src/hotspot/cpu/arm/assembler_arm_64.hpp
changeset 47216 71c04702a3d5
parent 46525 3a5c833a43de
child 49364 601146c66cad
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/cpu/arm/assembler_arm_64.hpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,1718 @@
+/*
+ * Copyright (c) 2008, 2016, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifndef CPU_ARM_VM_ASSEMBLER_ARM_64_HPP
+#define CPU_ARM_VM_ASSEMBLER_ARM_64_HPP
+
+enum AsmShift12 {
+  lsl0, lsl12
+};
+
+enum AsmPrefetchOp {
+    pldl1keep = 0b00000,
+    pldl1strm,
+    pldl2keep,
+    pldl2strm,
+    pldl3keep,
+    pldl3strm,
+
+    plil1keep = 0b01000,
+    plil1strm,
+    plil2keep,
+    plil2strm,
+    plil3keep,
+    plil3strm,
+
+    pstl1keep = 0b10000,
+    pstl1strm,
+    pstl2keep,
+    pstl2strm,
+    pstl3keep,
+    pstl3strm,
+};
+
+// Shifted register operand for data processing instructions.
+class AsmOperand VALUE_OBJ_CLASS_SPEC {
+ private:
+  Register _reg;
+  AsmShift _shift;
+  int _shift_imm;
+
+ public:
+  AsmOperand(Register reg) {
+    assert(reg != SP, "SP is not allowed in shifted register operand");
+    _reg = reg;
+    _shift = lsl;
+    _shift_imm = 0;
+  }
+
+  AsmOperand(Register reg, AsmShift shift, int shift_imm) {
+    assert(reg != SP, "SP is not allowed in shifted register operand");
+    assert(shift_imm >= 0, "shift amount should be non-negative");
+    _reg = reg;
+    _shift = shift;
+    _shift_imm = shift_imm;
+  }
+
+  Register reg() const {
+    return _reg;
+  }
+
+  AsmShift shift() const {
+    return _shift;
+  }
+
+  int shift_imm() const {
+    return _shift_imm;
+  }
+};
+
+
+class Assembler : public AbstractAssembler  {
+
+ public:
+
+  static const int LogInstructionSize = 2;
+  static const int InstructionSize    = 1 << LogInstructionSize;
+
+  Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
+
+  static inline AsmCondition inverse(AsmCondition cond) {
+    assert ((cond != al) && (cond != nv), "AL and NV conditions cannot be inversed");
+    return (AsmCondition)((int)cond ^ 1);
+  }
+
+  // Returns value of nzcv flags conforming to the given condition.
+  static inline int flags_for_condition(AsmCondition cond) {
+    switch(cond) {            // NZCV
+      case mi: case lt: return 0b1000;
+      case eq: case le: return 0b0100;
+      case hs: case hi: return 0b0010;
+      case vs:          return 0b0001;
+      default:          return 0b0000;
+    }
+  }
+
+  // Immediate, encoded into logical instructions.
+  class LogicalImmediate {
+   private:
+    bool _encoded;
+    bool _is32bit;
+    int _immN;
+    int _immr;
+    int _imms;
+
+    static inline bool has_equal_subpatterns(uintx imm, int size);
+    static inline int least_pattern_size(uintx imm);
+    static inline int population_count(uintx x);
+    static inline uintx set_least_zeroes(uintx x);
+
+#ifdef ASSERT
+    uintx decode();
+#endif
+
+    void construct(uintx imm, bool is32);
+
+   public:
+    LogicalImmediate(uintx imm, bool is32 = false) { construct(imm, is32); }
+
+    // Returns true if given immediate can be used in AArch64 logical instruction.
+    bool is_encoded() const { return _encoded; }
+
+    bool is32bit() const { return _is32bit; }
+    int immN() const { assert(_encoded, "should be"); return _immN; }
+    int immr() const { assert(_encoded, "should be"); return _immr; }
+    int imms() const { assert(_encoded, "should be"); return _imms; }
+  };
+
+  // Immediate, encoded into arithmetic add/sub instructions.
+  class ArithmeticImmediate {
+   private:
+    bool _encoded;
+    int _imm;
+    AsmShift12 _shift;
+
+   public:
+    ArithmeticImmediate(intx x) {
+      if (is_unsigned_imm_in_range(x, 12, 0)) {
+        _encoded = true;
+        _imm = x;
+        _shift = lsl0;
+      } else if (is_unsigned_imm_in_range(x, 12, 12)) {
+        _encoded = true;
+        _imm = x >> 12;
+        _shift = lsl12;
+      } else {
+        _encoded = false;
+      }
+    }
+
+    ArithmeticImmediate(intx x, AsmShift12 sh) {
+      if (is_unsigned_imm_in_range(x, 12, 0)) {
+        _encoded = true;
+        _imm = x;
+        _shift = sh;
+      } else {
+        _encoded = false;
+      }
+    }
+
+    // Returns true if this immediate can be used in AArch64 arithmetic (add/sub/cmp/cmn) instructions.
+    bool is_encoded() const  { return _encoded; }
+
+    int imm() const          { assert(_encoded, "should be"); return _imm; }
+    AsmShift12 shift() const { assert(_encoded, "should be"); return _shift; }
+  };
+
+  static inline bool is_imm_in_range(intx value, int bits, int align_bits) {
+    intx sign_bits = (value >> (bits + align_bits - 1));
+    return ((value & right_n_bits(align_bits)) == 0) && ((sign_bits == 0) || (sign_bits == -1));
+  }
+
+  static inline int encode_imm(intx value, int bits, int align_bits, int low_bit_in_encoding) {
+    assert (is_imm_in_range(value, bits, align_bits), "immediate value is out of range");
+    return ((value >> align_bits) & right_n_bits(bits)) << low_bit_in_encoding;
+  }
+
+  static inline bool is_unsigned_imm_in_range(intx value, int bits, int align_bits) {
+    return (value >= 0) && ((value & right_n_bits(align_bits)) == 0) && ((value >> (align_bits + bits)) == 0);
+  }
+
+  static inline int encode_unsigned_imm(intx value, int bits, int align_bits, int low_bit_in_encoding) {
+    assert (is_unsigned_imm_in_range(value, bits, align_bits), "immediate value is out of range");
+    return (value >> align_bits) << low_bit_in_encoding;
+  }
+
+  static inline bool is_offset_in_range(intx offset, int bits) {
+    assert (bits == 14 || bits == 19 || bits == 26, "wrong bits number");
+    return is_imm_in_range(offset, bits, 2);
+  }
+
+  static inline int encode_offset(intx offset, int bits, int low_bit_in_encoding) {
+    return encode_imm(offset, bits, 2, low_bit_in_encoding);
+  }
+
+  // Returns true if given value can be used as immediate in arithmetic (add/sub/cmp/cmn) instructions.
+  static inline bool is_arith_imm_in_range(intx value) {
+    return ArithmeticImmediate(value).is_encoded();
+  }
+
+
+  // Load/store instructions
+
+#define F(mnemonic, opc) \
+  void mnemonic(Register rd, address literal_addr) {                                                       \
+    intx offset = literal_addr - pc();                                                                     \
+    assert (opc != 0b01 || offset == 0 || ((uintx)literal_addr & 7) == 0, "ldr target should be aligned"); \
+    assert (is_offset_in_range(offset, 19), "offset is out of range");                                     \
+    emit_int32(opc << 30 | 0b011 << 27 | encode_offset(offset, 19, 5) | rd->encoding_with_zr());           \
+  }
+
+  F(ldr_w, 0b00)
+  F(ldr,   0b01)
+  F(ldrsw, 0b10)
+#undef F
+
+#define F(mnemonic, opc) \
+  void mnemonic(FloatRegister rt, address literal_addr) {                                                  \
+    intx offset = literal_addr - pc();                                                                     \
+    assert (offset == 0 || ((uintx)literal_addr & right_n_bits(2 + opc)) == 0, "ldr target should be aligned"); \
+    assert (is_offset_in_range(offset, 19), "offset is out of range");                                     \
+    emit_int32(opc << 30 | 0b011100 << 24 | encode_offset(offset, 19, 5) | rt->encoding());                \
+  }
+
+  F(ldr_s, 0b00)
+  F(ldr_d, 0b01)
+  F(ldr_q, 0b10)
+#undef F
+
+#define F(mnemonic, size, o2, L, o1, o0) \
+  void mnemonic(Register rt, Register rn) {                                                                \
+    emit_int32(size << 30 | 0b001000 << 24 | o2 << 23 | L << 22 | o1 << 21 | 0b11111 << 16 |               \
+        o0 << 15 | 0b11111 << 10 | rn->encoding_with_sp() << 5 | rt->encoding_with_zr());                  \
+  }
+
+  F(ldxrb,   0b00, 0, 1, 0, 0)
+  F(ldaxrb,  0b00, 0, 1, 0, 1)
+  F(ldarb,   0b00, 1, 1, 0, 1)
+  F(ldxrh,   0b01, 0, 1, 0, 0)
+  F(ldaxrh,  0b01, 0, 1, 0, 1)
+  F(ldarh,   0b01, 1, 1, 0, 1)
+  F(ldxr_w,  0b10, 0, 1, 0, 0)
+  F(ldaxr_w, 0b10, 0, 1, 0, 1)
+  F(ldar_w,  0b10, 1, 1, 0, 1)
+  F(ldxr,    0b11, 0, 1, 0, 0)
+  F(ldaxr,   0b11, 0, 1, 0, 1)
+  F(ldar,    0b11, 1, 1, 0, 1)
+
+  F(stlrb,   0b00, 1, 0, 0, 1)
+  F(stlrh,   0b01, 1, 0, 0, 1)
+  F(stlr_w,  0b10, 1, 0, 0, 1)
+  F(stlr,    0b11, 1, 0, 0, 1)
+#undef F
+
+#define F(mnemonic, size, o2, L, o1, o0) \
+  void mnemonic(Register rs, Register rt, Register rn) {                                                     \
