src/hotspot/cpu/aarch64/sharedRuntime_aarch64.cpp
changeset 47216 71c04702a3d5
parent 47094 e51eab69b50a
child 47799 1772ebf07d1f
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/cpu/aarch64/sharedRuntime_aarch64.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,3203 @@
+/*
+ * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "asm/macroAssembler.hpp"
+#include "asm/macroAssembler.inline.hpp"
+#include "code/debugInfoRec.hpp"
+#include "code/icBuffer.hpp"
+#include "code/vtableStubs.hpp"
+#include "interpreter/interpreter.hpp"
+#include "interpreter/interp_masm.hpp"
+#include "logging/log.hpp"
+#include "memory/resourceArea.hpp"
+#include "oops/compiledICHolder.hpp"
+#include "runtime/sharedRuntime.hpp"
+#include "runtime/vframeArray.hpp"
+#include "utilities/align.hpp"
+#include "vmreg_aarch64.inline.hpp"
+#ifdef COMPILER1
+#include "c1/c1_Runtime1.hpp"
+#endif
+#if defined(COMPILER2) || INCLUDE_JVMCI
+#include "adfiles/ad_aarch64.hpp"
+#include "opto/runtime.hpp"
+#endif
+#if INCLUDE_JVMCI
+#include "jvmci/jvmciJavaClasses.hpp"
+#endif
+
+#ifdef BUILTIN_SIM
+#include "../../../../../../simulator/simulator.hpp"
+#endif
+
+#define __ masm->
+
+const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
+
+class SimpleRuntimeFrame {
+
+  public:
+
+  // Most of the runtime stubs have this simple frame layout.
+  // This class exists to make the layout shared in one place.
+  // Offsets are for compiler stack slots, which are jints.
+  enum layout {
+    // The frame sender code expects that rbp will be in the "natural" place and
+    // will override any oopMap setting for it. We must therefore force the layout
+    // so that it agrees with the frame sender code.
+    // we don't expect any arg reg save area so aarch64 asserts that
+    // frame::arg_reg_save_area_bytes == 0
+    rbp_off = 0,
+    rbp_off2,
+    return_off, return_off2,
+    framesize
+  };
+};
+
+// FIXME -- this is used by C1
+class RegisterSaver {
+ public:
+  static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
+  static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
+
+  // Offsets into the register save area
+  // Used by deoptimization when it is managing result register
+  // values on its own
+
+  static int r0_offset_in_bytes(void)    { return (32 + r0->encoding()) * wordSize; }
+  static int reg_offset_in_bytes(Register r)    { return r0_offset_in_bytes() + r->encoding() * wordSize; }
+  static int rmethod_offset_in_bytes(void)    { return reg_offset_in_bytes(rmethod); }
+  static int rscratch1_offset_in_bytes(void)    { return (32 + rscratch1->encoding()) * wordSize; }
+  static int v0_offset_in_bytes(void)   { return 0; }
+  static int return_offset_in_bytes(void) { return (32 /* floats*/ + 31 /* gregs*/) * wordSize; }
+
+  // During deoptimization only the result registers need to be restored,
+  // all the other values have already been extracted.
+  static void restore_result_registers(MacroAssembler* masm);
+
+    // Capture info about frame layout
+  enum layout {
+                fpu_state_off = 0,
+                fpu_state_end = fpu_state_off+FPUStateSizeInWords-1,
+                // The frame sender code expects that rfp will be in
+                // the "natural" place and will override any oopMap
+                // setting for it. We must therefore force the layout
+                // so that it agrees with the frame sender code.
+                r0_off = fpu_state_off+FPUStateSizeInWords,
+                rfp_off = r0_off + 30 * 2,
+                return_off = rfp_off + 2,      // slot for return address
+                reg_save_size = return_off + 2};
+
+};
+
+OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
+#if defined(COMPILER2) || INCLUDE_JVMCI
+  if (save_vectors) {
+    // Save upper half of vector registers
+    int vect_words = 32 * 8 / wordSize;
+    additional_frame_words += vect_words;
+  }
+#else
+  assert(!save_vectors, "vectors are generated only by C2 and JVMCI");
+#endif
+
+  int frame_size_in_bytes = align_up(additional_frame_words*wordSize +
+                                     reg_save_size*BytesPerInt, 16);
+  // OopMap frame size is in compiler stack slots (jint's) not bytes or words
+  int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
+  // The caller will allocate additional_frame_words
+  int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
+  // CodeBlob frame size is in words.
+  int frame_size_in_words = frame_size_in_bytes / wordSize;
+  *total_frame_words = frame_size_in_words;
+
+  // Save registers, fpu state, and flags.
+
+  __ enter();
+  __ push_CPU_state(save_vectors);
+
+  // Set an oopmap for the call site.  This oopmap will map all
+  // oop-registers and debug-info registers as callee-saved.  This
+  // will allow deoptimization at this safepoint to find all possible
+  // debug-info recordings, as well as let GC find all oops.
+
+  OopMapSet *oop_maps = new OopMapSet();
+  OopMap* oop_map = new OopMap(frame_size_in_slots, 0);
+
+  for (int i = 0; i < RegisterImpl::number_of_registers; i++) {
+    Register r = as_Register(i);
+    if (r < rheapbase && r != rscratch1 && r != rscratch2) {
+      int sp_offset = 2 * (i + 32); // SP offsets are in 4-byte words,
+                                    // register slots are 8 bytes
+                                    // wide, 32 floating-point
+                                    // registers
+      oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset + additional_frame_slots),
+                                r->as_VMReg());
+    }
+  }
+
+  for (int i = 0; i < FloatRegisterImpl::number_of_registers; i++) {
+    FloatRegister r = as_FloatRegister(i);
+    int sp_offset = save_vectors ? (4 * i) : (2 * i);
+    oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset),
+                              r->as_VMReg());
+  }
+
+  return oop_map;
+}
+
+void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
+#ifndef COMPILER2
+  assert(!restore_vectors, "vectors are generated only by C2 and JVMCI");
+#endif
+  __ pop_CPU_state(restore_vectors);
+  __ leave();
+}
+
+void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
+
+  // Just restore result register. Only used by deoptimization. By
+  // now any callee save register that needs to be restored to a c2
+  // caller of the deoptee has been extracted into the vframeArray
+  // and will be stuffed into the c2i adapter we create for later
+  // restoration so only result registers need to be restored here.
