+ enum SystemRegister { // o0<1> op1<3> CRn<4> CRm<4> op2<3>
+ SysReg_NZCV = 0b101101000010000,
+ SysReg_FPCR = 0b101101000100000,
+ };
+
+ void mrs(Register rt, SystemRegister systemReg) {
+ assert ((systemReg >> 15) == 0, "systemReg is out of range");
+ emit_int32(0b110101010011 << 20 | systemReg << 5 | rt->encoding_with_zr());
+ }
+
+ void msr(SystemRegister systemReg, Register rt) {
+ assert ((systemReg >> 15) == 0, "systemReg is out of range");
+ emit_int32(0b110101010001 << 20 | systemReg << 5 | rt->encoding_with_zr());
+ }
+
+ // Floating-point instructions
+
+#define F(mnemonic, M, S, type, opcode2) \
+ void mnemonic(FloatRegister rn, FloatRegister rm) { \
+ emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \
+ rm->encoding() << 16 | 0b1000 << 10 | rn->encoding() << 5 | opcode2); \
+ }
+
+ F(fcmp_s, 0, 0, 0b00, 0b00000)
+ F(fcmpe_s, 0, 0, 0b00, 0b01000)
+ F(fcmp_d, 0, 0, 0b01, 0b00000)
+ F(fcmpe_d, 0, 0, 0b01, 0b10000)
+#undef F
+
+#define F(mnemonic, M, S, type, opcode2) \
+ void mnemonic(FloatRegister rn) { \
+ emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \
+ 0b1000 << 10 | rn->encoding() << 5 | opcode2); \
+ }
+
+ F(fcmp0_s, 0, 0, 0b00, 0b01000)
+ F(fcmpe0_s, 0, 0, 0b00, 0b11000)
+ F(fcmp0_d, 0, 0, 0b01, 0b01000)
+ F(fcmpe0_d, 0, 0, 0b01, 0b11000)
+#undef F
+
+#define F(mnemonic, M, S, type, op) \
+ void mnemonic(FloatRegister rn, FloatRegister rm, int nzcv, AsmCondition cond) { \
+ assert ((nzcv >> 4) == 0, "illegal nzcv"); \
+ emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \
+ rm->encoding() << 16 | cond << 12 | 0b01 << 10 | rn->encoding() << 5 | op << 4 | nzcv); \
+ }
+
+ F(fccmp_s, 0, 0, 0b00, 0)
+ F(fccmpe_s, 0, 0, 0b00, 1)
+ F(fccmp_d, 0, 0, 0b01, 0)
+ F(fccmpe_d, 0, 0, 0b01, 1)
+#undef F
+
+#define F(mnemonic, M, S, type) \
+ void mnemonic(FloatRegister rd, FloatRegister rn, FloatRegister rm, AsmCondition cond) { \
+ emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \
+ rm->encoding() << 16 | cond << 12 | 0b11 << 10 | rn->encoding() << 5 | rd->encoding()); \
+ }
+
+ F(fcsel_s, 0, 0, 0b00)
+ F(fcsel_d, 0, 0, 0b01)
+#undef F
+
+#define F(mnemonic, M, S, type, opcode) \
+ void mnemonic(FloatRegister rd, FloatRegister rn) { \
+ emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \
+ opcode << 15 | 0b10000 << 10 | rn->encoding() << 5 | rd->encoding()); \
+ }
+
+ F(fmov_s, 0, 0, 0b00, 0b000000)
+ F(fabs_s, 0, 0, 0b00, 0b000001)
+ F(fneg_s, 0, 0, 0b00, 0b000010)
+ F(fsqrt_s, 0, 0, 0b00, 0b000011)
+ F(fcvt_ds, 0, 0, 0b00, 0b000101)
+ F(fcvt_hs, 0, 0, 0b00, 0b000111)
+ F(frintn_s, 0, 0, 0b00, 0b001000)
+ F(frintp_s, 0, 0, 0b00, 0b001001)
+ F(frintm_s, 0, 0, 0b00, 0b001010)
