src/hotspot/cpu/aarch64/stubGenerator_aarch64.cpp
changeset 47216 71c04702a3d5
parent 46814 2e45cd2fdcb6
child 47571 c19054f06c14
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/cpu/aarch64/stubGenerator_aarch64.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,4984 @@
+/*
+ * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "asm/macroAssembler.hpp"
+#include "asm/macroAssembler.inline.hpp"
+#include "interpreter/interpreter.hpp"
+#include "nativeInst_aarch64.hpp"
+#include "oops/instanceOop.hpp"
+#include "oops/method.hpp"
+#include "oops/objArrayKlass.hpp"
+#include "oops/oop.inline.hpp"
+#include "prims/methodHandles.hpp"
+#include "runtime/frame.inline.hpp"
+#include "runtime/handles.inline.hpp"
+#include "runtime/sharedRuntime.hpp"
+#include "runtime/stubCodeGenerator.hpp"
+#include "runtime/stubRoutines.hpp"
+#include "runtime/thread.inline.hpp"
+#include "utilities/align.hpp"
+#ifdef COMPILER2
+#include "opto/runtime.hpp"
+#endif
+
+#ifdef BUILTIN_SIM
+#include "../../../../../../simulator/simulator.hpp"
+#endif
+
+// Declaration and definition of StubGenerator (no .hpp file).
+// For a more detailed description of the stub routine structure
+// see the comment in stubRoutines.hpp
+
+#undef __
+#define __ _masm->
+#define TIMES_OOP Address::sxtw(exact_log2(UseCompressedOops ? 4 : 8))
+
+#ifdef PRODUCT
+#define BLOCK_COMMENT(str) /* nothing */
+#else
+#define BLOCK_COMMENT(str) __ block_comment(str)
+#endif
+
+#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
+
+// Stub Code definitions
+
+class StubGenerator: public StubCodeGenerator {
+ private:
+
+#ifdef PRODUCT
+#define inc_counter_np(counter) ((void)0)
+#else
+  void inc_counter_np_(int& counter) {
+    __ lea(rscratch2, ExternalAddress((address)&counter));
+    __ ldrw(rscratch1, Address(rscratch2));
+    __ addw(rscratch1, rscratch1, 1);
+    __ strw(rscratch1, Address(rscratch2));
+  }
+#define inc_counter_np(counter) \
+  BLOCK_COMMENT("inc_counter " #counter); \
+  inc_counter_np_(counter);
+#endif
+
+  // Call stubs are used to call Java from C
+  //
+  // Arguments:
+  //    c_rarg0:   call wrapper address                   address
+  //    c_rarg1:   result                                 address
+  //    c_rarg2:   result type                            BasicType
+  //    c_rarg3:   method                                 Method*
+  //    c_rarg4:   (interpreter) entry point              address
+  //    c_rarg5:   parameters                             intptr_t*
+  //    c_rarg6:   parameter size (in words)              int
+  //    c_rarg7:   thread                                 Thread*
+  //
+  // There is no return from the stub itself as any Java result
+  // is written to result
+  //
+  // we save r30 (lr) as the return PC at the base of the frame and
+  // link r29 (fp) below it as the frame pointer installing sp (r31)
+  // into fp.
+  //
+  // we save r0-r7, which accounts for all the c arguments.
+  //
+  // TODO: strictly do we need to save them all? they are treated as
+  // volatile by C so could we omit saving the ones we are going to
+  // place in global registers (thread? method?) or those we only use
+  // during setup of the Java call?
+  //
+  // we don't need to save r8 which C uses as an indirect result location
+  // return register.
+  //
+  // we don't need to save r9-r15 which both C and Java treat as
+  // volatile
+  //
+  // we don't need to save r16-18 because Java does not use them
+  //
+  // we save r19-r28 which Java uses as scratch registers and C
+  // expects to be callee-save
+  //
+  // we save the bottom 64 bits of each value stored in v8-v15; it is
+  // the responsibility of the caller to preserve larger values.
+  //
+  // so the stub frame looks like this when we enter Java code
+  //
+  //     [ return_from_Java     ] <--- sp
+  //     [ argument word n      ]
+  //      ...
+  // -27 [ argument word 1      ]
+  // -26 [ saved v15            ] <--- sp_after_call
+  // -25 [ saved v14            ]
+  // -24 [ saved v13            ]
+  // -23 [ saved v12            ]
+  // -22 [ saved v11            ]
+  // -21 [ saved v10            ]
+  // -20 [ saved v9             ]
+  // -19 [ saved v8             ]
+  // -18 [ saved r28            ]
+  // -17 [ saved r27            ]
+  // -16 [ saved r26            ]
+  // -15 [ saved r25            ]
+  // -14 [ saved r24            ]
+  // -13 [ saved r23            ]
+  // -12 [ saved r22            ]
+  // -11 [ saved r21            ]
+  // -10 [ saved r20            ]
+  //  -9 [ saved r19            ]
+  //  -8 [ call wrapper    (r0) ]
+  //  -7 [ result          (r1) ]
+  //  -6 [ result type     (r2) ]
+  //  -5 [ method          (r3) ]
+  //  -4 [ entry point     (r4) ]
+  //  -3 [ parameters      (r5) ]
+  //  -2 [ parameter size  (r6) ]
+  //  -1 [ thread (r7)          ]
+  //   0 [ saved fp       (r29) ] <--- fp == saved sp (r31)
+  //   1 [ saved lr       (r30) ]
+
+  // Call stub stack layout word offsets from fp
+  enum call_stub_layout {
+    sp_after_call_off = -26,
+
+    d15_off            = -26,
+    d13_off            = -24,
+    d11_off            = -22,
+    d9_off             = -20,
+
+    r28_off            = -18,
+    r26_off            = -16,
+    r24_off            = -14,
+    r22_off            = -12,
+    r20_off            = -10,
+    call_wrapper_off   =  -8,
+    result_off         =  -7,
+    result_type_off    =  -6,
+    method_off         =  -5,
+    entry_point_off    =  -4,
+    parameter_size_off =  -2,
+    thread_off         =  -1,
+    fp_f               =   0,
+    retaddr_off        =   1,
+  };
+
+  address generate_call_stub(address& return_address) {
+    assert((int)frame::entry_frame_after_call_words == -(int)sp_after_call_off + 1 &&
+           (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
+           "adjust this code");
+
+    StubCodeMark mark(this, "StubRoutines", "call_stub");
+    address start = __ pc();
+
+    const Address sp_after_call(rfp, sp_after_call_off * wordSize);
+
+    const Address call_wrapper  (rfp, call_wrapper_off   * wordSize);
+    const Address result        (rfp, result_off         * wordSize);
+    const Address result_type   (rfp, result_type_off    * wordSize);
+    const Address method        (rfp, method_off         * wordSize);
+    const Address entry_point   (rfp, entry_point_off    * wordSize);
+    const Address parameter_size(rfp, parameter_size_off * wordSize);
+
+    const Address thread        (rfp, thread_off         * wordSize);
+
+    const Address d15_save      (rfp, d15_off * wordSize);
+    const Address d13_save      (rfp, d13_off * wordSize);
+    const Address d11_save      (rfp, d11_off * wordSize);
+    const Address d9_save       (rfp, d9_off * wordSize);
+
+    const Address r28_save      (rfp, r28_off * wordSize);
+    const Address r26_save      (rfp, r26_off * wordSize);
+    const Address r24_save      (rfp, r24_off * wordSize);
+    const Address r22_save      (rfp, r22_off * wordSize);
+    const Address r20_save      (rfp, r20_off * wordSize);
+
+    // stub code
+
+    // we need a C prolog to bootstrap the x86 caller into the sim
+    __ c_stub_prolog(8, 0, MacroAssembler::ret_type_void);
+
+    address aarch64_entry = __ pc();
+
+#ifdef BUILTIN_SIM
+    // Save sender's SP for stack traces.
+    __ mov(rscratch1, sp);
+    __ str(rscratch1, Address(__ pre(sp, -2 * wordSize)));
+#endif
+    // set up frame and move sp to end of save area
+    __ enter();
+    __ sub(sp, rfp, -sp_after_call_off * wordSize);
+
+    // save register parameters and Java scratch/global registers
+    // n.b. we save thread even though it gets installed in
+    // rthread because we want to sanity check rthread later
+    __ str(c_rarg7,  thread);
+    __ strw(c_rarg6, parameter_size);
+    __ stp(c_rarg4, c_rarg5,  entry_point);
+    __ stp(c_rarg2, c_rarg3,  result_type);
+    __ stp(c_rarg0, c_rarg1,  call_wrapper);
+
+    __ stp(r20, r19,   r20_save);
+    __ stp(r22, r21,   r22_save);
+    __ stp(r24, r23,   r24_save);
+    __ stp(r26, r25,   r26_save);
+    __ stp(r28, r27,   r28_save);
+
+    __ stpd(v9,  v8,   d9_save);
+    __ stpd(v11, v10,  d11_save);
+    __ stpd(v13, v12,  d13_save);
+    __ stpd(v15, v14,  d15_save);
+
+    // install Java thread in global register now we have saved
+    // whatever value it held
+    __ mov(rthread, c_rarg7);
+    // And method
+    __ mov(rmethod, c_rarg3);
+
+    // set up the heapbase register
+    __ reinit_heapbase();
+
+#ifdef ASSERT
+    // make sure we have no pending exceptions
+    {
+      Label L;
+      __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
+      __ cmp(rscratch1, (unsigned)NULL_WORD);
+      __ br(Assembler::EQ, L);
+      __ stop("StubRoutines::call_stub: entered with pending exception");
+      __ BIND(L);
+    }
+#endif
+    // pass parameters if any
+    __ mov(esp, sp);
+    __ sub(rscratch1, sp, c_rarg6, ext::uxtw, LogBytesPerWord); // Move SP out of the way
+    __ andr(sp, rscratch1, -2 * wordSize);
+
+    BLOCK_COMMENT("pass parameters if any");
+    Label parameters_done;
+    // parameter count is still in c_rarg6
+    // and parameter pointer identifying param 1 is in c_rarg5
+    __ cbzw(c_rarg6, parameters_done);
+
+    address loop = __ pc();
+    __ ldr(rscratch1, Address(__ post(c_rarg5, wordSize)));
+    __ subsw(c_rarg6, c_rarg6, 1);
+    __ push(rscratch1);
+    __ br(Assembler::GT, loop);
+
+    __ BIND(parameters_done);
+
+    // call Java entry -- passing methdoOop, and current sp
+    //      rmethod: Method*
+    //      r13: sender sp
+    BLOCK_COMMENT("call Java function");
+    __ mov(r13, sp);
+    __ blr(c_rarg4);
+
+    // tell the simulator we have returned to the stub
+
+    // we do this here because the notify will already have been done
+    // if we get to the next instruction via an exception
+    //
+    // n.b. adding this instruction here affects the calculation of
+    // whether or not a routine returns to the call stub (used when
+    // doing stack walks) since the normal test is to check the return
+    // pc against the address saved below. so we may need to allow for
+    // this extra instruction in the check.
+
+    if (NotifySimulator) {
+      __ notify(Assembler::method_reentry);
+    }
+    // save current address for use by exception handling code
+
+    return_address = __ pc();
+
+    // store result depending on type (everything that is not
+    // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
+    // n.b. this assumes Java returns an integral result in r0
+    // and a floating result in j_farg0
+    __ ldr(j_rarg2, result);
+    Label is_long, is_float, is_double, exit;
+    __ ldr(j_rarg1, result_type);
+    __ cmp(j_rarg1, T_OBJECT);
+    __ br(Assembler::EQ, is_long);
+    __ cmp(j_rarg1, T_LONG);
+    __ br(Assembler::EQ, is_long);
+    __ cmp(j_rarg1, T_FLOAT);
+    __ br(Assembler::EQ, is_float);
+    __ cmp(j_rarg1, T_DOUBLE);
+    __ br(Assembler::EQ, is_double);
+
+    // handle T_INT case
+    __ strw(r0, Address(j_rarg2));
+
+    __ BIND(exit);
+
+    // pop parameters
+    __ sub(esp, rfp, -sp_after_call_off * wordSize);
+
+#ifdef ASSERT
+    // verify that threads correspond
+    {
+      Label L, S;
+      __ ldr(rscratch1, thread);
+      __ cmp(rthread, rscratch1);
+      __ br(Assembler::NE, S);
+      __ get_thread(rscratch1);
+      __ cmp(rthread, rscratch1);
+      __ br(Assembler::EQ, L);
+      __ BIND(S);
+      __ stop("StubRoutines::call_stub: threads must correspond");
+      __ BIND(L);
+    }
+#endif
+
+    // restore callee-save registers
+    __ ldpd(v15, v14,  d15_save);
+    __ ldpd(v13, v12,  d13_save);
+    __ ldpd(v11, v10,  d11_save);
+    __ ldpd(v9,  v8,   d9_save);
+
+    __ ldp(r28, r27,   r28_save);
+    __ ldp(r26, r25,   r26_save);
+    __ ldp(r24, r23,   r24_save);
+    __ ldp(r22, r21,   r22_save);
+    __ ldp(r20, r19,   r20_save);
+
+    __ ldp(c_rarg0, c_rarg1,  call_wrapper);
+    __ ldrw(c_rarg2, result_type);
+    __ ldr(c_rarg3,  method);
+    __ ldp(c_rarg4, c_rarg5,  entry_point);
+    __ ldp(c_rarg6, c_rarg7,  parameter_size);
+
+#ifndef PRODUCT
+    // tell the simulator we are about to end Java execution
+    if (NotifySimulator) {
+      __ notify(Assembler::method_exit);
+    }
+#endif
+    // leave frame and return to caller
+    __ leave();
+    __ ret(lr);
+
+    // handle return types different from T_INT
+
+    __ BIND(is_long);
+    __ str(r0, Address(j_rarg2, 0));
+    __ br(Assembler::AL, exit);
+
+    __ BIND(is_float);
+    __ strs(j_farg0, Address(j_rarg2, 0));
+    __ br(Assembler::AL, exit);
+
+    __ BIND(is_double);
+    __ strd(j_farg0, Address(j_rarg2, 0));
+    __ br(Assembler::AL, exit);
+
+    return start;
+  }
+
+  // Return point for a Java call if there's an exception thrown in
+  // Java code.  The exception is caught and transformed into a
+  // pending exception stored in JavaThread that can be tested from
+  // within the VM.
+  //
+  // Note: Usually the parameters are removed by the callee. In case
+  // of an exception crossing an activation frame boundary, that is
+  // not the case if the callee is compiled code => need to setup the
+  // rsp.
+  //
+  // r0: exception oop
+
+  // NOTE: this is used as a target from the signal handler so it
+  // needs an x86 prolog which returns into the current simulator
+  // executing the generated catch_exception code. so the prolog
+  // needs to install rax in a sim register and adjust the sim's
+  // restart pc to enter the generated code at the start position
+  // then return from native to simulated execution.
+
+  address generate_catch_exception() {
+    StubCodeMark mark(this, "StubRoutines", "catch_exception");
+    address start = __ pc();
+
+    // same as in generate_call_stub():
+    const Address sp_after_call(rfp, sp_after_call_off * wordSize);
+    const Address thread        (rfp, thread_off         * wordSize);
+
+#ifdef ASSERT
+    // verify that threads correspond
+    {
+      Label L, S;
+      __ ldr(rscratch1, thread);
+      __ cmp(rthread, rscratch1);
+      __ br(Assembler::NE, S);
+      __ get_thread(rscratch1);
+      __ cmp(rthread, rscratch1);
+      __ br(Assembler::EQ, L);
+      __ bind(S);
+      __ stop("StubRoutines::catch_exception: threads must correspond");
+      __ bind(L);
+    }
+#endif
+
+    // set pending exception
+    __ verify_oop(r0);
+
+    __ str(r0, Address(rthread, Thread::pending_exception_offset()));
+    __ mov(rscratch1, (address)__FILE__);
+    __ str(rscratch1, Address(rthread, Thread::exception_file_offset()));
+    __ movw(rscratch1, (int)__LINE__);
+    __ strw(rscratch1, Address(rthread, Thread::exception_line_offset()));
+
+    // complete return to VM
+    assert(StubRoutines::_call_stub_return_address != NULL,
+           "_call_stub_return_address must have been generated before");
+    __ b(StubRoutines::_call_stub_return_address);
+
+    return start;
+  }
+
+  // Continuation point for runtime calls returning with a pending
+  // exception.  The pending exception check happened in the runtime
+  // or native call stub.  The pending exception in Thread is
+  // converted into a Java-level exception.
+  //
+  // Contract with Java-level exception handlers:
+  // r0: exception
+  // r3: throwing pc
+  //
+  // NOTE: At entry of this stub, exception-pc must be in LR !!
+
+  // NOTE: this is always used as a jump target within generated code
+  // so it just needs to be generated code wiht no x86 prolog
+
+  address generate_forward_exception() {
+    StubCodeMark mark(this, "StubRoutines", "forward exception");
+    address start = __ pc();
+
+    // Upon entry, LR points to the return address returning into
+    // Java (interpreted or compiled) code; i.e., the return address
+    // becomes the throwing pc.
+    //
+    // Arguments pushed before the runtime call are still on the stack
+    // but the exception handler will reset the stack pointer ->
+    // ignore them.  A potential result in registers can be ignored as
+    // well.
+
+#ifdef ASSERT
+    // make sure this code is only executed if there is a pending exception
+    {
+      Label L;
+      __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
+      __ cbnz(rscratch1, L);
+      __ stop("StubRoutines::forward exception: no pending exception (1)");
+      __ bind(L);
+    }
+#endif
+
+    // compute exception handler into r19
+
+    // call the VM to find the handler address associated with the
+    // caller address. pass thread in r0 and caller pc (ret address)
+    // in r1. n.b. the caller pc is in lr, unlike x86 where it is on
+    // the stack.
+    __ mov(c_rarg1, lr);
+    // lr will be trashed by the VM call so we move it to R19
+    // (callee-saved) because we also need to pass it to the handler
+    // returned by this call.
+    __ mov(r19, lr);
+    BLOCK_COMMENT("call exception_handler_for_return_address");
+    __ call_VM_leaf(CAST_FROM_FN_PTR(address,
+                         SharedRuntime::exception_handler_for_return_address),
+                    rthread, c_rarg1);
+    // we should not really care that lr is no longer the callee
+    // address. we saved the value the handler needs in r19 so we can
+    // just copy it to r3. however, the C2 handler will push its own
+    // frame and then calls into the VM and the VM code asserts that
+    // the PC for the frame above the handler belongs to a compiled
+    // Java method. So, we restore lr here to satisfy that assert.
+    __ mov(lr, r19);
+    // setup r0 & r3 & clear pending exception
+    __ mov(r3, r19);
+    __ mov(r19, r0);
+    __ ldr(r0, Address(rthread, Thread::pending_exception_offset()));
+    __ str(zr, Address(rthread, Thread::pending_exception_offset()));
+
+#ifdef ASSERT
+    // make sure exception is set
+    {
+      Label L;
+      __ cbnz(r0, L);
+      __ stop("StubRoutines::forward exception: no pending exception (2)");
+      __ bind(L);
+    }
+#endif
+
+    // continue at exception handler
+    // r0: exception
+    // r3: throwing pc
+    // r19: exception handler
+    __ verify_oop(r0);
+    __ br(r19);
+
+    return start;
+  }
+
+  // Non-destructive plausibility checks for oops
+  //
+  // Arguments:
+  //    r0: oop to verify
+  //    rscratch1: error message
+  //
+  // Stack after saving c_rarg3:
+  //    [tos + 0]: saved c_rarg3
+  //    [tos + 1]: saved c_rarg2
+  //    [tos + 2]: saved lr
+  //    [tos + 3]: saved rscratch2
+  //    [tos + 4]: saved r0
+  //    [tos + 5]: saved rscratch1
+  address generate_verify_oop() {
+
+    StubCodeMark mark(this, "StubRoutines", "verify_oop");
+    address start = __ pc();
+
+    Label exit, error;
+
+    // save c_rarg2 and c_rarg3
+    __ stp(c_rarg3, c_rarg2, Address(__ pre(sp, -16)));
+
+    // __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
+    __ lea(c_rarg2, ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
+    __ ldr(c_rarg3, Address(c_rarg2));
+    __ add(c_rarg3, c_rarg3, 1);
+    __ str(c_rarg3, Address(c_rarg2));
+
+    // object is in r0
+    // make sure object is 'reasonable'
+    __ cbz(r0, exit); // if obj is NULL it is OK
+
+    // Check if the oop is in the right area of memory
+    __ mov(c_rarg3, (intptr_t) Universe::verify_oop_mask());
+    __ andr(c_rarg2, r0, c_rarg3);
+    __ mov(c_rarg3, (intptr_t) Universe::verify_oop_bits());
+
+    // Compare c_rarg2 and c_rarg3.  We don't use a compare
+    // instruction here because the flags register is live.
+    __ eor(c_rarg2, c_rarg2, c_rarg3);
+    __ cbnz(c_rarg2, error);
+
+    // make sure klass is 'reasonable', which is not zero.
+    __ load_klass(r0, r0);  // get klass
+    __ cbz(r0, error);      // if klass is NULL it is broken
+
+    // return if everything seems ok
+    __ bind(exit);
+
+    __ ldp(c_rarg3, c_rarg2, Address(__ post(sp, 16)));
+    __ ret(lr);
+
+    // handle errors
+    __ bind(error);
+    __ ldp(c_rarg3, c_rarg2, Address(__ post(sp, 16)));
+
+    __ push(RegSet::range(r0, r29), sp);
+    // debug(char* msg, int64_t pc, int64_t regs[])
+    __ mov(c_rarg0, rscratch1);      // pass address of error message
+    __ mov(c_rarg1, lr);             // pass return address
+    __ mov(c_rarg2, sp);             // pass address of regs on stack
+#ifndef PRODUCT
+    assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
+#endif
+    BLOCK_COMMENT("call MacroAssembler::debug");
+    __ mov(rscratch1, CAST_FROM_FN_PTR(address, MacroAssembler::debug64));
+    __ blrt(rscratch1, 3, 0, 1);
+
+    return start;
+  }
+
+  void array_overlap_test(Label& L_no_overlap, Address::sxtw sf) { __ b(L_no_overlap); }
+
+  // Generate code for an array write pre barrier
+  //
+  //     addr       - starting address
+  //     count      - element count
+  //     tmp        - scratch register
+  //     saved_regs - registers to be saved before calling static_write_ref_array_pre
+  //
+  //     Callers must specify which registers to preserve in saved_regs.
+  //     Clobbers: r0-r18, v0-v7, v16-v31, except saved_regs.
+  //
+  void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized, RegSet saved_regs) {
+    BarrierSet* bs = Universe::heap()->barrier_set();
+    switch (bs->kind()) {
+    case BarrierSet::G1SATBCTLogging:
+      // With G1, don't generate the call if we statically know that the target in uninitialized
+      if (!dest_uninitialized) {
+        __ push(saved_regs, sp);
+        if (count == c_rarg0) {
+          if (addr == c_rarg1) {
+            // exactly backwards!!