+    assert (rs != rt, "should be different");                                                                \
+    assert (rs != rn, "should be different");                                                                \
+    emit_int32(size << 30 | 0b001000 << 24 | o2 << 23 | L << 22 | o1 << 21 | rs->encoding_with_zr() << 16 |  \
+        o0 << 15 | 0b11111 << 10 | rn->encoding_with_sp() << 5 | rt->encoding_with_zr());                    \
+  }
+
+  F(stxrb,   0b00, 0, 0, 0, 0)
+  F(stlxrb,  0b00, 0, 0, 0, 1)
+  F(stxrh,   0b01, 0, 0, 0, 0)
+  F(stlxrh,  0b01, 0, 0, 0, 1)
+  F(stxr_w,  0b10, 0, 0, 0, 0)
+  F(stlxr_w, 0b10, 0, 0, 0, 1)
+  F(stxr,    0b11, 0, 0, 0, 0)
+  F(stlxr,   0b11, 0, 0, 0, 1)
+#undef F
+
+#define F(mnemonic, size, o2, L, o1, o0) \
+  void mnemonic(Register rt, Register rt2, Register rn) {                                                  \
+    assert (rt != rt2, "should be different");                                                             \
+    emit_int32(size << 30 | 0b001000 << 24 | o2 << 23 | L << 22 | o1 << 21 | 0b11111 << 16 |               \
+        o0 << 15 | rt2->encoding_with_zr() << 10 | rn->encoding_with_sp() << 5 | rt->encoding_with_zr());  \
+  }
+
+  F(ldxp_w,  0b10, 0, 1, 1, 0)
+  F(ldaxp_w, 0b10, 0, 1, 1, 1)
+  F(ldxp,    0b11, 0, 1, 1, 0)
+  F(ldaxp,   0b11, 0, 1, 1, 1)
+#undef F
+
+#define F(mnemonic, size, o2, L, o1, o0) \
+  void mnemonic(Register rs, Register rt, Register rt2, Register rn) {                                       \
+    assert (rs != rt, "should be different");                                                                \
+    assert (rs != rt2, "should be different");                                                               \
+    assert (rs != rn, "should be different");                                                                \
+    emit_int32(size << 30 | 0b001000 << 24 | o2 << 23 | L << 22 | o1 << 21 | rs->encoding_with_zr() << 16 |  \
+        o0 << 15 | rt2->encoding_with_zr() << 10 | rn->encoding_with_sp() << 5 | rt->encoding_with_zr());    \
+  }
+
+  F(stxp_w,  0b10, 0, 0, 1, 0)
+  F(stlxp_w, 0b10, 0, 0, 1, 1)
+  F(stxp,    0b11, 0, 0, 1, 0)
+  F(stlxp,   0b11, 0, 0, 1, 1)
+#undef F
+
+#define F(mnemonic, opc, V, L) \
+  void mnemonic(Register rt, Register rt2, Register rn, int offset = 0) {                                  \
+    assert (!L || rt != rt2, "should be different");                                                       \
+    int align_bits = 2 + (opc >> 1);                                                                       \
+    assert (is_imm_in_range(offset, 7, align_bits), "offset is out of range");                             \
+    emit_int32(opc << 30 | 0b101 << 27 | V << 26 | L << 22 | encode_imm(offset, 7, align_bits, 15) |       \
+        rt2->encoding_with_zr() << 10 | rn->encoding_with_sp() << 5 | rt->encoding_with_zr());             \
+  }
+
+  F(stnp_w,  0b00, 0, 0)
+  F(ldnp_w,  0b00, 0, 1)
+  F(stnp,    0b10, 0, 0)
+  F(ldnp,    0b10, 0, 1)
+#undef F
+
+#define F(mnemonic, opc, V, L) \
+  void mnemonic(FloatRegister rt, FloatRegister rt2, Register rn, int offset = 0) {                        \
+    assert (!L || (rt != rt2), "should be different");                                                     \
+    int align_bits = 2 + opc;                                                                              \
+    assert (is_imm_in_range(offset, 7, align_bits), "offset is out of range");                             \
+    emit_int32(opc << 30 | 0b101 << 27 | V << 26 | L << 22 | encode_imm(offset, 7, align_bits, 15) |       \
+        rt2->encoding() << 10 | rn->encoding_with_sp() << 5 | rt->encoding());                             \
+  }
+
+  F(stnp_s,  0b00, 1, 0)
+  F(stnp_d,  0b01, 1, 0)
+  F(stnp_q,  0b10, 1, 0)
+  F(ldnp_s,  0b00, 1, 1)
+  F(ldnp_d,  0b01, 1, 1)
+  F(ldnp_q,  0b10, 1, 1)
+#undef F
+
+#define F(mnemonic, size, V, opc) \
+  void mnemonic(Register rt, Address addr) { \
+    assert((addr.mode() == basic_offset) || (rt != addr.base()), "should be different");                    \
+    if (addr.index() == noreg) {                                                                            \
+      if ((addr.mode() == basic_offset) && is_unsigned_imm_in_range(addr.disp(), 12, size)) {               \
+        emit_int32(size << 30 | 0b111 << 27 | V << 26 | 0b01 << 24 | opc << 22 |                            \
+           encode_unsigned_imm(addr.disp(), 12, size, 10) |                                                 \
+           addr.base()->encoding_with_sp() << 5 | rt->encoding_with_zr());                                  \
+      } else {                                                                                              \
+        assert(is_imm_in_range(addr.disp(), 9, 0), "offset is out of range");                               \
+        emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | encode_imm(addr.disp(), 9, 0, 12) |     \
+           addr.mode() << 10 | addr.base()->encoding_with_sp() << 5 | rt->encoding_with_zr());              \
+      }                                                                                                     \
+    } else {                                                                                                \
+      assert (addr.disp() == 0, "non-zero displacement for [reg + reg] address mode");                      \
+      assert ((addr.shift_imm() == 0) || (addr.shift_imm() == size), "invalid shift amount");               \
+      emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | 1 << 21 |                                 \
+         addr.index()->encoding_with_zr() << 16 | addr.extend() << 13 | (addr.shift_imm() != 0) << 12 |     \
+         0b10 << 10 | addr.base()->encoding_with_sp() << 5 | rt->encoding_with_zr());                       \
+    }                                                                                                       \
+  }
+
+  F(strb,    0b00, 0, 0b00)
+  F(ldrb,    0b00, 0, 0b01)
+  F(ldrsb,   0b00, 0, 0b10)
+  F(ldrsb_w, 0b00, 0, 0b11)
+
+  F(strh,    0b01, 0, 0b00)
+  F(ldrh,    0b01, 0, 0b01)
+  F(ldrsh,   0b01, 0, 0b10)
+  F(ldrsh_w, 0b01, 0, 0b11)
+
+  F(str_w,   0b10, 0, 0b00)
+  F(ldr_w,   0b10, 0, 0b01)
+  F(ldrsw,   0b10, 0, 0b10)
+
+  F(str,     0b11, 0, 0b00)
+  F(ldr,     0b11, 0, 0b01)
+#undef F
+
+#define F(mnemonic, size, V, opc) \
+  void mnemonic(AsmPrefetchOp prfop, Address addr) { \
+    assert (addr.mode() == basic_offset, #mnemonic " supports only basic_offset address mode");             \
+    if (addr.index() == noreg) {                                                                            \
+      if (is_unsigned_imm_in_range(addr.disp(), 12, size)) {                                                \
+        emit_int32(size << 30 | 0b111 << 27 | V << 26 | 0b01 << 24 | opc << 22 |                            \
+           encode_unsigned_imm(addr.disp(), 12, size, 10) |                                                 \
+           addr.base()->encoding_with_sp() << 5 | prfop);                                                   \
+      } else {                                                                                              \
+        assert(is_imm_in_range(addr.disp(), 9, 0), "offset is out of range");                               \
+        emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | encode_imm(addr.disp(), 9, 0, 12) |     \
+           addr.base()->encoding_with_sp() << 5 | prfop);                                                   \
+      }                                                                                                     \
+    } else {                                                                                                \
+      assert (addr.disp() == 0, "non-zero displacement for [reg + reg] address mode");                      \
+      assert ((addr.shift_imm() == 0) || (addr.shift_imm() == size), "invalid shift amount");               \
+      emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | 1 << 21 |                                 \
+         addr.index()->encoding_with_zr() << 16 | addr.extend() << 13 | (addr.shift_imm() != 0) << 12 |     \
+         0b10 << 10 | addr.base()->encoding_with_sp() << 5 | prfop);                                        \