+
+  // Restore fp result register
+  __ ldrd(v0, Address(sp, v0_offset_in_bytes()));
+  // Restore integer result register
+  __ ldr(r0, Address(sp, r0_offset_in_bytes()));
+
+  // Pop all of the register save are off the stack
+  __ add(sp, sp, align_up(return_offset_in_bytes(), 16));
+}
+
+// Is vector's size (in bytes) bigger than a size saved by default?
+// 8 bytes vector registers are saved by default on AArch64.
+bool SharedRuntime::is_wide_vector(int size) {
+  return size > 8;
+}
+
+size_t SharedRuntime::trampoline_size() {
+  return 16;
+}
+
+void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
+  __ mov(rscratch1, destination);
+  __ br(rscratch1);
+}
+
+// The java_calling_convention describes stack locations as ideal slots on
+// a frame with no abi restrictions. Since we must observe abi restrictions
+// (like the placement of the register window) the slots must be biased by
+// the following value.
+static int reg2offset_in(VMReg r) {
+  // Account for saved rfp and lr
+  // This should really be in_preserve_stack_slots
+  return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
+}
+
+static int reg2offset_out(VMReg r) {
+  return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
+}
+
+// ---------------------------------------------------------------------------
+// Read the array of BasicTypes from a signature, and compute where the
+// arguments should go.  Values in the VMRegPair regs array refer to 4-byte
+// quantities.  Values less than VMRegImpl::stack0 are registers, those above
+// refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
+// as framesizes are fixed.
+// VMRegImpl::stack0 refers to the first slot 0(sp).
+// and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
+// up to RegisterImpl::number_of_registers) are the 64-bit
+// integer registers.
+
+// Note: the INPUTS in sig_bt are in units of Java argument words,
+// which are 64-bit.  The OUTPUTS are in 32-bit units.
+
+// The Java calling convention is a "shifted" version of the C ABI.
+// By skipping the first C ABI register we can call non-static jni
+// methods with small numbers of arguments without having to shuffle
+// the arguments at all. Since we control the java ABI we ought to at
+// least get some advantage out of it.
+
+int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
+                                           VMRegPair *regs,
+                                           int total_args_passed,
+                                           int is_outgoing) {
+
+  // Create the mapping between argument positions and
+  // registers.
+  static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
+    j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7
+  };
+  static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
+    j_farg0, j_farg1, j_farg2, j_farg3,
+    j_farg4, j_farg5, j_farg6, j_farg7
+  };
+
+
+  uint int_args = 0;
+  uint fp_args = 0;
+  uint stk_args = 0; // inc by 2 each time
+
+  for (int i = 0; i < total_args_passed; i++) {
+    switch (sig_bt[i]) {
+    case T_BOOLEAN:
+    case T_CHAR:
+    case T_BYTE:
+    case T_SHORT:
+    case T_INT:
+      if (int_args < Argument::n_int_register_parameters_j) {
+        regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
+      } else {
+        regs[i].set1(VMRegImpl::stack2reg(stk_args));
+        stk_args += 2;
+      }
+      break;
+    case T_VOID:
+      // halves of T_LONG or T_DOUBLE
+      assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
+      regs[i].set_bad();
+      break;
+    case T_LONG:
+      assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
+      // fall through
+    case T_OBJECT:
+    case T_ARRAY:
+    case T_ADDRESS:
+      if (int_args < Argument::n_int_register_parameters_j) {
+        regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
+      } else {
+        regs[i].set2(VMRegImpl::stack2reg(stk_args));
+        stk_args += 2;
+      }
+      break;
+    case T_FLOAT:
+      if (fp_args < Argument::n_float_register_parameters_j) {
+        regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
+      } else {
+        regs[i].set1(VMRegImpl::stack2reg(stk_args));
+        stk_args += 2;
+      }
+      break;
+    case T_DOUBLE:
+      assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
+      if (fp_args < Argument::n_float_register_parameters_j) {
+        regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
+      } else {
+        regs[i].set2(VMRegImpl::stack2reg(stk_args));
+        stk_args += 2;
+      }
+      break;
+    default:
+      ShouldNotReachHere();
+      break;
+    }
+  }
+
+  return align_up(stk_args, 2);
+}
+
+// Patch the callers callsite with entry to compiled code if it exists.
+static void patch_callers_callsite(MacroAssembler *masm) {
+  Label L;
+  __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset())));
+  __ cbz(rscratch1, L);
+
+  __ enter();
+  __ push_CPU_state();
+
+  // VM needs caller's callsite
+  // VM needs target method
+  // This needs to be a long call since we will relocate this adapter to
+  // the codeBuffer and it may not reach
+
+#ifndef PRODUCT
+  assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
+#endif
+
+  __ mov(c_rarg0, rmethod);
+  __ mov(c_rarg1, lr);
+  __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
+  __ blrt(rscratch1, 2, 0, 0);
+  __ maybe_isb();
+
+  __ pop_CPU_state();
+  // restore sp
+  __ leave();
+  __ bind(L);
+}
+
+static void gen_c2i_adapter(MacroAssembler *masm,
+                            int total_args_passed,
+                            int comp_args_on_stack,
+                            const BasicType *sig_bt,
+                            const VMRegPair *regs,
+                            Label& skip_fixup) {
+  // Before we get into the guts of the C2I adapter, see if we should be here
+  // at all.  We've come from compiled code and are attempting to jump to the
+  // interpreter, which means the caller made a static call to get here
+  // (vcalls always get a compiled target if there is one).  Check for a
+  // compiled target.  If there is one, we need to patch the caller's call.
+  patch_callers_callsite(masm);
+
+  __ bind(skip_fixup);
+
+  int words_pushed = 0;
+
+  // Since all args are passed on the stack, total_args_passed *
+  // Interpreter::stackElementSize is the space we need.
+
+  int extraspace = total_args_passed * Interpreter::stackElementSize;
+
+  __ mov(r13, sp);
+
+  // stack is aligned, keep it that way
+  extraspace = align_up(extraspace, 2*wordSize);
+
+  if (extraspace)
+    __ sub(sp, sp, extraspace);
+
+  // Now write the args into the outgoing interpreter space
+  for (int i = 0; i < total_args_passed; i++) {
+    if (sig_bt[i] == T_VOID) {
+      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
+      continue;
+    }
+
+    // offset to start parameters
+    int st_off   = (total_args_passed - i - 1) * Interpreter::stackElementSize;
+    int next_off = st_off - Interpreter::stackElementSize;
+
+    // Say 4 args:
+    // i   st_off
+    // 0   32 T_LONG
+    // 1   24 T_VOID
+    // 2   16 T_OBJECT
+    // 3    8 T_BOOL
+    // -    0 return address
+    //
+    // However to make thing extra confusing. Because we can fit a long/double in
+    // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
+    // leaves one slot empty and only stores to a single slot. In this case the
+    // slot that is occupied is the T_VOID slot. See I said it was confusing.