+            __ mov(rscratch1, c_rarg0);
+            __ mov(c_rarg0, c_rarg1);
+            __ mov(c_rarg1, rscratch1);
+          } else {
+            __ mov(c_rarg1, count);
+            __ mov(c_rarg0, addr);
+          }
+        } else {
+          __ mov(c_rarg0, addr);
+          __ mov(c_rarg1, count);
+        }
+        __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
+        __ pop(saved_regs, sp);
+        break;
+      case BarrierSet::CardTableForRS:
+      case BarrierSet::CardTableExtension:
+      case BarrierSet::ModRef:
+        break;
+      default:
+        ShouldNotReachHere();
+
+      }
+    }
+  }
+
+  //
+  // Generate code for an array write post barrier
+  //
+  //  Input:
+  //     start      - register containing starting address of destination array
+  //     end        - register containing ending address of destination array
+  //     scratch    - scratch register
+  //     saved_regs - registers to be saved before calling static_write_ref_array_post
+  //
+  //  The input registers are overwritten.
+  //  The ending address is inclusive.
+  //  Callers must specify which registers to preserve in saved_regs.
+  //  Clobbers: r0-r18, v0-v7, v16-v31, except saved_regs.
+  void gen_write_ref_array_post_barrier(Register start, Register end, Register scratch, RegSet saved_regs) {
+    assert_different_registers(start, end, scratch);
+    BarrierSet* bs = Universe::heap()->barrier_set();
+    switch (bs->kind()) {
+      case BarrierSet::G1SATBCTLogging:
+
+        {
+          __ push(saved_regs, sp);
+          // must compute element count unless barrier set interface is changed (other platforms supply count)
+          assert_different_registers(start, end, scratch);
+          __ lea(scratch, Address(end, BytesPerHeapOop));
+          __ sub(scratch, scratch, start);               // subtract start to get #bytes
+          __ lsr(scratch, scratch, LogBytesPerHeapOop);  // convert to element count
+          __ mov(c_rarg0, start);
+          __ mov(c_rarg1, scratch);
+          __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
+          __ pop(saved_regs, sp);
+        }
+        break;
+      case BarrierSet::CardTableForRS:
+      case BarrierSet::CardTableExtension:
+        {
+          CardTableModRefBS* ct = (CardTableModRefBS*)bs;
+          assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
+
+          Label L_loop;
+
+           __ lsr(start, start, CardTableModRefBS::card_shift);
+           __ lsr(end, end, CardTableModRefBS::card_shift);
+           __ sub(end, end, start); // number of bytes to copy
+
+          const Register count = end; // 'end' register contains bytes count now
+          __ load_byte_map_base(scratch);
+          __ add(start, start, scratch);
+          if (UseConcMarkSweepGC) {
+            __ membar(__ StoreStore);
+          }
+          __ BIND(L_loop);
+          __ strb(zr, Address(start, count));
+          __ subs(count, count, 1);
+          __ br(Assembler::GE, L_loop);
+        }
+        break;
+      default:
+        ShouldNotReachHere();
+
+    }
+  }
+
+  // The inner part of zero_words().  This is the bulk operation,
+  // zeroing words in blocks, possibly using DC ZVA to do it.  The
+  // caller is responsible for zeroing the last few words.
+  //
+  // Inputs:
+  // r10: the HeapWord-aligned base address of an array to zero.
+  // r11: the count in HeapWords, r11 > 0.
+  //
+  // Returns r10 and r11, adjusted for the caller to clear.
+  // r10: the base address of the tail of words left to clear.
+  // r11: the number of words in the tail.
+  //      r11 < MacroAssembler::zero_words_block_size.
+
+  address generate_zero_blocks() {
+    Label store_pair, loop_store_pair, done;
+    Label base_aligned;
+
+    Register base = r10, cnt = r11;
+
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", "zero_blocks");
+    address start = __ pc();
+
+    if (UseBlockZeroing) {
+      int zva_length = VM_Version::zva_length();
+
+      // Ensure ZVA length can be divided by 16. This is required by
+      // the subsequent operations.
+      assert (zva_length % 16 == 0, "Unexpected ZVA Length");
+
+      __ tbz(base, 3, base_aligned);
+      __ str(zr, Address(__ post(base, 8)));
+      __ sub(cnt, cnt, 1);
+      __ bind(base_aligned);
+
+      // Ensure count >= zva_length * 2 so that it still deserves a zva after
+      // alignment.
+      Label small;
+      int low_limit = MAX2(zva_length * 2, (int)BlockZeroingLowLimit);
+      __ subs(rscratch1, cnt, low_limit >> 3);
+      __ br(Assembler::LT, small);
+      __ zero_dcache_blocks(base, cnt);
+      __ bind(small);
+    }
+
+    {
+      // Number of stp instructions we'll unroll
+      const int unroll =
+        MacroAssembler::zero_words_block_size / 2;
+      // Clear the remaining blocks.
+      Label loop;
+      __ subs(cnt, cnt, unroll * 2);
+      __ br(Assembler::LT, done);
+      __ bind(loop);
+      for (int i = 0; i < unroll; i++)
+        __ stp(zr, zr, __ post(base, 16));
+      __ subs(cnt, cnt, unroll * 2);
+      __ br(Assembler::GE, loop);
+      __ bind(done);
+      __ add(cnt, cnt, unroll * 2);
+    }
+
+    __ ret(lr);
+
+    return start;
+  }
+
+
+  typedef enum {
+    copy_forwards = 1,
+    copy_backwards = -1
+  } copy_direction;
+
+  // Bulk copy of blocks of 8 words.
+  //
+  // count is a count of words.
+  //
+  // Precondition: count >= 8
+  //
+  // Postconditions:
+  //
+  // The least significant bit of count contains the remaining count
+  // of words to copy.  The rest of count is trash.
+  //
+  // s and d are adjusted to point to the remaining words to copy
+  //
+  void generate_copy_longs(Label &start, Register s, Register d, Register count,
+                           copy_direction direction) {
+    int unit = wordSize * direction;
+    int bias = (UseSIMDForMemoryOps ? 4:2) * wordSize;
+
+    int offset;
+    const Register t0 = r3, t1 = r4, t2 = r5, t3 = r6,
+      t4 = r7, t5 = r10, t6 = r11, t7 = r12;
+    const Register stride = r13;
+
+    assert_different_registers(rscratch1, t0, t1, t2, t3, t4, t5, t6, t7);
+    assert_different_registers(s, d, count, rscratch1);
+
+    Label again, drain;
+    const char *stub_name;
+    if (direction == copy_forwards)
+      stub_name = "forward_copy_longs";
+    else
+      stub_name = "backward_copy_longs";
+    StubCodeMark mark(this, "StubRoutines", stub_name);
+    __ align(CodeEntryAlignment);
+    __ bind(start);
+
+    Label unaligned_copy_long;
+    if (AvoidUnalignedAccesses) {
+      __ tbnz(d, 3, unaligned_copy_long);
+    }
+
+    if (direction == copy_forwards) {
+      __ sub(s, s, bias);
+      __ sub(d, d, bias);
+    }
+
+#ifdef ASSERT
+    // Make sure we are never given < 8 words
+    {
+      Label L;
+      __ cmp(count, 8);
+      __ br(Assembler::GE, L);
+      __ stop("genrate_copy_longs called with < 8 words");
+      __ bind(L);
+    }
+#endif
+
+    // Fill 8 registers
+    if (UseSIMDForMemoryOps) {
+      __ ldpq(v0, v1, Address(s, 4 * unit));
+      __ ldpq(v2, v3, Address(__ pre(s, 8 * unit)));
+    } else {
+      __ ldp(t0, t1, Address(s, 2 * unit));
+      __ ldp(t2, t3, Address(s, 4 * unit));
+      __ ldp(t4, t5, Address(s, 6 * unit));
+      __ ldp(t6, t7, Address(__ pre(s, 8 * unit)));
+    }
+
+    __ subs(count, count, 16);
+    __ br(Assembler::LO, drain);
+
+    int prefetch = PrefetchCopyIntervalInBytes;
+    bool use_stride = false;
+    if (direction == copy_backwards) {
+       use_stride = prefetch > 256;
+       prefetch = -prefetch;
+       if (use_stride) __ mov(stride, prefetch);
+    }
+
+    __ bind(again);
+
+    if (PrefetchCopyIntervalInBytes > 0)
+      __ prfm(use_stride ? Address(s, stride) : Address(s, prefetch), PLDL1KEEP);
+
+    if (UseSIMDForMemoryOps) {
+      __ stpq(v0, v1, Address(d, 4 * unit));
+      __ ldpq(v0, v1, Address(s, 4 * unit));
+      __ stpq(v2, v3, Address(__ pre(d, 8 * unit)));
+      __ ldpq(v2, v3, Address(__ pre(s, 8 * unit)));
+    } else {
+      __ stp(t0, t1, Address(d, 2 * unit));
+      __ ldp(t0, t1, Address(s, 2 * unit));
+      __ stp(t2, t3, Address(d, 4 * unit));
+      __ ldp(t2, t3, Address(s, 4 * unit));
+      __ stp(t4, t5, Address(d, 6 * unit));
+      __ ldp(t4, t5, Address(s, 6 * unit));
+      __ stp(t6, t7, Address(__ pre(d, 8 * unit)));
+      __ ldp(t6, t7, Address(__ pre(s, 8 * unit)));
+    }
+
+    __ subs(count, count, 8);
+    __ br(Assembler::HS, again);
+
+    // Drain
+    __ bind(drain);
+    if (UseSIMDForMemoryOps) {
+      __ stpq(v0, v1, Address(d, 4 * unit));
+      __ stpq(v2, v3, Address(__ pre(d, 8 * unit)));
+    } else {
+      __ stp(t0, t1, Address(d, 2 * unit));
+      __ stp(t2, t3, Address(d, 4 * unit));
+      __ stp(t4, t5, Address(d, 6 * unit));
+      __ stp(t6, t7, Address(__ pre(d, 8 * unit)));
+    }
+
+    {
+      Label L1, L2;
+      __ tbz(count, exact_log2(4), L1);
+      if (UseSIMDForMemoryOps) {
+        __ ldpq(v0, v1, Address(__ pre(s, 4 * unit)));
+        __ stpq(v0, v1, Address(__ pre(d, 4 * unit)));
+      } else {
+        __ ldp(t0, t1, Address(s, 2 * unit));
+        __ ldp(t2, t3, Address(__ pre(s, 4 * unit)));
+        __ stp(t0, t1, Address(d, 2 * unit));
+        __ stp(t2, t3, Address(__ pre(d, 4 * unit)));
+      }
+      __ bind(L1);
+
+      if (direction == copy_forwards) {
+        __ add(s, s, bias);
+        __ add(d, d, bias);
+      }
+
+      __ tbz(count, 1, L2);
+      __ ldp(t0, t1, Address(__ adjust(s, 2 * unit, direction == copy_backwards)));
+      __ stp(t0, t1, Address(__ adjust(d, 2 * unit, direction == copy_backwards)));
+      __ bind(L2);
+    }
+
+    __ ret(lr);
+
+    if (AvoidUnalignedAccesses) {
+      Label drain, again;
+      // Register order for storing. Order is different for backward copy.
+
+      __ bind(unaligned_copy_long);
+
+      // source address is even aligned, target odd aligned
+      //
+      // when forward copying word pairs we read long pairs at offsets
+      // {0, 2, 4, 6} (in long words). when backwards copying we read
+      // long pairs at offsets {-2, -4, -6, -8}. We adjust the source
+      // address by -2 in the forwards case so we can compute the
+      // source offsets for both as {2, 4, 6, 8} * unit where unit = 1
+      // or -1.
+      //
+      // when forward copying we need to store 1 word, 3 pairs and
+      // then 1 word at offsets {0, 1, 3, 5, 7}. Rather thna use a
+      // zero offset We adjust the destination by -1 which means we
+      // have to use offsets { 1, 2, 4, 6, 8} * unit for the stores.
+      //
+      // When backwards copyng we need to store 1 word, 3 pairs and
+      // then 1 word at offsets {-1, -3, -5, -7, -8} i.e. we use
+      // offsets {1, 3, 5, 7, 8} * unit.
+
+      if (direction == copy_forwards) {
+        __ sub(s, s, 16);
+        __ sub(d, d, 8);
+      }
+
+      // Fill 8 registers
+      //
+      // for forwards copy s was offset by -16 from the original input
+      // value of s so the register contents are at these offsets
+      // relative to the 64 bit block addressed by that original input
+      // and so on for each successive 64 byte block when s is updated
+      //
+      // t0 at offset 0,  t1 at offset 8
+      // t2 at offset 16, t3 at offset 24
+      // t4 at offset 32, t5 at offset 40
+      // t6 at offset 48, t7 at offset 56
+
+      // for backwards copy s was not offset so the register contents
+      // are at these offsets into the preceding 64 byte block
+      // relative to that original input and so on for each successive
+      // preceding 64 byte block when s is updated. this explains the
+      // slightly counter-intuitive looking pattern of register usage
+      // in the stp instructions for backwards copy.
+      //
+      // t0 at offset -16, t1 at offset -8
+      // t2 at offset -32, t3 at offset -24
+      // t4 at offset -48, t5 at offset -40
+      // t6 at offset -64, t7 at offset -56
+
+      __ ldp(t0, t1, Address(s, 2 * unit));
+      __ ldp(t2, t3, Address(s, 4 * unit));
+      __ ldp(t4, t5, Address(s, 6 * unit));
+      __ ldp(t6, t7, Address(__ pre(s, 8 * unit)));
+
+      __ subs(count, count, 16);
+      __ br(Assembler::LO, drain);
+
+      int prefetch = PrefetchCopyIntervalInBytes;
+      bool use_stride = false;
+      if (direction == copy_backwards) {
+         use_stride = prefetch > 256;
+         prefetch = -prefetch;
+         if (use_stride) __ mov(stride, prefetch);
+      }
+
+      __ bind(again);
+
+      if (PrefetchCopyIntervalInBytes > 0)
+        __ prfm(use_stride ? Address(s, stride) : Address(s, prefetch), PLDL1KEEP);
+
+      if (direction == copy_forwards) {
+       // allowing for the offset of -8 the store instructions place
+       // registers into the target 64 bit block at the following
+       // offsets
+       //
+       // t0 at offset 0
+       // t1 at offset 8,  t2 at offset 16
+       // t3 at offset 24, t4 at offset 32
+       // t5 at offset 40, t6 at offset 48
+       // t7 at offset 56
+
+        __ str(t0, Address(d, 1 * unit));
+        __ stp(t1, t2, Address(d, 2 * unit));
+        __ ldp(t0, t1, Address(s, 2 * unit));
+        __ stp(t3, t4, Address(d, 4 * unit));
+        __ ldp(t2, t3, Address(s, 4 * unit));
+        __ stp(t5, t6, Address(d, 6 * unit));
+        __ ldp(t4, t5, Address(s, 6 * unit));
+        __ str(t7, Address(__ pre(d, 8 * unit)));
+        __ ldp(t6, t7, Address(__ pre(s, 8 * unit)));
+      } else {
+       // d was not offset when we started so the registers are
+       // written into the 64 bit block preceding d with the following
+       // offsets
+       //
+       // t1 at offset -8
+       // t3 at offset -24, t0 at offset -16
+       // t5 at offset -48, t2 at offset -32
+       // t7 at offset -56, t4 at offset -48
+       //                   t6 at offset -64
+       //
+       // note that this matches the offsets previously noted for the
+       // loads
+
+        __ str(t1, Address(d, 1 * unit));
+        __ stp(t3, t0, Address(d, 3 * unit));
+        __ ldp(t0, t1, Address(s, 2 * unit));
+        __ stp(t5, t2, Address(d, 5 * unit));
+        __ ldp(t2, t3, Address(s, 4 * unit));
+        __ stp(t7, t4, Address(d, 7 * unit));
+        __ ldp(t4, t5, Address(s, 6 * unit));
+        __ str(t6, Address(__ pre(d, 8 * unit)));
+        __ ldp(t6, t7, Address(__ pre(s, 8 * unit)));
+      }
+
+      __ subs(count, count, 8);
+      __ br(Assembler::HS, again);
+
+      // Drain
+      //
+      // this uses the same pattern of offsets and register arguments
+      // as above
+      __ bind(drain);
+      if (direction == copy_forwards) {
+        __ str(t0, Address(d, 1 * unit));
+        __ stp(t1, t2, Address(d, 2 * unit));
+        __ stp(t3, t4, Address(d, 4 * unit));
+        __ stp(t5, t6, Address(d, 6 * unit));
+        __ str(t7, Address(__ pre(d, 8 * unit)));
+      } else {
+        __ str(t1, Address(d, 1 * unit));
+        __ stp(t3, t0, Address(d, 3 * unit));
+        __ stp(t5, t2, Address(d, 5 * unit));
+        __ stp(t7, t4, Address(d, 7 * unit));
+        __ str(t6, Address(__ pre(d, 8 * unit)));
+      }
+      // now we need to copy any remaining part block which may
+      // include a 4 word block subblock and/or a 2 word subblock.
+      // bits 2 and 1 in the count are the tell-tale for whetehr we
+      // have each such subblock
+      {
+        Label L1, L2;
+        __ tbz(count, exact_log2(4), L1);
+       // this is the same as above but copying only 4 longs hence
+       // with ony one intervening stp between the str instructions
+       // but note that the offsets and registers still follow the
+       // same pattern
+        __ ldp(t0, t1, Address(s, 2 * unit));
+        __ ldp(t2, t3, Address(__ pre(s, 4 * unit)));
+        if (direction == copy_forwards) {
+          __ str(t0, Address(d, 1 * unit));
+          __ stp(t1, t2, Address(d, 2 * unit));
+          __ str(t3, Address(__ pre(d, 4 * unit)));
+        } else {
+          __ str(t1, Address(d, 1 * unit));
+          __ stp(t3, t0, Address(d, 3 * unit));
+          __ str(t2, Address(__ pre(d, 4 * unit)));
+        }
+        __ bind(L1);
+
+        __ tbz(count, 1, L2);
+       // this is the same as above but copying only 2 longs hence
+       // there is no intervening stp between the str instructions
+       // but note that the offset and register patterns are still
+       // the same
+        __ ldp(t0, t1, Address(__ pre(s, 2 * unit)));
+        if (direction == copy_forwards) {
+          __ str(t0, Address(d, 1 * unit));
+          __ str(t1, Address(__ pre(d, 2 * unit)));
+        } else {
+          __ str(t1, Address(d, 1 * unit));
+          __ str(t0, Address(__ pre(d, 2 * unit)));
+        }
+        __ bind(L2);
+
+       // for forwards copy we need to re-adjust the offsets we
+       // applied so that s and d are follow the last words written
+
+       if (direction == copy_forwards) {
+         __ add(s, s, 16);
+         __ add(d, d, 8);
+       }
+
+      }
+
+      __ ret(lr);
+      }
+  }
+
+  // Small copy: less than 16 bytes.
+  //
+  // NB: Ignores all of the bits of count which represent more than 15
+  // bytes, so a caller doesn't have to mask them.
+
+  void copy_memory_small(Register s, Register d, Register count, Register tmp, int step) {
+    bool is_backwards = step < 0;
+    size_t granularity = uabs(step);
+    int direction = is_backwards ? -1 : 1;
+    int unit = wordSize * direction;
+
+    Label Lpair, Lword, Lint, Lshort, Lbyte;
+
+    assert(granularity
+           && granularity <= sizeof (jlong), "Impossible granularity in copy_memory_small");
+
+    const Register t0 = r3, t1 = r4, t2 = r5, t3 = r6;
+
+    // ??? I don't know if this bit-test-and-branch is the right thing
+    // to do.  It does a lot of jumping, resulting in several
+    // mispredicted branches.  It might make more sense to do this
+    // with something like Duff's device with a single computed branch.
+
+    __ tbz(count, 3 - exact_log2(granularity), Lword);
+    __ ldr(tmp, Address(__ adjust(s, unit, is_backwards)));
+    __ str(tmp, Address(__ adjust(d, unit, is_backwards)));
+    __ bind(Lword);
+
+    if (granularity <= sizeof (jint)) {
+      __ tbz(count, 2 - exact_log2(granularity), Lint);
+      __ ldrw(tmp, Address(__ adjust(s, sizeof (jint) * direction, is_backwards)));
+      __ strw(tmp, Address(__ adjust(d, sizeof (jint) * direction, is_backwards)));
+      __ bind(Lint);
+    }
+
+    if (granularity <= sizeof (jshort)) {
+      __ tbz(count, 1 - exact_log2(granularity), Lshort);
+      __ ldrh(tmp, Address(__ adjust(s, sizeof (jshort) * direction, is_backwards)));
+      __ strh(tmp, Address(__ adjust(d, sizeof (jshort) * direction, is_backwards)));
+      __ bind(Lshort);
+    }
+
+    if (granularity <= sizeof (jbyte)) {
+      __ tbz(count, 0, Lbyte);
+      __ ldrb(tmp, Address(__ adjust(s, sizeof (jbyte) * direction, is_backwards)));
+      __ strb(tmp, Address(__ adjust(d, sizeof (jbyte) * direction, is_backwards)));
+      __ bind(Lbyte);
+    }
+  }
+
+  Label copy_f, copy_b;
+
+  // All-singing all-dancing memory copy.
+  //
+  // Copy count units of memory from s to d.  The size of a unit is
+  // step, which can be positive or negative depending on the direction
+  // of copy.  If is_aligned is false, we align the source address.
+  //
+
+  void copy_memory(bool is_aligned, Register s, Register d,
+                   Register count, Register tmp, int step) {
+    copy_direction direction = step < 0 ? copy_backwards : copy_forwards;
+    bool is_backwards = step < 0;
+    int granularity = uabs(step);
+    const Register t0 = r3, t1 = r4;
+
+    // <= 96 bytes do inline. Direction doesn't matter because we always
+    // load all the data before writing anything
+    Label copy4, copy8, copy16, copy32, copy80, copy128, copy_big, finish;
+    const Register t2 = r5, t3 = r6, t4 = r7, t5 = r8;
+    const Register t6 = r9, t7 = r10, t8 = r11, t9 = r12;
+    const Register send = r17, dend = r18;
+
+    if (PrefetchCopyIntervalInBytes > 0)
+      __ prfm(Address(s, 0), PLDL1KEEP);
+    __ cmp(count, (UseSIMDForMemoryOps ? 96:80)/granularity);
+    __ br(Assembler::HI, copy_big);
+
+    __ lea(send, Address(s, count, Address::lsl(exact_log2(granularity))));
+    __ lea(dend, Address(d, count, Address::lsl(exact_log2(granularity))));
+
+    __ cmp(count, 16/granularity);
+    __ br(Assembler::LS, copy16);
+
+    __ cmp(count, 64/granularity);
+    __ br(Assembler::HI, copy80);
+
+    __ cmp(count, 32/granularity);
+    __ br(Assembler::LS, copy32);
+
+    // 33..64 bytes
+    if (UseSIMDForMemoryOps) {
+      __ ldpq(v0, v1, Address(s, 0));
+      __ ldpq(v2, v3, Address(send, -32));
+      __ stpq(v0, v1, Address(d, 0));
+      __ stpq(v2, v3, Address(dend, -32));
+    } else {
+      __ ldp(t0, t1, Address(s, 0));
+      __ ldp(t2, t3, Address(s, 16));
+      __ ldp(t4, t5, Address(send, -32));
+      __ ldp(t6, t7, Address(send, -16));
+
+      __ stp(t0, t1, Address(d, 0));
+      __ stp(t2, t3, Address(d, 16));
+      __ stp(t4, t5, Address(dend, -32));
+      __ stp(t6, t7, Address(dend, -16));
+    }
+    __ b(finish);
+
+    // 17..32 bytes
+    __ bind(copy32);
+    __ ldp(t0, t1, Address(s, 0));
+    __ ldp(t2, t3, Address(send, -16));
+    __ stp(t0, t1, Address(d, 0));
+    __ stp(t2, t3, Address(dend, -16));
+    __ b(finish);
+
+    // 65..80/96 bytes
+    // (96 bytes if SIMD because we do 32 byes per instruction)
+    __ bind(copy80);
+    if (UseSIMDForMemoryOps) {
+      __ ld4(v0, v1, v2, v3, __ T16B, Address(s, 0));
+      __ ldpq(v4, v5, Address(send, -32));
+      __ st4(v0, v1, v2, v3, __ T16B, Address(d, 0));
+      __ stpq(v4, v5, Address(dend, -32));
+    } else {
+      __ ldp(t0, t1, Address(s, 0));
+      __ ldp(t2, t3, Address(s, 16));
+      __ ldp(t4, t5, Address(s, 32));
+      __ ldp(t6, t7, Address(s, 48));
+      __ ldp(t8, t9, Address(send, -16));
+
+      __ stp(t0, t1, Address(d, 0));
+      __ stp(t2, t3, Address(d, 16));
+      __ stp(t4, t5, Address(d, 32));
+      __ stp(t6, t7, Address(d, 48));
+      __ stp(t8, t9, Address(dend, -16));
+    }
+    __ b(finish);
+
+    // 0..16 bytes
+    __ bind(copy16);
+    __ cmp(count, 8/granularity);
+    __ br(Assembler::LO, copy8);
+
+    // 8..16 bytes
+    __ ldr(t0, Address(s, 0));
+    __ ldr(t1, Address(send, -8));
+    __ str(t0, Address(d, 0));
+    __ str(t1, Address(dend, -8));
+    __ b(finish);
+
+    if (granularity < 8) {
+      // 4..7 bytes
+      __ bind(copy8);
+      __ tbz(count, 2 - exact_log2(granularity), copy4);
+      __ ldrw(t0, Address(s, 0));
+      __ ldrw(t1, Address(send, -4));
+      __ strw(t0, Address(d, 0));
+      __ strw(t1, Address(dend, -4));
+      __ b(finish);
+      if (granularity < 4) {
+        // 0..3 bytes
+        __ bind(copy4);
+        __ cbz(count, finish); // get rid of 0 case
+        if (granularity == 2) {
+          __ ldrh(t0, Address(s, 0));
+          __ strh(t0, Address(d, 0));
+        } else { // granularity == 1
+          // Now 1..3 bytes. Handle the 1 and 2 byte case by copying
+          // the first and last byte.