+    }                                                                                                       \
+  }
+
+  F(prfm, 0b11, 0, 0b10)
+#undef F
+
+#define F(mnemonic, size, V, opc) \
+  void mnemonic(FloatRegister rt, Address addr) { \
+    int align_bits = (((opc & 0b10) >> 1) << 2) | size;                                                     \
+    if (addr.index() == noreg) {                                                                            \
+      if ((addr.mode() == basic_offset) && is_unsigned_imm_in_range(addr.disp(), 12, align_bits)) {         \
+        emit_int32(size << 30 | 0b111 << 27 | V << 26 | 0b01 << 24 | opc << 22 |                            \
+           encode_unsigned_imm(addr.disp(), 12, align_bits, 10) |                                           \
+           addr.base()->encoding_with_sp() << 5 | rt->encoding());                                          \
+      } else {                                                                                              \
+        assert(is_imm_in_range(addr.disp(), 9, 0), "offset is out of range");                               \
+        emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | encode_imm(addr.disp(), 9, 0, 12) |     \
+           addr.mode() << 10 | addr.base()->encoding_with_sp() << 5 | rt->encoding());                      \
+      }                                                                                                     \
+    } else {                                                                                                \
+      assert (addr.disp() == 0, "non-zero displacement for [reg + reg] address mode");                      \
+      assert ((addr.shift_imm() == 0) || (addr.shift_imm() == align_bits), "invalid shift amount");         \
+      emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | 1 << 21 |                                 \
+         addr.index()->encoding_with_zr() << 16 | addr.extend() << 13 | (addr.shift_imm() != 0) << 12 |     \
+         0b10 << 10 | addr.base()->encoding_with_sp() << 5 | rt->encoding());                               \
+    }                                                                                                       \
+  }
+
+  F(str_b, 0b00, 1, 0b00)
+  F(ldr_b, 0b00, 1, 0b01)
+  F(str_h, 0b01, 1, 0b00)
+  F(ldr_h, 0b01, 1, 0b01)
+  F(str_s, 0b10, 1, 0b00)
+  F(ldr_s, 0b10, 1, 0b01)
+  F(str_d, 0b11, 1, 0b00)
+  F(ldr_d, 0b11, 1, 0b01)
+  F(str_q, 0b00, 1, 0b10)
+  F(ldr_q, 0b00, 1, 0b11)
+#undef F
+
+#define F(mnemonic, opc, V, L) \
+  void mnemonic(Register rt, Register rt2, Address addr) {                                                         \
+    assert((addr.mode() == basic_offset) || ((rt != addr.base()) && (rt2 != addr.base())), "should be different"); \
+    assert(!L || (rt != rt2), "should be different");                                                              \
+    assert(addr.index() == noreg, "[reg + reg] address mode is not available for load/store pair");                \
+    int align_bits = 2 + (opc >> 1);                                                                               \
+    int mode_encoding = (addr.mode() == basic_offset) ? 0b10 : addr.mode();                                        \
+    assert(is_imm_in_range(addr.disp(), 7, align_bits), "offset is out of range");                                 \
+    emit_int32(opc << 30 | 0b101 << 27 | V << 26 | mode_encoding << 23 | L << 22 |                                 \
+       encode_imm(addr.disp(), 7, align_bits, 15) | rt2->encoding_with_zr() << 10 |                                \
+       addr.base()->encoding_with_sp() << 5 | rt->encoding_with_zr());                                             \
+  }
+
+  F(stp_w, 0b00, 0, 0)
+  F(ldp_w, 0b00, 0, 1)
+  F(ldpsw, 0b01, 0, 1)
+  F(stp,   0b10, 0, 0)
+  F(ldp,   0b10, 0, 1)
+#undef F
+
+#define F(mnemonic, opc, V, L) \
+  void mnemonic(FloatRegister rt, FloatRegister rt2, Address addr) {                                                         \
+    assert(!L || (rt != rt2), "should be different");                                                              \
+    assert(addr.index() == noreg, "[reg + reg] address mode is not available for load/store pair");                \
+    int align_bits = 2 + opc;                                                                                      \
+    int mode_encoding = (addr.mode() == basic_offset) ? 0b10 : addr.mode();                                        \
+    assert(is_imm_in_range(addr.disp(), 7, align_bits), "offset is out of range");                                 \
+    emit_int32(opc << 30 | 0b101 << 27 | V << 26 | mode_encoding << 23 | L << 22 |                                 \
+       encode_imm(addr.disp(), 7, align_bits, 15) | rt2->encoding() << 10 |                                        \
+       addr.base()->encoding_with_sp() << 5 | rt->encoding());                                                     \
+  }
+
+  F(stp_s, 0b00, 1, 0)
+  F(ldp_s, 0b00, 1, 1)
+  F(stp_d, 0b01, 1, 0)
+  F(ldp_d, 0b01, 1, 1)
+  F(stp_q, 0b10, 1, 0)
+  F(ldp_q, 0b10, 1, 1)
+#undef F
+
+  // Data processing instructions
+
+#define F(mnemonic, sf, opc) \
+  void mnemonic(Register rd, Register rn, const LogicalImmediate& imm) {                      \
+    assert (imm.is_encoded(), "illegal immediate for logical instruction");                   \
+    assert (imm.is32bit() == (sf == 0), "immediate size does not match instruction size");    \
+    emit_int32(sf << 31 | opc << 29 | 0b100100 << 23 | imm.immN() << 22 | imm.immr() << 16 |  \
+        imm.imms() << 10 | rn->encoding_with_zr() << 5 |                                      \
+        ((opc == 0b11) ? rd->encoding_with_zr() : rd->encoding_with_sp()));                   \
+  }                                                                                           \
+  void mnemonic(Register rd, Register rn, uintx imm) {                                        \
+    LogicalImmediate limm(imm, (sf == 0));                                                    \
+    mnemonic(rd, rn, limm);                                                                   \
+  }                                                                                           \
+  void mnemonic(Register rd, Register rn, unsigned int imm) {                                 \
+    mnemonic(rd, rn, (uintx)imm);                                                             \
+  }
+
+  F(andr_w, 0, 0b00)
+  F(orr_w,  0, 0b01)
+  F(eor_w,  0, 0b10)
+  F(ands_w, 0, 0b11)
+
+  F(andr, 1, 0b00)
+  F(orr,  1, 0b01)
+  F(eor,  1, 0b10)
+  F(ands, 1, 0b11)
+#undef F
+
+  void tst(Register rn, unsigned int imm) {
+    ands(ZR, rn, imm);
+  }
+
+  void tst_w(Register rn, unsigned int imm) {
+    ands_w(ZR, rn, imm);
+  }
+
+#define F(mnemonic, sf, opc, N) \
+  void mnemonic(Register rd, Register rn, AsmOperand operand) { \
+    assert (operand.shift_imm() >> (5 + sf) == 0, "shift amount is too large");          \
+    emit_int32(sf << 31 | opc << 29 | 0b01010 << 24 | operand.shift() << 22 | N << 21 |  \
+        operand.reg()->encoding_with_zr() << 16 | operand.shift_imm() << 10 |            \
+        rn->encoding_with_zr() << 5 | rd->encoding_with_zr());                           \
+  }
+
+  F(andr_w, 0, 0b00, 0)
+  F(bic_w,  0, 0b00, 1)
+  F(orr_w,  0, 0b01, 0)
+  F(orn_w,  0, 0b01, 1)
+  F(eor_w,  0, 0b10, 0)
+  F(eon_w,  0, 0b10, 1)
+  F(ands_w, 0, 0b11, 0)
+  F(bics_w, 0, 0b11, 1)
+
+  F(andr, 1, 0b00, 0)
+  F(bic,  1, 0b00, 1)
+  F(orr,  1, 0b01, 0)
+  F(orn,  1, 0b01, 1)
+  F(eor,  1, 0b10, 0)
+  F(eon,  1, 0b10, 1)
+  F(ands, 1, 0b11, 0)
+  F(bics, 1, 0b11, 1)
+#undef F
+
+  void tst(Register rn, AsmOperand operand) {
+    ands(ZR, rn, operand);
+  }
+
+  void tst_w(Register rn, AsmOperand operand) {
+    ands_w(ZR, rn, operand);
+  }
+
+  void mvn(Register rd, AsmOperand operand) {
+    orn(rd, ZR, operand);
+  }
+
+  void mvn_w(Register rd, AsmOperand operand) {
+    orn_w(rd, ZR, operand);
+  }
+
+#define F(mnemonic, sf, op, S) \
+  void mnemonic(Register rd, Register rn, const ArithmeticImmediate& imm) {                       \
+    assert(imm.is_encoded(), "immediate is out of range");                                        \
+    emit_int32(sf << 31 | op << 30 | S << 29 | 0b10001 << 24 | imm.shift() << 22 |                \
+        imm.imm() << 10 | rn->encoding_with_sp() << 5 |                                           \