+
+    VMReg r_1 = regs[i].first();
+    VMReg r_2 = regs[i].second();
+    if (!r_1->is_valid()) {
+      assert(!r_2->is_valid(), "");
+      continue;
+    }
+    if (r_1->is_stack()) {
+      // memory to memory use rscratch1
+      int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size
+                    + extraspace
+                    + words_pushed * wordSize);
+      if (!r_2->is_valid()) {
+        // sign extend??
+        __ ldrw(rscratch1, Address(sp, ld_off));
+        __ str(rscratch1, Address(sp, st_off));
+
+      } else {
+
+        __ ldr(rscratch1, Address(sp, ld_off));
+
+        // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
+        // T_DOUBLE and T_LONG use two slots in the interpreter
+        if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
+          // ld_off == LSW, ld_off+wordSize == MSW
+          // st_off == MSW, next_off == LSW
+          __ str(rscratch1, Address(sp, next_off));
+#ifdef ASSERT
+          // Overwrite the unused slot with known junk
+          __ mov(rscratch1, 0xdeadffffdeadaaaaul);
+          __ str(rscratch1, Address(sp, st_off));
+#endif /* ASSERT */
+        } else {
+          __ str(rscratch1, Address(sp, st_off));
+        }
+      }
+    } else if (r_1->is_Register()) {
+      Register r = r_1->as_Register();
+      if (!r_2->is_valid()) {
+        // must be only an int (or less ) so move only 32bits to slot
+        // why not sign extend??
+        __ str(r, Address(sp, st_off));
+      } else {
+        // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
+        // T_DOUBLE and T_LONG use two slots in the interpreter
+        if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
+          // long/double in gpr
+#ifdef ASSERT
+          // Overwrite the unused slot with known junk
+          __ mov(rscratch1, 0xdeadffffdeadaaabul);
+          __ str(rscratch1, Address(sp, st_off));
+#endif /* ASSERT */
+          __ str(r, Address(sp, next_off));
+        } else {
+          __ str(r, Address(sp, st_off));
+        }
+      }
+    } else {
+      assert(r_1->is_FloatRegister(), "");
+      if (!r_2->is_valid()) {
+        // only a float use just part of the slot
+        __ strs(r_1->as_FloatRegister(), Address(sp, st_off));
+      } else {
+#ifdef ASSERT
+        // Overwrite the unused slot with known junk
+        __ mov(rscratch1, 0xdeadffffdeadaaacul);
+        __ str(rscratch1, Address(sp, st_off));
+#endif /* ASSERT */
+        __ strd(r_1->as_FloatRegister(), Address(sp, next_off));
+      }
+    }
+  }
+
+  __ mov(esp, sp); // Interp expects args on caller's expression stack
+
+  __ ldr(rscratch1, Address(rmethod, in_bytes(Method::interpreter_entry_offset())));
+  __ br(rscratch1);
+}
+
+
+void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
+                                    int total_args_passed,
+                                    int comp_args_on_stack,
+                                    const BasicType *sig_bt,
+                                    const VMRegPair *regs) {
+
+  // Note: r13 contains the senderSP on entry. We must preserve it since
+  // we may do a i2c -> c2i transition if we lose a race where compiled
+  // code goes non-entrant while we get args ready.
+
+  // In addition we use r13 to locate all the interpreter args because
+  // we must align the stack to 16 bytes.
+
+  // Adapters are frameless.
+
+  // An i2c adapter is frameless because the *caller* frame, which is
+  // interpreted, routinely repairs its own esp (from
+  // interpreter_frame_last_sp), even if a callee has modified the
+  // stack pointer.  It also recalculates and aligns sp.
+
+  // A c2i adapter is frameless because the *callee* frame, which is
+  // interpreted, routinely repairs its caller's sp (from sender_sp,
+  // which is set up via the senderSP register).
+
+  // In other words, if *either* the caller or callee is interpreted, we can
+  // get the stack pointer repaired after a call.
+
+  // This is why c2i and i2c adapters cannot be indefinitely composed.
+  // In particular, if a c2i adapter were to somehow call an i2c adapter,
+  // both caller and callee would be compiled methods, and neither would
+  // clean up the stack pointer changes performed by the two adapters.
+  // If this happens, control eventually transfers back to the compiled
+  // caller, but with an uncorrected stack, causing delayed havoc.
+
+  if (VerifyAdapterCalls &&
+      (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
+#if 0
+    // So, let's test for cascading c2i/i2c adapters right now.
+    //  assert(Interpreter::contains($return_addr) ||
+    //         StubRoutines::contains($return_addr),
+    //         "i2c adapter must return to an interpreter frame");
+    __ block_comment("verify_i2c { ");
+    Label L_ok;
+    if (Interpreter::code() != NULL)
+      range_check(masm, rax, r11,
+                  Interpreter::code()->code_start(), Interpreter::code()->code_end(),
+                  L_ok);
+    if (StubRoutines::code1() != NULL)
+      range_check(masm, rax, r11,
+                  StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
+                  L_ok);
+    if (StubRoutines::code2() != NULL)
+      range_check(masm, rax, r11,
+                  StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
+                  L_ok);
+    const char* msg = "i2c adapter must return to an interpreter frame";
+    __ block_comment(msg);
+    __ stop(msg);
+    __ bind(L_ok);
+    __ block_comment("} verify_i2ce ");
+#endif
+  }
+
+  // Cut-out for having no stack args.
+  int comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
+  if (comp_args_on_stack) {
+    __ sub(rscratch1, sp, comp_words_on_stack * wordSize);
+    __ andr(sp, rscratch1, -16);
+  }
+
+  // Will jump to the compiled code just as if compiled code was doing it.
+  // Pre-load the register-jump target early, to schedule it better.
+  __ ldr(rscratch1, Address(rmethod, in_bytes(Method::from_compiled_offset())));
+
+#if INCLUDE_JVMCI
+  if (EnableJVMCI) {
+    // check if this call should be routed towards a specific entry point
+    __ ldr(rscratch2, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
+    Label no_alternative_target;
+    __ cbz(rscratch2, no_alternative_target);
+    __ mov(rscratch1, rscratch2);
+    __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
+    __ bind(no_alternative_target);
+  }
+#endif // INCLUDE_JVMCI
+
+  // Now generate the shuffle code.