+          // Handle the 3 byte case by loading and storing base + count/2
+          // (count == 1 (s+0)->(d+0), count == 2,3 (s+1) -> (d+1))
+          // This does means in the 1 byte case we load/store the same
+          // byte 3 times.
+          __ lsr(count, count, 1);
+          __ ldrb(t0, Address(s, 0));
+          __ ldrb(t1, Address(send, -1));
+          __ ldrb(t2, Address(s, count));
+          __ strb(t0, Address(d, 0));
+          __ strb(t1, Address(dend, -1));
+          __ strb(t2, Address(d, count));
+        }
+        __ b(finish);
+      }
+    }
+
+    __ bind(copy_big);
+    if (is_backwards) {
+      __ lea(s, Address(s, count, Address::lsl(exact_log2(-step))));
+      __ lea(d, Address(d, count, Address::lsl(exact_log2(-step))));
+    }
+
+    // Now we've got the small case out of the way we can align the
+    // source address on a 2-word boundary.
+
+    Label aligned;
+
+    if (is_aligned) {
+      // We may have to adjust by 1 word to get s 2-word-aligned.
+      __ tbz(s, exact_log2(wordSize), aligned);
+      __ ldr(tmp, Address(__ adjust(s, direction * wordSize, is_backwards)));
+      __ str(tmp, Address(__ adjust(d, direction * wordSize, is_backwards)));
+      __ sub(count, count, wordSize/granularity);
+    } else {
+      if (is_backwards) {
+        __ andr(rscratch2, s, 2 * wordSize - 1);
+      } else {
+        __ neg(rscratch2, s);
+        __ andr(rscratch2, rscratch2, 2 * wordSize - 1);
+      }
+      // rscratch2 is the byte adjustment needed to align s.
+      __ cbz(rscratch2, aligned);
+      int shift = exact_log2(granularity);
+      if (shift)  __ lsr(rscratch2, rscratch2, shift);
+      __ sub(count, count, rscratch2);
+
+#if 0
+      // ?? This code is only correct for a disjoint copy.  It may or
+      // may not make sense to use it in that case.
+
+      // Copy the first pair; s and d may not be aligned.
+      __ ldp(t0, t1, Address(s, is_backwards ? -2 * wordSize : 0));
+      __ stp(t0, t1, Address(d, is_backwards ? -2 * wordSize : 0));
+
+      // Align s and d, adjust count
+      if (is_backwards) {
+        __ sub(s, s, rscratch2);
+        __ sub(d, d, rscratch2);
+      } else {
+        __ add(s, s, rscratch2);
+        __ add(d, d, rscratch2);
+      }
+#else
+      copy_memory_small(s, d, rscratch2, rscratch1, step);
+#endif
+    }
+
+    __ bind(aligned);
+
+    // s is now 2-word-aligned.
+
+    // We have a count of units and some trailing bytes.  Adjust the
+    // count and do a bulk copy of words.
+    __ lsr(rscratch2, count, exact_log2(wordSize/granularity));
+    if (direction == copy_forwards)
+      __ bl(copy_f);
+    else
+      __ bl(copy_b);
+
+    // And the tail.
+    copy_memory_small(s, d, count, tmp, step);
+
+    if (granularity >= 8) __ bind(copy8);
+    if (granularity >= 4) __ bind(copy4);
+    __ bind(finish);
+  }
+
+
+  void clobber_registers() {
+#ifdef ASSERT
+    __ mov(rscratch1, (uint64_t)0xdeadbeef);
+    __ orr(rscratch1, rscratch1, rscratch1, Assembler::LSL, 32);
+    for (Register r = r3; r <= r18; r++)
+      if (r != rscratch1) __ mov(r, rscratch1);
+#endif
+  }
+
+  // Scan over array at a for count oops, verifying each one.
+  // Preserves a and count, clobbers rscratch1 and rscratch2.
+  void verify_oop_array (size_t size, Register a, Register count, Register temp) {
+    Label loop, end;
+    __ mov(rscratch1, a);
+    __ mov(rscratch2, zr);
+    __ bind(loop);
+    __ cmp(rscratch2, count);
+    __ br(Assembler::HS, end);
+    if (size == (size_t)wordSize) {
+      __ ldr(temp, Address(a, rscratch2, Address::lsl(exact_log2(size))));
+      __ verify_oop(temp);
+    } else {
+      __ ldrw(r16, Address(a, rscratch2, Address::lsl(exact_log2(size))));
+      __ decode_heap_oop(temp); // calls verify_oop
+    }
+    __ add(rscratch2, rscratch2, size);
+    __ b(loop);
+    __ bind(end);
+  }
+
+  // Arguments:
+  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
+  //             ignored
+  //   is_oop  - true => oop array, so generate store check code
+  //   name    - stub name string
+  //
+  // Inputs:
+  //   c_rarg0   - source array address
+  //   c_rarg1   - destination array address
+  //   c_rarg2   - element count, treated as ssize_t, can be zero
+  //
+  // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
+  // the hardware handle it.  The two dwords within qwords that span
+  // cache line boundaries will still be loaded and stored atomicly.
+  //
+  // Side Effects:
+  //   disjoint_int_copy_entry is set to the no-overlap entry point
+  //   used by generate_conjoint_int_oop_copy().
+  //
+  address generate_disjoint_copy(size_t size, bool aligned, bool is_oop, address *entry,
+                                  const char *name, bool dest_uninitialized = false) {
+    Register s = c_rarg0, d = c_rarg1, count = c_rarg2;
+    RegSet saved_reg = RegSet::of(s, d, count);
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", name);
+    address start = __ pc();
+    __ enter();
+
+    if (entry != NULL) {
+      *entry = __ pc();
+      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
+      BLOCK_COMMENT("Entry:");
+    }
+
+    if (is_oop) {
+      gen_write_ref_array_pre_barrier(d, count, dest_uninitialized, saved_reg);
+      // save regs before copy_memory
+      __ push(RegSet::of(d, count), sp);
+    }
+    copy_memory(aligned, s, d, count, rscratch1, size);
+    if (is_oop) {
+      __ pop(RegSet::of(d, count), sp);
+      if (VerifyOops)
+        verify_oop_array(size, d, count, r16);
+      __ sub(count, count, 1); // make an inclusive end pointer
+      __ lea(count, Address(d, count, Address::lsl(exact_log2(size))));
+      gen_write_ref_array_post_barrier(d, count, rscratch1, RegSet());
+    }
+    __ leave();
+    __ mov(r0, zr); // return 0
+    __ ret(lr);
+#ifdef BUILTIN_SIM
+    {
+      AArch64Simulator *sim = AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck);
+      sim->notifyCompile(const_cast<char*>(name), start);
+    }
+#endif
+    return start;
+  }
+
+  // Arguments:
+  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
+  //             ignored
+  //   is_oop  - true => oop array, so generate store check code
+  //   name    - stub name string
+  //
+  // Inputs:
+  //   c_rarg0   - source array address
+  //   c_rarg1   - destination array address
+  //   c_rarg2   - element count, treated as ssize_t, can be zero
+  //
+  // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
+  // the hardware handle it.  The two dwords within qwords that span
+  // cache line boundaries will still be loaded and stored atomicly.
+  //
+  address generate_conjoint_copy(size_t size, bool aligned, bool is_oop, address nooverlap_target,
+                                 address *entry, const char *name,
+                                 bool dest_uninitialized = false) {
+    Register s = c_rarg0, d = c_rarg1, count = c_rarg2;
+    RegSet saved_regs = RegSet::of(s, d, count);
+    StubCodeMark mark(this, "StubRoutines", name);
+    address start = __ pc();
+    __ enter();
+
+    if (entry != NULL) {
+      *entry = __ pc();
+      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
+      BLOCK_COMMENT("Entry:");
+    }
+
+    // use fwd copy when (d-s) above_equal (count*size)
+    __ sub(rscratch1, d, s);
+    __ cmp(rscratch1, count, Assembler::LSL, exact_log2(size));
+    __ br(Assembler::HS, nooverlap_target);
+
+    if (is_oop) {
+      gen_write_ref_array_pre_barrier(d, count, dest_uninitialized, saved_regs);
+      // save regs before copy_memory
+      __ push(RegSet::of(d, count), sp);
+    }
+    copy_memory(aligned, s, d, count, rscratch1, -size);
+    if (is_oop) {
+      __ pop(RegSet::of(d, count), sp);
+      if (VerifyOops)
+        verify_oop_array(size, d, count, r16);
+      __ sub(count, count, 1); // make an inclusive end pointer
+      __ lea(count, Address(d, count, Address::lsl(exact_log2(size))));
+      gen_write_ref_array_post_barrier(d, count, rscratch1, RegSet());
+    }
+    __ leave();
+    __ mov(r0, zr); // return 0
+    __ ret(lr);
+#ifdef BUILTIN_SIM
+    {
+      AArch64Simulator *sim = AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck);
+      sim->notifyCompile(const_cast<char*>(name), start);
+    }
+#endif
+    return start;
+}
+
+  // Arguments:
+  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
+  //             ignored
+  //   name    - stub name string
+  //
+  // Inputs:
+  //   c_rarg0   - source array address
+  //   c_rarg1   - destination array address
+  //   c_rarg2   - element count, treated as ssize_t, can be zero
+  //
+  // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
+  // we let the hardware handle it.  The one to eight bytes within words,
+  // dwords or qwords that span cache line boundaries will still be loaded
+  // and stored atomically.
+  //
+  // Side Effects:
+  //   disjoint_byte_copy_entry is set to the no-overlap entry point  //
+  // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
+  // we let the hardware handle it.  The one to eight bytes within words,
+  // dwords or qwords that span cache line boundaries will still be loaded
+  // and stored atomically.
+  //
+  // Side Effects:
+  //   disjoint_byte_copy_entry is set to the no-overlap entry point
+  //   used by generate_conjoint_byte_copy().
+  //
+  address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) {
+    const bool not_oop = false;
+    return generate_disjoint_copy(sizeof (jbyte), aligned, not_oop, entry, name);
+  }
+
+  // Arguments:
+  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
+  //             ignored
+  //   name    - stub name string
+  //
+  // Inputs:
+  //   c_rarg0   - source array address
+  //   c_rarg1   - destination array address
+  //   c_rarg2   - element count, treated as ssize_t, can be zero
+  //
+  // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
+  // we let the hardware handle it.  The one to eight bytes within words,
+  // dwords or qwords that span cache line boundaries will still be loaded
+  // and stored atomically.
+  //
+  address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
+                                      address* entry, const char *name) {
+    const bool not_oop = false;
+    return generate_conjoint_copy(sizeof (jbyte), aligned, not_oop, nooverlap_target, entry, name);
+  }
+
+  // Arguments:
+  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
+  //             ignored
+  //   name    - stub name string
+  //
+  // Inputs:
+  //   c_rarg0   - source array address
+  //   c_rarg1   - destination array address
+  //   c_rarg2   - element count, treated as ssize_t, can be zero
+  //
+  // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
+  // let the hardware handle it.  The two or four words within dwords
+  // or qwords that span cache line boundaries will still be loaded
+  // and stored atomically.
+  //
+  // Side Effects:
+  //   disjoint_short_copy_entry is set to the no-overlap entry point
+  //   used by generate_conjoint_short_copy().
+  //
+  address generate_disjoint_short_copy(bool aligned,
+                                       address* entry, const char *name) {
+    const bool not_oop = false;
+    return generate_disjoint_copy(sizeof (jshort), aligned, not_oop, entry, name);
+  }
+
+  // Arguments:
+  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
+  //             ignored
+  //   name    - stub name string
+  //
+  // Inputs:
+  //   c_rarg0   - source array address
+  //   c_rarg1   - destination array address
+  //   c_rarg2   - element count, treated as ssize_t, can be zero
+  //
+  // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
+  // let the hardware handle it.  The two or four words within dwords
+  // or qwords that span cache line boundaries will still be loaded
+  // and stored atomically.
+  //
+  address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
+                                       address *entry, const char *name) {
+    const bool not_oop = false;
+    return generate_conjoint_copy(sizeof (jshort), aligned, not_oop, nooverlap_target, entry, name);
+
+  }
+  // Arguments:
+  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
+  //             ignored
+  //   name    - stub name string
+  //
+  // Inputs:
+  //   c_rarg0   - source array address
+  //   c_rarg1   - destination array address
+  //   c_rarg2   - element count, treated as ssize_t, can be zero
+  //
+  // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
+  // the hardware handle it.  The two dwords within qwords that span
+  // cache line boundaries will still be loaded and stored atomicly.
+  //
+  // Side Effects:
+  //   disjoint_int_copy_entry is set to the no-overlap entry point
+  //   used by generate_conjoint_int_oop_copy().
+  //
+  address generate_disjoint_int_copy(bool aligned, address *entry,
+                                         const char *name, bool dest_uninitialized = false) {
+    const bool not_oop = false;
+    return generate_disjoint_copy(sizeof (jint), aligned, not_oop, entry, name);
+  }
+
+  // Arguments:
+  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
+  //             ignored
+  //   name    - stub name string
+  //
+  // Inputs:
+  //   c_rarg0   - source array address
+  //   c_rarg1   - destination array address
+  //   c_rarg2   - element count, treated as ssize_t, can be zero
+  //
+  // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
+  // the hardware handle it.  The two dwords within qwords that span
+  // cache line boundaries will still be loaded and stored atomicly.
+  //
+  address generate_conjoint_int_copy(bool aligned, address nooverlap_target,
+                                     address *entry, const char *name,
+                                     bool dest_uninitialized = false) {
+    const bool not_oop = false;
+    return generate_conjoint_copy(sizeof (jint), aligned, not_oop, nooverlap_target, entry, name);
+  }
+
+
+  // Arguments:
+  //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
+  //             ignored
+  //   name    - stub name string
+  //
+  // Inputs:
+  //   c_rarg0   - source array address
+  //   c_rarg1   - destination array address
+  //   c_rarg2   - element count, treated as size_t, can be zero
+  //
+  // Side Effects:
+  //   disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
+  //   no-overlap entry point used by generate_conjoint_long_oop_copy().
+  //
+  address generate_disjoint_long_copy(bool aligned, address *entry,
+                                          const char *name, bool dest_uninitialized = false) {
+    const bool not_oop = false;
+    return generate_disjoint_copy(sizeof (jlong), aligned, not_oop, entry, name);
+  }
+
+  // Arguments:
+  //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
+  //             ignored
+  //   name    - stub name string
+  //
+  // Inputs:
+  //   c_rarg0   - source array address
+  //   c_rarg1   - destination array address
+  //   c_rarg2   - element count, treated as size_t, can be zero
+  //
+  address generate_conjoint_long_copy(bool aligned,
+                                      address nooverlap_target, address *entry,
+                                      const char *name, bool dest_uninitialized = false) {
+    const bool not_oop = false;
+    return generate_conjoint_copy(sizeof (jlong), aligned, not_oop, nooverlap_target, entry, name);
+  }
+
+  // Arguments:
+  //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
+  //             ignored
+  //   name    - stub name string
+  //
+  // Inputs:
+  //   c_rarg0   - source array address
+  //   c_rarg1   - destination array address
+  //   c_rarg2   - element count, treated as size_t, can be zero
+  //
+  // Side Effects:
+  //   disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
+  //   no-overlap entry point used by generate_conjoint_long_oop_copy().
+  //
+  address generate_disjoint_oop_copy(bool aligned, address *entry,
+                                     const char *name, bool dest_uninitialized) {
+    const bool is_oop = true;
+    const size_t size = UseCompressedOops ? sizeof (jint) : sizeof (jlong);
+    return generate_disjoint_copy(size, aligned, is_oop, entry, name, dest_uninitialized);
+  }
+
+  // Arguments:
+  //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
+  //             ignored
+  //   name    - stub name string
+  //
+  // Inputs:
+  //   c_rarg0   - source array address
+  //   c_rarg1   - destination array address
+  //   c_rarg2   - element count, treated as size_t, can be zero
+  //
+  address generate_conjoint_oop_copy(bool aligned,
+                                     address nooverlap_target, address *entry,
+                                     const char *name, bool dest_uninitialized) {
+    const bool is_oop = true;
+    const size_t size = UseCompressedOops ? sizeof (jint) : sizeof (jlong);
+    return generate_conjoint_copy(size, aligned, is_oop, nooverlap_target, entry,
+                                  name, dest_uninitialized);
+  }
+
+
+  // Helper for generating a dynamic type check.
+  // Smashes rscratch1.
+  void generate_type_check(Register sub_klass,
+                           Register super_check_offset,
+                           Register super_klass,
+                           Label& L_success) {
+    assert_different_registers(sub_klass, super_check_offset, super_klass);
+
+    BLOCK_COMMENT("type_check:");
+
+    Label L_miss;
+
+    __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg,        &L_success, &L_miss, NULL,
+                                     super_check_offset);
+    __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
+
+    // Fall through on failure!
+    __ BIND(L_miss);
+  }
+
+  //
+  //  Generate checkcasting array copy stub
+  //
+  //  Input:
+  //    c_rarg0   - source array address
+  //    c_rarg1   - destination array address
+  //    c_rarg2   - element count, treated as ssize_t, can be zero
+  //    c_rarg3   - size_t ckoff (super_check_offset)
+  //    c_rarg4   - oop ckval (super_klass)
+  //
+  //  Output:
+  //    r0 ==  0  -  success
+  //    r0 == -1^K - failure, where K is partial transfer count
+  //
+  address generate_checkcast_copy(const char *name, address *entry,
+                                  bool dest_uninitialized = false) {
+
+    Label L_load_element, L_store_element, L_do_card_marks, L_done, L_done_pop;
+
+    // Input registers (after setup_arg_regs)
+    const Register from        = c_rarg0;   // source array address
+    const Register to          = c_rarg1;   // destination array address
+    const Register count       = c_rarg2;   // elementscount
+    const Register ckoff       = c_rarg3;   // super_check_offset
+    const Register ckval       = c_rarg4;   // super_klass
+
+    RegSet wb_pre_saved_regs = RegSet::range(c_rarg0, c_rarg4);
+    RegSet wb_post_saved_regs = RegSet::of(count);
+
+    // Registers used as temps (r18, r19, r20 are save-on-entry)
+    const Register count_save  = r21;       // orig elementscount
+    const Register start_to    = r20;       // destination array start address
+    const Register copied_oop  = r18;       // actual oop copied
+    const Register r19_klass   = r19;       // oop._klass
+
+    //---------------------------------------------------------------
+    // Assembler stub will be used for this call to arraycopy
+    // if the two arrays are subtypes of Object[] but the
+    // destination array type is not equal to or a supertype
+    // of the source type.  Each element must be separately
+    // checked.
+
+    assert_different_registers(from, to, count, ckoff, ckval, start_to,
+                               copied_oop, r19_klass, count_save);
+
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", name);
+    address start = __ pc();
+
+    __ enter(); // required for proper stackwalking of RuntimeStub frame
+
+#ifdef ASSERT
+    // caller guarantees that the arrays really are different
+    // otherwise, we would have to make conjoint checks
+    { Label L;
+      array_overlap_test(L, TIMES_OOP);
+      __ stop("checkcast_copy within a single array");
+      __ bind(L);
+    }
+#endif //ASSERT
+
+    // Caller of this entry point must set up the argument registers.
+    if (entry != NULL) {
+      *entry = __ pc();
+      BLOCK_COMMENT("Entry:");
+    }
+
+     // Empty array:  Nothing to do.
+    __ cbz(count, L_done);
+
+    __ push(RegSet::of(r18, r19, r20, r21), sp);
+
+#ifdef ASSERT
+    BLOCK_COMMENT("assert consistent ckoff/ckval");
+    // The ckoff and ckval must be mutually consistent,
+    // even though caller generates both.
+    { Label L;
+      int sco_offset = in_bytes(Klass::super_check_offset_offset());
+      __ ldrw(start_to, Address(ckval, sco_offset));
+      __ cmpw(ckoff, start_to);
+      __ br(Assembler::EQ, L);
+      __ stop("super_check_offset inconsistent");
+      __ bind(L);
+    }
+#endif //ASSERT
+
+    gen_write_ref_array_pre_barrier(to, count, dest_uninitialized, wb_pre_saved_regs);
+
+    // save the original count
+    __ mov(count_save, count);
+
+    // Copy from low to high addresses
+    __ mov(start_to, to);              // Save destination array start address
+    __ b(L_load_element);
+
+    // ======== begin loop ========
+    // (Loop is rotated; its entry is L_load_element.)
+    // Loop control:
+    //   for (; count != 0; count--) {
+    //     copied_oop = load_heap_oop(from++);
+    //     ... generate_type_check ...;
+    //     store_heap_oop(to++, copied_oop);
+    //   }
+    __ align(OptoLoopAlignment);
+
+    __ BIND(L_store_element);
+    __ store_heap_oop(__ post(to, UseCompressedOops ? 4 : 8), copied_oop);  // store the oop
+    __ sub(count, count, 1);
+    __ cbz(count, L_do_card_marks);
+
+    // ======== loop entry is here ========
+    __ BIND(L_load_element);
+    __ load_heap_oop(copied_oop, __ post(from, UseCompressedOops ? 4 : 8)); // load the oop
+    __ cbz(copied_oop, L_store_element);
+
+    __ load_klass(r19_klass, copied_oop);// query the object klass
+    generate_type_check(r19_klass, ckoff, ckval, L_store_element);
+    // ======== end loop ========
+
+    // It was a real error; we must depend on the caller to finish the job.