+ F(frintz_s, 0, 0, 0b00, 0b001011)
+ F(frinta_s, 0, 0, 0b00, 0b001100)
+ F(frintx_s, 0, 0, 0b00, 0b001110)
+ F(frinti_s, 0, 0, 0b00, 0b001111)
+
+ F(fmov_d, 0, 0, 0b01, 0b000000)
+ F(fabs_d, 0, 0, 0b01, 0b000001)
+ F(fneg_d, 0, 0, 0b01, 0b000010)
+ F(fsqrt_d, 0, 0, 0b01, 0b000011)
+ F(fcvt_sd, 0, 0, 0b01, 0b000100)
+ F(fcvt_hd, 0, 0, 0b01, 0b000111)
+ F(frintn_d, 0, 0, 0b01, 0b001000)
+ F(frintp_d, 0, 0, 0b01, 0b001001)
+ F(frintm_d, 0, 0, 0b01, 0b001010)
+ F(frintz_d, 0, 0, 0b01, 0b001011)
+ F(frinta_d, 0, 0, 0b01, 0b001100)
+ F(frintx_d, 0, 0, 0b01, 0b001110)
+ F(frinti_d, 0, 0, 0b01, 0b001111)
+
+ F(fcvt_sh, 0, 0, 0b11, 0b000100)
+ F(fcvt_dh, 0, 0, 0b11, 0b000101)
+#undef F
+
+#define F(mnemonic, M, S, type, opcode) \
+ void mnemonic(FloatRegister rd, FloatRegister rn, FloatRegister rm) { \
+ emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \
+ rm->encoding() << 16 | opcode << 12 | 0b10 << 10 | rn->encoding() << 5 | rd->encoding()); \
+ }
+
+ F(fmul_s, 0, 0, 0b00, 0b0000)
+ F(fdiv_s, 0, 0, 0b00, 0b0001)
+ F(fadd_s, 0, 0, 0b00, 0b0010)
+ F(fsub_s, 0, 0, 0b00, 0b0011)
+ F(fmax_s, 0, 0, 0b00, 0b0100)
+ F(fmin_s, 0, 0, 0b00, 0b0101)
+ F(fmaxnm_s, 0, 0, 0b00, 0b0110)
+ F(fminnm_s, 0, 0, 0b00, 0b0111)
+ F(fnmul_s, 0, 0, 0b00, 0b1000)
+
+ F(fmul_d, 0, 0, 0b01, 0b0000)
+ F(fdiv_d, 0, 0, 0b01, 0b0001)
+ F(fadd_d, 0, 0, 0b01, 0b0010)
+ F(fsub_d, 0, 0, 0b01, 0b0011)
+ F(fmax_d, 0, 0, 0b01, 0b0100)
+ F(fmin_d, 0, 0, 0b01, 0b0101)
+ F(fmaxnm_d, 0, 0, 0b01, 0b0110)
+ F(fminnm_d, 0, 0, 0b01, 0b0111)
+ F(fnmul_d, 0, 0, 0b01, 0b1000)
+#undef F
+
+#define F(mnemonic, M, S, type, o1, o0) \
+ void mnemonic(FloatRegister rd, FloatRegister rn, FloatRegister rm, FloatRegister ra) { \
+ emit_int32(M << 31 | S << 29 | 0b11111 << 24 | type << 22 | o1 << 21 | rm->encoding() << 16 | \
+ o0 << 15 | ra->encoding() << 10 | rn->encoding() << 5 | rd->encoding()); \
+ }
+
+ F(fmadd_s, 0, 0, 0b00, 0, 0)
+ F(fmsub_s, 0, 0, 0b00, 0, 1)
+ F(fnmadd_s, 0, 0, 0b00, 1, 0)
+ F(fnmsub_s, 0, 0, 0b00, 1, 1)
+
+ F(fmadd_d, 0, 0, 0b01, 0, 0)
+ F(fmsub_d, 0, 0, 0b01, 0, 1)
+ F(fnmadd_d, 0, 0, 0b01, 1, 0)
+ F(fnmsub_d, 0, 0, 0b01, 1, 1)
+#undef F
+
+#define F(mnemonic, M, S, type) \
+ void mnemonic(FloatRegister rd, int imm8) { \
+ assert ((imm8 >> 8) == 0, "immediate is out of range"); \
+ emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \
+ imm8 << 13 | 0b100 << 10 | rd->encoding()); \
+ }
+
+ F(fmov_s, 0, 0, 0b00)
+ F(fmov_d, 0, 0, 0b01)
+#undef F
+
+#define F(mnemonic, sf, S, type, rmode, opcode) \
+ void mnemonic(Register rd, FloatRegister rn) { \
+ emit_int32(sf << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \
+ rmode << 19 | opcode << 16 | rn->encoding() << 5 | rd->encoding_with_zr()); \
+ }
+
+ F(fcvtns_ws, 0, 0, 0b00, 0b00, 0b000)
+ F(fcvtnu_ws, 0, 0, 0b00, 0b00, 0b001)
+ F(fcvtas_ws, 0, 0, 0b00, 0b00, 0b100)
+ F(fcvtau_ws, 0, 0, 0b00, 0b00, 0b101)
+ F(fmov_ws, 0, 0, 0b00, 0b00, 0b110)
+ F(fcvtps_ws, 0, 0, 0b00, 0b01, 0b000)
+ F(fcvtpu_ws, 0, 0, 0b00, 0b01, 0b001)
+ F(fcvtms_ws, 0, 0, 0b00, 0b10, 0b000)
+ F(fcvtmu_ws, 0, 0, 0b00, 0b10, 0b001)
+ F(fcvtzs_ws, 0, 0, 0b00, 0b11, 0b000)
+ F(fcvtzu_ws, 0, 0, 0b00, 0b11, 0b001)
+
+ F(fcvtns_wd, 0, 0, 0b01, 0b00, 0b000)
+ F(fcvtnu_wd, 0, 0, 0b01, 0b00, 0b001)
+ F(fcvtas_wd, 0, 0, 0b01, 0b00, 0b100)
+ F(fcvtau_wd, 0, 0, 0b01, 0b00, 0b101)
+ F(fcvtps_wd, 0, 0, 0b01, 0b01, 0b000)
+ F(fcvtpu_wd, 0, 0, 0b01, 0b01, 0b001)
+ F(fcvtms_wd, 0, 0, 0b01, 0b10, 0b000)
+ F(fcvtmu_wd, 0, 0, 0b01, 0b10, 0b001)
+ F(fcvtzs_wd, 0, 0, 0b01, 0b11, 0b000)
+ F(fcvtzu_wd, 0, 0, 0b01, 0b11, 0b001)
+
+ F(fcvtns_xs, 1, 0, 0b00, 0b00, 0b000)
+ F(fcvtnu_xs, 1, 0, 0b00, 0b00, 0b001)
+ F(fcvtas_xs, 1, 0, 0b00, 0b00, 0b100)
+ F(fcvtau_xs, 1, 0, 0b00, 0b00, 0b101)
+ F(fcvtps_xs, 1, 0, 0b00, 0b01, 0b000)
+ F(fcvtpu_xs, 1, 0, 0b00, 0b01, 0b001)
+ F(fcvtms_xs, 1, 0, 0b00, 0b10, 0b000)
+ F(fcvtmu_xs, 1, 0, 0b00, 0b10, 0b001)
+ F(fcvtzs_xs, 1, 0, 0b00, 0b11, 0b000)
+ F(fcvtzu_xs, 1, 0, 0b00, 0b11, 0b001)
+
+ F(fcvtns_xd, 1, 0, 0b01, 0b00, 0b000)
+ F(fcvtnu_xd, 1, 0, 0b01, 0b00, 0b001)
+ F(fcvtas_xd, 1, 0, 0b01, 0b00, 0b100)
+ F(fcvtau_xd, 1, 0, 0b01, 0b00, 0b101)
+ F(fmov_xd, 1, 0, 0b01, 0b00, 0b110)
+ F(fcvtps_xd, 1, 0, 0b01, 0b01, 0b000)
+ F(fcvtpu_xd, 1, 0, 0b01, 0b01, 0b001)
+ F(fcvtms_xd, 1, 0, 0b01, 0b10, 0b000)
+ F(fcvtmu_xd, 1, 0, 0b01, 0b10, 0b001)
+ F(fcvtzs_xd, 1, 0, 0b01, 0b11, 0b000)
+ F(fcvtzu_xd, 1, 0, 0b01, 0b11, 0b001)
+
+ F(fmov_xq, 1, 0, 0b10, 0b01, 0b110)
+#undef F
+
+#define F(mnemonic, sf, S, type, rmode, opcode) \
+ void mnemonic(FloatRegister rd, Register rn) { \
+ emit_int32(sf << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \
+ rmode << 19 | opcode << 16 | rn->encoding_with_zr() << 5 | rd->encoding()); \
+ }
+
+ F(scvtf_sw, 0, 0, 0b00, 0b00, 0b010)
+ F(ucvtf_sw, 0, 0, 0b00, 0b00, 0b011)
+ F(fmov_sw, 0, 0, 0b00, 0b00, 0b111)
+ F(scvtf_dw, 0, 0, 0b01, 0b00, 0b010)
+ F(ucvtf_dw, 0, 0, 0b01, 0b00, 0b011)
+
+ F(scvtf_sx, 1, 0, 0b00, 0b00, 0b010)
+ F(ucvtf_sx, 1, 0, 0b00, 0b00, 0b011)
+ F(scvtf_dx, 1, 0, 0b01, 0b00, 0b010)
+ F(ucvtf_dx, 1, 0, 0b01, 0b00, 0b011)
+ F(fmov_dx, 1, 0, 0b01, 0b00, 0b111)
+
+ F(fmov_qx, 1, 0, 0b10, 0b01, 0b111)
+#undef F
+
+#define F(mnemonic, opcode) \
+ void mnemonic(FloatRegister Vd, FloatRegister Vn) { \
+ emit_int32( opcode << 10 | Vn->encoding() << 5 | Vd->encoding()); \
+ }