+  for (int i = 0; i < total_args_passed; i++) {
+    if (sig_bt[i] == T_VOID) {
+      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
+      continue;
+    }
+
+    // Pick up 0, 1 or 2 words from SP+offset.
+
+    assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
+            "scrambled load targets?");
+    // Load in argument order going down.
+    int ld_off = (total_args_passed - i - 1)*Interpreter::stackElementSize;
+    // Point to interpreter value (vs. tag)
+    int next_off = ld_off - Interpreter::stackElementSize;
+    //
+    //
+    //
+    VMReg r_1 = regs[i].first();
+    VMReg r_2 = regs[i].second();
+    if (!r_1->is_valid()) {
+      assert(!r_2->is_valid(), "");
+      continue;
+    }
+    if (r_1->is_stack()) {
+      // Convert stack slot to an SP offset (+ wordSize to account for return address )
+      int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size;
+      if (!r_2->is_valid()) {
+        // sign extend???
+        __ ldrsw(rscratch2, Address(esp, ld_off));
+        __ str(rscratch2, Address(sp, st_off));
+      } else {
+        //
+        // We are using two optoregs. This can be either T_OBJECT,
+        // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
+        // two slots but only uses one for thr T_LONG or T_DOUBLE case
+        // So we must adjust where to pick up the data to match the
+        // interpreter.
+        //
+        // Interpreter local[n] == MSW, local[n+1] == LSW however locals
+        // are accessed as negative so LSW is at LOW address
+
+        // ld_off is MSW so get LSW
+        const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
+                           next_off : ld_off;
+        __ ldr(rscratch2, Address(esp, offset));
+        // st_off is LSW (i.e. reg.first())
+        __ str(rscratch2, Address(sp, st_off));
+      }
+    } else if (r_1->is_Register()) {  // Register argument
+      Register r = r_1->as_Register();
+      if (r_2->is_valid()) {
+        //
+        // We are using two VMRegs. This can be either T_OBJECT,
+        // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
+        // two slots but only uses one for thr T_LONG or T_DOUBLE case
+        // So we must adjust where to pick up the data to match the
+        // interpreter.
+
+        const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
+                           next_off : ld_off;
+
+        // this can be a misaligned move
+        __ ldr(r, Address(esp, offset));
+      } else {
+        // sign extend and use a full word?
+        __ ldrw(r, Address(esp, ld_off));
+      }
+    } else {
+      if (!r_2->is_valid()) {
+        __ ldrs(r_1->as_FloatRegister(), Address(esp, ld_off));
+      } else {
+        __ ldrd(r_1->as_FloatRegister(), Address(esp, next_off));
+      }
+    }
+  }
+
+  // 6243940 We might end up in handle_wrong_method if
+  // the callee is deoptimized as we race thru here. If that
+  // happens we don't want to take a safepoint because the
+  // caller frame will look interpreted and arguments are now
+  // "compiled" so it is much better to make this transition
+  // invisible to the stack walking code. Unfortunately if
+  // we try and find the callee by normal means a safepoint
+  // is possible. So we stash the desired callee in the thread
+  // and the vm will find there should this case occur.
+
+  __ str(rmethod, Address(rthread, JavaThread::callee_target_offset()));
+
+  __ br(rscratch1);
+}
+
+#ifdef BUILTIN_SIM
+static void generate_i2c_adapter_name(char *result, int total_args_passed, const BasicType *sig_bt)
+{
+  strcpy(result, "i2c(");
+  int idx = 4;
+  for (int i = 0; i < total_args_passed; i++) {
+    switch(sig_bt[i]) {
+    case T_BOOLEAN:
+      result[idx++] = 'Z';
+      break;
+    case T_CHAR:
+      result[idx++] = 'C';
+      break;
+    case T_FLOAT:
+      result[idx++] = 'F';
+      break;
+    case T_DOUBLE:
+      assert((i < (total_args_passed - 1)) && (sig_bt[i+1] == T_VOID),
+             "double must be followed by void");
+      i++;
+      result[idx++] = 'D';
+      break;
+    case T_BYTE:
+      result[idx++] = 'B';
+      break;
+    case T_SHORT:
+      result[idx++] = 'S';
+      break;
+    case T_INT:
+      result[idx++] = 'I';
+      break;
+    case T_LONG:
+      assert((i < (total_args_passed - 1)) && (sig_bt[i+1] == T_VOID),
+             "long must be followed by void");
+      i++;
+      result[idx++] = 'L';
+      break;
+    case T_OBJECT:
+      result[idx++] = 'O';
+      break;
+    case T_ARRAY:
+      result[idx++] = '[';
+      break;
+    case T_ADDRESS:
+      result[idx++] = 'P';
+      break;
+    case T_NARROWOOP:
+      result[idx++] = 'N';
+      break;
+    case T_METADATA:
+      result[idx++] = 'M';
+      break;
+    case T_NARROWKLASS:
+      result[idx++] = 'K';
+      break;
+    default:
+      result[idx++] = '?';
+      break;
+    }
+  }
+  result[idx++] = ')';
+  result[idx] = '\0';
+}
+#endif
+
+// ---------------------------------------------------------------
+AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
+                                                            int total_args_passed,
+                                                            int comp_args_on_stack,
+                                                            const BasicType *sig_bt,
+                                                            const VMRegPair *regs,
+                                                            AdapterFingerPrint* fingerprint) {
+  address i2c_entry = __ pc();
+#ifdef BUILTIN_SIM
+  char *name = NULL;
+  AArch64Simulator *sim = NULL;
+  size_t len = 65536;
+  if (NotifySimulator) {
+    name = NEW_C_HEAP_ARRAY(char, len, mtInternal);
+  }
+
+  if (name) {
+    generate_i2c_adapter_name(name, total_args_passed, sig_bt);
+    sim = AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck);
+    sim->notifyCompile(name, i2c_entry);
+  }
+#endif
+  gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
+
+  address c2i_unverified_entry = __ pc();
+  Label skip_fixup;
+
+  Label ok;
+
+  Register holder = rscratch2;
+  Register receiver = j_rarg0;
+  Register tmp = r10;  // A call-clobbered register not used for arg passing
+
+  // -------------------------------------------------------------------------
+  // Generate a C2I adapter.  On entry we know rmethod holds the Method* during calls
+  // to the interpreter.  The args start out packed in the compiled layout.  They
+  // need to be unpacked into the interpreter layout.  This will almost always
+  // require some stack space.  We grow the current (compiled) stack, then repack
+  // the args.  We  finally end in a jump to the generic interpreter entry point.
+  // On exit from the interpreter, the interpreter will restore our SP (lest the
+  // compiled code, which relys solely on SP and not FP, get sick).