+    // Register count = remaining oops, count_orig = total oops.
+    // Emit GC store barriers for the oops we have copied and report
+    // their number to the caller.
+
+    __ subs(count, count_save, count);     // K = partially copied oop count
+    __ eon(count, count, zr);                   // report (-1^K) to caller
+    __ br(Assembler::EQ, L_done_pop);
+
+    __ BIND(L_do_card_marks);
+    __ add(to, to, -heapOopSize);         // make an inclusive end pointer
+    gen_write_ref_array_post_barrier(start_to, to, rscratch1, wb_post_saved_regs);
+
+    __ bind(L_done_pop);
+    __ pop(RegSet::of(r18, r19, r20, r21), sp);
+    inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
+
+    __ bind(L_done);
+    __ mov(r0, count);
+    __ leave();
+    __ ret(lr);
+
+    return start;
+  }
+
+  // Perform range checks on the proposed arraycopy.
+  // Kills temp, but nothing else.
+  // Also, clean the sign bits of src_pos and dst_pos.
+  void arraycopy_range_checks(Register src,     // source array oop (c_rarg0)
+                              Register src_pos, // source position (c_rarg1)
+                              Register dst,     // destination array oo (c_rarg2)
+                              Register dst_pos, // destination position (c_rarg3)
+                              Register length,
+                              Register temp,
+                              Label& L_failed) {
+    BLOCK_COMMENT("arraycopy_range_checks:");
+
+    assert_different_registers(rscratch1, temp);
+
+    //  if (src_pos + length > arrayOop(src)->length())  FAIL;
+    __ ldrw(rscratch1, Address(src, arrayOopDesc::length_offset_in_bytes()));
+    __ addw(temp, length, src_pos);
+    __ cmpw(temp, rscratch1);
+    __ br(Assembler::HI, L_failed);
+
+    //  if (dst_pos + length > arrayOop(dst)->length())  FAIL;
+    __ ldrw(rscratch1, Address(dst, arrayOopDesc::length_offset_in_bytes()));
+    __ addw(temp, length, dst_pos);
+    __ cmpw(temp, rscratch1);
+    __ br(Assembler::HI, L_failed);
+
+    // Have to clean up high 32 bits of 'src_pos' and 'dst_pos'.
+    __ movw(src_pos, src_pos);
+    __ movw(dst_pos, dst_pos);
+
+    BLOCK_COMMENT("arraycopy_range_checks done");
+  }
+
+  // These stubs get called from some dumb test routine.
+  // I'll write them properly when they're called from
+  // something that's actually doing something.
+  static void fake_arraycopy_stub(address src, address dst, int count) {
+    assert(count == 0, "huh?");
+  }
+
+
+  //
+  //  Generate 'unsafe' array copy stub
+  //  Though just as safe as the other stubs, it takes an unscaled
+  //  size_t argument instead of an element count.
+  //
+  //  Input:
+  //    c_rarg0   - source array address
+  //    c_rarg1   - destination array address
+  //    c_rarg2   - byte count, treated as ssize_t, can be zero
+  //
+  // Examines the alignment of the operands and dispatches
+  // to a long, int, short, or byte copy loop.
+  //
+  address generate_unsafe_copy(const char *name,
+                               address byte_copy_entry,
+                               address short_copy_entry,
+                               address int_copy_entry,
+                               address long_copy_entry) {
+    Label L_long_aligned, L_int_aligned, L_short_aligned;
+    Register s = c_rarg0, d = c_rarg1, count = c_rarg2;
+
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", name);
+    address start = __ pc();
+    __ enter(); // required for proper stackwalking of RuntimeStub frame
+
+    // bump this on entry, not on exit:
+    inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
+
+    __ orr(rscratch1, s, d);
+    __ orr(rscratch1, rscratch1, count);
+
+    __ andr(rscratch1, rscratch1, BytesPerLong-1);
+    __ cbz(rscratch1, L_long_aligned);
+    __ andr(rscratch1, rscratch1, BytesPerInt-1);
+    __ cbz(rscratch1, L_int_aligned);
+    __ tbz(rscratch1, 0, L_short_aligned);
+    __ b(RuntimeAddress(byte_copy_entry));
+
+    __ BIND(L_short_aligned);
+    __ lsr(count, count, LogBytesPerShort);  // size => short_count
+    __ b(RuntimeAddress(short_copy_entry));
+    __ BIND(L_int_aligned);
+    __ lsr(count, count, LogBytesPerInt);    // size => int_count
+    __ b(RuntimeAddress(int_copy_entry));
+    __ BIND(L_long_aligned);
+    __ lsr(count, count, LogBytesPerLong);   // size => long_count
+    __ b(RuntimeAddress(long_copy_entry));
+
+    return start;
+  }
+
+  //
+  //  Generate generic array copy stubs
+  //
+  //  Input:
+  //    c_rarg0    -  src oop
+  //    c_rarg1    -  src_pos (32-bits)
+  //    c_rarg2    -  dst oop
+  //    c_rarg3    -  dst_pos (32-bits)
+  //    c_rarg4    -  element count (32-bits)
+  //
+  //  Output:
+  //    r0 ==  0  -  success
+  //    r0 == -1^K - failure, where K is partial transfer count
+  //
+  address generate_generic_copy(const char *name,
+                                address byte_copy_entry, address short_copy_entry,
+                                address int_copy_entry, address oop_copy_entry,
+                                address long_copy_entry, address checkcast_copy_entry) {
+
+    Label L_failed, L_failed_0, L_objArray;
+    Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
+
+    // Input registers
+    const Register src        = c_rarg0;  // source array oop
+    const Register src_pos    = c_rarg1;  // source position
+    const Register dst        = c_rarg2;  // destination array oop
+    const Register dst_pos    = c_rarg3;  // destination position
+    const Register length     = c_rarg4;
+
+    StubCodeMark mark(this, "StubRoutines", name);
+
+    __ align(CodeEntryAlignment);
+    address start = __ pc();
+
+    __ enter(); // required for proper stackwalking of RuntimeStub frame
+
+    // bump this on entry, not on exit:
+    inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
+
+    //-----------------------------------------------------------------------
+    // Assembler stub will be used for this call to arraycopy
+    // if the following conditions are met:
+    //
+    // (1) src and dst must not be null.
+    // (2) src_pos must not be negative.
+    // (3) dst_pos must not be negative.
+    // (4) length  must not be negative.
+    // (5) src klass and dst klass should be the same and not NULL.
+    // (6) src and dst should be arrays.
+    // (7) src_pos + length must not exceed length of src.
+    // (8) dst_pos + length must not exceed length of dst.
+    //
+
+    //  if (src == NULL) return -1;
+    __ cbz(src, L_failed);
+
+    //  if (src_pos < 0) return -1;
+    __ tbnz(src_pos, 31, L_failed);  // i.e. sign bit set
+
+    //  if (dst == NULL) return -1;
+    __ cbz(dst, L_failed);
+
+    //  if (dst_pos < 0) return -1;
+    __ tbnz(dst_pos, 31, L_failed);  // i.e. sign bit set
+
+    // registers used as temp
+    const Register scratch_length    = r16; // elements count to copy
+    const Register scratch_src_klass = r17; // array klass
+    const Register lh                = r18; // layout helper
+
+    //  if (length < 0) return -1;
+    __ movw(scratch_length, length);        // length (elements count, 32-bits value)
+    __ tbnz(scratch_length, 31, L_failed);  // i.e. sign bit set
+
+    __ load_klass(scratch_src_klass, src);
+#ifdef ASSERT
+    //  assert(src->klass() != NULL);
+    {
+      BLOCK_COMMENT("assert klasses not null {");
+      Label L1, L2;
+      __ cbnz(scratch_src_klass, L2);   // it is broken if klass is NULL
+      __ bind(L1);
+      __ stop("broken null klass");
+      __ bind(L2);
+      __ load_klass(rscratch1, dst);
+      __ cbz(rscratch1, L1);     // this would be broken also
+      BLOCK_COMMENT("} assert klasses not null done");
+    }
+#endif
+
+    // Load layout helper (32-bits)
+    //
+    //  |array_tag|     | header_size | element_type |     |log2_element_size|
+    // 32        30    24            16              8     2                 0
+    //
+    //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
+    //
+
+    const int lh_offset = in_bytes(Klass::layout_helper_offset());
+
+    // Handle objArrays completely differently...
+    const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
+    __ ldrw(lh, Address(scratch_src_klass, lh_offset));
+    __ movw(rscratch1, objArray_lh);
+    __ eorw(rscratch2, lh, rscratch1);
+    __ cbzw(rscratch2, L_objArray);
+
+    //  if (src->klass() != dst->klass()) return -1;
+    __ load_klass(rscratch2, dst);
+    __ eor(rscratch2, rscratch2, scratch_src_klass);
+    __ cbnz(rscratch2, L_failed);
+
+    //  if (!src->is_Array()) return -1;
+    __ tbz(lh, 31, L_failed);  // i.e. (lh >= 0)
+
+    // At this point, it is known to be a typeArray (array_tag 0x3).
+#ifdef ASSERT
+    {
+      BLOCK_COMMENT("assert primitive array {");
+      Label L;
+      __ movw(rscratch2, Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
+      __ cmpw(lh, rscratch2);
+      __ br(Assembler::GE, L);
+      __ stop("must be a primitive array");
+      __ bind(L);
+      BLOCK_COMMENT("} assert primitive array done");
+    }
+#endif
+
+    arraycopy_range_checks(src, src_pos, dst, dst_pos, scratch_length,
+                           rscratch2, L_failed);
+
+    // TypeArrayKlass
+    //
+    // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
+    // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
+    //
+
+    const Register rscratch1_offset = rscratch1;    // array offset
+    const Register r18_elsize = lh; // element size
+
+    __ ubfx(rscratch1_offset, lh, Klass::_lh_header_size_shift,
+           exact_log2(Klass::_lh_header_size_mask+1));   // array_offset
+    __ add(src, src, rscratch1_offset);           // src array offset
+    __ add(dst, dst, rscratch1_offset);           // dst array offset
+    BLOCK_COMMENT("choose copy loop based on element size");
+
+    // next registers should be set before the jump to corresponding stub
+    const Register from     = c_rarg0;  // source array address
+    const Register to       = c_rarg1;  // destination array address
+    const Register count    = c_rarg2;  // elements count
+
+    // 'from', 'to', 'count' registers should be set in such order
+    // since they are the same as 'src', 'src_pos', 'dst'.
+
+    assert(Klass::_lh_log2_element_size_shift == 0, "fix this code");
+
+    // The possible values of elsize are 0-3, i.e. exact_log2(element
+    // size in bytes).  We do a simple bitwise binary search.
+  __ BIND(L_copy_bytes);
+    __ tbnz(r18_elsize, 1, L_copy_ints);
+    __ tbnz(r18_elsize, 0, L_copy_shorts);
+    __ lea(from, Address(src, src_pos));// src_addr
+    __ lea(to,   Address(dst, dst_pos));// dst_addr
+    __ movw(count, scratch_length); // length
+    __ b(RuntimeAddress(byte_copy_entry));
+
+  __ BIND(L_copy_shorts);
+    __ lea(from, Address(src, src_pos, Address::lsl(1)));// src_addr
+    __ lea(to,   Address(dst, dst_pos, Address::lsl(1)));// dst_addr
+    __ movw(count, scratch_length); // length
+    __ b(RuntimeAddress(short_copy_entry));
+
+  __ BIND(L_copy_ints);
+    __ tbnz(r18_elsize, 0, L_copy_longs);
+    __ lea(from, Address(src, src_pos, Address::lsl(2)));// src_addr
+    __ lea(to,   Address(dst, dst_pos, Address::lsl(2)));// dst_addr
+    __ movw(count, scratch_length); // length
+    __ b(RuntimeAddress(int_copy_entry));
+
+  __ BIND(L_copy_longs);
+#ifdef ASSERT
+    {
+      BLOCK_COMMENT("assert long copy {");
+      Label L;
+      __ andw(lh, lh, Klass::_lh_log2_element_size_mask); // lh -> r18_elsize
+      __ cmpw(r18_elsize, LogBytesPerLong);
+      __ br(Assembler::EQ, L);
+      __ stop("must be long copy, but elsize is wrong");
+      __ bind(L);
+      BLOCK_COMMENT("} assert long copy done");
+    }
+#endif
+    __ lea(from, Address(src, src_pos, Address::lsl(3)));// src_addr
+    __ lea(to,   Address(dst, dst_pos, Address::lsl(3)));// dst_addr
+    __ movw(count, scratch_length); // length
+    __ b(RuntimeAddress(long_copy_entry));
+
+    // ObjArrayKlass
+  __ BIND(L_objArray);
+    // live at this point:  scratch_src_klass, scratch_length, src[_pos], dst[_pos]
+
+    Label L_plain_copy, L_checkcast_copy;
+    //  test array classes for subtyping
+    __ load_klass(r18, dst);
+    __ cmp(scratch_src_klass, r18); // usual case is exact equality
+    __ br(Assembler::NE, L_checkcast_copy);
+
+    // Identically typed arrays can be copied without element-wise checks.
+    arraycopy_range_checks(src, src_pos, dst, dst_pos, scratch_length,
+                           rscratch2, L_failed);
+
+    __ lea(from, Address(src, src_pos, Address::lsl(LogBytesPerHeapOop)));
+    __ add(from, from, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
+    __ lea(to, Address(dst, dst_pos, Address::lsl(LogBytesPerHeapOop)));
+    __ add(to, to, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
+    __ movw(count, scratch_length); // length
+  __ BIND(L_plain_copy);
+    __ b(RuntimeAddress(oop_copy_entry));
+
+  __ BIND(L_checkcast_copy);
+    // live at this point:  scratch_src_klass, scratch_length, r18 (dst_klass)
+    {
+      // Before looking at dst.length, make sure dst is also an objArray.
+      __ ldrw(rscratch1, Address(r18, lh_offset));
+      __ movw(rscratch2, objArray_lh);
+      __ eorw(rscratch1, rscratch1, rscratch2);
+      __ cbnzw(rscratch1, L_failed);
+
+      // It is safe to examine both src.length and dst.length.
+      arraycopy_range_checks(src, src_pos, dst, dst_pos, scratch_length,
+                             r18, L_failed);
+
+      const Register rscratch2_dst_klass = rscratch2;
+      __ load_klass(rscratch2_dst_klass, dst); // reload
+
+      // Marshal the base address arguments now, freeing registers.
+      __ lea(from, Address(src, src_pos, Address::lsl(LogBytesPerHeapOop)));
+      __ add(from, from, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
+      __ lea(to, Address(dst, dst_pos, Address::lsl(LogBytesPerHeapOop)));
+      __ add(to, to, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
+      __ movw(count, length);           // length (reloaded)
+      Register sco_temp = c_rarg3;      // this register is free now
+      assert_different_registers(from, to, count, sco_temp,
+                                 rscratch2_dst_klass, scratch_src_klass);
+      // assert_clean_int(count, sco_temp);
+
+      // Generate the type check.
+      const int sco_offset = in_bytes(Klass::super_check_offset_offset());
+      __ ldrw(sco_temp, Address(rscratch2_dst_klass, sco_offset));
+      // assert_clean_int(sco_temp, r18);
+      generate_type_check(scratch_src_klass, sco_temp, rscratch2_dst_klass, L_plain_copy);
+
+      // Fetch destination element klass from the ObjArrayKlass header.
+      int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
+      __ ldr(rscratch2_dst_klass, Address(rscratch2_dst_klass, ek_offset));
+      __ ldrw(sco_temp, Address(rscratch2_dst_klass, sco_offset));
+
+      // the checkcast_copy loop needs two extra arguments:
+      assert(c_rarg3 == sco_temp, "#3 already in place");
+      // Set up arguments for checkcast_copy_entry.
+      __ mov(c_rarg4, rscratch2_dst_klass);  // dst.klass.element_klass
+      __ b(RuntimeAddress(checkcast_copy_entry));
+    }
+
+  __ BIND(L_failed);
+    __ mov(r0, -1);
+    __ leave();   // required for proper stackwalking of RuntimeStub frame
+    __ ret(lr);
+
+    return start;
+  }
+
+  //
+  // Generate stub for array fill. If "aligned" is true, the
+  // "to" address is assumed to be heapword aligned.
+  //
+  // Arguments for generated stub:
+  //   to:    c_rarg0
+  //   value: c_rarg1
+  //   count: c_rarg2 treated as signed
+  //
+  address generate_fill(BasicType t, bool aligned, const char *name) {
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", name);
+    address start = __ pc();
+
+    BLOCK_COMMENT("Entry:");
+
+    const Register to        = c_rarg0;  // source array address
+    const Register value     = c_rarg1;  // value
+    const Register count     = c_rarg2;  // elements count
+
+    const Register bz_base = r10;        // base for block_zero routine
+    const Register cnt_words = r11;      // temp register
+
+    __ enter();
+
+    Label L_fill_elements, L_exit1;
+
+    int shift = -1;
+    switch (t) {
+      case T_BYTE:
+        shift = 0;
+        __ cmpw(count, 8 >> shift); // Short arrays (< 8 bytes) fill by element
+        __ bfi(value, value, 8, 8);   // 8 bit -> 16 bit
+        __ bfi(value, value, 16, 16); // 16 bit -> 32 bit
+        __ br(Assembler::LO, L_fill_elements);
+        break;
+      case T_SHORT:
+        shift = 1;
+        __ cmpw(count, 8 >> shift); // Short arrays (< 8 bytes) fill by element
+        __ bfi(value, value, 16, 16); // 16 bit -> 32 bit
+        __ br(Assembler::LO, L_fill_elements);
+        break;
+      case T_INT:
+        shift = 2;
+        __ cmpw(count, 8 >> shift); // Short arrays (< 8 bytes) fill by element
+        __ br(Assembler::LO, L_fill_elements);
+        break;
+      default: ShouldNotReachHere();
+    }
+
+    // Align source address at 8 bytes address boundary.
+    Label L_skip_align1, L_skip_align2, L_skip_align4;
+    if (!aligned) {
+      switch (t) {
+        case T_BYTE:
+          // One byte misalignment happens only for byte arrays.
+          __ tbz(to, 0, L_skip_align1);
+          __ strb(value, Address(__ post(to, 1)));
+          __ subw(count, count, 1);
+          __ bind(L_skip_align1);
+          // Fallthrough
+        case T_SHORT:
+          // Two bytes misalignment happens only for byte and short (char) arrays.
+          __ tbz(to, 1, L_skip_align2);
+          __ strh(value, Address(__ post(to, 2)));
+          __ subw(count, count, 2 >> shift);
+          __ bind(L_skip_align2);
+          // Fallthrough
+        case T_INT:
+          // Align to 8 bytes, we know we are 4 byte aligned to start.
+          __ tbz(to, 2, L_skip_align4);
+          __ strw(value, Address(__ post(to, 4)));
+          __ subw(count, count, 4 >> shift);
+          __ bind(L_skip_align4);
+          break;
+        default: ShouldNotReachHere();
+      }
+    }
+
+    //
+    //  Fill large chunks
+    //
+    __ lsrw(cnt_words, count, 3 - shift); // number of words
+    __ bfi(value, value, 32, 32);         // 32 bit -> 64 bit
+    __ subw(count, count, cnt_words, Assembler::LSL, 3 - shift);
+    if (UseBlockZeroing) {
+      Label non_block_zeroing, rest;
+      // If the fill value is zero we can use the fast zero_words().
+      __ cbnz(value, non_block_zeroing);
+      __ mov(bz_base, to);
+      __ add(to, to, cnt_words, Assembler::LSL, LogBytesPerWord);
+      __ zero_words(bz_base, cnt_words);
+      __ b(rest);
+      __ bind(non_block_zeroing);
+      __ fill_words(to, cnt_words, value);
+      __ bind(rest);
+    } else {
+      __ fill_words(to, cnt_words, value);
+    }
+
+    // Remaining count is less than 8 bytes. Fill it by a single store.
+    // Note that the total length is no less than 8 bytes.
+    if (t == T_BYTE || t == T_SHORT) {
+      Label L_exit1;
+      __ cbzw(count, L_exit1);
+      __ add(to, to, count, Assembler::LSL, shift); // points to the end
+      __ str(value, Address(to, -8));    // overwrite some elements
+      __ bind(L_exit1);
+      __ leave();
+      __ ret(lr);
+    }
+
+    // Handle copies less than 8 bytes.
+    Label L_fill_2, L_fill_4, L_exit2;
+    __ bind(L_fill_elements);
+    switch (t) {
+      case T_BYTE:
+        __ tbz(count, 0, L_fill_2);
+        __ strb(value, Address(__ post(to, 1)));
+        __ bind(L_fill_2);
+        __ tbz(count, 1, L_fill_4);
+        __ strh(value, Address(__ post(to, 2)));
+        __ bind(L_fill_4);
+        __ tbz(count, 2, L_exit2);
+        __ strw(value, Address(to));
+        break;
+      case T_SHORT:
+        __ tbz(count, 0, L_fill_4);
+        __ strh(value, Address(__ post(to, 2)));
+        __ bind(L_fill_4);
+        __ tbz(count, 1, L_exit2);
+        __ strw(value, Address(to));
+        break;
+      case T_INT:
+        __ cbzw(count, L_exit2);
+        __ strw(value, Address(to));
+        break;
+      default: ShouldNotReachHere();
+    }
+    __ bind(L_exit2);
+    __ leave();
+    __ ret(lr);
+    return start;
+  }
+
+  void generate_arraycopy_stubs() {
+    address entry;
+    address entry_jbyte_arraycopy;
+    address entry_jshort_arraycopy;
+    address entry_jint_arraycopy;
+    address entry_oop_arraycopy;
+    address entry_jlong_arraycopy;
+    address entry_checkcast_arraycopy;
+
+    generate_copy_longs(copy_f, r0, r1, rscratch2, copy_forwards);
+    generate_copy_longs(copy_b, r0, r1, rscratch2, copy_backwards);
+
+    StubRoutines::aarch64::_zero_blocks = generate_zero_blocks();
+
+    //*** jbyte
+    // Always need aligned and unaligned versions
+    StubRoutines::_jbyte_disjoint_arraycopy         = generate_disjoint_byte_copy(false, &entry,
+                                                                                  "jbyte_disjoint_arraycopy");
+    StubRoutines::_jbyte_arraycopy                  = generate_conjoint_byte_copy(false, entry,
+                                                                                  &entry_jbyte_arraycopy,
+                                                                                  "jbyte_arraycopy");
+    StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, &entry,
+                                                                                  "arrayof_jbyte_disjoint_arraycopy");
+    StubRoutines::_arrayof_jbyte_arraycopy          = generate_conjoint_byte_copy(true, entry, NULL,
+                                                                                  "arrayof_jbyte_arraycopy");
+
+    //*** jshort
+    // Always need aligned and unaligned versions
+    StubRoutines::_jshort_disjoint_arraycopy         = generate_disjoint_short_copy(false, &entry,
+                                                                                    "jshort_disjoint_arraycopy");
+    StubRoutines::_jshort_arraycopy                  = generate_conjoint_short_copy(false, entry,
+                                                                                    &entry_jshort_arraycopy,
+                                                                                    "jshort_arraycopy");
+    StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, &entry,
+                                                                                    "arrayof_jshort_disjoint_arraycopy");
+    StubRoutines::_arrayof_jshort_arraycopy          = generate_conjoint_short_copy(true, entry, NULL,
+                                                                                    "arrayof_jshort_arraycopy");
+
+    //*** jint
+    // Aligned versions
+    StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, &entry,
+                                                                                "arrayof_jint_disjoint_arraycopy");
+    StubRoutines::_arrayof_jint_arraycopy          = generate_conjoint_int_copy(true, entry, &entry_jint_arraycopy,
+                                                                                "arrayof_jint_arraycopy");
+    // In 64 bit we need both aligned and unaligned versions of jint arraycopy.