+
+ F(aese, 0b0100111000101000010010);
+ F(aesd, 0b0100111000101000010110);
+ F(aesmc, 0b0100111000101000011010);
+ F(aesimc, 0b0100111000101000011110);
+#undef F
+
+#ifdef COMPILER2
+ typedef VFP::double_num double_num;
+ typedef VFP::float_num float_num;
+#endif
+
+ void vcnt(FloatRegister Dd, FloatRegister Dn, int quad = 0, int size = 0) {
+ // emitted at VM startup to detect whether the instruction is available
+ assert(!VM_Version::is_initialized() || VM_Version::has_simd(), "simd instruction");
+ assert(size == 0, "illegal size value");
+ emit_int32(0x0e205800 | quad << 30 | size << 22 | Dn->encoding() << 5 | Dd->encoding());
+ }
+
+#ifdef COMPILER2
+ void addv(FloatRegister Dd, FloatRegister Dm, int quad, int size) {
+ // emitted at VM startup to detect whether the instruction is available
+ assert(VM_Version::has_simd(), "simd instruction");
+ assert((quad & ~1) == 0, "illegal value");
+ assert(size >= 0 && size < 3, "illegal value");
+ assert(((size << 1) | quad) != 4, "illegal values (size 2, quad 0)");
+ emit_int32(0x0e31b800 | quad << 30 | size << 22 | Dm->encoding() << 5 | Dd->encoding());
+ }
+
+ enum VElem_Size {
+ VELEM_SIZE_8 = 0x00,
+ VELEM_SIZE_16 = 0x01,
+ VELEM_SIZE_32 = 0x02,
+ VELEM_SIZE_64 = 0x03
+ };
+
+ enum VLD_Type {
+ VLD1_TYPE_1_REG = 0b0111,
+ VLD1_TYPE_2_REGS = 0b1010,
+ VLD1_TYPE_3_REGS = 0b0110,
+ VLD1_TYPE_4_REGS = 0b0010
+ };
+
+ enum VFloat_Arith_Size {
+ VFA_SIZE_F32 = 0b0,
+ VFA_SIZE_F64 = 0b1
+ };
+
+#define F(mnemonic, U, S, P) \
+ void mnemonic(FloatRegister fd, FloatRegister fn, FloatRegister fm, \
+ int size, int quad) { \
+ assert(VM_Version::has_simd(), "simd instruction"); \
+ assert(!(size == VFA_SIZE_F64 && !quad), "reserved"); \
+ assert((size & 1) == size, "overflow"); \
+ emit_int32(quad << 30 | U << 29 | 0b01110 << 24 | \
+ S << 23 | size << 22 | 1 << 21 | P << 11 | 1 << 10 | \
+ fm->encoding() << 16 | \
+ fn->encoding() << 5 | \
+ fd->encoding()); \
+ }
+
+ F(vaddF, 0, 0, 0b11010) // Vd = Vn + Vm (float)
+ F(vsubF, 0, 1, 0b11010) // Vd = Vn - Vm (float)
+ F(vmulF, 1, 0, 0b11011) // Vd = Vn - Vm (float)
+ F(vdivF, 1, 0, 0b11111) // Vd = Vn / Vm (float)
+#undef F
+
+#define F(mnemonic, U) \
+ void mnemonic(FloatRegister fd, FloatRegister fm, FloatRegister fn, \
+ int size, int quad) { \
+ assert(VM_Version::has_simd(), "simd instruction"); \
+ assert(!(size == VELEM_SIZE_64 && !quad), "reserved"); \
+ assert((size & 0b11) == size, "overflow"); \
+ int R = 0; /* rounding */ \
+ int S = 0; /* saturating */ \
+ emit_int32(quad << 30 | U << 29 | 0b01110 << 24 | size << 22 | \
+ 1 << 21 | R << 12 | S << 11 | 0b10001 << 10 | \
+ fm->encoding() << 16 | \
+ fn->encoding() << 5 | \