+        (S == 1 ? rd->encoding_with_zr() : rd->encoding_with_sp()));                              \
+  }                                                                                               \
+  void mnemonic(Register rd, Register rn, int imm) {                                              \
+    mnemonic(rd, rn, ArithmeticImmediate(imm));                                                   \
+  }                                                                                               \
+  void mnemonic(Register rd, Register rn, int imm, AsmShift12 shift) {                            \
+    mnemonic(rd, rn, ArithmeticImmediate(imm, shift));                                            \
+  }                                                                                               \
+  void mnemonic(Register rd, Register rn, Register rm, AsmExtendOp extend, int shift_imm = 0) {   \
+    assert ((0 <= shift_imm) && (shift_imm <= 4), "shift amount is out of range");                \
+    emit_int32(sf << 31 | op << 30 | S << 29 | 0b01011001 << 21 | rm->encoding_with_zr() << 16 |  \
+        extend << 13 | shift_imm << 10 | rn->encoding_with_sp() << 5 |                            \
+        (S == 1 ? rd->encoding_with_zr() : rd->encoding_with_sp()));                              \
+  }                                                                                               \
+  void mnemonic(Register rd, Register rn, AsmOperand operand) {                                   \
+    assert (operand.shift() != ror, "illegal shift type");                                        \
+    assert (operand.shift_imm() >> (5 + sf) == 0, "shift amount is too large");                   \
+    emit_int32(sf << 31 | op << 30 | S << 29 | 0b01011 << 24 | operand.shift() << 22 |            \
+        operand.reg()->encoding_with_zr() << 16 | operand.shift_imm() << 10 |                     \
+        rn->encoding_with_zr() << 5 | rd->encoding_with_zr());                                    \
+  }
+
+  F(add_w,  0, 0, 0)
+  F(adds_w, 0, 0, 1)
+  F(sub_w,  0, 1, 0)
+  F(subs_w, 0, 1, 1)
+
+  F(add,    1, 0, 0)
+  F(adds,   1, 0, 1)
+  F(sub,    1, 1, 0)
+  F(subs,   1, 1, 1)
+#undef F
+
+  void mov(Register rd, Register rm) {
+    if ((rd == SP) || (rm == SP)) {
+      add(rd, rm, 0);
+    } else {
+      orr(rd, ZR, rm);
+    }
+  }
+
+  void mov_w(Register rd, Register rm) {
+    if ((rd == SP) || (rm == SP)) {
+      add_w(rd, rm, 0);
+    } else {
+      orr_w(rd, ZR, rm);
+    }
+  }
+
+  void cmp(Register rn, int imm) {
+    subs(ZR, rn, imm);
+  }
+
+  void cmp_w(Register rn, int imm) {
+    subs_w(ZR, rn, imm);
+  }
+
+  void cmp(Register rn, Register rm) {
+    assert (rm != SP, "SP should not be used as the 2nd operand of cmp");
+    if (rn == SP) {
+      subs(ZR, rn, rm, ex_uxtx);
+    } else {
+      subs(ZR, rn, rm);
+    }
+  }
+
+  void cmp_w(Register rn, Register rm) {
+    assert ((rn != SP) && (rm != SP), "SP should not be used in 32-bit cmp");
+    subs_w(ZR, rn, rm);
+  }
+
+  void cmp(Register rn, AsmOperand operand) {
+    assert (rn != SP, "SP is not allowed in cmp with shifted register (AsmOperand)");
+    subs(ZR, rn, operand);
+  }
+
+  void cmn(Register rn, int imm) {
+    adds(ZR, rn, imm);
+  }
+
+  void cmn_w(Register rn, int imm) {
+    adds_w(ZR, rn, imm);
+  }
+
+  void cmn(Register rn, Register rm) {
+    assert (rm != SP, "SP should not be used as the 2nd operand of cmp");
+    if (rn == SP) {
+      adds(ZR, rn, rm, ex_uxtx);
+    } else {
+      adds(ZR, rn, rm);
+    }
+  }
+
+  void cmn_w(Register rn, Register rm) {
+    assert ((rn != SP) && (rm != SP), "SP should not be used in 32-bit cmp");
+    adds_w(ZR, rn, rm);
+  }
+
+  void neg(Register rd, Register rm) {
+    sub(rd, ZR, rm);
+  }
+
+  void neg_w(Register rd, Register rm) {
+    sub_w(rd, ZR, rm);
+  }
+
+#define F(mnemonic, sf, op, S) \
+  void mnemonic(Register rd, Register rn, Register rm) { \
+    emit_int32(sf << 31 | op << 30 | S << 29 | 0b11010000 << 21 | rm->encoding_with_zr() << 16 |   \
+        rn->encoding_with_zr() << 5 | rd->encoding_with_zr());                                     \
+  }
+
+  F(adc_w,  0, 0, 0)
+  F(adcs_w, 0, 0, 1)
+  F(sbc_w,  0, 1, 0)
+  F(sbcs_w, 0, 1, 1)
+
+  F(adc,    1, 0, 0)
+  F(adcs,   1, 0, 1)
+  F(sbc,    1, 1, 0)
+  F(sbcs,   1, 1, 1)
+#undef F
+
+#define F(mnemonic, sf, N) \
+  void mnemonic(Register rd, Register rn, Register rm, int lsb) { \
+    assert ((lsb >> (5 + sf)) == 0, "illegal least significant bit position");        \
+    emit_int32(sf << 31 | 0b100111 << 23 | N << 22 | rm->encoding_with_zr() << 16 |   \
+        lsb << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr());            \
+  }
+
+  F(extr_w,  0, 0)
+  F(extr,    1, 1)
+#undef F
+
+#define F(mnemonic, sf, opc) \
+  void mnemonic(Register rd, int imm, int shift) { \
+    assert ((imm >> 16) == 0, "immediate is out of range");                       \
+    assert (((shift & 0xf) == 0) && ((shift >> (5 + sf)) == 0), "invalid shift"); \
+    emit_int32(sf << 31 | opc << 29 | 0b100101 << 23 | (shift >> 4) << 21 |       \
+        imm << 5 | rd->encoding_with_zr());                                       \
+  }
+
+  F(movn_w,  0, 0b00)
+  F(movz_w,  0, 0b10)
+  F(movk_w,  0, 0b11)
+  F(movn,    1, 0b00)
+  F(movz,    1, 0b10)
+  F(movk,    1, 0b11)
+#undef F
+
+  void mov(Register rd, int imm) {
+    assert ((imm >> 16) == 0, "immediate is out of range");
+    movz(rd, imm, 0);
+  }
+
+  void mov_w(Register rd, int imm) {
+    assert ((imm >> 16) == 0, "immediate is out of range");
+    movz_w(rd, imm, 0);
+  }
+
+#define F(mnemonic, sf, op, S) \
+  void mnemonic(Register rn, int imm, int nzcv, AsmCondition cond) { \
+    assert ((imm >> 5) == 0, "immediate is out of range");                      \
+    assert ((nzcv >> 4) == 0, "illegal nzcv");                                  \
+    emit_int32(sf << 31 | op << 30 | S << 29 | 0b11010010 << 21 | imm << 16 |   \
+         cond << 12 | 1 << 11 | rn->encoding_with_zr() << 5 | nzcv);            \
+  }
+
+  F(ccmn_w, 0, 0, 1)
+  F(ccmp_w, 0, 1, 1)
+  F(ccmn,   1, 0, 1)
+  F(ccmp,   1, 1, 1)
+#undef F
+
+#define F(mnemonic, sf, op, S) \
+  void mnemonic(Register rn, Register rm, int nzcv, AsmCondition cond) { \
+    assert ((nzcv >> 4) == 0, "illegal nzcv");                                                    \
+    emit_int32(sf << 31 | op << 30 | S << 29 | 0b11010010 << 21 | rm->encoding_with_zr() << 16 |  \
+        cond << 12 | rn->encoding_with_zr() << 5 | nzcv);                                         \
+  }
+
+  F(ccmn_w, 0, 0, 1)
+  F(ccmp_w, 0, 1, 1)
+  F(ccmn,   1, 0, 1)
+  F(ccmp,   1, 1, 1)
+#undef F
+
+#define F(mnemonic, sf, op, S, op2) \
+  void mnemonic(Register rd, Register rn, Register rm, AsmCondition cond) { \
+    emit_int32(sf << 31 | op << 30 | S << 29 | 0b11010100 << 21 | rm->encoding_with_zr() << 16 |  \
+        cond << 12 | op2 << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr());           \
+  }
+
+  F(csel_w,  0, 0, 0, 0b00)
+  F(csinc_w, 0, 0, 0, 0b01)
+  F(csinv_w, 0, 1, 0, 0b00)
+  F(csneg_w, 0, 1, 0, 0b01)
+
+  F(csel,    1, 0, 0, 0b00)
+  F(csinc,   1, 0, 0, 0b01)
+  F(csinv,   1, 1, 0, 0b00)
+  F(csneg,   1, 1, 0, 0b01)
+#undef F
+
+  void cset(Register rd, AsmCondition cond) {
+    csinc(rd, ZR, ZR, inverse(cond));
+  }
+
+  void cset_w(Register rd, AsmCondition cond) {
+    csinc_w(rd, ZR, ZR, inverse(cond));
+  }
+
+  void csetm(Register rd, AsmCondition cond) {
+    csinv(rd, ZR, ZR, inverse(cond));
+  }
+
+  void csetm_w(Register rd, AsmCondition cond) {
+    csinv_w(rd, ZR, ZR, inverse(cond));
+  }
+
+  void cinc(Register rd, Register rn, AsmCondition cond) {
+    csinc(rd, rn, rn, inverse(cond));
+  }
+
+  void cinc_w(Register rd, Register rn, AsmCondition cond) {
+    csinc_w(rd, rn, rn, inverse(cond));
+  }
+
+  void cinv(Register rd, Register rn, AsmCondition cond) {
+    csinv(rd, rn, rn, inverse(cond));
+  }
+
+  void cinv_w(Register rd, Register rn, AsmCondition cond) {
+    csinv_w(rd, rn, rn, inverse(cond));
+  }
+
+#define F(mnemonic, sf, S, opcode) \
+  void mnemonic(Register rd, Register rn) { \
+    emit_int32(sf << 31 | 1 << 30 | S << 29 | 0b11010110 << 21 | opcode << 10 |  \
+        rn->encoding_with_zr() << 5 | rd->encoding_with_zr());                   \
+  }
+
+  F(rbit_w,  0, 0, 0b000000)
+  F(rev16_w, 0, 0, 0b000001)
+  F(rev_w,   0, 0, 0b000010)
+  F(clz_w,   0, 0, 0b000100)