+    // entry_jint_arraycopy always points to the unaligned version
+    StubRoutines::_jint_disjoint_arraycopy         = generate_disjoint_int_copy(false, &entry,
+                                                                                "jint_disjoint_arraycopy");
+    StubRoutines::_jint_arraycopy                  = generate_conjoint_int_copy(false, entry,
+                                                                                &entry_jint_arraycopy,
+                                                                                "jint_arraycopy");
+
+    //*** jlong
+    // It is always aligned
+    StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, &entry,
+                                                                                  "arrayof_jlong_disjoint_arraycopy");
+    StubRoutines::_arrayof_jlong_arraycopy          = generate_conjoint_long_copy(true, entry, &entry_jlong_arraycopy,
+                                                                                  "arrayof_jlong_arraycopy");
+    StubRoutines::_jlong_disjoint_arraycopy         = StubRoutines::_arrayof_jlong_disjoint_arraycopy;
+    StubRoutines::_jlong_arraycopy                  = StubRoutines::_arrayof_jlong_arraycopy;
+
+    //*** oops
+    {
+      // With compressed oops we need unaligned versions; notice that
+      // we overwrite entry_oop_arraycopy.
+      bool aligned = !UseCompressedOops;
+
+      StubRoutines::_arrayof_oop_disjoint_arraycopy
+        = generate_disjoint_oop_copy(aligned, &entry, "arrayof_oop_disjoint_arraycopy",
+                                     /*dest_uninitialized*/false);
+      StubRoutines::_arrayof_oop_arraycopy
+        = generate_conjoint_oop_copy(aligned, entry, &entry_oop_arraycopy, "arrayof_oop_arraycopy",
+                                     /*dest_uninitialized*/false);
+      // Aligned versions without pre-barriers
+      StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit
+        = generate_disjoint_oop_copy(aligned, &entry, "arrayof_oop_disjoint_arraycopy_uninit",
+                                     /*dest_uninitialized*/true);
+      StubRoutines::_arrayof_oop_arraycopy_uninit
+        = generate_conjoint_oop_copy(aligned, entry, NULL, "arrayof_oop_arraycopy_uninit",
+                                     /*dest_uninitialized*/true);
+    }
+
+    StubRoutines::_oop_disjoint_arraycopy            = StubRoutines::_arrayof_oop_disjoint_arraycopy;
+    StubRoutines::_oop_arraycopy                     = StubRoutines::_arrayof_oop_arraycopy;
+    StubRoutines::_oop_disjoint_arraycopy_uninit     = StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit;
+    StubRoutines::_oop_arraycopy_uninit              = StubRoutines::_arrayof_oop_arraycopy_uninit;
+
+    StubRoutines::_checkcast_arraycopy        = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
+    StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
+                                                                        /*dest_uninitialized*/true);
+
+    StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy",
+                                                              entry_jbyte_arraycopy,
+                                                              entry_jshort_arraycopy,
+                                                              entry_jint_arraycopy,
+                                                              entry_jlong_arraycopy);
+
+    StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy",
+                                                               entry_jbyte_arraycopy,
+                                                               entry_jshort_arraycopy,
+                                                               entry_jint_arraycopy,
+                                                               entry_oop_arraycopy,
+                                                               entry_jlong_arraycopy,
+                                                               entry_checkcast_arraycopy);
+
+    StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
+    StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
+    StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
+    StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
+    StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
+    StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
+  }
+
+  void generate_math_stubs() { Unimplemented(); }
+
+  // Arguments:
+  //
+  // Inputs:
+  //   c_rarg0   - source byte array address
+  //   c_rarg1   - destination byte array address
+  //   c_rarg2   - K (key) in little endian int array
+  //
+  address generate_aescrypt_encryptBlock() {
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
+
+    Label L_doLast;
+
+    const Register from        = c_rarg0;  // source array address
+    const Register to          = c_rarg1;  // destination array address
+    const Register key         = c_rarg2;  // key array address
+    const Register keylen      = rscratch1;
+
+    address start = __ pc();
+    __ enter();
+
+    __ ldrw(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
+
+    __ ld1(v0, __ T16B, from); // get 16 bytes of input
+
+    __ ld1(v1, v2, v3, v4, __ T16B, __ post(key, 64));
+    __ rev32(v1, __ T16B, v1);
+    __ rev32(v2, __ T16B, v2);
+    __ rev32(v3, __ T16B, v3);
+    __ rev32(v4, __ T16B, v4);
+    __ aese(v0, v1);
+    __ aesmc(v0, v0);
+    __ aese(v0, v2);
+    __ aesmc(v0, v0);
+    __ aese(v0, v3);
+    __ aesmc(v0, v0);
+    __ aese(v0, v4);
+    __ aesmc(v0, v0);
+
+    __ ld1(v1, v2, v3, v4, __ T16B, __ post(key, 64));
+    __ rev32(v1, __ T16B, v1);
+    __ rev32(v2, __ T16B, v2);
+    __ rev32(v3, __ T16B, v3);
+    __ rev32(v4, __ T16B, v4);
+    __ aese(v0, v1);
+    __ aesmc(v0, v0);
+    __ aese(v0, v2);
+    __ aesmc(v0, v0);
+    __ aese(v0, v3);
+    __ aesmc(v0, v0);
+    __ aese(v0, v4);
+    __ aesmc(v0, v0);
+
+    __ ld1(v1, v2, __ T16B, __ post(key, 32));
+    __ rev32(v1, __ T16B, v1);
+    __ rev32(v2, __ T16B, v2);
+
+    __ cmpw(keylen, 44);
+    __ br(Assembler::EQ, L_doLast);
+
+    __ aese(v0, v1);
+    __ aesmc(v0, v0);
+    __ aese(v0, v2);
+    __ aesmc(v0, v0);
+
+    __ ld1(v1, v2, __ T16B, __ post(key, 32));
+    __ rev32(v1, __ T16B, v1);
+    __ rev32(v2, __ T16B, v2);
+
+    __ cmpw(keylen, 52);
+    __ br(Assembler::EQ, L_doLast);
+
+    __ aese(v0, v1);
+    __ aesmc(v0, v0);
+    __ aese(v0, v2);
+    __ aesmc(v0, v0);
+
+    __ ld1(v1, v2, __ T16B, __ post(key, 32));
+    __ rev32(v1, __ T16B, v1);
+    __ rev32(v2, __ T16B, v2);
+
+    __ BIND(L_doLast);
+
+    __ aese(v0, v1);
+    __ aesmc(v0, v0);
+    __ aese(v0, v2);
+
+    __ ld1(v1, __ T16B, key);
+    __ rev32(v1, __ T16B, v1);
+    __ eor(v0, __ T16B, v0, v1);
+
+    __ st1(v0, __ T16B, to);
+
+    __ mov(r0, 0);
+
+    __ leave();
+    __ ret(lr);
+
+    return start;
+  }
+
+  // Arguments:
+  //
+  // Inputs:
+  //   c_rarg0   - source byte array address
+  //   c_rarg1   - destination byte array address
+  //   c_rarg2   - K (key) in little endian int array
+  //
+  address generate_aescrypt_decryptBlock() {
+    assert(UseAES, "need AES instructions and misaligned SSE support");
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
+    Label L_doLast;
+
+    const Register from        = c_rarg0;  // source array address
+    const Register to          = c_rarg1;  // destination array address
+    const Register key         = c_rarg2;  // key array address
+    const Register keylen      = rscratch1;
+
+    address start = __ pc();
+    __ enter(); // required for proper stackwalking of RuntimeStub frame
+
+    __ ldrw(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
+
+    __ ld1(v0, __ T16B, from); // get 16 bytes of input
+
+    __ ld1(v5, __ T16B, __ post(key, 16));
+    __ rev32(v5, __ T16B, v5);
+
+    __ ld1(v1, v2, v3, v4, __ T16B, __ post(key, 64));
+    __ rev32(v1, __ T16B, v1);
+    __ rev32(v2, __ T16B, v2);
+    __ rev32(v3, __ T16B, v3);
+    __ rev32(v4, __ T16B, v4);
+    __ aesd(v0, v1);
+    __ aesimc(v0, v0);
+    __ aesd(v0, v2);
+    __ aesimc(v0, v0);
+    __ aesd(v0, v3);
+    __ aesimc(v0, v0);
+    __ aesd(v0, v4);
+    __ aesimc(v0, v0);
+
+    __ ld1(v1, v2, v3, v4, __ T16B, __ post(key, 64));
+    __ rev32(v1, __ T16B, v1);
+    __ rev32(v2, __ T16B, v2);
+    __ rev32(v3, __ T16B, v3);
+    __ rev32(v4, __ T16B, v4);
+    __ aesd(v0, v1);
+    __ aesimc(v0, v0);
+    __ aesd(v0, v2);
+    __ aesimc(v0, v0);
+    __ aesd(v0, v3);
+    __ aesimc(v0, v0);
+    __ aesd(v0, v4);
+    __ aesimc(v0, v0);
+
+    __ ld1(v1, v2, __ T16B, __ post(key, 32));
+    __ rev32(v1, __ T16B, v1);
+    __ rev32(v2, __ T16B, v2);
+
+    __ cmpw(keylen, 44);
+    __ br(Assembler::EQ, L_doLast);
+
+    __ aesd(v0, v1);
+    __ aesimc(v0, v0);
+    __ aesd(v0, v2);
+    __ aesimc(v0, v0);
+
+    __ ld1(v1, v2, __ T16B, __ post(key, 32));
+    __ rev32(v1, __ T16B, v1);
+    __ rev32(v2, __ T16B, v2);
+
+    __ cmpw(keylen, 52);
+    __ br(Assembler::EQ, L_doLast);
+
+    __ aesd(v0, v1);
+    __ aesimc(v0, v0);
+    __ aesd(v0, v2);
+    __ aesimc(v0, v0);
+
+    __ ld1(v1, v2, __ T16B, __ post(key, 32));
+    __ rev32(v1, __ T16B, v1);
+    __ rev32(v2, __ T16B, v2);
+
+    __ BIND(L_doLast);
+
+    __ aesd(v0, v1);
+    __ aesimc(v0, v0);
+    __ aesd(v0, v2);
+
+    __ eor(v0, __ T16B, v0, v5);
+
+    __ st1(v0, __ T16B, to);
+
+    __ mov(r0, 0);
+
+    __ leave();
+    __ ret(lr);
+
+    return start;
+  }
+
+  // Arguments:
+  //
+  // Inputs:
+  //   c_rarg0   - source byte array address
+  //   c_rarg1   - destination byte array address
+  //   c_rarg2   - K (key) in little endian int array
+  //   c_rarg3   - r vector byte array address
+  //   c_rarg4   - input length
+  //
+  // Output:
+  //   x0        - input length
+  //
+  address generate_cipherBlockChaining_encryptAESCrypt() {
+    assert(UseAES, "need AES instructions and misaligned SSE support");
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
+
+    Label L_loadkeys_44, L_loadkeys_52, L_aes_loop, L_rounds_44, L_rounds_52;
+
+    const Register from        = c_rarg0;  // source array address
+    const Register to          = c_rarg1;  // destination array address
+    const Register key         = c_rarg2;  // key array address
+    const Register rvec        = c_rarg3;  // r byte array initialized from initvector array address
+                                           // and left with the results of the last encryption block
+    const Register len_reg     = c_rarg4;  // src len (must be multiple of blocksize 16)
+    const Register keylen      = rscratch1;
+
+    address start = __ pc();
+
+      __ enter();
+
+      __ movw(rscratch2, len_reg);
+
+      __ ldrw(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
+
+      __ ld1(v0, __ T16B, rvec);
+
+      __ cmpw(keylen, 52);
+      __ br(Assembler::CC, L_loadkeys_44);
+      __ br(Assembler::EQ, L_loadkeys_52);
+
+      __ ld1(v17, v18, __ T16B, __ post(key, 32));
+      __ rev32(v17, __ T16B, v17);
+      __ rev32(v18, __ T16B, v18);
+    __ BIND(L_loadkeys_52);
+      __ ld1(v19, v20, __ T16B, __ post(key, 32));
+      __ rev32(v19, __ T16B, v19);
+      __ rev32(v20, __ T16B, v20);
+    __ BIND(L_loadkeys_44);
+      __ ld1(v21, v22, v23, v24, __ T16B, __ post(key, 64));
+      __ rev32(v21, __ T16B, v21);
+      __ rev32(v22, __ T16B, v22);
+      __ rev32(v23, __ T16B, v23);
+      __ rev32(v24, __ T16B, v24);
+      __ ld1(v25, v26, v27, v28, __ T16B, __ post(key, 64));
+      __ rev32(v25, __ T16B, v25);
+      __ rev32(v26, __ T16B, v26);
+      __ rev32(v27, __ T16B, v27);
+      __ rev32(v28, __ T16B, v28);
+      __ ld1(v29, v30, v31, __ T16B, key);
+      __ rev32(v29, __ T16B, v29);
+      __ rev32(v30, __ T16B, v30);
+      __ rev32(v31, __ T16B, v31);
+
+    __ BIND(L_aes_loop);
+      __ ld1(v1, __ T16B, __ post(from, 16));
+      __ eor(v0, __ T16B, v0, v1);
+
+      __ br(Assembler::CC, L_rounds_44);
+      __ br(Assembler::EQ, L_rounds_52);
+
+      __ aese(v0, v17); __ aesmc(v0, v0);
+      __ aese(v0, v18); __ aesmc(v0, v0);
+    __ BIND(L_rounds_52);
+      __ aese(v0, v19); __ aesmc(v0, v0);
+      __ aese(v0, v20); __ aesmc(v0, v0);
+    __ BIND(L_rounds_44);
+      __ aese(v0, v21); __ aesmc(v0, v0);
+      __ aese(v0, v22); __ aesmc(v0, v0);
+      __ aese(v0, v23); __ aesmc(v0, v0);
+      __ aese(v0, v24); __ aesmc(v0, v0);
+      __ aese(v0, v25); __ aesmc(v0, v0);
+      __ aese(v0, v26); __ aesmc(v0, v0);
+      __ aese(v0, v27); __ aesmc(v0, v0);
+      __ aese(v0, v28); __ aesmc(v0, v0);
+      __ aese(v0, v29); __ aesmc(v0, v0);
+      __ aese(v0, v30);
+      __ eor(v0, __ T16B, v0, v31);
+
+      __ st1(v0, __ T16B, __ post(to, 16));
+
+      __ subw(len_reg, len_reg, 16);
+      __ cbnzw(len_reg, L_aes_loop);
+
+      __ st1(v0, __ T16B, rvec);
+
+      __ mov(r0, rscratch2);
+
+      __ leave();
+      __ ret(lr);
+
+      return start;
+  }
+
+  // Arguments:
+  //
+  // Inputs:
+  //   c_rarg0   - source byte array address
+  //   c_rarg1   - destination byte array address
+  //   c_rarg2   - K (key) in little endian int array
+  //   c_rarg3   - r vector byte array address
+  //   c_rarg4   - input length
+  //
+  // Output:
+  //   r0        - input length
+  //
+  address generate_cipherBlockChaining_decryptAESCrypt() {
+    assert(UseAES, "need AES instructions and misaligned SSE support");
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
+
+    Label L_loadkeys_44, L_loadkeys_52, L_aes_loop, L_rounds_44, L_rounds_52;
+
+    const Register from        = c_rarg0;  // source array address
+    const Register to          = c_rarg1;  // destination array address
+    const Register key         = c_rarg2;  // key array address
+    const Register rvec        = c_rarg3;  // r byte array initialized from initvector array address
+                                           // and left with the results of the last encryption block
+    const Register len_reg     = c_rarg4;  // src len (must be multiple of blocksize 16)
+    const Register keylen      = rscratch1;
+
+    address start = __ pc();
+
+      __ enter();
+
+      __ movw(rscratch2, len_reg);
+
+      __ ldrw(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
+
+      __ ld1(v2, __ T16B, rvec);
+
+      __ ld1(v31, __ T16B, __ post(key, 16));
+      __ rev32(v31, __ T16B, v31);
+
+      __ cmpw(keylen, 52);
+      __ br(Assembler::CC, L_loadkeys_44);
+      __ br(Assembler::EQ, L_loadkeys_52);
+
+      __ ld1(v17, v18, __ T16B, __ post(key, 32));
+      __ rev32(v17, __ T16B, v17);
+      __ rev32(v18, __ T16B, v18);
+    __ BIND(L_loadkeys_52);
+      __ ld1(v19, v20, __ T16B, __ post(key, 32));
+      __ rev32(v19, __ T16B, v19);
+      __ rev32(v20, __ T16B, v20);
+    __ BIND(L_loadkeys_44);
+      __ ld1(v21, v22, v23, v24, __ T16B, __ post(key, 64));
+      __ rev32(v21, __ T16B, v21);
+      __ rev32(v22, __ T16B, v22);
+      __ rev32(v23, __ T16B, v23);
+      __ rev32(v24, __ T16B, v24);
+      __ ld1(v25, v26, v27, v28, __ T16B, __ post(key, 64));
+      __ rev32(v25, __ T16B, v25);
+      __ rev32(v26, __ T16B, v26);
+      __ rev32(v27, __ T16B, v27);
+      __ rev32(v28, __ T16B, v28);
+      __ ld1(v29, v30, __ T16B, key);
+      __ rev32(v29, __ T16B, v29);
+      __ rev32(v30, __ T16B, v30);
+
+    __ BIND(L_aes_loop);
+      __ ld1(v0, __ T16B, __ post(from, 16));
+      __ orr(v1, __ T16B, v0, v0);
+
+      __ br(Assembler::CC, L_rounds_44);
+      __ br(Assembler::EQ, L_rounds_52);
+
+      __ aesd(v0, v17); __ aesimc(v0, v0);
+      __ aesd(v0, v18); __ aesimc(v0, v0);
+    __ BIND(L_rounds_52);
+      __ aesd(v0, v19); __ aesimc(v0, v0);
+      __ aesd(v0, v20); __ aesimc(v0, v0);
+    __ BIND(L_rounds_44);
+      __ aesd(v0, v21); __ aesimc(v0, v0);
+      __ aesd(v0, v22); __ aesimc(v0, v0);
+      __ aesd(v0, v23); __ aesimc(v0, v0);
+      __ aesd(v0, v24); __ aesimc(v0, v0);
+      __ aesd(v0, v25); __ aesimc(v0, v0);
+      __ aesd(v0, v26); __ aesimc(v0, v0);
+      __ aesd(v0, v27); __ aesimc(v0, v0);
+      __ aesd(v0, v28); __ aesimc(v0, v0);
+      __ aesd(v0, v29); __ aesimc(v0, v0);
+      __ aesd(v0, v30);
+      __ eor(v0, __ T16B, v0, v31);
+      __ eor(v0, __ T16B, v0, v2);
+
+      __ st1(v0, __ T16B, __ post(to, 16));
+      __ orr(v2, __ T16B, v1, v1);
+
+      __ subw(len_reg, len_reg, 16);
+      __ cbnzw(len_reg, L_aes_loop);
+
+      __ st1(v2, __ T16B, rvec);
+
+      __ mov(r0, rscratch2);
+
+      __ leave();
+      __ ret(lr);
+
+    return start;
+  }
+
+  // Arguments:
+  //
+  // Inputs:
+  //   c_rarg0   - byte[]  source+offset
+  //   c_rarg1   - int[]   SHA.state
+  //   c_rarg2   - int     offset
+  //   c_rarg3   - int     limit
+  //
+  address generate_sha1_implCompress(bool multi_block, const char *name) {
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", name);
+    address start = __ pc();
+
+    Register buf   = c_rarg0;
+    Register state = c_rarg1;
+    Register ofs   = c_rarg2;
+    Register limit = c_rarg3;
+
+    Label keys;
+    Label sha1_loop;
+
+    // load the keys into v0..v3
+    __ adr(rscratch1, keys);
+    __ ld4r(v0, v1, v2, v3, __ T4S, Address(rscratch1));
+    // load 5 words state into v6, v7
+    __ ldrq(v6, Address(state, 0));
+    __ ldrs(v7, Address(state, 16));
+
+
+    __ BIND(sha1_loop);
+    // load 64 bytes of data into v16..v19
+    __ ld1(v16, v17, v18, v19, __ T4S, multi_block ? __ post(buf, 64) : buf);
+    __ rev32(v16, __ T16B, v16);
+    __ rev32(v17, __ T16B, v17);
+    __ rev32(v18, __ T16B, v18);
+    __ rev32(v19, __ T16B, v19);
+
+    // do the sha1
+    __ addv(v4, __ T4S, v16, v0);
+    __ orr(v20, __ T16B, v6, v6);
+
+    FloatRegister d0 = v16;
+    FloatRegister d1 = v17;
+    FloatRegister d2 = v18;
+    FloatRegister d3 = v19;
+
+    for (int round = 0; round < 20; round++) {
+      FloatRegister tmp1 = (round & 1) ? v4 : v5;
+      FloatRegister tmp2 = (round & 1) ? v21 : v22;
+      FloatRegister tmp3 = round ? ((round & 1) ? v22 : v21) : v7;
+      FloatRegister tmp4 = (round & 1) ? v5 : v4;
+      FloatRegister key = (round < 4) ? v0 : ((round < 9) ? v1 : ((round < 14) ? v2 : v3));
+
+      if (round < 16) __ sha1su0(d0, __ T4S, d1, d2);
+      if (round < 19) __ addv(tmp1, __ T4S, d1, key);
+      __ sha1h(tmp2, __ T4S, v20);
+      if (round < 5)
+        __ sha1c(v20, __ T4S, tmp3, tmp4);
+      else if (round < 10 || round >= 15)
+        __ sha1p(v20, __ T4S, tmp3, tmp4);
+      else
+        __ sha1m(v20, __ T4S, tmp3, tmp4);
+      if (round < 16) __ sha1su1(d0, __ T4S, d3);
+
+      tmp1 = d0; d0 = d1; d1 = d2; d2 = d3; d3 = tmp1;
+    }
+
+    __ addv(v7, __ T2S, v7, v21);
+    __ addv(v6, __ T4S, v6, v20);
+
+    if (multi_block) {
+      __ add(ofs, ofs, 64);
+      __ cmp(ofs, limit);
+      __ br(Assembler::LE, sha1_loop);
+      __ mov(c_rarg0, ofs); // return ofs
+    }
+
+    __ strq(v6, Address(state, 0));
+    __ strs(v7, Address(state, 16));
+
+    __ ret(lr);
+
+    __ bind(keys);
+    __ emit_int32(0x5a827999);
+    __ emit_int32(0x6ed9eba1);
+    __ emit_int32(0x8f1bbcdc);
+    __ emit_int32(0xca62c1d6);
+
+    return start;
+  }
+
+
+  // Arguments:
+  //
+  // Inputs:
+  //   c_rarg0   - byte[]  source+offset
+  //   c_rarg1   - int[]   SHA.state
+  //   c_rarg2   - int     offset
+  //   c_rarg3   - int     limit
+  //
+  address generate_sha256_implCompress(bool multi_block, const char *name) {
+    static const uint32_t round_consts[64] = {
+      0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
+      0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
+      0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
+      0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
+      0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
+      0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
+      0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
+      0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
+      0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
+      0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
+      0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
+      0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
+      0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
+      0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
+      0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
+      0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
+    };
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", name);
+    address start = __ pc();
+
+    Register buf   = c_rarg0;
+    Register state = c_rarg1;
+    Register ofs   = c_rarg2;
+    Register limit = c_rarg3;
+
+    Label sha1_loop;
+
+    __ stpd(v8, v9, __ pre(sp, -32));
+    __ stpd(v10, v11, Address(sp, 16));
+
+// dga == v0
+// dgb == v1
+// dg0 == v2
+// dg1 == v3
+// dg2 == v4
+// t0 == v6
+// t1 == v7
+
+    // load 16 keys to v16..v31
+    __ lea(rscratch1, ExternalAddress((address)round_consts));
+    __ ld1(v16, v17, v18, v19, __ T4S, __ post(rscratch1, 64));
+    __ ld1(v20, v21, v22, v23, __ T4S, __ post(rscratch1, 64));
+    __ ld1(v24, v25, v26, v27, __ T4S, __ post(rscratch1, 64));
+    __ ld1(v28, v29, v30, v31, __ T4S, rscratch1);
+
+    // load 8 words (256 bits) state
+    __ ldpq(v0, v1, state);
+
+    __ BIND(sha1_loop);
+    // load 64 bytes of data into v8..v11
+    __ ld1(v8, v9, v10, v11, __ T4S, multi_block ? __ post(buf, 64) : buf);
+    __ rev32(v8, __ T16B, v8);
+    __ rev32(v9, __ T16B, v9);
+    __ rev32(v10, __ T16B, v10);
+    __ rev32(v11, __ T16B, v11);
+
+    __ addv(v6, __ T4S, v8, v16);
+    __ orr(v2, __ T16B, v0, v0);
+    __ orr(v3, __ T16B, v1, v1);
+
+    FloatRegister d0 = v8;
+    FloatRegister d1 = v9;
+    FloatRegister d2 = v10;
+    FloatRegister d3 = v11;
+
+
+    for (int round = 0; round < 16; round++) {
+      FloatRegister tmp1 = (round & 1) ? v6 : v7;
+      FloatRegister tmp2 = (round & 1) ? v7 : v6;
+      FloatRegister tmp3 = (round & 1) ? v2 : v4;
+      FloatRegister tmp4 = (round & 1) ? v4 : v2;
+
+      if (round < 12) __ sha256su0(d0, __ T4S, d1);
+       __ orr(v4, __ T16B, v2, v2);
+      if (round < 15)
+        __ addv(tmp1, __ T4S, d1, as_FloatRegister(round + 17));
+      __ sha256h(v2, __ T4S, v3, tmp2);
+      __ sha256h2(v3, __ T4S, v4, tmp2);
+      if (round < 12) __ sha256su1(d0, __ T4S, d2, d3);
+
+      tmp1 = d0; d0 = d1; d1 = d2; d2 = d3; d3 = tmp1;
+    }
+
+    __ addv(v0, __ T4S, v0, v2);
+    __ addv(v1, __ T4S, v1, v3);
+
+    if (multi_block) {
+      __ add(ofs, ofs, 64);
+      __ cmp(ofs, limit);
+      __ br(Assembler::LE, sha1_loop);
+      __ mov(c_rarg0, ofs); // return ofs
+    }
+
+    __ ldpd(v10, v11, Address(sp, 16));
+    __ ldpd(v8, v9, __ post(sp, 32));
+
+    __ stpq(v0, v1, state);
+
+    __ ret(lr);
+
+    return start;
+  }
+
+#ifndef BUILTIN_SIM
+  // Safefetch stubs.