+ fd->encoding()); \
+ }
+
+ F(vshlSI, 0) // Vd = ashift(Vn,Vm) (int)
+ F(vshlUI, 1) // Vd = lshift(Vn,Vm) (int)
+#undef F
+
+#define F(mnemonic, U, P, M) \
+ void mnemonic(FloatRegister fd, FloatRegister fn, FloatRegister fm, \
+ int size, int quad) { \
+ assert(VM_Version::has_simd(), "simd instruction"); \
+ assert(!(size == VELEM_SIZE_64 && !quad), "reserved"); \
+ assert(!(size == VELEM_SIZE_64 && M), "reserved"); \
+ assert((size & 0b11) == size, "overflow"); \
+ emit_int32(quad << 30 | U << 29 | 0b01110 << 24 | size << 22 | \
+ 1 << 21 | P << 11 | 1 << 10 | \
+ fm->encoding() << 16 | \
+ fn->encoding() << 5 | \
+ fd->encoding()); \
+ }
+
+ F(vmulI, 0, 0b10011, true) // Vd = Vn * Vm (int)
+ F(vaddI, 0, 0b10000, false) // Vd = Vn + Vm (int)
+ F(vsubI, 1, 0b10000, false) // Vd = Vn - Vm (int)
+#undef F
+
+#define F(mnemonic, U, O) \
+ void mnemonic(FloatRegister fd, FloatRegister fn, FloatRegister fm, \
+ int quad) { \
+ assert(VM_Version::has_simd(), "simd instruction"); \
+ emit_int32(quad << 30 | U << 29 | 0b01110 << 24 | O << 22 | \
+ 1 << 21 | 0b00011 << 11 | 1 << 10 | \
+ fm->encoding() << 16 | \
+ fn->encoding() << 5 | \
+ fd->encoding()); \
+ }
+
+ F(vandI, 0, 0b00) // Vd = Vn & Vm (int)
+ F(vorI, 0, 0b10) // Vd = Vn | Vm (int)
+ F(vxorI, 1, 0b00) // Vd = Vn ^ Vm (int)
+#undef F
+
+ void vnegI(FloatRegister fd, FloatRegister fn, int size, int quad) {
+ int U = 1;
+ assert(VM_Version::has_simd(), "simd instruction");
+ assert(quad || size != VELEM_SIZE_64, "reserved");
+ emit_int32(quad << 30 | U << 29 | 0b01110 << 24 |
+ size << 22 | 0b100000101110 << 10 |
+ fn->encoding() << 5 |
+ fd->encoding() << 0);
+ }
+
+ void vshli(FloatRegister fd, FloatRegister fn, int esize, int imm, int quad) {
+ assert(VM_Version::has_simd(), "simd instruction");
+
+ if (imm >= esize) {
+ // maximum shift gives all zeroes, direction doesn't matter,
+ // but only available for shift right
+ vshri(fd, fn, esize, esize, true /* unsigned */, quad);
+ return;
+ }
+ assert(imm >= 0 && imm < esize, "out of range");
+
+ int imm7 = esize + imm;
+ int immh = imm7 >> 3;
+ assert(immh != 0, "encoding constraint");
+ assert((uint)immh < 16, "sanity");
+ assert(((immh >> 2) | quad) != 0b10, "reserved");
+ emit_int32(quad << 30 | 0b011110 << 23 | imm7 << 16 |
+ 0b010101 << 10 | fn->encoding() << 5 | fd->encoding() << 0);
+ }
+
+ void vshri(FloatRegister fd, FloatRegister fn, int esize, int imm,
+ bool U /* unsigned */, int quad) {
+ assert(VM_Version::has_simd(), "simd instruction");
+ assert(imm > 0, "out of range");
+ if (imm >= esize) {
+ // maximum shift (all zeroes)
+ imm = esize;
+ }
+ int imm7 = 2 * esize - imm ;