+
+  {
+    __ block_comment("c2i_unverified_entry {");
+    __ load_klass(rscratch1, receiver);
+    __ ldr(tmp, Address(holder, CompiledICHolder::holder_klass_offset()));
+    __ cmp(rscratch1, tmp);
+    __ ldr(rmethod, Address(holder, CompiledICHolder::holder_method_offset()));
+    __ br(Assembler::EQ, ok);
+    __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
+
+    __ bind(ok);
+    // Method might have been compiled since the call site was patched to
+    // interpreted; if that is the case treat it as a miss so we can get
+    // the call site corrected.
+    __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset())));
+    __ cbz(rscratch1, skip_fixup);
+    __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
+    __ block_comment("} c2i_unverified_entry");
+  }
+
+  address c2i_entry = __ pc();
+
+#ifdef BUILTIN_SIM
+  if (name) {
+    name[0] = 'c';
+    name[2] = 'i';
+    sim->notifyCompile(name, c2i_entry);
+    FREE_C_HEAP_ARRAY(char, name, mtInternal);
+  }
+#endif
+
+  gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
+
+  __ flush();
+  return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
+}
+
+int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
+                                         VMRegPair *regs,
+                                         VMRegPair *regs2,
+                                         int total_args_passed) {
+  assert(regs2 == NULL, "not needed on AArch64");
+
+// We return the amount of VMRegImpl stack slots we need to reserve for all
+// the arguments NOT counting out_preserve_stack_slots.
+
+    static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
+      c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5,  c_rarg6,  c_rarg7
+    };
+    static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
+      c_farg0, c_farg1, c_farg2, c_farg3,
+      c_farg4, c_farg5, c_farg6, c_farg7
+    };
+
+    uint int_args = 0;
+    uint fp_args = 0;
+    uint stk_args = 0; // inc by 2 each time
+
+    for (int i = 0; i < total_args_passed; i++) {
+      switch (sig_bt[i]) {
+      case T_BOOLEAN:
+      case T_CHAR:
+      case T_BYTE:
+      case T_SHORT:
+      case T_INT:
+        if (int_args < Argument::n_int_register_parameters_c) {
+          regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
+        } else {
+          regs[i].set1(VMRegImpl::stack2reg(stk_args));
+          stk_args += 2;
+        }
+        break;
+      case T_LONG:
+        assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
+        // fall through
+      case T_OBJECT:
+      case T_ARRAY:
+      case T_ADDRESS:
+      case T_METADATA:
+        if (int_args < Argument::n_int_register_parameters_c) {
+          regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
+        } else {
+          regs[i].set2(VMRegImpl::stack2reg(stk_args));
+          stk_args += 2;
+        }
+        break;
+      case T_FLOAT:
+        if (fp_args < Argument::n_float_register_parameters_c) {
+          regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
+        } else {
+          regs[i].set1(VMRegImpl::stack2reg(stk_args));
+          stk_args += 2;
+        }
+        break;
+      case T_DOUBLE:
+        assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
+        if (fp_args < Argument::n_float_register_parameters_c) {
+          regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
+        } else {
+          regs[i].set2(VMRegImpl::stack2reg(stk_args));
+          stk_args += 2;
+        }
+        break;
+      case T_VOID: // Halves of longs and doubles
+        assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
+        regs[i].set_bad();
+        break;
+      default:
+        ShouldNotReachHere();
+        break;
+      }
+    }
+
+  return stk_args;
+}
+
+// On 64 bit we will store integer like items to the stack as
+// 64 bits items (sparc abi) even though java would only store
+// 32bits for a parameter. On 32bit it will simply be 32 bits
+// So this routine will do 32->32 on 32bit and 32->64 on 64bit
+static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
+  if (src.first()->is_stack()) {
+    if (dst.first()->is_stack()) {
+      // stack to stack
+      __ ldr(rscratch1, Address(rfp, reg2offset_in(src.first())));
+      __ str(rscratch1, Address(sp, reg2offset_out(dst.first())));
+    } else {
+      // stack to reg
+      __ ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first())));
+    }
+  } else if (dst.first()->is_stack()) {
+    // reg to stack
+    // Do we really have to sign extend???
+    // __ movslq(src.first()->as_Register(), src.first()->as_Register());
+    __ str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first())));
+  } else {
+    if (dst.first() != src.first()) {
+      __ sxtw(dst.first()->as_Register(), src.first()->as_Register());
+    }
+  }
+}
+
+// An oop arg. Must pass a handle not the oop itself
+static void object_move(MacroAssembler* masm,
+                        OopMap* map,
+                        int oop_handle_offset,
+                        int framesize_in_slots,
+                        VMRegPair src,
+                        VMRegPair dst,
+                        bool is_receiver,
+                        int* receiver_offset) {
+
+  // must pass a handle. First figure out the location we use as a handle
+
+  Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register();
+
+  // See if oop is NULL if it is we need no handle
+
+  if (src.first()->is_stack()) {
+
+    // Oop is already on the stack as an argument
+    int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
+    map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
+    if (is_receiver) {
+      *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
+    }
+
+    __ ldr(rscratch1, Address(rfp, reg2offset_in(src.first())));
+    __ lea(rHandle, Address(rfp, reg2offset_in(src.first())));
+    // conditionally move a NULL
+    __ cmp(rscratch1, zr);
+    __ csel(rHandle, zr, rHandle, Assembler::EQ);
+  } else {
+
+    // Oop is in an a register we must store it to the space we reserve
+    // on the stack for oop_handles and pass a handle if oop is non-NULL
+
+    const Register rOop = src.first()->as_Register();
+    int oop_slot;
+    if (rOop == j_rarg0)
+      oop_slot = 0;
+    else if (rOop == j_rarg1)
+      oop_slot = 1;
+    else if (rOop == j_rarg2)
+      oop_slot = 2;
+    else if (rOop == j_rarg3)
+      oop_slot = 3;
+    else if (rOop == j_rarg4)
+      oop_slot = 4;
+    else if (rOop == j_rarg5)
+      oop_slot = 5;
+    else if (rOop == j_rarg6)
+      oop_slot = 6;
+    else {
+      assert(rOop == j_rarg7, "wrong register");
+      oop_slot = 7;
+    }
+
+    oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
+    int offset = oop_slot*VMRegImpl::stack_slot_size;
+
+    map->set_oop(VMRegImpl::stack2reg(oop_slot));
+    // Store oop in handle area, may be NULL
+    __ str(rOop, Address(sp, offset));
+    if (is_receiver) {
+      *receiver_offset = offset;
+    }
+
+    __ cmp(rOop, zr);
+    __ lea(rHandle, Address(sp, offset));
+    // conditionally move a NULL
+    __ csel(rHandle, zr, rHandle, Assembler::EQ);
+  }
+
+  // If arg is on the stack then place it otherwise it is already in correct reg.