+  void generate_safefetch(const char* name, int size, address* entry,
+                          address* fault_pc, address* continuation_pc) {
+    // safefetch signatures:
+    //   int      SafeFetch32(int*      adr, int      errValue);
+    //   intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
+    //
+    // arguments:
+    //   c_rarg0 = adr
+    //   c_rarg1 = errValue
+    //
+    // result:
+    //   PPC_RET  = *adr or errValue
+
+    StubCodeMark mark(this, "StubRoutines", name);
+
+    // Entry point, pc or function descriptor.
+    *entry = __ pc();
+
+    // Load *adr into c_rarg1, may fault.
+    *fault_pc = __ pc();
+    switch (size) {
+      case 4:
+        // int32_t
+        __ ldrw(c_rarg1, Address(c_rarg0, 0));
+        break;
+      case 8:
+        // int64_t
+        __ ldr(c_rarg1, Address(c_rarg0, 0));
+        break;
+      default:
+        ShouldNotReachHere();
+    }
+
+    // return errValue or *adr
+    *continuation_pc = __ pc();
+    __ mov(r0, c_rarg1);
+    __ ret(lr);
+  }
+#endif
+
+  /**
+   *  Arguments:
+   *
+   * Inputs:
+   *   c_rarg0   - int crc
+   *   c_rarg1   - byte* buf
+   *   c_rarg2   - int length
+   *
+   * Ouput:
+   *       rax   - int crc result
+   */
+  address generate_updateBytesCRC32() {
+    assert(UseCRC32Intrinsics, "what are we doing here?");
+
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32");
+
+    address start = __ pc();
+
+    const Register crc   = c_rarg0;  // crc
+    const Register buf   = c_rarg1;  // source java byte array address
+    const Register len   = c_rarg2;  // length
+    const Register table0 = c_rarg3; // crc_table address
+    const Register table1 = c_rarg4;
+    const Register table2 = c_rarg5;
+    const Register table3 = c_rarg6;
+    const Register tmp3 = c_rarg7;
+
+    BLOCK_COMMENT("Entry:");
+    __ enter(); // required for proper stackwalking of RuntimeStub frame
+
+    __ kernel_crc32(crc, buf, len,
+              table0, table1, table2, table3, rscratch1, rscratch2, tmp3);
+
+    __ leave(); // required for proper stackwalking of RuntimeStub frame
+    __ ret(lr);
+
+    return start;
+  }
+
+  /**
+   *  Arguments:
+   *
+   * Inputs:
+   *   c_rarg0   - int crc
+   *   c_rarg1   - byte* buf
+   *   c_rarg2   - int length
+   *   c_rarg3   - int* table
+   *
+   * Ouput:
+   *       r0   - int crc result
+   */
+  address generate_updateBytesCRC32C() {
+    assert(UseCRC32CIntrinsics, "what are we doing here?");
+
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32C");
+
+    address start = __ pc();
+
+    const Register crc   = c_rarg0;  // crc
+    const Register buf   = c_rarg1;  // source java byte array address
+    const Register len   = c_rarg2;  // length
+    const Register table0 = c_rarg3; // crc_table address
+    const Register table1 = c_rarg4;
+    const Register table2 = c_rarg5;
+    const Register table3 = c_rarg6;
+    const Register tmp3 = c_rarg7;
+
+    BLOCK_COMMENT("Entry:");
+    __ enter(); // required for proper stackwalking of RuntimeStub frame
+
+    __ kernel_crc32c(crc, buf, len,
+              table0, table1, table2, table3, rscratch1, rscratch2, tmp3);
+
+    __ leave(); // required for proper stackwalking of RuntimeStub frame
+    __ ret(lr);
+
+    return start;
+  }
+
+  /***
+   *  Arguments:
+   *
+   *  Inputs:
+   *   c_rarg0   - int   adler
+   *   c_rarg1   - byte* buff
+   *   c_rarg2   - int   len
+   *
+   * Output:
+   *   c_rarg0   - int adler result
+   */
+  address generate_updateBytesAdler32() {
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", "updateBytesAdler32");
+    address start = __ pc();
+
+    Label L_simple_by1_loop, L_nmax, L_nmax_loop, L_by16, L_by16_loop, L_by1_loop, L_do_mod, L_combine, L_by1;
+
+    // Aliases
+    Register adler  = c_rarg0;
+    Register s1     = c_rarg0;
+    Register s2     = c_rarg3;
+    Register buff   = c_rarg1;
+    Register len    = c_rarg2;
+    Register nmax  = r4;
+    Register base = r5;
+    Register count = r6;
+    Register temp0 = rscratch1;
+    Register temp1 = rscratch2;
+    Register temp2 = r7;
+
+    // Max number of bytes we can process before having to take the mod
+    // 0x15B0 is 5552 in decimal, the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1
+    unsigned long BASE = 0xfff1;
+    unsigned long NMAX = 0x15B0;
+
+    __ mov(base, BASE);
+    __ mov(nmax, NMAX);
+
+    // s1 is initialized to the lower 16 bits of adler
+    // s2 is initialized to the upper 16 bits of adler
+    __ ubfx(s2, adler, 16, 16);  // s2 = ((adler >> 16) & 0xffff)
+    __ uxth(s1, adler);          // s1 = (adler & 0xffff)
+
+    // The pipelined loop needs at least 16 elements for 1 iteration
+    // It does check this, but it is more effective to skip to the cleanup loop
+    __ cmp(len, 16);
+    __ br(Assembler::HS, L_nmax);
+    __ cbz(len, L_combine);
+
+    __ bind(L_simple_by1_loop);
+    __ ldrb(temp0, Address(__ post(buff, 1)));
+    __ add(s1, s1, temp0);
+    __ add(s2, s2, s1);
+    __ subs(len, len, 1);
+    __ br(Assembler::HI, L_simple_by1_loop);
+
+    // s1 = s1 % BASE
+    __ subs(temp0, s1, base);
+    __ csel(s1, temp0, s1, Assembler::HS);
+
+    // s2 = s2 % BASE
+    __ lsr(temp0, s2, 16);
+    __ lsl(temp1, temp0, 4);
+    __ sub(temp1, temp1, temp0);
+    __ add(s2, temp1, s2, ext::uxth);
+
+    __ subs(temp0, s2, base);
+    __ csel(s2, temp0, s2, Assembler::HS);
+
+    __ b(L_combine);
+
+    __ bind(L_nmax);
+    __ subs(len, len, nmax);
+    __ sub(count, nmax, 16);
+    __ br(Assembler::LO, L_by16);
+
+    __ bind(L_nmax_loop);
+
+    __ ldp(temp0, temp1, Address(__ post(buff, 16)));
+
+    __ add(s1, s1, temp0, ext::uxtb);
+    __ ubfx(temp2, temp0, 8, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ ubfx(temp2, temp0, 16, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ ubfx(temp2, temp0, 24, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ ubfx(temp2, temp0, 32, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ ubfx(temp2, temp0, 40, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ ubfx(temp2, temp0, 48, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp0, Assembler::LSR, 56);
+    __ add(s2, s2, s1);
+
+    __ add(s1, s1, temp1, ext::uxtb);
+    __ ubfx(temp2, temp1, 8, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ ubfx(temp2, temp1, 16, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ ubfx(temp2, temp1, 24, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ ubfx(temp2, temp1, 32, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ ubfx(temp2, temp1, 40, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ ubfx(temp2, temp1, 48, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp1, Assembler::LSR, 56);
+    __ add(s2, s2, s1);
+
+    __ subs(count, count, 16);
+    __ br(Assembler::HS, L_nmax_loop);
+
+    // s1 = s1 % BASE
+    __ lsr(temp0, s1, 16);
+    __ lsl(temp1, temp0, 4);
+    __ sub(temp1, temp1, temp0);
+    __ add(temp1, temp1, s1, ext::uxth);
+
+    __ lsr(temp0, temp1, 16);
+    __ lsl(s1, temp0, 4);
+    __ sub(s1, s1, temp0);
+    __ add(s1, s1, temp1, ext:: uxth);
+
+    __ subs(temp0, s1, base);
+    __ csel(s1, temp0, s1, Assembler::HS);
+
+    // s2 = s2 % BASE
+    __ lsr(temp0, s2, 16);
+    __ lsl(temp1, temp0, 4);
+    __ sub(temp1, temp1, temp0);
+    __ add(temp1, temp1, s2, ext::uxth);
+
+    __ lsr(temp0, temp1, 16);
+    __ lsl(s2, temp0, 4);
+    __ sub(s2, s2, temp0);
+    __ add(s2, s2, temp1, ext:: uxth);
+
+    __ subs(temp0, s2, base);
+    __ csel(s2, temp0, s2, Assembler::HS);
+
+    __ subs(len, len, nmax);
+    __ sub(count, nmax, 16);
+    __ br(Assembler::HS, L_nmax_loop);
+
+    __ bind(L_by16);
+    __ adds(len, len, count);
+    __ br(Assembler::LO, L_by1);
+
+    __ bind(L_by16_loop);
+
+    __ ldp(temp0, temp1, Address(__ post(buff, 16)));
+
+    __ add(s1, s1, temp0, ext::uxtb);
+    __ ubfx(temp2, temp0, 8, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ ubfx(temp2, temp0, 16, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ ubfx(temp2, temp0, 24, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ ubfx(temp2, temp0, 32, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ ubfx(temp2, temp0, 40, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ ubfx(temp2, temp0, 48, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp0, Assembler::LSR, 56);
+    __ add(s2, s2, s1);
+
+    __ add(s1, s1, temp1, ext::uxtb);
+    __ ubfx(temp2, temp1, 8, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ ubfx(temp2, temp1, 16, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ ubfx(temp2, temp1, 24, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ ubfx(temp2, temp1, 32, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ ubfx(temp2, temp1, 40, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ ubfx(temp2, temp1, 48, 8);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp2);
+    __ add(s2, s2, s1);
+    __ add(s1, s1, temp1, Assembler::LSR, 56);
+    __ add(s2, s2, s1);
+
+    __ subs(len, len, 16);
+    __ br(Assembler::HS, L_by16_loop);
+
+    __ bind(L_by1);
+    __ adds(len, len, 15);
+    __ br(Assembler::LO, L_do_mod);
+
+    __ bind(L_by1_loop);
+    __ ldrb(temp0, Address(__ post(buff, 1)));
+    __ add(s1, temp0, s1);
+    __ add(s2, s2, s1);
+    __ subs(len, len, 1);
+    __ br(Assembler::HS, L_by1_loop);
+
+    __ bind(L_do_mod);
+    // s1 = s1 % BASE
+    __ lsr(temp0, s1, 16);
+    __ lsl(temp1, temp0, 4);
+    __ sub(temp1, temp1, temp0);
+    __ add(temp1, temp1, s1, ext::uxth);
+
+    __ lsr(temp0, temp1, 16);
+    __ lsl(s1, temp0, 4);
+    __ sub(s1, s1, temp0);
+    __ add(s1, s1, temp1, ext:: uxth);
+
+    __ subs(temp0, s1, base);
+    __ csel(s1, temp0, s1, Assembler::HS);
+
+    // s2 = s2 % BASE
+    __ lsr(temp0, s2, 16);
+    __ lsl(temp1, temp0, 4);
+    __ sub(temp1, temp1, temp0);
+    __ add(temp1, temp1, s2, ext::uxth);
+
+    __ lsr(temp0, temp1, 16);
+    __ lsl(s2, temp0, 4);
+    __ sub(s2, s2, temp0);
+    __ add(s2, s2, temp1, ext:: uxth);
+
+    __ subs(temp0, s2, base);
+    __ csel(s2, temp0, s2, Assembler::HS);
+
+    // Combine lower bits and higher bits
+    __ bind(L_combine);
+    __ orr(s1, s1, s2, Assembler::LSL, 16); // adler = s1 | (s2 << 16)
+
+    __ ret(lr);
+
+    return start;
+  }
+
+  /**
+   *  Arguments:
+   *
+   *  Input:
+   *    c_rarg0   - x address
+   *    c_rarg1   - x length
+   *    c_rarg2   - y address
+   *    c_rarg3   - y lenth
+   *    c_rarg4   - z address
+   *    c_rarg5   - z length
+   */
+  address generate_multiplyToLen() {
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", "multiplyToLen");
+
+    address start = __ pc();
+    const Register x     = r0;
+    const Register xlen  = r1;
+    const Register y     = r2;
+    const Register ylen  = r3;
+    const Register z     = r4;
+    const Register zlen  = r5;
+
+    const Register tmp1  = r10;
+    const Register tmp2  = r11;
+    const Register tmp3  = r12;
+    const Register tmp4  = r13;
+    const Register tmp5  = r14;
+    const Register tmp6  = r15;
+    const Register tmp7  = r16;
+
+    BLOCK_COMMENT("Entry:");
+    __ enter(); // required for proper stackwalking of RuntimeStub frame
+    __ multiply_to_len(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7);
+    __ leave(); // required for proper stackwalking of RuntimeStub frame
+    __ ret(lr);
+
+    return start;
+  }
+
+  void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi,
+                      FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
+                      FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3, FloatRegister tmp4) {
+    // Karatsuba multiplication performs a 128*128 -> 256-bit
+    // multiplication in three 128-bit multiplications and a few
+    // additions.
+    //
+    // (C1:C0) = A1*B1, (D1:D0) = A0*B0, (E1:E0) = (A0+A1)(B0+B1)
+    // (A1:A0)(B1:B0) = C1:(C0+C1+D1+E1):(D1+C0+D0+E0):D0
+    //
+    // Inputs:
+    //
+    // A0 in a.d[0]     (subkey)
+    // A1 in a.d[1]
+    // (A1+A0) in a1_xor_a0.d[0]
+    //
+    // B0 in b.d[0]     (state)
+    // B1 in b.d[1]
+
+    __ ext(tmp1, __ T16B, b, b, 0x08);
+    __ pmull2(result_hi, __ T1Q, b, a, __ T2D);  // A1*B1
+    __ eor(tmp1, __ T16B, tmp1, b);            // (B1+B0)
+    __ pmull(result_lo,  __ T1Q, b, a, __ T1D);  // A0*B0
+    __ pmull(tmp2, __ T1Q, tmp1, a1_xor_a0, __ T1D); // (A1+A0)(B1+B0)
+
+    __ ext(tmp4, __ T16B, result_lo, result_hi, 0x08);
+    __ eor(tmp3, __ T16B, result_hi, result_lo); // A1*B1+A0*B0
+    __ eor(tmp2, __ T16B, tmp2, tmp4);
+    __ eor(tmp2, __ T16B, tmp2, tmp3);
+
+    // Register pair <result_hi:result_lo> holds the result of carry-less multiplication
+    __ ins(result_hi, __ D, tmp2, 0, 1);
+    __ ins(result_lo, __ D, tmp2, 1, 0);
+  }
+
+  void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi,
+                    FloatRegister p, FloatRegister z, FloatRegister t1) {
+    const FloatRegister t0 = result;
+
+    // The GCM field polynomial f is z^128 + p(z), where p =
+    // z^7+z^2+z+1.
+    //
+    //    z^128 === -p(z)  (mod (z^128 + p(z)))
+    //
+    // so, given that the product we're reducing is
+    //    a == lo + hi * z^128
+    // substituting,
+    //      === lo - hi * p(z)  (mod (z^128 + p(z)))
+    //
+    // we reduce by multiplying hi by p(z) and subtracting the result
+    // from (i.e. XORing it with) lo.  Because p has no nonzero high
+    // bits we can do this with two 64-bit multiplications, lo*p and
+    // hi*p.
+
+    __ pmull2(t0, __ T1Q, hi, p, __ T2D);
+    __ ext(t1, __ T16B, t0, z, 8);
+    __ eor(hi, __ T16B, hi, t1);
+    __ ext(t1, __ T16B, z, t0, 8);
+    __ eor(lo, __ T16B, lo, t1);
+    __ pmull(t0, __ T1Q, hi, p, __ T1D);
+    __ eor(result, __ T16B, lo, t0);
+  }
+
+  address generate_has_negatives(address &has_negatives_long) {
+    StubCodeMark mark(this, "StubRoutines", "has_negatives");
+    const int large_loop_size = 64;
+    const uint64_t UPPER_BIT_MASK=0x8080808080808080;
+    int dcache_line = VM_Version::dcache_line_size();
+
+    Register ary1 = r1, len = r2, result = r0;
+
+    __ align(CodeEntryAlignment);
+    address entry = __ pc();
+
+    __ enter();
+
+  Label RET_TRUE, RET_TRUE_NO_POP, RET_FALSE, ALIGNED, LOOP16, CHECK_16, DONE,
+        LARGE_LOOP, POST_LOOP16, LEN_OVER_15, LEN_OVER_8, POST_LOOP16_LOAD_TAIL;
+
+  __ cmp(len, 15);
+  __ br(Assembler::GT, LEN_OVER_15);
+  // The only case when execution falls into this code is when pointer is near
+  // the end of memory page and we have to avoid reading next page
+  __ add(ary1, ary1, len);
+  __ subs(len, len, 8);
+  __ br(Assembler::GT, LEN_OVER_8);
+  __ ldr(rscratch2, Address(ary1, -8));
+  __ sub(rscratch1, zr, len, __ LSL, 3);  // LSL 3 is to get bits from bytes.
+  __ lsrv(rscratch2, rscratch2, rscratch1);
+  __ tst(rscratch2, UPPER_BIT_MASK);
+  __ cset(result, Assembler::NE);
+  __ leave();
+  __ ret(lr);
+  __ bind(LEN_OVER_8);
+  __ ldp(rscratch1, rscratch2, Address(ary1, -16));
+  __ sub(len, len, 8); // no data dep., then sub can be executed while loading
+  __ tst(rscratch2, UPPER_BIT_MASK);
+  __ br(Assembler::NE, RET_TRUE_NO_POP);
+  __ sub(rscratch2, zr, len, __ LSL, 3); // LSL 3 is to get bits from bytes
+  __ lsrv(rscratch1, rscratch1, rscratch2);
+  __ tst(rscratch1, UPPER_BIT_MASK);
+  __ cset(result, Assembler::NE);
+  __ leave();
+  __ ret(lr);
+
+  Register tmp1 = r3, tmp2 = r4, tmp3 = r5, tmp4 = r6, tmp5 = r7, tmp6 = r10;
+  const RegSet spilled_regs = RegSet::range(tmp1, tmp5) + tmp6;
+
+  has_negatives_long = __ pc(); // 2nd entry point
+
+  __ enter();
+
+  __ bind(LEN_OVER_15);
+    __ push(spilled_regs, sp);
+    __ andr(rscratch2, ary1, 15); // check pointer for 16-byte alignment
+    __ cbz(rscratch2, ALIGNED);
+    __ ldp(tmp6, tmp1, Address(ary1));
+    __ mov(tmp5, 16);
+    __ sub(rscratch1, tmp5, rscratch2); // amount of bytes until aligned address
+    __ add(ary1, ary1, rscratch1);
+    __ sub(len, len, rscratch1);
+    __ orr(tmp6, tmp6, tmp1);
+    __ tst(tmp6, UPPER_BIT_MASK);
+    __ br(Assembler::NE, RET_TRUE);
+
+  __ bind(ALIGNED);
+    __ cmp(len, large_loop_size);
+    __ br(Assembler::LT, CHECK_16);
+    // Perform 16-byte load as early return in pre-loop to handle situation
+    // when initially aligned large array has negative values at starting bytes,
+    // so LARGE_LOOP would do 4 reads instead of 1 (in worst case), which is
+    // slower. Cases with negative bytes further ahead won't be affected that
+    // much. In fact, it'll be faster due to early loads, less instructions and
+    // less branches in LARGE_LOOP.