+  F(cls_w,   0, 0, 0b000101)
+
+  F(rbit,    1, 0, 0b000000)
+  F(rev16,   1, 0, 0b000001)
+  F(rev32,   1, 0, 0b000010)
+  F(rev,     1, 0, 0b000011)
+  F(clz,     1, 0, 0b000100)
+  F(cls,     1, 0, 0b000101)
+#undef F
+
+#define F(mnemonic, sf, S, opcode) \
+  void mnemonic(Register rd, Register rn, Register rm) { \
+    emit_int32(sf << 31 | S << 29 | 0b11010110 << 21 | rm->encoding_with_zr() << 16 |  \
+        opcode << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr());          \
+  }
+
+  F(udiv_w,  0, 0, 0b000010)
+  F(sdiv_w,  0, 0, 0b000011)
+  F(lslv_w,  0, 0, 0b001000)
+  F(lsrv_w,  0, 0, 0b001001)
+  F(asrv_w,  0, 0, 0b001010)
+  F(rorv_w,  0, 0, 0b001011)
+
+  F(udiv,    1, 0, 0b000010)
+  F(sdiv,    1, 0, 0b000011)
+  F(lslv,    1, 0, 0b001000)
+  F(lsrv,    1, 0, 0b001001)
+  F(asrv,    1, 0, 0b001010)
+  F(rorv,    1, 0, 0b001011)
+#undef F
+
+#define F(mnemonic, sf, op31, o0) \
+  void mnemonic(Register rd, Register rn, Register rm, Register ra) { \
+    emit_int32(sf << 31 | 0b11011 << 24 | op31 << 21 | rm->encoding_with_zr() << 16 |                     \
+        o0 << 15 | ra->encoding_with_zr() << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr());  \
+  }
+
+  F(madd_w,  0, 0b000, 0)
+  F(msub_w,  0, 0b000, 1)
+  F(madd,    1, 0b000, 0)
+  F(msub,    1, 0b000, 1)
+
+  F(smaddl,  1, 0b001, 0)
+  F(smsubl,  1, 0b001, 1)
+  F(umaddl,  1, 0b101, 0)
+  F(umsubl,  1, 0b101, 1)
+#undef F
+
+  void mul(Register rd, Register rn, Register rm) {
+      madd(rd, rn, rm, ZR);
+  }
+
+  void mul_w(Register rd, Register rn, Register rm) {
+      madd_w(rd, rn, rm, ZR);
+  }
+
+#define F(mnemonic, sf, op31, o0) \
+  void mnemonic(Register rd, Register rn, Register rm) { \
+    emit_int32(sf << 31 | 0b11011 << 24 | op31 << 21 | rm->encoding_with_zr() << 16 |      \
+        o0 << 15 | 0b11111 << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr());  \
+  }
+
+  F(smulh,   1, 0b010, 0)
+  F(umulh,   1, 0b110, 0)
+#undef F
+
+#define F(mnemonic, op) \
+  void mnemonic(Register rd, address addr) { \
+    intx offset;                                                        \
+    if (op == 0) {                                                      \
+      offset = addr - pc();                                             \
+    } else {                                                            \
+      offset = (((intx)addr) - (((intx)pc()) & ~0xfff)) >> 12;          \
+    }                                                                   \
+    assert (is_imm_in_range(offset, 21, 0), "offset is out of range");  \
+    emit_int32(op << 31 | (offset & 3) << 29 | 0b10000 << 24 |          \
+        encode_imm(offset >> 2, 19, 0, 5) | rd->encoding_with_zr());    \
+  }                                                                     \
+
+  F(adr,   0)
+  F(adrp,  1)
+#undef F
+
+  void adr(Register rd, Label& L) {
+    adr(rd, target(L));
+  }
+
+#define F(mnemonic, sf, opc, N)                                                \
+  void mnemonic(Register rd, Register rn, int immr, int imms) {                \
+    assert ((immr >> (5 + sf)) == 0, "immr is out of range");                  \
+    assert ((imms >> (5 + sf)) == 0, "imms is out of range");                  \
+    emit_int32(sf << 31 | opc << 29 | 0b100110 << 23 | N << 22 | immr << 16 |  \
+        imms << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr());    \
+  }
+
+  F(sbfm_w, 0, 0b00, 0)
+  F(bfm_w,  0, 0b01, 0)
+  F(ubfm_w, 0, 0b10, 0)
+
+  F(sbfm, 1, 0b00, 1)
+  F(bfm,  1, 0b01, 1)
+  F(ubfm, 1, 0b10, 1)
+#undef F
+
+#define F(alias, mnemonic, sf, immr, imms) \
+  void alias(Register rd, Register rn, int lsb, int width) {                        \
+    assert ((lsb >> (5 + sf)) == 0, "lsb is out of range");                         \
+    assert ((1 <= width) && (width <= (32 << sf) - lsb), "width is out of range");  \
+    mnemonic(rd, rn, immr, imms);                                                   \
+  }
+
+  F(bfi_w,   bfm_w,  0, (-lsb) & 0x1f, width - 1)
+  F(bfi,     bfm,    1, (-lsb) & 0x3f, width - 1)
+  F(bfxil_w, bfm_w,  0, lsb,           lsb + width - 1)
+  F(bfxil,   bfm,    1, lsb,           lsb + width - 1)
+  F(sbfiz_w, sbfm_w, 0, (-lsb) & 0x1f, width - 1)
+  F(sbfiz,   sbfm,   1, (-lsb) & 0x3f, width - 1)
+  F(sbfx_w,  sbfm_w, 0, lsb,           lsb + width - 1)
+  F(sbfx,    sbfm,   1, lsb,           lsb + width - 1)
+  F(ubfiz_w, ubfm_w, 0, (-lsb) & 0x1f, width - 1)
+  F(ubfiz,   ubfm,   1, (-lsb) & 0x3f, width - 1)
+  F(ubfx_w,  ubfm_w, 0, lsb,           lsb + width - 1)
+  F(ubfx,    ubfm,   1, lsb,           lsb + width - 1)
+#undef F
+
+#define F(alias, mnemonic, sf, immr, imms) \
+  void alias(Register rd, Register rn, int shift) {              \
+    assert ((shift >> (5 + sf)) == 0, "shift is out of range");  \
+    mnemonic(rd, rn, immr, imms);                                \
+  }
+
+  F(_asr_w, sbfm_w, 0, shift, 31)
+  F(_asr,   sbfm,   1, shift, 63)
+  F(_lsl_w, ubfm_w, 0, (-shift) & 0x1f, 31 - shift)
+  F(_lsl,   ubfm,   1, (-shift) & 0x3f, 63 - shift)
+  F(_lsr_w, ubfm_w, 0, shift, 31)
+  F(_lsr,   ubfm,   1, shift, 63)
+#undef F
+
+#define F(alias, mnemonic, immr, imms) \
+  void alias(Register rd, Register rn) {   \
+    mnemonic(rd, rn, immr, imms);          \
+  }
+
+  F(sxtb_w, sbfm_w, 0, 7)
+  F(sxtb,   sbfm,   0, 7)
+  F(sxth_w, sbfm_w, 0, 15)
+  F(sxth,   sbfm,   0, 15)
+  F(sxtw,   sbfm,   0, 31)
+  F(uxtb_w, ubfm_w, 0, 7)
+  F(uxtb,   ubfm,   0, 7)
+  F(uxth_w, ubfm_w, 0, 15)
+  F(uxth,   ubfm,   0, 15)
+#undef F
+
+  // Branch instructions
+
+#define F(mnemonic, op) \
+  void mnemonic(Register rn) {                                                             \
+    emit_int32(0b1101011 << 25 | op << 21 | 0b11111 << 16 | rn->encoding_with_zr() << 5);  \
+  }
+
+  F(br,  0b00)
+  F(blr, 0b01)
+  F(ret, 0b10)
+#undef F
+
+  void ret() {
+    ret(LR);
+  }
+
+#define F(mnemonic, op) \
+  void mnemonic(address target) {                                         \
+    intx offset = target - pc();                                          \
+    assert (is_offset_in_range(offset, 26), "offset is out of range");    \
+    emit_int32(op << 31 | 0b00101 << 26 | encode_offset(offset, 26, 0));  \
+  }
+
+  F(b,  0)
+  F(bl, 1)
+#undef F
+
+  void b(address target, AsmCondition cond) {
+    if (cond == al) {
+      b(target);
+    } else {
+      intx offset = target - pc();
+      assert (is_offset_in_range(offset, 19), "offset is out of range");
+      emit_int32(0b0101010 << 25 | encode_offset(offset, 19, 5) | cond);
+    }
+  }
+
+
+#define F(mnemonic, sf, op)                                             \
+  void mnemonic(Register rt, address target) {                          \
+    intx offset = target - pc();                                        \
+    assert (is_offset_in_range(offset, 19), "offset is out of range");  \
+    emit_int32(sf << 31 | 0b011010 << 25 | op << 24 | encode_offset(offset, 19, 5) | rt->encoding_with_zr()); \
+  }                                                                     \
+
+  F(cbz_w,  0, 0)
+  F(cbnz_w, 0, 1)
+  F(cbz,    1, 0)
+  F(cbnz,   1, 1)
+#undef F
+
+#define F(mnemonic, op)                                                 \
+  void mnemonic(Register rt, int bit, address target) {                 \
+    intx offset = target - pc();                                        \
+    assert (is_offset_in_range(offset, 14), "offset is out of range");  \
+    assert (0 <= bit && bit < 64, "bit number is out of range");        \
+    emit_int32((bit >> 5) << 31 | 0b011011 << 25 | op << 24 | (bit & 0x1f) << 19 | \
+        encode_offset(offset, 14, 5) | rt->encoding_with_zr());         \
+  }                                                                     \
+
+  F(tbz,  0)
+  F(tbnz, 1)
+#undef F
+
+  // System instructions
+
+  enum DMB_Opt {
+    DMB_ld  = 0b1101,
+    DMB_st  = 0b1110,
+    DMB_all = 0b1111
+  };
+
+#define F(mnemonic, L, op0, op1, CRn, op2, Rt) \
+  void mnemonic(DMB_Opt option) {                                       \
+    emit_int32(0b1101010100 << 22 | L << 21 | op0 << 19 | op1 << 16 |   \
+        CRn << 12 | option << 8 | op2 << 5 | Rt);                       \
+  }
+
+  F(dsb,  0, 0b00, 0b011, 0b0011, 0b100, 0b11111)
+  F(dmb,  0, 0b00, 0b011, 0b0011, 0b101, 0b11111)
+#undef F
+
+#define F(mnemonic, L, op0, op1, CRn, Rt) \
+  void mnemonic(int imm) {                                              \