+ int immh = imm7 >> 3;
+ assert(immh != 0, "encoding constraint");
+ assert((uint)immh < 16, "sanity");
+ assert(((immh >> 2) | quad) != 0b10, "reserved");
+ emit_int32(quad << 30 | U << 29 | 0b011110 << 23 | imm7 << 16 |
+ 0b000001 << 10 | fn->encoding() << 5 | fd->encoding() << 0);
+ }
+ void vshrUI(FloatRegister fd, FloatRegister fm, int size, int imm, int quad) {
+ vshri(fd, fm, size, imm, true /* unsigned */, quad);
+ }
+ void vshrSI(FloatRegister fd, FloatRegister fm, int size, int imm, int quad) {
+ vshri(fd, fm, size, imm, false /* signed */, quad);
+ }
+
+ void vld1(FloatRegister Vt, Address addr, VElem_Size size, int bits) {
+ assert(VM_Version::has_simd(), "simd instruction");
+ assert(bits == 128, "unsupported");
+ assert(addr.disp() == 0 || addr.disp() == 16, "must be");
+ int type = 0b11; // 2D
+ int quad = 1;
+ int L = 1;
+ int opcode = VLD1_TYPE_1_REG;
+ emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 |
+ Vt->encoding() << 0 | addr.encoding_simd());
+ }
+
+ void vst1(FloatRegister Vt, Address addr, VElem_Size size, int bits) {
+ assert(VM_Version::has_simd(), "simd instruction");
+ assert(bits == 128, "unsupported");
+ assert(addr.disp() == 0 || addr.disp() == 16, "must be");
+ int type = 0b11; // 2D
+ int quad = 1;
+ int L = 0;
+ int opcode = VLD1_TYPE_1_REG;
+ emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 |
+ Vt->encoding() << 0 | addr.encoding_simd());
+ }
+
+ void vld1(FloatRegister Vt, FloatRegister Vt2, Address addr, VElem_Size size, int bits) {
+ assert(VM_Version::has_simd(), "simd instruction");
+ assert(bits == 128, "unsupported");
+ assert(Vt->successor() == Vt2, "Registers must be ordered");
+ assert(addr.disp() == 0 || addr.disp() == 32, "must be");
+ int type = 0b11; // 2D
+ int quad = 1;
+ int L = 1;
+ int opcode = VLD1_TYPE_2_REGS;
+ emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 |
+ Vt->encoding() << 0 | addr.encoding_simd());
+ }
+
+ void vst1(FloatRegister Vt, FloatRegister Vt2, Address addr, VElem_Size size, int bits) {
+ assert(VM_Version::has_simd(), "simd instruction");
+ assert(Vt->successor() == Vt2, "Registers must be ordered");
+ assert(bits == 128, "unsupported");
+ assert(addr.disp() == 0 || addr.disp() == 32, "must be");
+ int type = 0b11; // 2D
+ int quad = 1;
+ int L = 0;
+ int opcode = VLD1_TYPE_2_REGS;
+ emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 |
+ Vt->encoding() << 0 | addr.encoding_simd());
+ }
+
+ void vld1(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,
+ Address addr, VElem_Size size, int bits) {
+ assert(VM_Version::has_simd(), "simd instruction");
+ assert(bits == 128, "unsupported");
+ assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3,
+ "Registers must be ordered");
+ assert(addr.disp() == 0 || addr.disp() == 48, "must be");
+ int type = 0b11; // 2D
+ int quad = 1;
+ int L = 1;
+ int opcode = VLD1_TYPE_3_REGS;
+ emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 |
+ Vt->encoding() << 0 | addr.encoding_simd());
+ }
+
+ void vst1(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,
+ Address addr, VElem_Size size, int bits) {
+ assert(VM_Version::has_simd(), "simd instruction");
+ assert(bits == 128, "unsupported");
+ assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3,
+ "Registers must be ordered");
+ assert(addr.disp() == 0 || addr.disp() == 48, "must be");
+ int type = 0b11; // 2D
+ int quad = 1;
+ int L = 0;
+ int opcode = VLD1_TYPE_3_REGS;
+ emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 |
+ Vt->encoding() << 0 | addr.encoding_simd());
+ }
+
+ void vld1(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,
+ FloatRegister Vt4, Address addr, VElem_Size size, int bits) {
+ assert(VM_Version::has_simd(), "simd instruction");
+ assert(bits == 128, "unsupported");
+ assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 &&
+ Vt3->successor() == Vt4, "Registers must be ordered");
+ assert(addr.disp() == 0 || addr.disp() == 64, "must be");
+ int type = 0b11; // 2D
+ int quad = 1;
+ int L = 1;
+ int opcode = VLD1_TYPE_4_REGS;
+ emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 |
+ Vt->encoding() << 0 | addr.encoding_simd());
+ }
+
+ void vst1(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,
+ FloatRegister Vt4, Address addr, VElem_Size size, int bits) {
+ assert(VM_Version::has_simd(), "simd instruction");
+ assert(bits == 128, "unsupported");
+ assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 &&
+ Vt3->successor() == Vt4, "Registers must be ordered");
+ assert(addr.disp() == 0 || addr.disp() == 64, "must be");
+ int type = 0b11; // 2D
+ int quad = 1;
+ int L = 0;
+ int opcode = VLD1_TYPE_4_REGS;
+ emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 |
+ Vt->encoding() << 0 | addr.encoding_simd());
+ }
+
+ void rev32(FloatRegister Vd, FloatRegister Vn, VElem_Size size, int quad) {
+ assert(VM_Version::has_simd(), "simd instruction");
+ assert(size == VELEM_SIZE_8 || size == VELEM_SIZE_16, "must be");
+ emit_int32(quad << 30 | 0b101110 << 24 | size << 22 |
+ 0b100000000010 << 10 | Vn->encoding() << 5 | Vd->encoding());
+ }
+
+ void eor(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm, VElem_Size size, int quad) {
+ assert(VM_Version::has_simd(), "simd instruction");
+ assert(size == VELEM_SIZE_8, "must be");
+ emit_int32(quad << 30 | 0b101110001 << 21 | Vm->encoding() << 16 |