+    __ ldp(tmp6, tmp1, Address(__ post(ary1, 16)));
+    __ sub(len, len, 16);
+    __ orr(tmp6, tmp6, tmp1);
+    __ tst(tmp6, UPPER_BIT_MASK);
+    __ br(Assembler::NE, RET_TRUE);
+    __ cmp(len, large_loop_size);
+    __ br(Assembler::LT, CHECK_16);
+
+    if (SoftwarePrefetchHintDistance >= 0
+        && SoftwarePrefetchHintDistance >= dcache_line) {
+      // initial prefetch
+      __ prfm(Address(ary1, SoftwarePrefetchHintDistance - dcache_line));
+    }
+  __ bind(LARGE_LOOP);
+    if (SoftwarePrefetchHintDistance >= 0) {
+      __ prfm(Address(ary1, SoftwarePrefetchHintDistance));
+    }
+    // Issue load instructions first, since it can save few CPU/MEM cycles, also
+    // instead of 4 triples of "orr(...), addr(...);cbnz(...);" (for each ldp)
+    // better generate 7 * orr(...) + 1 andr(...) + 1 cbnz(...) which saves 3
+    // instructions per cycle and have less branches, but this approach disables
+    // early return, thus, all 64 bytes are loaded and checked every time.
+    __ ldp(tmp2, tmp3, Address(ary1));
+    __ ldp(tmp4, tmp5, Address(ary1, 16));
+    __ ldp(rscratch1, rscratch2, Address(ary1, 32));
+    __ ldp(tmp6, tmp1, Address(ary1, 48));
+    __ add(ary1, ary1, large_loop_size);
+    __ sub(len, len, large_loop_size);
+    __ orr(tmp2, tmp2, tmp3);
+    __ orr(tmp4, tmp4, tmp5);
+    __ orr(rscratch1, rscratch1, rscratch2);
+    __ orr(tmp6, tmp6, tmp1);
+    __ orr(tmp2, tmp2, tmp4);
+    __ orr(rscratch1, rscratch1, tmp6);
+    __ orr(tmp2, tmp2, rscratch1);
+    __ tst(tmp2, UPPER_BIT_MASK);
+    __ br(Assembler::NE, RET_TRUE);
+    __ cmp(len, large_loop_size);
+    __ br(Assembler::GE, LARGE_LOOP);
+
+  __ bind(CHECK_16); // small 16-byte load pre-loop
+    __ cmp(len, 16);
+    __ br(Assembler::LT, POST_LOOP16);
+
+  __ bind(LOOP16); // small 16-byte load loop
+    __ ldp(tmp2, tmp3, Address(__ post(ary1, 16)));
+    __ sub(len, len, 16);
+    __ orr(tmp2, tmp2, tmp3);
+    __ tst(tmp2, UPPER_BIT_MASK);
+    __ br(Assembler::NE, RET_TRUE);
+    __ cmp(len, 16);
+    __ br(Assembler::GE, LOOP16); // 16-byte load loop end
+
+  __ bind(POST_LOOP16); // 16-byte aligned, so we can read unconditionally
+    __ cmp(len, 8);
+    __ br(Assembler::LE, POST_LOOP16_LOAD_TAIL);
+    __ ldr(tmp3, Address(__ post(ary1, 8)));
+    __ sub(len, len, 8);
+    __ tst(tmp3, UPPER_BIT_MASK);
+    __ br(Assembler::NE, RET_TRUE);
+
+  __ bind(POST_LOOP16_LOAD_TAIL);
+    __ cbz(len, RET_FALSE); // Can't shift left by 64 when len==0
+    __ ldr(tmp1, Address(ary1));
+    __ mov(tmp2, 64);
+    __ sub(tmp4, tmp2, len, __ LSL, 3);
+    __ lslv(tmp1, tmp1, tmp4);
+    __ tst(tmp1, UPPER_BIT_MASK);
+    __ br(Assembler::NE, RET_TRUE);
+    // Fallthrough
+
+  __ bind(RET_FALSE);
+    __ pop(spilled_regs, sp);
+    __ leave();
+    __ mov(result, zr);
+    __ ret(lr);
+
+  __ bind(RET_TRUE);
+    __ pop(spilled_regs, sp);
+  __ bind(RET_TRUE_NO_POP);
+    __ leave();
+    __ mov(result, 1);
+    __ ret(lr);
+
+  __ bind(DONE);
+    __ pop(spilled_regs, sp);
+    __ leave();
+    __ ret(lr);
+    return entry;
+  }
+  /**
+   *  Arguments:
+   *
+   *  Input:
+   *  c_rarg0   - current state address
+   *  c_rarg1   - H key address
+   *  c_rarg2   - data address
+   *  c_rarg3   - number of blocks
+   *
+   *  Output:
+   *  Updated state at c_rarg0
+   */
+  address generate_ghash_processBlocks() {
+    // Bafflingly, GCM uses little-endian for the byte order, but
+    // big-endian for the bit order.  For example, the polynomial 1 is
+    // represented as the 16-byte string 80 00 00 00 | 12 bytes of 00.
+    //
+    // So, we must either reverse the bytes in each word and do
+    // everything big-endian or reverse the bits in each byte and do
+    // it little-endian.  On AArch64 it's more idiomatic to reverse
+    // the bits in each byte (we have an instruction, RBIT, to do
+    // that) and keep the data in little-endian bit order throught the
+    // calculation, bit-reversing the inputs and outputs.
+
+    StubCodeMark mark(this, "StubRoutines", "ghash_processBlocks");
+    __ align(wordSize * 2);
+    address p = __ pc();
+    __ emit_int64(0x87);  // The low-order bits of the field
+                          // polynomial (i.e. p = z^7+z^2+z+1)
+                          // repeated in the low and high parts of a
+                          // 128-bit vector
+    __ emit_int64(0x87);
+
+    __ align(CodeEntryAlignment);
+    address start = __ pc();
+
+    Register state   = c_rarg0;
+    Register subkeyH = c_rarg1;
+    Register data    = c_rarg2;
+    Register blocks  = c_rarg3;
+
+    FloatRegister vzr = v30;
+    __ eor(vzr, __ T16B, vzr, vzr); // zero register
+
+    __ ldrq(v0, Address(state));
+    __ ldrq(v1, Address(subkeyH));
+
+    __ rev64(v0, __ T16B, v0);          // Bit-reverse words in state and subkeyH
+    __ rbit(v0, __ T16B, v0);
+    __ rev64(v1, __ T16B, v1);
+    __ rbit(v1, __ T16B, v1);
+
+    __ ldrq(v26, p);
+
+    __ ext(v16, __ T16B, v1, v1, 0x08); // long-swap subkeyH into v1
+    __ eor(v16, __ T16B, v16, v1);      // xor subkeyH into subkeyL (Karatsuba: (A1+A0))
+
+    {
+      Label L_ghash_loop;
+      __ bind(L_ghash_loop);
+
+      __ ldrq(v2, Address(__ post(data, 0x10))); // Load the data, bit
+                                                 // reversing each byte
+      __ rbit(v2, __ T16B, v2);
+      __ eor(v2, __ T16B, v0, v2);   // bit-swapped data ^ bit-swapped state
+
+      // Multiply state in v2 by subkey in v1
+      ghash_multiply(/*result_lo*/v5, /*result_hi*/v7,
+                     /*a*/v1, /*b*/v2, /*a1_xor_a0*/v16,
+                     /*temps*/v6, v20, v18, v21);
+      // Reduce v7:v5 by the field polynomial
+      ghash_reduce(v0, v5, v7, v26, vzr, v20);
+
+      __ sub(blocks, blocks, 1);
+      __ cbnz(blocks, L_ghash_loop);
+    }
+
+    // The bit-reversed result is at this point in v0
+    __ rev64(v1, __ T16B, v0);
+    __ rbit(v1, __ T16B, v1);
+
+    __ st1(v1, __ T16B, state);
+    __ ret(lr);
+
+    return start;
+  }
+
+  // Continuation point for throwing of implicit exceptions that are
+  // not handled in the current activation. Fabricates an exception
+  // oop and initiates normal exception dispatching in this
+  // frame. Since we need to preserve callee-saved values (currently
+  // only for C2, but done for C1 as well) we need a callee-saved oop
+  // map and therefore have to make these stubs into RuntimeStubs
+  // rather than BufferBlobs.  If the compiler needs all registers to
+  // be preserved between the fault point and the exception handler
+  // then it must assume responsibility for that in
+  // AbstractCompiler::continuation_for_implicit_null_exception or
+  // continuation_for_implicit_division_by_zero_exception. All other
+  // implicit exceptions (e.g., NullPointerException or
+  // AbstractMethodError on entry) are either at call sites or
+  // otherwise assume that stack unwinding will be initiated, so
+  // caller saved registers were assumed volatile in the compiler.
+
+#undef __
+#define __ masm->
+
+  address generate_throw_exception(const char* name,
+                                   address runtime_entry,
+                                   Register arg1 = noreg,
+                                   Register arg2 = noreg) {
+    // Information about frame layout at time of blocking runtime call.
+    // Note that we only have to preserve callee-saved registers since
+    // the compilers are responsible for supplying a continuation point
+    // if they expect all registers to be preserved.
+    // n.b. aarch64 asserts that frame::arg_reg_save_area_bytes == 0
+    enum layout {
+      rfp_off = 0,
+      rfp_off2,
+      return_off,
+      return_off2,
+      framesize // inclusive of return address
+    };
+
+    int insts_size = 512;
+    int locs_size  = 64;
+
+    CodeBuffer code(name, insts_size, locs_size);
+    OopMapSet* oop_maps  = new OopMapSet();
+    MacroAssembler* masm = new MacroAssembler(&code);
+
+    address start = __ pc();
+
+    // This is an inlined and slightly modified version of call_VM
+    // which has the ability to fetch the return PC out of
+    // thread-local storage and also sets up last_Java_sp slightly
+    // differently than the real call_VM
+
+    __ enter(); // Save FP and LR before call
+
+    assert(is_even(framesize/2), "sp not 16-byte aligned");
+
+    // lr and fp are already in place
+    __ sub(sp, rfp, ((unsigned)framesize-4) << LogBytesPerInt); // prolog
+
+    int frame_complete = __ pc() - start;
+
+    // Set up last_Java_sp and last_Java_fp
+    address the_pc = __ pc();
+    __ set_last_Java_frame(sp, rfp, (address)NULL, rscratch1);
+
+    // Call runtime
+    if (arg1 != noreg) {
+      assert(arg2 != c_rarg1, "clobbered");
+      __ mov(c_rarg1, arg1);
+    }
+    if (arg2 != noreg) {
+      __ mov(c_rarg2, arg2);
+    }
+    __ mov(c_rarg0, rthread);
+    BLOCK_COMMENT("call runtime_entry");
+    __ mov(rscratch1, runtime_entry);
+    __ blrt(rscratch1, 3 /* number_of_arguments */, 0, 1);
+
+    // Generate oop map
+    OopMap* map = new OopMap(framesize, 0);
+
+    oop_maps->add_gc_map(the_pc - start, map);
+
+    __ reset_last_Java_frame(true);
+    __ maybe_isb();
+
+    __ leave();
+
+    // check for pending exceptions
+#ifdef ASSERT
+    Label L;
+    __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
+    __ cbnz(rscratch1, L);
+    __ should_not_reach_here();
+    __ bind(L);
+#endif // ASSERT
+    __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
+
+
+    // codeBlob framesize is in words (not VMRegImpl::slot_size)
+    RuntimeStub* stub =
+      RuntimeStub::new_runtime_stub(name,
+                                    &code,
+                                    frame_complete,
+                                    (framesize >> (LogBytesPerWord - LogBytesPerInt)),
+                                    oop_maps, false);
+    return stub->entry_point();
+  }
+
+  class MontgomeryMultiplyGenerator : public MacroAssembler {
+
+    Register Pa_base, Pb_base, Pn_base, Pm_base, inv, Rlen, Ra, Rb, Rm, Rn,
+      Pa, Pb, Pn, Pm, Rhi_ab, Rlo_ab, Rhi_mn, Rlo_mn, t0, t1, t2, Ri, Rj;
+
+    RegSet _toSave;
+    bool _squaring;
+
+  public:
+    MontgomeryMultiplyGenerator (Assembler *as, bool squaring)
+      : MacroAssembler(as->code()), _squaring(squaring) {
+
+      // Register allocation
+
+      Register reg = c_rarg0;
+      Pa_base = reg;       // Argument registers
+      if (squaring)
+        Pb_base = Pa_base;
+      else
+        Pb_base = ++reg;
+      Pn_base = ++reg;
+      Rlen= ++reg;
+      inv = ++reg;
+      Pm_base = ++reg;
+
+                          // Working registers:
+      Ra =  ++reg;        // The current digit of a, b, n, and m.
+      Rb =  ++reg;
+      Rm =  ++reg;
+      Rn =  ++reg;
+
+      Pa =  ++reg;        // Pointers to the current/next digit of a, b, n, and m.
+      Pb =  ++reg;
+      Pm =  ++reg;
+      Pn =  ++reg;
+
+      t0 =  ++reg;        // Three registers which form a
+      t1 =  ++reg;        // triple-precision accumuator.
+      t2 =  ++reg;
+
+      Ri =  ++reg;        // Inner and outer loop indexes.
+      Rj =  ++reg;
+
+      Rhi_ab = ++reg;     // Product registers: low and high parts
+      Rlo_ab = ++reg;     // of a*b and m*n.
+      Rhi_mn = ++reg;
+      Rlo_mn = ++reg;
+
+      // r19 and up are callee-saved.
+      _toSave = RegSet::range(r19, reg) + Pm_base;
+    }
+
+  private:
+    void save_regs() {
+      push(_toSave, sp);
+    }
+
+    void restore_regs() {
+      pop(_toSave, sp);
+    }
+
+    template <typename T>
+    void unroll_2(Register count, T block) {
+      Label loop, end, odd;
+      tbnz(count, 0, odd);
+      cbz(count, end);
+      align(16);
+      bind(loop);
+      (this->*block)();
+      bind(odd);
+      (this->*block)();
+      subs(count, count, 2);
+      br(Assembler::GT, loop);
+      bind(end);
+    }
+
+    template <typename T>
+    void unroll_2(Register count, T block, Register d, Register s, Register tmp) {
+      Label loop, end, odd;
+      tbnz(count, 0, odd);
+      cbz(count, end);
+      align(16);
+      bind(loop);
+      (this->*block)(d, s, tmp);
+      bind(odd);
+      (this->*block)(d, s, tmp);
+      subs(count, count, 2);
+      br(Assembler::GT, loop);
+      bind(end);
+    }
+
+    void pre1(RegisterOrConstant i) {
+      block_comment("pre1");
+      // Pa = Pa_base;
+      // Pb = Pb_base + i;
+      // Pm = Pm_base;
+      // Pn = Pn_base + i;
+      // Ra = *Pa;
+      // Rb = *Pb;
+      // Rm = *Pm;
+      // Rn = *Pn;
+      ldr(Ra, Address(Pa_base));
+      ldr(Rb, Address(Pb_base, i, Address::uxtw(LogBytesPerWord)));
+      ldr(Rm, Address(Pm_base));
+      ldr(Rn, Address(Pn_base, i, Address::uxtw(LogBytesPerWord)));
+      lea(Pa, Address(Pa_base));
+      lea(Pb, Address(Pb_base, i, Address::uxtw(LogBytesPerWord)));
+      lea(Pm, Address(Pm_base));
+      lea(Pn, Address(Pn_base, i, Address::uxtw(LogBytesPerWord)));
+
+      // Zero the m*n result.
+      mov(Rhi_mn, zr);
+      mov(Rlo_mn, zr);
+    }
+
+    // The core multiply-accumulate step of a Montgomery
+    // multiplication.  The idea is to schedule operations as a
+    // pipeline so that instructions with long latencies (loads and
+    // multiplies) have time to complete before their results are
+    // used.  This most benefits in-order implementations of the
+    // architecture but out-of-order ones also benefit.
+    void step() {
+      block_comment("step");
+      // MACC(Ra, Rb, t0, t1, t2);
+      // Ra = *++Pa;
+      // Rb = *--Pb;
+      umulh(Rhi_ab, Ra, Rb);
+      mul(Rlo_ab, Ra, Rb);
+      ldr(Ra, pre(Pa, wordSize));
+      ldr(Rb, pre(Pb, -wordSize));
+      acc(Rhi_mn, Rlo_mn, t0, t1, t2); // The pending m*n from the
+                                       // previous iteration.
+      // MACC(Rm, Rn, t0, t1, t2);
+      // Rm = *++Pm;
+      // Rn = *--Pn;
+      umulh(Rhi_mn, Rm, Rn);
+      mul(Rlo_mn, Rm, Rn);
+      ldr(Rm, pre(Pm, wordSize));
+      ldr(Rn, pre(Pn, -wordSize));
+      acc(Rhi_ab, Rlo_ab, t0, t1, t2);
+    }
+
+    void post1() {
+      block_comment("post1");
+
+      // MACC(Ra, Rb, t0, t1, t2);
+      // Ra = *++Pa;
+      // Rb = *--Pb;
+      umulh(Rhi_ab, Ra, Rb);
+      mul(Rlo_ab, Ra, Rb);
+      acc(Rhi_mn, Rlo_mn, t0, t1, t2);  // The pending m*n
+      acc(Rhi_ab, Rlo_ab, t0, t1, t2);
+
+      // *Pm = Rm = t0 * inv;
+      mul(Rm, t0, inv);
+      str(Rm, Address(Pm));
+
+      // MACC(Rm, Rn, t0, t1, t2);
+      // t0 = t1; t1 = t2; t2 = 0;
+      umulh(Rhi_mn, Rm, Rn);
+
+#ifndef PRODUCT
+      // assert(m[i] * n[0] + t0 == 0, "broken Montgomery multiply");
+      {
+        mul(Rlo_mn, Rm, Rn);
+        add(Rlo_mn, t0, Rlo_mn);
+        Label ok;
+        cbz(Rlo_mn, ok); {
+          stop("broken Montgomery multiply");
+        } bind(ok);
+      }
+#endif
+      // We have very carefully set things up so that
+      // m[i]*n[0] + t0 == 0 (mod b), so we don't have to calculate
+      // the lower half of Rm * Rn because we know the result already:
+      // it must be -t0.  t0 + (-t0) must generate a carry iff
+      // t0 != 0.  So, rather than do a mul and an adds we just set
+      // the carry flag iff t0 is nonzero.
+      //
+      // mul(Rlo_mn, Rm, Rn);
+      // adds(zr, t0, Rlo_mn);
+      subs(zr, t0, 1); // Set carry iff t0 is nonzero
+      adcs(t0, t1, Rhi_mn);
+      adc(t1, t2, zr);
+      mov(t2, zr);
+    }
+
+    void pre2(RegisterOrConstant i, RegisterOrConstant len) {
+      block_comment("pre2");
+      // Pa = Pa_base + i-len;
+      // Pb = Pb_base + len;
+      // Pm = Pm_base + i-len;
+      // Pn = Pn_base + len;
+
+      if (i.is_register()) {
+        sub(Rj, i.as_register(), len);
+      } else {
+        mov(Rj, i.as_constant());
+        sub(Rj, Rj, len);
+      }
+      // Rj == i-len
+
+      lea(Pa, Address(Pa_base, Rj, Address::uxtw(LogBytesPerWord)));
+      lea(Pb, Address(Pb_base, len, Address::uxtw(LogBytesPerWord)));
+      lea(Pm, Address(Pm_base, Rj, Address::uxtw(LogBytesPerWord)));
+      lea(Pn, Address(Pn_base, len, Address::uxtw(LogBytesPerWord)));
+
+      // Ra = *++Pa;
+      // Rb = *--Pb;
+      // Rm = *++Pm;
+      // Rn = *--Pn;
+      ldr(Ra, pre(Pa, wordSize));
+      ldr(Rb, pre(Pb, -wordSize));
+      ldr(Rm, pre(Pm, wordSize));
+      ldr(Rn, pre(Pn, -wordSize));
+
+      mov(Rhi_mn, zr);
+      mov(Rlo_mn, zr);
+    }
+
+    void post2(RegisterOrConstant i, RegisterOrConstant len) {
+      block_comment("post2");
+      if (i.is_constant()) {
+        mov(Rj, i.as_constant()-len.as_constant());
+      } else {
+        sub(Rj, i.as_register(), len);
+      }
+
+      adds(t0, t0, Rlo_mn); // The pending m*n, low part
+
+      // As soon as we know the least significant digit of our result,
+      // store it.
+      // Pm_base[i-len] = t0;
+      str(t0, Address(Pm_base, Rj, Address::uxtw(LogBytesPerWord)));
+
+      // t0 = t1; t1 = t2; t2 = 0;
+      adcs(t0, t1, Rhi_mn); // The pending m*n, high part
+      adc(t1, t2, zr);
+      mov(t2, zr);
+    }
+
+    // A carry in t0 after Montgomery multiplication means that we
+    // should subtract multiples of n from our result in m.  We'll
+    // keep doing that until there is no carry.
+    void normalize(RegisterOrConstant len) {
+      block_comment("normalize");
+      // while (t0)
+      //   t0 = sub(Pm_base, Pn_base, t0, len);
+      Label loop, post, again;
+      Register cnt = t1, i = t2; // Re-use registers; we're done with them now
+      cbz(t0, post); {
+        bind(again); {
+          mov(i, zr);
+          mov(cnt, len);
+          ldr(Rm, Address(Pm_base, i, Address::uxtw(LogBytesPerWord)));
+          ldr(Rn, Address(Pn_base, i, Address::uxtw(LogBytesPerWord)));
+          subs(zr, zr, zr); // set carry flag, i.e. no borrow
+          align(16);
+          bind(loop); {
+            sbcs(Rm, Rm, Rn);
+            str(Rm, Address(Pm_base, i, Address::uxtw(LogBytesPerWord)));
+            add(i, i, 1);
+            ldr(Rm, Address(Pm_base, i, Address::uxtw(LogBytesPerWord)));
+            ldr(Rn, Address(Pn_base, i, Address::uxtw(LogBytesPerWord)));
+            sub(cnt, cnt, 1);
+          } cbnz(cnt, loop);
+          sbc(t0, t0, zr);
+        } cbnz(t0, again);
+      } bind(post);
+    }
+
+    // Move memory at s to d, reversing words.