+    assert ((imm >> 7) == 0, "immediate is out of range");              \
+    emit_int32(0b1101010100 << 22 | L << 21 | op0 << 19 | op1 << 16 |   \
+        CRn << 12 | imm << 5 | Rt);                                     \
+  }
+
+  F(hint, 0, 0b00, 0b011, 0b0010, 0b11111)
+#undef F
+
+  void nop() {
+    hint(0);
+  }
+
+  void yield() {
+    hint(1);
+  }
+
+#define F(mnemonic, opc, op2, LL) \
+  void mnemonic(int imm = 0) {                                           \
+    assert ((imm >> 16) == 0, "immediate is out of range");              \
+    emit_int32(0b11010100 << 24 | opc << 21 | imm << 5 | op2 << 2 | LL); \
+  }
+
+  F(brk, 0b001, 0b000, 0b00)
+  F(hlt, 0b010, 0b000, 0b00)
+  F(dpcs1, 0b101, 0b000, 0b01)
+#undef F
+
+  enum SystemRegister { // o0<1> op1<3> CRn<4> CRm<4> op2<3>
+    SysReg_NZCV = 0b101101000010000,
+    SysReg_FPCR = 0b101101000100000,
+  };
+
+  void mrs(Register rt, SystemRegister systemReg) {
+    assert ((systemReg >> 15) == 0, "systemReg is out of range");
+    emit_int32(0b110101010011 << 20 | systemReg << 5 | rt->encoding_with_zr());
+  }
+
+  void msr(SystemRegister systemReg, Register rt) {
+    assert ((systemReg >> 15) == 0, "systemReg is out of range");
+    emit_int32(0b110101010001 << 20 | systemReg << 5 | rt->encoding_with_zr());
+  }
+
+  // Floating-point instructions
+
+#define F(mnemonic, M, S, type, opcode2) \
+  void mnemonic(FloatRegister rn, FloatRegister rm) {                         \
+    emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 |     \
+        rm->encoding() << 16 | 0b1000 << 10 | rn->encoding() << 5 | opcode2); \
+  }
+
+  F(fcmp_s,   0, 0, 0b00, 0b00000)
+  F(fcmpe_s,  0, 0, 0b00, 0b01000)
+  F(fcmp_d,   0, 0, 0b01, 0b00000)
+  F(fcmpe_d,  0, 0, 0b01, 0b10000)
+#undef F
+
+#define F(mnemonic, M, S, type, opcode2) \
+  void mnemonic(FloatRegister rn) {                                           \
+    emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 |     \
+        0b1000 << 10 | rn->encoding() << 5 | opcode2);                        \
+  }
+
+  F(fcmp0_s,   0, 0, 0b00, 0b01000)
+  F(fcmpe0_s,  0, 0, 0b00, 0b11000)
+  F(fcmp0_d,   0, 0, 0b01, 0b01000)
+  F(fcmpe0_d,  0, 0, 0b01, 0b11000)
+#undef F
+
+#define F(mnemonic, M, S, type, op) \
+  void mnemonic(FloatRegister rn, FloatRegister rm, int nzcv, AsmCondition cond) { \
+    assert ((nzcv >> 4) == 0, "illegal nzcv");                                                  \
+    emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 |                       \
+        rm->encoding() << 16 | cond << 12 | 0b01 << 10 | rn->encoding() << 5 | op << 4 | nzcv); \
+  }
+
+  F(fccmp_s,   0, 0, 0b00, 0)
+  F(fccmpe_s,  0, 0, 0b00, 1)
+  F(fccmp_d,   0, 0, 0b01, 0)
+  F(fccmpe_d,  0, 0, 0b01, 1)
+#undef F
+
+#define F(mnemonic, M, S, type) \
+  void mnemonic(FloatRegister rd, FloatRegister rn, FloatRegister rm, AsmCondition cond) { \
+    emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 |                       \
+        rm->encoding() << 16 | cond << 12 | 0b11 << 10 | rn->encoding() << 5 | rd->encoding()); \
+  }
+
+  F(fcsel_s,   0, 0, 0b00)
+  F(fcsel_d,   0, 0, 0b01)
+#undef F
+
+#define F(mnemonic, M, S, type, opcode) \
+  void mnemonic(FloatRegister rd, FloatRegister rn) { \
+    emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 |      \
+        opcode << 15 | 0b10000 << 10 | rn->encoding() << 5 | rd->encoding());  \
+  }
+
+  F(fmov_s,   0, 0, 0b00, 0b000000)
+  F(fabs_s,   0, 0, 0b00, 0b000001)
+  F(fneg_s,   0, 0, 0b00, 0b000010)
+  F(fsqrt_s,  0, 0, 0b00, 0b000011)
+  F(fcvt_ds,  0, 0, 0b00, 0b000101)
+  F(fcvt_hs,  0, 0, 0b00, 0b000111)
+  F(frintn_s, 0, 0, 0b00, 0b001000)
+  F(frintp_s, 0, 0, 0b00, 0b001001)
+  F(frintm_s, 0, 0, 0b00, 0b001010)
+  F(frintz_s, 0, 0, 0b00, 0b001011)
+  F(frinta_s, 0, 0, 0b00, 0b001100)
+  F(frintx_s, 0, 0, 0b00, 0b001110)
+  F(frinti_s, 0, 0, 0b00, 0b001111)
+
+  F(fmov_d,   0, 0, 0b01, 0b000000)
+  F(fabs_d,   0, 0, 0b01, 0b000001)
+  F(fneg_d,   0, 0, 0b01, 0b000010)
+  F(fsqrt_d,  0, 0, 0b01, 0b000011)
+  F(fcvt_sd,  0, 0, 0b01, 0b000100)
+  F(fcvt_hd,  0, 0, 0b01, 0b000111)
+  F(frintn_d, 0, 0, 0b01, 0b001000)
+  F(frintp_d, 0, 0, 0b01, 0b001001)
+  F(frintm_d, 0, 0, 0b01, 0b001010)
+  F(frintz_d, 0, 0, 0b01, 0b001011)
+  F(frinta_d, 0, 0, 0b01, 0b001100)
+  F(frintx_d, 0, 0, 0b01, 0b001110)
+  F(frinti_d, 0, 0, 0b01, 0b001111)
+
+  F(fcvt_sh,  0, 0, 0b11, 0b000100)
+  F(fcvt_dh,  0, 0, 0b11, 0b000101)
+#undef F
+
+#define F(mnemonic, M, S, type, opcode) \
+  void mnemonic(FloatRegister rd, FloatRegister rn, FloatRegister rm) { \
+    emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 |                          \
+        rm->encoding() << 16 | opcode << 12 | 0b10 << 10 | rn->encoding() << 5 | rd->encoding());  \
+  }
+
+  F(fmul_s,   0, 0, 0b00, 0b0000)
+  F(fdiv_s,   0, 0, 0b00, 0b0001)
+  F(fadd_s,   0, 0, 0b00, 0b0010)
+  F(fsub_s,   0, 0, 0b00, 0b0011)
+  F(fmax_s,   0, 0, 0b00, 0b0100)
+  F(fmin_s,   0, 0, 0b00, 0b0101)
+  F(fmaxnm_s, 0, 0, 0b00, 0b0110)
+  F(fminnm_s, 0, 0, 0b00, 0b0111)
+  F(fnmul_s,  0, 0, 0b00, 0b1000)
+
+  F(fmul_d,   0, 0, 0b01, 0b0000)
+  F(fdiv_d,   0, 0, 0b01, 0b0001)
+  F(fadd_d,   0, 0, 0b01, 0b0010)
+  F(fsub_d,   0, 0, 0b01, 0b0011)
+  F(fmax_d,   0, 0, 0b01, 0b0100)
+  F(fmin_d,   0, 0, 0b01, 0b0101)
+  F(fmaxnm_d, 0, 0, 0b01, 0b0110)
+  F(fminnm_d, 0, 0, 0b01, 0b0111)
+  F(fnmul_d,  0, 0, 0b01, 0b1000)
+#undef F
+
+#define F(mnemonic, M, S, type, o1, o0) \
+  void mnemonic(FloatRegister rd, FloatRegister rn, FloatRegister rm, FloatRegister ra) { \
+    emit_int32(M << 31 | S << 29 | 0b11111 << 24 | type << 22 | o1 << 21 | rm->encoding() << 16 |  \
+         o0 << 15 | ra->encoding() << 10 | rn->encoding() << 5 | rd->encoding());                  \
+  }
+
+  F(fmadd_s,  0, 0, 0b00, 0, 0)
+  F(fmsub_s,  0, 0, 0b00, 0, 1)
+  F(fnmadd_s, 0, 0, 0b00, 1, 0)
+  F(fnmsub_s, 0, 0, 0b00, 1, 1)
+
+  F(fmadd_d,  0, 0, 0b01, 0, 0)
+  F(fmsub_d,  0, 0, 0b01, 0, 1)
+  F(fnmadd_d, 0, 0, 0b01, 1, 0)
+  F(fnmsub_d, 0, 0, 0b01, 1, 1)
+#undef F
+
+#define F(mnemonic, M, S, type) \
+  void mnemonic(FloatRegister rd, int imm8) { \
+    assert ((imm8 >> 8) == 0, "immediate is out of range");                \
+    emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 |  \
+         imm8 << 13 | 0b100 << 10 | rd->encoding());                       \
+  }
+
+  F(fmov_s, 0, 0, 0b00)
+  F(fmov_d, 0, 0, 0b01)
+#undef F
+
+#define F(mnemonic, sf, S, type, rmode, opcode) \
+  void mnemonic(Register rd, FloatRegister rn) {                                     \
+    emit_int32(sf << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 |           \
+         rmode << 19 | opcode << 16 | rn->encoding() << 5 | rd->encoding_with_zr()); \
+  }
+
+  F(fcvtns_ws, 0, 0, 0b00, 0b00, 0b000)
+  F(fcvtnu_ws, 0, 0, 0b00, 0b00, 0b001)
+  F(fcvtas_ws, 0, 0, 0b00, 0b00, 0b100)
+  F(fcvtau_ws, 0, 0, 0b00, 0b00, 0b101)
+  F(fmov_ws,   0, 0, 0b00, 0b00, 0b110)
+  F(fcvtps_ws, 0, 0, 0b00, 0b01, 0b000)
+  F(fcvtpu_ws, 0, 0, 0b00, 0b01, 0b001)
+  F(fcvtms_ws, 0, 0, 0b00, 0b10, 0b000)
+  F(fcvtmu_ws, 0, 0, 0b00, 0b10, 0b001)
+  F(fcvtzs_ws, 0, 0, 0b00, 0b11, 0b000)
+  F(fcvtzu_ws, 0, 0, 0b00, 0b11, 0b001)
+
+  F(fcvtns_wd, 0, 0, 0b01, 0b00, 0b000)
+  F(fcvtnu_wd, 0, 0, 0b01, 0b00, 0b001)
+  F(fcvtas_wd, 0, 0, 0b01, 0b00, 0b100)
+  F(fcvtau_wd, 0, 0, 0b01, 0b00, 0b101)
+  F(fcvtps_wd, 0, 0, 0b01, 0b01, 0b000)
+  F(fcvtpu_wd, 0, 0, 0b01, 0b01, 0b001)
+  F(fcvtms_wd, 0, 0, 0b01, 0b10, 0b000)
+  F(fcvtmu_wd, 0, 0, 0b01, 0b10, 0b001)
+  F(fcvtzs_wd, 0, 0, 0b01, 0b11, 0b000)
+  F(fcvtzu_wd, 0, 0, 0b01, 0b11, 0b001)
+
+  F(fcvtns_xs, 1, 0, 0b00, 0b00, 0b000)
+  F(fcvtnu_xs, 1, 0, 0b00, 0b00, 0b001)
+  F(fcvtas_xs, 1, 0, 0b00, 0b00, 0b100)
+  F(fcvtau_xs, 1, 0, 0b00, 0b00, 0b101)
+  F(fcvtps_xs, 1, 0, 0b00, 0b01, 0b000)
+  F(fcvtpu_xs, 1, 0, 0b00, 0b01, 0b001)
+  F(fcvtms_xs, 1, 0, 0b00, 0b10, 0b000)
+  F(fcvtmu_xs, 1, 0, 0b00, 0b10, 0b001)
+  F(fcvtzs_xs, 1, 0, 0b00, 0b11, 0b000)
+  F(fcvtzu_xs, 1, 0, 0b00, 0b11, 0b001)
+
+  F(fcvtns_xd, 1, 0, 0b01, 0b00, 0b000)
+  F(fcvtnu_xd, 1, 0, 0b01, 0b00, 0b001)
+  F(fcvtas_xd, 1, 0, 0b01, 0b00, 0b100)
+  F(fcvtau_xd, 1, 0, 0b01, 0b00, 0b101)
+  F(fmov_xd,   1, 0, 0b01, 0b00, 0b110)
+  F(fcvtps_xd, 1, 0, 0b01, 0b01, 0b000)
+  F(fcvtpu_xd, 1, 0, 0b01, 0b01, 0b001)
+  F(fcvtms_xd, 1, 0, 0b01, 0b10, 0b000)
+  F(fcvtmu_xd, 1, 0, 0b01, 0b10, 0b001)