+  if (dst.first()->is_stack()) {
+    __ str(rHandle, Address(sp, reg2offset_out(dst.first())));
+  }
+}
+
+// A float arg may have to do float reg int reg conversion
+static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
+  assert(src.first()->is_stack() && dst.first()->is_stack() ||
+         src.first()->is_reg() && dst.first()->is_reg(), "Unexpected error");
+  if (src.first()->is_stack()) {
+    if (dst.first()->is_stack()) {
+      __ ldrw(rscratch1, Address(rfp, reg2offset_in(src.first())));
+      __ strw(rscratch1, Address(sp, reg2offset_out(dst.first())));
+    } else {
+      ShouldNotReachHere();
+    }
+  } else if (src.first() != dst.first()) {
+    if (src.is_single_phys_reg() && dst.is_single_phys_reg())
+      __ fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
+    else
+      ShouldNotReachHere();
+  }
+}
+
+// A long move
+static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
+  if (src.first()->is_stack()) {
+    if (dst.first()->is_stack()) {
+      // stack to stack
+      __ ldr(rscratch1, Address(rfp, reg2offset_in(src.first())));
+      __ str(rscratch1, Address(sp, reg2offset_out(dst.first())));
+    } else {
+      // stack to reg
+      __ ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first())));
+    }
+  } else if (dst.first()->is_stack()) {
+    // reg to stack
+    // Do we really have to sign extend???
+    // __ movslq(src.first()->as_Register(), src.first()->as_Register());
+    __ str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first())));
+  } else {
+    if (dst.first() != src.first()) {
+      __ mov(dst.first()->as_Register(), src.first()->as_Register());
+    }
+  }
+}
+
+
+// A double move
+static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
+  assert(src.first()->is_stack() && dst.first()->is_stack() ||
+         src.first()->is_reg() && dst.first()->is_reg(), "Unexpected error");
+  if (src.first()->is_stack()) {
+    if (dst.first()->is_stack()) {
+      __ ldr(rscratch1, Address(rfp, reg2offset_in(src.first())));
+      __ str(rscratch1, Address(sp, reg2offset_out(dst.first())));
+    } else {
+      ShouldNotReachHere();
+    }
+  } else if (src.first() != dst.first()) {
+    if (src.is_single_phys_reg() && dst.is_single_phys_reg())
+      __ fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
+    else
+      ShouldNotReachHere();
+  }
+}
+
+
+void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
+  // We always ignore the frame_slots arg and just use the space just below frame pointer
+  // which by this time is free to use
+  switch (ret_type) {
+  case T_FLOAT:
+    __ strs(v0, Address(rfp, -wordSize));
+    break;
+  case T_DOUBLE:
+    __ strd(v0, Address(rfp, -wordSize));
+    break;
+  case T_VOID:  break;
+  default: {
+    __ str(r0, Address(rfp, -wordSize));
+    }
+  }
+}
+
+void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
+  // We always ignore the frame_slots arg and just use the space just below frame pointer
+  // which by this time is free to use
+  switch (ret_type) {
+  case T_FLOAT:
+    __ ldrs(v0, Address(rfp, -wordSize));
+    break;
+  case T_DOUBLE:
+    __ ldrd(v0, Address(rfp, -wordSize));
+    break;
+  case T_VOID:  break;
+  default: {
+    __ ldr(r0, Address(rfp, -wordSize));
+    }
+  }
+}
+static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
+  RegSet x;
+  for ( int i = first_arg ; i < arg_count ; i++ ) {
+    if (args[i].first()->is_Register()) {
+      x = x + args[i].first()->as_Register();
+    } else if (args[i].first()->is_FloatRegister()) {
+      __ strd(args[i].first()->as_FloatRegister(), Address(__ pre(sp, -2 * wordSize)));
+    }
+  }
+  __ push(x, sp);
+}
+
+static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
+  RegSet x;
+  for ( int i = first_arg ; i < arg_count ; i++ ) {
+    if (args[i].first()->is_Register()) {
+      x = x + args[i].first()->as_Register();
+    } else {
+      ;
+    }
+  }
+  __ pop(x, sp);
+  for ( int i = first_arg ; i < arg_count ; i++ ) {
+    if (args[i].first()->is_Register()) {
+      ;
+    } else if (args[i].first()->is_FloatRegister()) {
+      __ ldrd(args[i].first()->as_FloatRegister(), Address(__ post(sp, 2 * wordSize)));
+    }
+  }
+}
+
+
+// Check GCLocker::needs_gc and enter the runtime if it's true.  This
+// keeps a new JNI critical region from starting until a GC has been
+// forced.  Save down any oops in registers and describe them in an
+// OopMap.
+static void check_needs_gc_for_critical_native(MacroAssembler* masm,
+                                               int stack_slots,
+                                               int total_c_args,
+                                               int total_in_args,
+                                               int arg_save_area,
+                                               OopMapSet* oop_maps,
+                                               VMRegPair* in_regs,
+                                               BasicType* in_sig_bt) { Unimplemented(); }
+
+// Unpack an array argument into a pointer to the body and the length
+// if the array is non-null, otherwise pass 0 for both.