+    //    Increments d to end of copied memory
+    //    Destroys tmp1, tmp2
+    //    Preserves len
+    //    Leaves s pointing to the address which was in d at start
+    void reverse(Register d, Register s, Register len, Register tmp1, Register tmp2) {
+      assert(tmp1 < r19 && tmp2 < r19, "register corruption");
+
+      lea(s, Address(s, len, Address::uxtw(LogBytesPerWord)));
+      mov(tmp1, len);
+      unroll_2(tmp1, &MontgomeryMultiplyGenerator::reverse1, d, s, tmp2);
+      sub(s, d, len, ext::uxtw, LogBytesPerWord);
+    }
+    // where
+    void reverse1(Register d, Register s, Register tmp) {
+      ldr(tmp, pre(s, -wordSize));
+      ror(tmp, tmp, 32);
+      str(tmp, post(d, wordSize));
+    }
+
+    void step_squaring() {
+      // An extra ACC
+      step();
+      acc(Rhi_ab, Rlo_ab, t0, t1, t2);
+    }
+
+    void last_squaring(RegisterOrConstant i) {
+      Label dont;
+      // if ((i & 1) == 0) {
+      tbnz(i.as_register(), 0, dont); {
+        // MACC(Ra, Rb, t0, t1, t2);
+        // Ra = *++Pa;
+        // Rb = *--Pb;
+        umulh(Rhi_ab, Ra, Rb);
+        mul(Rlo_ab, Ra, Rb);
+        acc(Rhi_ab, Rlo_ab, t0, t1, t2);
+      } bind(dont);
+    }
+
+    void extra_step_squaring() {
+      acc(Rhi_mn, Rlo_mn, t0, t1, t2);  // The pending m*n
+
+      // MACC(Rm, Rn, t0, t1, t2);
+      // Rm = *++Pm;
+      // Rn = *--Pn;
+      umulh(Rhi_mn, Rm, Rn);
+      mul(Rlo_mn, Rm, Rn);
+      ldr(Rm, pre(Pm, wordSize));
+      ldr(Rn, pre(Pn, -wordSize));
+    }
+
+    void post1_squaring() {
+      acc(Rhi_mn, Rlo_mn, t0, t1, t2);  // The pending m*n
+
+      // *Pm = Rm = t0 * inv;
+      mul(Rm, t0, inv);
+      str(Rm, Address(Pm));
+
+      // MACC(Rm, Rn, t0, t1, t2);
+      // t0 = t1; t1 = t2; t2 = 0;
+      umulh(Rhi_mn, Rm, Rn);
+
+#ifndef PRODUCT
+      // assert(m[i] * n[0] + t0 == 0, "broken Montgomery multiply");
+      {
+        mul(Rlo_mn, Rm, Rn);
+        add(Rlo_mn, t0, Rlo_mn);
+        Label ok;
+        cbz(Rlo_mn, ok); {
+          stop("broken Montgomery multiply");
+        } bind(ok);
+      }
+#endif
+      // We have very carefully set things up so that
+      // m[i]*n[0] + t0 == 0 (mod b), so we don't have to calculate
+      // the lower half of Rm * Rn because we know the result already:
+      // it must be -t0.  t0 + (-t0) must generate a carry iff
+      // t0 != 0.  So, rather than do a mul and an adds we just set
+      // the carry flag iff t0 is nonzero.
+      //
+      // mul(Rlo_mn, Rm, Rn);
+      // adds(zr, t0, Rlo_mn);
+      subs(zr, t0, 1); // Set carry iff t0 is nonzero
+      adcs(t0, t1, Rhi_mn);
+      adc(t1, t2, zr);
+      mov(t2, zr);
+    }
+
+    void acc(Register Rhi, Register Rlo,
+             Register t0, Register t1, Register t2) {
+      adds(t0, t0, Rlo);
+      adcs(t1, t1, Rhi);
+      adc(t2, t2, zr);
+    }
+
+  public:
+    /**
+     * Fast Montgomery multiplication.  The derivation of the
+     * algorithm is in A Cryptographic Library for the Motorola
+     * DSP56000, Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237.
+     *
+     * Arguments:
+     *
+     * Inputs for multiplication:
+     *   c_rarg0   - int array elements a
+     *   c_rarg1   - int array elements b
+     *   c_rarg2   - int array elements n (the modulus)
+     *   c_rarg3   - int length
+     *   c_rarg4   - int inv
+     *   c_rarg5   - int array elements m (the result)
+     *
+     * Inputs for squaring:
+     *   c_rarg0   - int array elements a
+     *   c_rarg1   - int array elements n (the modulus)
+     *   c_rarg2   - int length
+     *   c_rarg3   - int inv
+     *   c_rarg4   - int array elements m (the result)
+     *
+     */
+    address generate_multiply() {
+      Label argh, nothing;
+      bind(argh);
+      stop("MontgomeryMultiply total_allocation must be <= 8192");
+
+      align(CodeEntryAlignment);
+      address entry = pc();
+
+      cbzw(Rlen, nothing);
+
+      enter();
+
+      // Make room.
+      cmpw(Rlen, 512);
+      br(Assembler::HI, argh);
+      sub(Ra, sp, Rlen, ext::uxtw, exact_log2(4 * sizeof (jint)));
+      andr(sp, Ra, -2 * wordSize);
+
+      lsrw(Rlen, Rlen, 1);  // length in longwords = len/2
+
+      {
+        // Copy input args, reversing as we go.  We use Ra as a
+        // temporary variable.
+        reverse(Ra, Pa_base, Rlen, t0, t1);
+        if (!_squaring)
+          reverse(Ra, Pb_base, Rlen, t0, t1);
+        reverse(Ra, Pn_base, Rlen, t0, t1);
+      }
+
+      // Push all call-saved registers and also Pm_base which we'll need
+      // at the end.
+      save_regs();
+
+#ifndef PRODUCT
+      // assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
+      {
+        ldr(Rn, Address(Pn_base, 0));
+        mul(Rlo_mn, Rn, inv);
+        cmp(Rlo_mn, -1);
+        Label ok;
+        br(EQ, ok); {
+          stop("broken inverse in Montgomery multiply");
+        } bind(ok);
+      }
+#endif
+
+      mov(Pm_base, Ra);
+
+      mov(t0, zr);
+      mov(t1, zr);
+      mov(t2, zr);
+
+      block_comment("for (int i = 0; i < len; i++) {");
+      mov(Ri, zr); {
+        Label loop, end;
+        cmpw(Ri, Rlen);
+        br(Assembler::GE, end);
+
+        bind(loop);
+        pre1(Ri);
+
+        block_comment("  for (j = i; j; j--) {"); {
+          movw(Rj, Ri);
+          unroll_2(Rj, &MontgomeryMultiplyGenerator::step);
+        } block_comment("  } // j");
+
+        post1();
+        addw(Ri, Ri, 1);
+        cmpw(Ri, Rlen);
+        br(Assembler::LT, loop);
+        bind(end);
+        block_comment("} // i");
+      }
+
+      block_comment("for (int i = len; i < 2*len; i++) {");
+      mov(Ri, Rlen); {
+        Label loop, end;
+        cmpw(Ri, Rlen, Assembler::LSL, 1);
+        br(Assembler::GE, end);
+
+        bind(loop);
+        pre2(Ri, Rlen);
+
+        block_comment("  for (j = len*2-i-1; j; j--) {"); {
+          lslw(Rj, Rlen, 1);
+          subw(Rj, Rj, Ri);
+          subw(Rj, Rj, 1);
+          unroll_2(Rj, &MontgomeryMultiplyGenerator::step);
+        } block_comment("  } // j");
+
+        post2(Ri, Rlen);
+        addw(Ri, Ri, 1);
+        cmpw(Ri, Rlen, Assembler::LSL, 1);
+        br(Assembler::LT, loop);
+        bind(end);
+      }
+      block_comment("} // i");
+
+      normalize(Rlen);
+
+      mov(Ra, Pm_base);  // Save Pm_base in Ra
+      restore_regs();  // Restore caller's Pm_base
+
+      // Copy our result into caller's Pm_base
+      reverse(Pm_base, Ra, Rlen, t0, t1);
+
+      leave();
+      bind(nothing);
+      ret(lr);
+
+      return entry;
+    }
+    // In C, approximately:
+
+    // void
+    // montgomery_multiply(unsigned long Pa_base[], unsigned long Pb_base[],
+    //                     unsigned long Pn_base[], unsigned long Pm_base[],
+    //                     unsigned long inv, int len) {
+    //   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
+    //   unsigned long *Pa, *Pb, *Pn, *Pm;
+    //   unsigned long Ra, Rb, Rn, Rm;
+
+    //   int i;
+
+    //   assert(inv * Pn_base[0] == -1UL, "broken inverse in Montgomery multiply");
+
+    //   for (i = 0; i < len; i++) {
+    //     int j;
+
+    //     Pa = Pa_base;
+    //     Pb = Pb_base + i;
+    //     Pm = Pm_base;
+    //     Pn = Pn_base + i;
+
+    //     Ra = *Pa;
+    //     Rb = *Pb;
+    //     Rm = *Pm;
+    //     Rn = *Pn;
+
+    //     int iters = i;
+    //     for (j = 0; iters--; j++) {
+    //       assert(Ra == Pa_base[j] && Rb == Pb_base[i-j], "must be");
+    //       MACC(Ra, Rb, t0, t1, t2);
+    //       Ra = *++Pa;
+    //       Rb = *--Pb;
+    //       assert(Rm == Pm_base[j] && Rn == Pn_base[i-j], "must be");
+    //       MACC(Rm, Rn, t0, t1, t2);
+    //       Rm = *++Pm;
+    //       Rn = *--Pn;
+    //     }
+
+    //     assert(Ra == Pa_base[i] && Rb == Pb_base[0], "must be");
+    //     MACC(Ra, Rb, t0, t1, t2);
+    //     *Pm = Rm = t0 * inv;
+    //     assert(Rm == Pm_base[i] && Rn == Pn_base[0], "must be");
+    //     MACC(Rm, Rn, t0, t1, t2);
+
+    //     assert(t0 == 0, "broken Montgomery multiply");
+
+    //     t0 = t1; t1 = t2; t2 = 0;
+    //   }
+
+    //   for (i = len; i < 2*len; i++) {
+    //     int j;
+
+    //     Pa = Pa_base + i-len;
+    //     Pb = Pb_base + len;
+    //     Pm = Pm_base + i-len;
+    //     Pn = Pn_base + len;
+
+    //     Ra = *++Pa;
+    //     Rb = *--Pb;
+    //     Rm = *++Pm;
+    //     Rn = *--Pn;
+
+    //     int iters = len*2-i-1;
+    //     for (j = i-len+1; iters--; j++) {
+    //       assert(Ra == Pa_base[j] && Rb == Pb_base[i-j], "must be");
+    //       MACC(Ra, Rb, t0, t1, t2);
+    //       Ra = *++Pa;
+    //       Rb = *--Pb;
+    //       assert(Rm == Pm_base[j] && Rn == Pn_base[i-j], "must be");
+    //       MACC(Rm, Rn, t0, t1, t2);
+    //       Rm = *++Pm;
+    //       Rn = *--Pn;
+    //     }
+
+    //     Pm_base[i-len] = t0;
+    //     t0 = t1; t1 = t2; t2 = 0;
+    //   }
+
+    //   while (t0)
+    //     t0 = sub(Pm_base, Pn_base, t0, len);
+    // }
+
+    /**
+     * Fast Montgomery squaring.  This uses asymptotically 25% fewer
+     * multiplies than Montgomery multiplication so it should be up to
+     * 25% faster.  However, its loop control is more complex and it
+     * may actually run slower on some machines.
+     *
+     * Arguments:
+     *
+     * Inputs:
+     *   c_rarg0   - int array elements a
+     *   c_rarg1   - int array elements n (the modulus)
+     *   c_rarg2   - int length
+     *   c_rarg3   - int inv
+     *   c_rarg4   - int array elements m (the result)
+     *
+     */
+    address generate_square() {
+      Label argh;
+      bind(argh);
+      stop("MontgomeryMultiply total_allocation must be <= 8192");
+
+      align(CodeEntryAlignment);
+      address entry = pc();
+
+      enter();
+
+      // Make room.
+      cmpw(Rlen, 512);
+      br(Assembler::HI, argh);
+      sub(Ra, sp, Rlen, ext::uxtw, exact_log2(4 * sizeof (jint)));
+      andr(sp, Ra, -2 * wordSize);
+
+      lsrw(Rlen, Rlen, 1);  // length in longwords = len/2
+
+      {
+        // Copy input args, reversing as we go.  We use Ra as a
+        // temporary variable.
+        reverse(Ra, Pa_base, Rlen, t0, t1);
+        reverse(Ra, Pn_base, Rlen, t0, t1);
+      }
+
+      // Push all call-saved registers and also Pm_base which we'll need
+      // at the end.
+      save_regs();
+
+      mov(Pm_base, Ra);
+
+      mov(t0, zr);
+      mov(t1, zr);
+      mov(t2, zr);
+
+      block_comment("for (int i = 0; i < len; i++) {");
+      mov(Ri, zr); {
+        Label loop, end;
+        bind(loop);
+        cmp(Ri, Rlen);
+        br(Assembler::GE, end);
+
+        pre1(Ri);
+
+        block_comment("for (j = (i+1)/2; j; j--) {"); {
+          add(Rj, Ri, 1);
+          lsr(Rj, Rj, 1);
+          unroll_2(Rj, &MontgomeryMultiplyGenerator::step_squaring);
+        } block_comment("  } // j");
+
+        last_squaring(Ri);
+
+        block_comment("  for (j = i/2; j; j--) {"); {
+          lsr(Rj, Ri, 1);
+          unroll_2(Rj, &MontgomeryMultiplyGenerator::extra_step_squaring);
+        } block_comment("  } // j");
+
+        post1_squaring();
+        add(Ri, Ri, 1);
+        cmp(Ri, Rlen);
+        br(Assembler::LT, loop);
+
+        bind(end);
+        block_comment("} // i");
+      }
+
+      block_comment("for (int i = len; i < 2*len; i++) {");
+      mov(Ri, Rlen); {
+        Label loop, end;
+        bind(loop);
+        cmp(Ri, Rlen, Assembler::LSL, 1);
+        br(Assembler::GE, end);
+
+        pre2(Ri, Rlen);
+
+        block_comment("  for (j = (2*len-i-1)/2; j; j--) {"); {
+          lsl(Rj, Rlen, 1);
+          sub(Rj, Rj, Ri);
+          sub(Rj, Rj, 1);
+          lsr(Rj, Rj, 1);
+          unroll_2(Rj, &MontgomeryMultiplyGenerator::step_squaring);
+        } block_comment("  } // j");
+
+        last_squaring(Ri);
+
+        block_comment("  for (j = (2*len-i)/2; j; j--) {"); {
+          lsl(Rj, Rlen, 1);
+          sub(Rj, Rj, Ri);
+          lsr(Rj, Rj, 1);
+          unroll_2(Rj, &MontgomeryMultiplyGenerator::extra_step_squaring);
+        } block_comment("  } // j");
+
+        post2(Ri, Rlen);
+        add(Ri, Ri, 1);
+        cmp(Ri, Rlen, Assembler::LSL, 1);
+
+        br(Assembler::LT, loop);
+        bind(end);
+        block_comment("} // i");
+      }
+
+      normalize(Rlen);
+
+      mov(Ra, Pm_base);  // Save Pm_base in Ra
+      restore_regs();  // Restore caller's Pm_base
+
+      // Copy our result into caller's Pm_base
+      reverse(Pm_base, Ra, Rlen, t0, t1);
+
+      leave();
+      ret(lr);
+
+      return entry;
+    }
+    // In C, approximately:
+
+    // void
+    // montgomery_square(unsigned long Pa_base[], unsigned long Pn_base[],
+    //                   unsigned long Pm_base[], unsigned long inv, int len) {
+    //   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
+    //   unsigned long *Pa, *Pb, *Pn, *Pm;
+    //   unsigned long Ra, Rb, Rn, Rm;
+
+    //   int i;
+
+    //   assert(inv * Pn_base[0] == -1UL, "broken inverse in Montgomery multiply");
+
+    //   for (i = 0; i < len; i++) {
+    //     int j;
+
+    //     Pa = Pa_base;
+    //     Pb = Pa_base + i;
+    //     Pm = Pm_base;
+    //     Pn = Pn_base + i;
+
+    //     Ra = *Pa;
+    //     Rb = *Pb;
+    //     Rm = *Pm;
+    //     Rn = *Pn;
+
+    //     int iters = (i+1)/2;
+    //     for (j = 0; iters--; j++) {
+    //       assert(Ra == Pa_base[j] && Rb == Pa_base[i-j], "must be");
+    //       MACC2(Ra, Rb, t0, t1, t2);
+    //       Ra = *++Pa;
+    //       Rb = *--Pb;
+    //       assert(Rm == Pm_base[j] && Rn == Pn_base[i-j], "must be");
+    //       MACC(Rm, Rn, t0, t1, t2);
+    //       Rm = *++Pm;
+    //       Rn = *--Pn;
+    //     }
+    //     if ((i & 1) == 0) {
+    //       assert(Ra == Pa_base[j], "must be");
+    //       MACC(Ra, Ra, t0, t1, t2);
+    //     }
+    //     iters = i/2;
+    //     assert(iters == i-j, "must be");
+    //     for (; iters--; j++) {
+    //       assert(Rm == Pm_base[j] && Rn == Pn_base[i-j], "must be");
+    //       MACC(Rm, Rn, t0, t1, t2);
+    //       Rm = *++Pm;
+    //       Rn = *--Pn;
+    //     }
+
+    //     *Pm = Rm = t0 * inv;
+    //     assert(Rm == Pm_base[i] && Rn == Pn_base[0], "must be");
+    //     MACC(Rm, Rn, t0, t1, t2);
+
+    //     assert(t0 == 0, "broken Montgomery multiply");
+
+    //     t0 = t1; t1 = t2; t2 = 0;
+    //   }
+
+    //   for (i = len; i < 2*len; i++) {
+    //     int start = i-len+1;
+    //     int end = start + (len - start)/2;
+    //     int j;
+
+    //     Pa = Pa_base + i-len;
+    //     Pb = Pa_base + len;
+    //     Pm = Pm_base + i-len;
+    //     Pn = Pn_base + len;
+
+    //     Ra = *++Pa;
+    //     Rb = *--Pb;
+    //     Rm = *++Pm;
+    //     Rn = *--Pn;
+
+    //     int iters = (2*len-i-1)/2;
+    //     assert(iters == end-start, "must be");
+    //     for (j = start; iters--; j++) {
+    //       assert(Ra == Pa_base[j] && Rb == Pa_base[i-j], "must be");
+    //       MACC2(Ra, Rb, t0, t1, t2);
+    //       Ra = *++Pa;
+    //       Rb = *--Pb;
+    //       assert(Rm == Pm_base[j] && Rn == Pn_base[i-j], "must be");
+    //       MACC(Rm, Rn, t0, t1, t2);
+    //       Rm = *++Pm;
+    //       Rn = *--Pn;
+    //     }
+    //     if ((i & 1) == 0) {
+    //       assert(Ra == Pa_base[j], "must be");
+    //       MACC(Ra, Ra, t0, t1, t2);
+    //     }
+    //     iters =  (2*len-i)/2;
+    //     assert(iters == len-j, "must be");
+    //     for (; iters--; j++) {
+    //       assert(Rm == Pm_base[j] && Rn == Pn_base[i-j], "must be");
+    //       MACC(Rm, Rn, t0, t1, t2);
+    //       Rm = *++Pm;
+    //       Rn = *--Pn;
+    //     }
+    //     Pm_base[i-len] = t0;
+    //     t0 = t1; t1 = t2; t2 = 0;
+    //   }
+
+    //   while (t0)
+    //     t0 = sub(Pm_base, Pn_base, t0, len);
+    // }
+  };
+
+
+  // Initialization
+  void generate_initial() {
+    // Generate initial stubs and initializes the entry points
+
+    // entry points that exist in all platforms Note: This is code
+    // that could be shared among different platforms - however the
+    // benefit seems to be smaller than the disadvantage of having a
+    // much more complicated generator structure. See also comment in
+    // stubRoutines.hpp.
+
+    StubRoutines::_forward_exception_entry = generate_forward_exception();
+
+    StubRoutines::_call_stub_entry =
+      generate_call_stub(StubRoutines::_call_stub_return_address);
+
+    // is referenced by megamorphic call
+    StubRoutines::_catch_exception_entry = generate_catch_exception();
+
+    // Build this early so it's available for the interpreter.
+    StubRoutines::_throw_StackOverflowError_entry =
+      generate_throw_exception("StackOverflowError throw_exception",
+                               CAST_FROM_FN_PTR(address,
+                                                SharedRuntime::throw_StackOverflowError));
+    StubRoutines::_throw_delayed_StackOverflowError_entry =
+      generate_throw_exception("delayed StackOverflowError throw_exception",
+                               CAST_FROM_FN_PTR(address,
+                                                SharedRuntime::throw_delayed_StackOverflowError));
+    if (UseCRC32Intrinsics) {
+      // set table address before stub generation which use it
+      StubRoutines::_crc_table_adr = (address)StubRoutines::aarch64::_crc_table;
+      StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
+    }
+  }
+
+  void generate_all() {
+    // support for verify_oop (must happen after universe_init)
+    StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
+    StubRoutines::_throw_AbstractMethodError_entry =
+      generate_throw_exception("AbstractMethodError throw_exception",
+                               CAST_FROM_FN_PTR(address,
+                                                SharedRuntime::
+                                                throw_AbstractMethodError));
+
+    StubRoutines::_throw_IncompatibleClassChangeError_entry =
+      generate_throw_exception("IncompatibleClassChangeError throw_exception",
+                               CAST_FROM_FN_PTR(address,
+                                                SharedRuntime::
+                                                throw_IncompatibleClassChangeError));
+
+    StubRoutines::_throw_NullPointerException_at_call_entry =
+      generate_throw_exception("NullPointerException at call throw_exception",
+                               CAST_FROM_FN_PTR(address,
+                                                SharedRuntime::
+                                                throw_NullPointerException_at_call));
+
+    // arraycopy stubs used by compilers
+    generate_arraycopy_stubs();
+
+    // has negatives stub for large arrays.
+    StubRoutines::aarch64::_has_negatives = generate_has_negatives(StubRoutines::aarch64::_has_negatives_long);
+
+    if (UseMultiplyToLenIntrinsic) {
+      StubRoutines::_multiplyToLen = generate_multiplyToLen();
+    }
+
+    if (UseMontgomeryMultiplyIntrinsic) {
+      StubCodeMark mark(this, "StubRoutines", "montgomeryMultiply");
+      MontgomeryMultiplyGenerator g(_masm, /*squaring*/false);
+      StubRoutines::_montgomeryMultiply = g.generate_multiply();
+    }
+
+    if (UseMontgomerySquareIntrinsic) {
+      StubCodeMark mark(this, "StubRoutines", "montgomerySquare");
+      MontgomeryMultiplyGenerator g(_masm, /*squaring*/true);
+      // We use generate_multiply() rather than generate_square()
+      // because it's faster for the sizes of modulus we care about.
+      StubRoutines::_montgomerySquare = g.generate_multiply();
+    }
+
+#ifndef BUILTIN_SIM
+    // generate GHASH intrinsics code
+    if (UseGHASHIntrinsics) {
+      StubRoutines::_ghash_processBlocks = generate_ghash_processBlocks();
+    }
+
+    if (UseAESIntrinsics) {
+      StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
+      StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
+      StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
+      StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt();
+    }
+
+    if (UseSHA1Intrinsics) {
+      StubRoutines::_sha1_implCompress     = generate_sha1_implCompress(false,   "sha1_implCompress");
+      StubRoutines::_sha1_implCompressMB   = generate_sha1_implCompress(true,    "sha1_implCompressMB");
+    }
+    if (UseSHA256Intrinsics) {
+      StubRoutines::_sha256_implCompress   = generate_sha256_implCompress(false, "sha256_implCompress");
+      StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true,  "sha256_implCompressMB");
+    }
+
+    if (UseCRC32CIntrinsics) {
+      StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C();
+    }
+
+    // generate Adler32 intrinsics code
+    if (UseAdler32Intrinsics) {
+      StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32();
+    }
+
+    // Safefetch stubs.
+    generate_safefetch("SafeFetch32", sizeof(int),     &StubRoutines::_safefetch32_entry,
+                                                       &StubRoutines::_safefetch32_fault_pc,
+                                                       &StubRoutines::_safefetch32_continuation_pc);
+    generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry,
+                                                       &StubRoutines::_safefetchN_fault_pc,
+                                                       &StubRoutines::_safefetchN_continuation_pc);
+#endif
+    StubRoutines::aarch64::set_completed();
+  }
+
+ public:
+  StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
+    if (all) {
+      generate_all();
+    } else {
+      generate_initial();
+    }
+  }
+}; // end class declaration
+
+void StubGenerator_generate(CodeBuffer* code, bool all) {
+  StubGenerator g(code, all);
+}