+  F(fcvtzs_xd, 1, 0, 0b01, 0b11, 0b000)
+  F(fcvtzu_xd, 1, 0, 0b01, 0b11, 0b001)
+
+  F(fmov_xq,   1, 0, 0b10, 0b01, 0b110)
+#undef F
+
+#define F(mnemonic, sf, S, type, rmode, opcode) \
+  void mnemonic(FloatRegister rd, Register rn) {                                     \
+    emit_int32(sf << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 |           \
+         rmode << 19 | opcode << 16 | rn->encoding_with_zr() << 5 | rd->encoding()); \
+  }
+
+  F(scvtf_sw,  0, 0, 0b00, 0b00, 0b010)
+  F(ucvtf_sw,  0, 0, 0b00, 0b00, 0b011)
+  F(fmov_sw,   0, 0, 0b00, 0b00, 0b111)
+  F(scvtf_dw,  0, 0, 0b01, 0b00, 0b010)
+  F(ucvtf_dw,  0, 0, 0b01, 0b00, 0b011)
+
+  F(scvtf_sx,  1, 0, 0b00, 0b00, 0b010)
+  F(ucvtf_sx,  1, 0, 0b00, 0b00, 0b011)
+  F(scvtf_dx,  1, 0, 0b01, 0b00, 0b010)
+  F(ucvtf_dx,  1, 0, 0b01, 0b00, 0b011)
+  F(fmov_dx,   1, 0, 0b01, 0b00, 0b111)
+
+  F(fmov_qx,   1, 0, 0b10, 0b01, 0b111)
+#undef F
+
+#define F(mnemonic, opcode) \
+  void mnemonic(FloatRegister Vd, FloatRegister Vn) {                                     \
+    emit_int32( opcode << 10 | Vn->encoding() << 5 | Vd->encoding());             \
+  }
+
+  F(aese, 0b0100111000101000010010);
+  F(aesd, 0b0100111000101000010110);
+  F(aesmc, 0b0100111000101000011010);
+  F(aesimc, 0b0100111000101000011110);
+#undef F
+
+#ifdef COMPILER2
+  typedef VFP::double_num double_num;
+  typedef VFP::float_num  float_num;
+#endif
+
+  void vcnt(FloatRegister Dd, FloatRegister Dn, int quad = 0, int size = 0) {
+    // emitted at VM startup to detect whether the instruction is available
+    assert(!VM_Version::is_initialized() || VM_Version::has_simd(), "simd instruction");
+    assert(size == 0, "illegal size value");
+    emit_int32(0x0e205800 | quad << 30 | size << 22 | Dn->encoding() << 5 | Dd->encoding());
+  }
+
+#ifdef COMPILER2
+  void addv(FloatRegister Dd, FloatRegister Dm, int quad, int size) {
+    // emitted at VM startup to detect whether the instruction is available
+    assert(VM_Version::has_simd(), "simd instruction");
+    assert((quad & ~1) == 0, "illegal value");
+    assert(size >= 0 && size < 3, "illegal value");
+    assert(((size << 1) | quad) != 4, "illegal values (size 2, quad 0)");
+    emit_int32(0x0e31b800 | quad << 30 | size << 22 | Dm->encoding() << 5 | Dd->encoding());
+  }
+
+  enum VElem_Size {
+    VELEM_SIZE_8  = 0x00,
+    VELEM_SIZE_16 = 0x01,
+    VELEM_SIZE_32 = 0x02,
+    VELEM_SIZE_64 = 0x03
+  };
+
+  enum VLD_Type {
+    VLD1_TYPE_1_REG  = 0b0111,
+    VLD1_TYPE_2_REGS = 0b1010,
+    VLD1_TYPE_3_REGS = 0b0110,
+    VLD1_TYPE_4_REGS = 0b0010
+  };
+
+  enum VFloat_Arith_Size {
+    VFA_SIZE_F32 = 0b0,
+    VFA_SIZE_F64 = 0b1
+  };
+
+#define F(mnemonic, U, S, P) \
+  void mnemonic(FloatRegister fd, FloatRegister fn, FloatRegister fm,    \
+                int size, int quad) {                                    \
+    assert(VM_Version::has_simd(), "simd instruction");                  \
+    assert(!(size == VFA_SIZE_F64 && !quad), "reserved");                \
+    assert((size & 1) == size, "overflow");                              \
+    emit_int32(quad << 30 | U << 29 | 0b01110 << 24 |                    \
+               S << 23 | size << 22 | 1 << 21 | P << 11 | 1 << 10 |      \
+               fm->encoding() << 16 |                                    \
+               fn->encoding() <<  5 |                                    \
+               fd->encoding());                                          \
+  }
+
+  F(vaddF, 0, 0, 0b11010)  // Vd = Vn + Vm (float)
+  F(vsubF, 0, 1, 0b11010)  // Vd = Vn - Vm (float)
+  F(vmulF, 1, 0, 0b11011)  // Vd = Vn - Vm (float)
+  F(vdivF, 1, 0, 0b11111)  // Vd = Vn / Vm (float)
+#undef F
+
+#define F(mnemonic, U) \
+  void mnemonic(FloatRegister fd, FloatRegister fm, FloatRegister fn,    \
+                int size, int quad) {                                    \
+    assert(VM_Version::has_simd(), "simd instruction");                  \
+    assert(!(size == VELEM_SIZE_64 && !quad), "reserved");               \
+    assert((size & 0b11) == size, "overflow");                           \
+    int R = 0; /* rounding */                                            \
+    int S = 0; /* saturating */                                          \
+    emit_int32(quad << 30 | U << 29 | 0b01110 << 24 | size << 22 |       \
+               1 << 21 | R << 12 | S << 11 | 0b10001 << 10 |             \
+               fm->encoding() << 16 |                                    \
+               fn->encoding() <<  5 |                                    \
+               fd->encoding());                                          \
+  }
+
+  F(vshlSI, 0)  // Vd = ashift(Vn,Vm) (int)
+  F(vshlUI, 1)  // Vd = lshift(Vn,Vm) (int)
+#undef F
+
+#define F(mnemonic, U, P, M) \
+  void mnemonic(FloatRegister fd, FloatRegister fn, FloatRegister fm,    \
+                int size, int quad) {                                    \
+    assert(VM_Version::has_simd(), "simd instruction");                  \
+    assert(!(size == VELEM_SIZE_64 && !quad), "reserved");               \
+    assert(!(size == VELEM_SIZE_64 && M), "reserved");                   \
+    assert((size & 0b11) == size, "overflow");                           \
+    emit_int32(quad << 30 | U << 29 | 0b01110 << 24 | size << 22 |       \
+               1 << 21 | P << 11 | 1 << 10 |                             \
+               fm->encoding() << 16 |                                    \
+               fn->encoding() <<  5 |                                    \
+               fd->encoding());                                          \
+  }
+
+  F(vmulI, 0, 0b10011,  true)  // Vd = Vn * Vm (int)
+  F(vaddI, 0, 0b10000, false)  // Vd = Vn + Vm (int)
+  F(vsubI, 1, 0b10000, false)  // Vd = Vn - Vm (int)
+#undef F
+
+#define F(mnemonic, U, O) \
+  void mnemonic(FloatRegister fd, FloatRegister fn, FloatRegister fm,    \
+                int quad) {                                              \
+    assert(VM_Version::has_simd(), "simd instruction");                  \
+    emit_int32(quad << 30 | U << 29 | 0b01110 << 24 | O << 22 |          \
+               1 << 21 | 0b00011 << 11 | 1 << 10 |                       \
+               fm->encoding() << 16 |                                    \
+               fn->encoding() <<  5 |                                    \
+               fd->encoding());                                          \
+  }
+
+  F(vandI, 0, 0b00)  // Vd = Vn & Vm (int)
+  F(vorI,  0, 0b10)  // Vd = Vn | Vm (int)
+  F(vxorI, 1, 0b00)  // Vd = Vn ^ Vm (int)
+#undef F
+
+  void vnegI(FloatRegister fd, FloatRegister fn, int size, int quad) {
+    int U = 1;
+    assert(VM_Version::has_simd(), "simd instruction");
+    assert(quad || size != VELEM_SIZE_64, "reserved");
+    emit_int32(quad << 30 | U << 29 | 0b01110 << 24 |
+              size << 22 | 0b100000101110 << 10 |
+              fn->encoding() << 5 |
+              fd->encoding() << 0);
+  }
+
+  void vshli(FloatRegister fd, FloatRegister fn, int esize, int imm, int quad) {
+    assert(VM_Version::has_simd(), "simd instruction");
+
+    if (imm >= esize) {
+      // maximum shift gives all zeroes, direction doesn't matter,
+      // but only available for shift right
+      vshri(fd, fn, esize, esize, true /* unsigned */, quad);
+      return;
+    }
+    assert(imm >= 0 && imm < esize, "out of range");
+
+    int imm7 = esize + imm;
+    int immh = imm7 >> 3;
+    assert(immh != 0, "encoding constraint");
+    assert((uint)immh < 16, "sanity");
+    assert(((immh >> 2) | quad) != 0b10, "reserved");
+    emit_int32(quad << 30 | 0b011110 << 23 | imm7 << 16 |
+               0b010101 << 10 | fn->encoding() << 5 | fd->encoding() << 0);
+  }
+
+  void vshri(FloatRegister fd, FloatRegister fn, int esize, int imm,
+             bool U /* unsigned */, int quad) {
+    assert(VM_Version::has_simd(), "simd instruction");
+    assert(imm > 0, "out of range");
+    if (imm >= esize) {
+      // maximum shift (all zeroes)
+      imm = esize;
+    }
+    int imm7 = 2 * esize - imm ;
+    int immh = imm7 >> 3;
+    assert(immh != 0, "encoding constraint");
+    assert((uint)immh < 16, "sanity");
+    assert(((immh >> 2) | quad) != 0b10, "reserved");
+    emit_int32(quad << 30 | U << 29 | 0b011110 << 23 | imm7 << 16 |
+               0b000001 << 10 | fn->encoding() << 5 | fd->encoding() << 0);
+  }
+  void vshrUI(FloatRegister fd, FloatRegister fm, int size, int imm, int quad) {