+static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) { Unimplemented(); }
+
+
+class ComputeMoveOrder: public StackObj {
+  class MoveOperation: public ResourceObj {
+    friend class ComputeMoveOrder;
+   private:
+    VMRegPair        _src;
+    VMRegPair        _dst;
+    int              _src_index;
+    int              _dst_index;
+    bool             _processed;
+    MoveOperation*  _next;
+    MoveOperation*  _prev;
+
+    static int get_id(VMRegPair r) { Unimplemented(); return 0; }
+
+   public:
+    MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
+      _src(src)
+    , _src_index(src_index)
+    , _dst(dst)
+    , _dst_index(dst_index)
+    , _next(NULL)
+    , _prev(NULL)
+    , _processed(false) { Unimplemented(); }
+
+    VMRegPair src() const              { Unimplemented(); return _src; }
+    int src_id() const                 { Unimplemented(); return 0; }
+    int src_index() const              { Unimplemented(); return 0; }
+    VMRegPair dst() const              { Unimplemented(); return _src; }
+    void set_dst(int i, VMRegPair dst) { Unimplemented(); }
+    int dst_index() const              { Unimplemented(); return 0; }
+    int dst_id() const                 { Unimplemented(); return 0; }
+    MoveOperation* next() const        { Unimplemented(); return 0; }
+    MoveOperation* prev() const        { Unimplemented(); return 0; }
+    void set_processed()               { Unimplemented(); }
+    bool is_processed() const          { Unimplemented(); return 0; }
+
+    // insert
+    void break_cycle(VMRegPair temp_register) { Unimplemented(); }
+
+    void link(GrowableArray<MoveOperation*>& killer) { Unimplemented(); }
+  };
+
+ private:
+  GrowableArray<MoveOperation*> edges;
+
+ public:
+  ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
+                    BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) { Unimplemented(); }
+
+  // Collected all the move operations
+  void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) { Unimplemented(); }
+
+  // Walk the edges breaking cycles between moves.  The result list
+  // can be walked in order to produce the proper set of loads
+  GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) { Unimplemented(); return 0; }
+};
+
+
+static void rt_call(MacroAssembler* masm, address dest, int gpargs, int fpargs, int type) {
+  CodeBlob *cb = CodeCache::find_blob(dest);
+  if (cb) {
+    __ far_call(RuntimeAddress(dest));
+  } else {
+    assert((unsigned)gpargs < 256, "eek!");
+    assert((unsigned)fpargs < 32, "eek!");
+    __ lea(rscratch1, RuntimeAddress(dest));
+    if (UseBuiltinSim)   __ mov(rscratch2, (gpargs << 6) | (fpargs << 2) | type);
+    __ blrt(rscratch1, rscratch2);
+    __ maybe_isb();
+  }
+}
+
+static void verify_oop_args(MacroAssembler* masm,
+                            const methodHandle& method,
+                            const BasicType* sig_bt,
+                            const VMRegPair* regs) {
+  Register temp_reg = r19;  // not part of any compiled calling seq
+  if (VerifyOops) {
+    for (int i = 0; i < method->size_of_parameters(); i++) {
+      if (sig_bt[i] == T_OBJECT ||
+          sig_bt[i] == T_ARRAY) {
+        VMReg r = regs[i].first();
+        assert(r->is_valid(), "bad oop arg");
+        if (r->is_stack()) {
+          __ ldr(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
+          __ verify_oop(temp_reg);
+        } else {
+          __ verify_oop(r->as_Register());
+        }
+      }
+    }
+  }
+}
+
+static void gen_special_dispatch(MacroAssembler* masm,
+                                 const methodHandle& method,
+                                 const BasicType* sig_bt,
+                                 const VMRegPair* regs) {
+  verify_oop_args(masm, method, sig_bt, regs);
+  vmIntrinsics::ID iid = method->intrinsic_id();
+
+  // Now write the args into the outgoing interpreter space
+  bool     has_receiver   = false;
+  Register receiver_reg   = noreg;
+  int      member_arg_pos = -1;
+  Register member_reg     = noreg;
+  int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
+  if (ref_kind != 0) {
+    member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
+    member_reg = r19;  // known to be free at this point
+    has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
+  } else if (iid == vmIntrinsics::_invokeBasic) {
+    has_receiver = true;
+  } else {
+    fatal("unexpected intrinsic id %d", iid);
+  }
+
+  if (member_reg != noreg) {
+    // Load the member_arg into register, if necessary.
+    SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
+    VMReg r = regs[member_arg_pos].first();
+    if (r->is_stack()) {
+      __ ldr(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
+    } else {
+      // no data motion is needed
+      member_reg = r->as_Register();
+    }
+  }
+
+  if (has_receiver) {
+    // Make sure the receiver is loaded into a register.
+    assert(method->size_of_parameters() > 0, "oob");
+    assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
+    VMReg r = regs[0].first();
+    assert(r->is_valid(), "bad receiver arg");
+    if (r->is_stack()) {
+      // Porting note:  This assumes that compiled calling conventions always
+      // pass the receiver oop in a register.  If this is not true on some
+      // platform, pick a temp and load the receiver from stack.
+      fatal("receiver always in a register");
+      receiver_reg = r2;  // known to be free at this point
+      __ ldr(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
+    } else {
+      // no data motion is needed
+      receiver_reg = r->as_Register();
+    }
+  }
+
+  // Figure out which address we are really jumping to:
+  MethodHandles::generate_method_handle_dispatch(masm, iid,
+                                                 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
+}
+
+// ---------------------------------------------------------------------------
+// Generate a native wrapper for a given method.  The method takes arguments
+// in the Java compiled code convention, marshals them to the native
+// convention (handlizes oops, etc), transitions to native, makes the call,
+// returns to java state (possibly blocking), unhandlizes any result and
+// returns.
+//
+// Critical native functions are a shorthand for the use of
+// GetPrimtiveArrayCritical and disallow the use of any other JNI
+// functions.  The wrapper is expected to unpack the arguments before
+// passing them to the callee and perform checks before and after the
+// native call to ensure that they GCLocker
+// lock_critical/unlock_critical semantics are followed.  Some other
+// parts of JNI setup are skipped like the tear down of the JNI handle
+// block and the check for pending exceptions it's impossible for them
+// to be thrown.
+//
+// They are roughly structured like this:
+//    if (GCLocker::needs_gc())
+//      SharedRuntime::block_for_jni_critical();
+//    tranistion to thread_in_native
+//    unpack arrray arguments and call native entry point
+//    check for safepoint in progress
+//    check if any thread suspend flags are set
+//      call into JVM and possible unlock the JNI critical
+//      if a GC was suppressed while in the critical native.
+//    transition back to thread_in_Java
+//    return to caller
+//
+nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
+                                                const methodHandle& method,
+                                                int compile_id,
+                                                BasicType* in_sig_bt,
+                                                VMRegPair* in_regs,
+                                                BasicType ret_type) {
+#ifdef BUILTIN_SIM
+  if (NotifySimulator) {
+    // Names are up to 65536 chars long.  UTF8-coded strings are up to
+    // 3 bytes per character.  We concatenate three such strings.
+    // Yes, I know this is ridiculous, but it's debug code and glibc
+    // allocates large arrays very efficiently.