+ 0b000111 << 10 | Vn->encoding() << 5 | Vd->encoding());
+ }
+
+ void orr(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm, VElem_Size size, int quad) {
+ assert(VM_Version::has_simd(), "simd instruction");
+ assert(size == VELEM_SIZE_8, "must be");
+ emit_int32(quad << 30 | 0b001110101 << 21 | Vm->encoding() << 16 |
+ 0b000111 << 10 | Vn->encoding() << 5 | Vd->encoding());
+ }
+
+ void vmovI(FloatRegister Dd, int imm8, VElem_Size size, int quad) {
+ assert(VM_Version::has_simd(), "simd instruction");
+ assert(imm8 >= 0 && imm8 < 256, "out of range");
+ int op;
+ int cmode;
+ switch (size) {
+ case VELEM_SIZE_8:
+ op = 0;
+ cmode = 0b1110;
+ break;
+ case VELEM_SIZE_16:
+ op = 0;
+ cmode = 0b1000;
+ break;
+ case VELEM_SIZE_32:
+ op = 0;
+ cmode = 0b0000;
+ break;
+ default:
+ cmode = 0;
+ ShouldNotReachHere();
+ }
+ int abc = imm8 >> 5;
+ int defgh = imm8 & 0b11111;
+ emit_int32(quad << 30 | op << 29 | 0b1111 << 24 |
+ abc << 16 | cmode << 12 | 0b01 << 10 |
+ defgh << 5 | Dd->encoding() << 0);
+ }
+
+ void vdupI(FloatRegister Dd, Register Rn, VElem_Size size, int quad) {
+ assert(VM_Version::has_simd(), "simd instruction");
+ assert(size <= 3, "unallocated encoding");
+ assert(size != 3 || quad == 1, "reserved");
+ int imm5 = 1 << size;
+#ifdef ASSERT
+ switch (size) {
+ case VELEM_SIZE_8:
+ assert(imm5 == 0b00001, "sanity");
+ break;
+ case VELEM_SIZE_16:
+ assert(imm5 == 0b00010, "sanity");
+ break;
+ case VELEM_SIZE_32:
+ assert(imm5 == 0b00100, "sanity");
+ break;
+ case VELEM_SIZE_64:
+ assert(imm5 == 0b01000, "sanity");
+ break;
+ default:
+ ShouldNotReachHere();
+ }
+#endif
+ emit_int32(quad << 30 | 0b111 << 25 | 0b11 << 10 |
+ imm5 << 16 | Rn->encoding() << 5 |
+ Dd->encoding() << 0);
+ }
+
+ void vdup(FloatRegister Vd, FloatRegister Vn, VElem_Size size, int quad) {
+ assert(VM_Version::has_simd(), "simd instruction");
+ int index = 0;
+ int bytes = 1 << size;
+ int range = 16 / bytes;
+ assert(index < range, "overflow");
+
+ assert(size != VELEM_SIZE_64 || quad, "reserved");
+ assert(8 << VELEM_SIZE_8 == 8, "sanity");
+ assert(8 << VELEM_SIZE_16 == 16, "sanity");
+ assert(8 << VELEM_SIZE_32 == 32, "sanity");
+ assert(8 << VELEM_SIZE_64 == 64, "sanity");
+
+ int imm5 = (index << (size + 1)) | bytes;
+
+ emit_int32(quad << 30 | 0b001110000 << 21 | imm5 << 16 | 0b000001 << 10 |
+ Vn->encoding() << 5 | Vd->encoding() << 0);
+ }
+
+ void vdupF(FloatRegister Vd, FloatRegister Vn, int quad) {
+ vdup(Vd, Vn, VELEM_SIZE_32, quad);
+ }
+
+ void vdupD(FloatRegister Vd, FloatRegister Vn, int quad) {
+ vdup(Vd, Vn, VELEM_SIZE_64, quad);
+ }
+#endif
+};
+
+
+#endif // CPU_ARM_VM_ASSEMBLER_ARM_64_HPP