+    vshri(fd, fm, size, imm, true /* unsigned */, quad);
+  }
+  void vshrSI(FloatRegister fd, FloatRegister fm, int size, int imm, int quad) {
+    vshri(fd, fm, size, imm, false /* signed */, quad);
+  }
+
+  void vld1(FloatRegister Vt, Address addr, VElem_Size size, int bits) {
+    assert(VM_Version::has_simd(), "simd instruction");
+    assert(bits == 128, "unsupported");
+    assert(addr.disp() == 0 || addr.disp() == 16, "must be");
+    int type = 0b11; // 2D
+    int quad = 1;
+    int L = 1;
+    int opcode = VLD1_TYPE_1_REG;
+    emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 |
+               Vt->encoding() << 0 | addr.encoding_simd());
+  }
+
+  void vst1(FloatRegister Vt, Address addr, VElem_Size size, int bits) {
+    assert(VM_Version::has_simd(), "simd instruction");
+    assert(bits == 128, "unsupported");
+    assert(addr.disp() == 0 || addr.disp() == 16, "must be");
+    int type = 0b11; // 2D
+    int quad = 1;
+    int L = 0;
+    int opcode = VLD1_TYPE_1_REG;
+    emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 |
+               Vt->encoding() << 0 | addr.encoding_simd());
+  }
+
+  void vld1(FloatRegister Vt, FloatRegister Vt2, Address addr, VElem_Size size, int bits) {
+    assert(VM_Version::has_simd(), "simd instruction");
+    assert(bits == 128, "unsupported");
+    assert(Vt->successor() == Vt2, "Registers must be ordered");
+    assert(addr.disp() == 0 || addr.disp() == 32, "must be");
+    int type = 0b11; // 2D
+    int quad = 1;
+    int L = 1;
+    int opcode = VLD1_TYPE_2_REGS;
+    emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 |
+               Vt->encoding() << 0 | addr.encoding_simd());
+  }
+
+  void vst1(FloatRegister Vt, FloatRegister Vt2, Address addr, VElem_Size size, int bits) {
+    assert(VM_Version::has_simd(), "simd instruction");
+    assert(Vt->successor() == Vt2, "Registers must be ordered");
+    assert(bits == 128, "unsupported");
+    assert(addr.disp() == 0 || addr.disp() == 32, "must be");
+    int type = 0b11; // 2D
+    int quad = 1;
+    int L = 0;
+    int opcode = VLD1_TYPE_2_REGS;
+    emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 |
+               Vt->encoding() << 0 | addr.encoding_simd());
+  }
+
+  void vld1(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,
+            Address addr, VElem_Size size, int bits) {
+    assert(VM_Version::has_simd(), "simd instruction");
+    assert(bits == 128, "unsupported");
+    assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3,
+          "Registers must be ordered");
+    assert(addr.disp() == 0 || addr.disp() == 48, "must be");
+    int type = 0b11; // 2D
+    int quad = 1;
+    int L = 1;
+    int opcode = VLD1_TYPE_3_REGS;
+    emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 |
+               Vt->encoding() << 0 | addr.encoding_simd());
+  }
+
+  void vst1(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,
+            Address addr, VElem_Size size, int bits) {
+    assert(VM_Version::has_simd(), "simd instruction");
+    assert(bits == 128, "unsupported");
+    assert(Vt->successor() == Vt2 &&  Vt2->successor() == Vt3,
+           "Registers must be ordered");
+    assert(addr.disp() == 0 || addr.disp() == 48, "must be");
+    int type = 0b11; // 2D
+    int quad = 1;
+    int L = 0;
+    int opcode = VLD1_TYPE_3_REGS;
+    emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 |
+               Vt->encoding() << 0 | addr.encoding_simd());
+  }
+
+  void vld1(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,
+            FloatRegister Vt4, Address addr, VElem_Size size, int bits) {
+    assert(VM_Version::has_simd(), "simd instruction");
+    assert(bits == 128, "unsupported");
+    assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 &&
+           Vt3->successor() == Vt4, "Registers must be ordered");
+    assert(addr.disp() == 0 || addr.disp() == 64, "must be");
+    int type = 0b11; // 2D
+    int quad = 1;
+    int L = 1;
+    int opcode = VLD1_TYPE_4_REGS;
+    emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 |
+               Vt->encoding() << 0 | addr.encoding_simd());
+  }
+
+  void vst1(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,
+            FloatRegister Vt4,  Address addr, VElem_Size size, int bits) {
+    assert(VM_Version::has_simd(), "simd instruction");
+    assert(bits == 128, "unsupported");
+    assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 &&
+           Vt3->successor() == Vt4, "Registers must be ordered");
+    assert(addr.disp() == 0 || addr.disp() == 64, "must be");
+    int type = 0b11; // 2D
+    int quad = 1;
+    int L = 0;
+    int opcode = VLD1_TYPE_4_REGS;
+    emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 |
+               Vt->encoding() << 0 | addr.encoding_simd());
+  }
+
+  void rev32(FloatRegister Vd, FloatRegister Vn, VElem_Size size, int quad) {
+    assert(VM_Version::has_simd(), "simd instruction");
+    assert(size == VELEM_SIZE_8 || size == VELEM_SIZE_16, "must be");
+    emit_int32(quad << 30 | 0b101110 << 24 | size << 22 |
+               0b100000000010 << 10 | Vn->encoding() << 5 | Vd->encoding());
+  }
+
+  void eor(FloatRegister Vd, FloatRegister Vn,  FloatRegister Vm, VElem_Size size, int quad) {
+    assert(VM_Version::has_simd(), "simd instruction");
+    assert(size == VELEM_SIZE_8, "must be");
+    emit_int32(quad << 30 | 0b101110001 << 21 | Vm->encoding() << 16 |
+               0b000111 << 10 | Vn->encoding() << 5 | Vd->encoding());
+  }
+
+  void orr(FloatRegister Vd, FloatRegister Vn,  FloatRegister Vm, VElem_Size size, int quad) {
+    assert(VM_Version::has_simd(), "simd instruction");
+    assert(size == VELEM_SIZE_8, "must be");
+    emit_int32(quad << 30 | 0b001110101 << 21 | Vm->encoding() << 16 |
+               0b000111 << 10 | Vn->encoding() << 5 | Vd->encoding());
+  }
+
+  void vmovI(FloatRegister Dd, int imm8, VElem_Size size, int quad) {
+    assert(VM_Version::has_simd(), "simd instruction");
+    assert(imm8 >= 0 && imm8 < 256, "out of range");
+    int op;
+    int cmode;
+    switch (size) {
+    case VELEM_SIZE_8:
+      op = 0;
+      cmode = 0b1110;
+      break;
+    case VELEM_SIZE_16:
+      op = 0;
+      cmode = 0b1000;
+      break;
+    case VELEM_SIZE_32:
+      op = 0;
+      cmode = 0b0000;
+      break;
+    default:
+      cmode = 0;
+      ShouldNotReachHere();
+    }
+    int abc = imm8 >> 5;
+    int defgh = imm8 & 0b11111;
+    emit_int32(quad << 30 | op << 29 | 0b1111 << 24 |
+               abc << 16 | cmode << 12 | 0b01 << 10 |
+               defgh << 5 | Dd->encoding() << 0);
+  }
+
+  void vdupI(FloatRegister Dd, Register Rn, VElem_Size size, int quad) {
+    assert(VM_Version::has_simd(), "simd instruction");
+    assert(size <= 3, "unallocated encoding");
+    assert(size != 3 || quad == 1, "reserved");
+    int imm5 = 1 << size;
+#ifdef ASSERT
+    switch (size) {
+    case VELEM_SIZE_8:
+      assert(imm5 == 0b00001, "sanity");
+      break;
+    case VELEM_SIZE_16:
+      assert(imm5 == 0b00010, "sanity");
+      break;
+    case VELEM_SIZE_32:
+      assert(imm5 == 0b00100, "sanity");
+      break;
+    case VELEM_SIZE_64:
+      assert(imm5 == 0b01000, "sanity");
+      break;
+    default:
+      ShouldNotReachHere();
+    }
+#endif
+    emit_int32(quad << 30 | 0b111 << 25 | 0b11 << 10 |
+               imm5 << 16 | Rn->encoding() << 5 |
+               Dd->encoding() << 0);
+  }
+
+  void vdup(FloatRegister Vd, FloatRegister Vn, VElem_Size size, int quad) {
+    assert(VM_Version::has_simd(), "simd instruction");
+    int index = 0;
+    int bytes = 1 << size;
+    int range = 16 / bytes;
+    assert(index < range, "overflow");
+
+    assert(size != VELEM_SIZE_64 || quad, "reserved");
+    assert(8 << VELEM_SIZE_8  ==  8, "sanity");
+    assert(8 << VELEM_SIZE_16 == 16, "sanity");
+    assert(8 << VELEM_SIZE_32 == 32, "sanity");
+    assert(8 << VELEM_SIZE_64 == 64, "sanity");
+
+    int imm5 = (index << (size + 1)) | bytes;
+
+    emit_int32(quad << 30 | 0b001110000 << 21 | imm5 << 16 | 0b000001 << 10 |
+               Vn->encoding() << 5 | Vd->encoding() << 0);
+  }
+
+  void vdupF(FloatRegister Vd, FloatRegister Vn, int quad) {
+    vdup(Vd, Vn, VELEM_SIZE_32, quad);
+  }
+
+  void vdupD(FloatRegister Vd, FloatRegister Vn, int quad) {
+    vdup(Vd, Vn, VELEM_SIZE_64, quad);
+  }
+#endif
+};
+
+
+#endif // CPU_ARM_VM_ASSEMBLER_ARM_64_HPP