+    size_t len = (65536 * 3) * 3;
+    char *name = new char[len];
+
+    strncpy(name, method()->method_holder()->name()->as_utf8(), len);
+    strncat(name, ".", len);
+    strncat(name, method()->name()->as_utf8(), len);
+    strncat(name, method()->signature()->as_utf8(), len);
+    AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck)->notifyCompile(name, __ pc());
+    delete[] name;
+  }
+#endif
+
+  if (method->is_method_handle_intrinsic()) {
+    vmIntrinsics::ID iid = method->intrinsic_id();
+    intptr_t start = (intptr_t)__ pc();
+    int vep_offset = ((intptr_t)__ pc()) - start;
+
+    // First instruction must be a nop as it may need to be patched on deoptimisation
+    __ nop();
+    gen_special_dispatch(masm,
+                         method,
+                         in_sig_bt,
+                         in_regs);
+    int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
+    __ flush();
+    int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
+    return nmethod::new_native_nmethod(method,
+                                       compile_id,
+                                       masm->code(),
+                                       vep_offset,
+                                       frame_complete,
+                                       stack_slots / VMRegImpl::slots_per_word,
+                                       in_ByteSize(-1),
+                                       in_ByteSize(-1),
+                                       (OopMapSet*)NULL);
+  }
+  bool is_critical_native = true;
+  address native_func = method->critical_native_function();
+  if (native_func == NULL) {
+    native_func = method->native_function();
+    is_critical_native = false;
+  }
+  assert(native_func != NULL, "must have function");
+
+  // An OopMap for lock (and class if static)
+  OopMapSet *oop_maps = new OopMapSet();
+  intptr_t start = (intptr_t)__ pc();
+
+  // We have received a description of where all the java arg are located
+  // on entry to the wrapper. We need to convert these args to where
+  // the jni function will expect them. To figure out where they go
+  // we convert the java signature to a C signature by inserting
+  // the hidden arguments as arg[0] and possibly arg[1] (static method)
+
+  const int total_in_args = method->size_of_parameters();
+  int total_c_args = total_in_args;
+  if (!is_critical_native) {
+    total_c_args += 1;
+    if (method->is_static()) {
+      total_c_args++;
+    }
+  } else {
+    for (int i = 0; i < total_in_args; i++) {
+      if (in_sig_bt[i] == T_ARRAY) {
+        total_c_args++;
+      }
+    }
+  }
+
+  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
+  VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
+  BasicType* in_elem_bt = NULL;
+
+  int argc = 0;
+  if (!is_critical_native) {
+    out_sig_bt[argc++] = T_ADDRESS;
+    if (method->is_static()) {
+      out_sig_bt[argc++] = T_OBJECT;
+    }
+
+    for (int i = 0; i < total_in_args ; i++ ) {
+      out_sig_bt[argc++] = in_sig_bt[i];
+    }
+  } else {
+    Thread* THREAD = Thread::current();
+    in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
+    SignatureStream ss(method->signature());
+    for (int i = 0; i < total_in_args ; i++ ) {
+      if (in_sig_bt[i] == T_ARRAY) {
+        // Arrays are passed as int, elem* pair
+        out_sig_bt[argc++] = T_INT;
+        out_sig_bt[argc++] = T_ADDRESS;
+        Symbol* atype = ss.as_symbol(CHECK_NULL);
+        const char* at = atype->as_C_string();
+        if (strlen(at) == 2) {
+          assert(at[0] == '[', "must be");
+          switch (at[1]) {
+            case 'B': in_elem_bt[i]  = T_BYTE; break;
+            case 'C': in_elem_bt[i]  = T_CHAR; break;
+            case 'D': in_elem_bt[i]  = T_DOUBLE; break;
+            case 'F': in_elem_bt[i]  = T_FLOAT; break;
+            case 'I': in_elem_bt[i]  = T_INT; break;
+            case 'J': in_elem_bt[i]  = T_LONG; break;
+            case 'S': in_elem_bt[i]  = T_SHORT; break;
+            case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
+            default: ShouldNotReachHere();
+          }
+        }
+      } else {
+        out_sig_bt[argc++] = in_sig_bt[i];
+        in_elem_bt[i] = T_VOID;
+      }
+      if (in_sig_bt[i] != T_VOID) {
+        assert(in_sig_bt[i] == ss.type(), "must match");
+        ss.next();
+      }
+    }
+  }
+
+  // Now figure out where the args must be stored and how much stack space
+  // they require.
+  int out_arg_slots;
+  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
+
+  // Compute framesize for the wrapper.  We need to handlize all oops in
+  // incoming registers
+
+  // Calculate the total number of stack slots we will need.
+
+  // First count the abi requirement plus all of the outgoing args
+  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
+
+  // Now the space for the inbound oop handle area
+  int total_save_slots = 8 * VMRegImpl::slots_per_word;  // 8 arguments passed in registers
+  if (is_critical_native) {
+    // Critical natives may have to call out so they need a save area
+    // for register arguments.
+    int double_slots = 0;
+    int single_slots = 0;
+    for ( int i = 0; i < total_in_args; i++) {
+      if (in_regs[i].first()->is_Register()) {
+        const Register reg = in_regs[i].first()->as_Register();
+        switch (in_sig_bt[i]) {
+          case T_BOOLEAN:
+          case T_BYTE:
+          case T_SHORT:
+          case T_CHAR:
+          case T_INT:  single_slots++; break;
+          case T_ARRAY:  // specific to LP64 (7145024)
+          case T_LONG: double_slots++; break;
+          default:  ShouldNotReachHere();
+        }
+      } else if (in_regs[i].first()->is_FloatRegister()) {
+        ShouldNotReachHere();
+      }
+    }
+    total_save_slots = double_slots * 2 + single_slots;
+    // align the save area
+    if (double_slots != 0) {
+      stack_slots = align_up(stack_slots, 2);
+    }
+  }
+
+  int oop_handle_offset = stack_slots;
+  stack_slots += total_save_slots;
+
+  // Now any space we need for handlizing a klass if static method
+
+  int klass_slot_offset = 0;
+  int klass_offset = -1;
+  int lock_slot_offset = 0;
+  bool is_static = false;
+
+  if (method->is_static()) {
+    klass_slot_offset = stack_slots;
+    stack_slots += VMRegImpl::slots_per_word;
+    klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
+    is_static = true;
+  }
+
+  // Plus a lock if needed
+
+  if (method->is_synchronized()) {
+    lock_slot_offset = stack_slots;
+    stack_slots += VMRegImpl::slots_per_word;
+  }
+
+  // Now a place (+2) to save return values or temp during shuffling
+  // + 4 for return address (which we own) and saved rfp
+  stack_slots += 6;
+
+  // Ok The space we have allocated will look like:
+  //
+  //
+  // FP-> |                     |
+  //      |---------------------|
+  //      | 2 slots for moves   |
+  //      |---------------------|
+  //      | lock box (if sync)  |
+  //      |---------------------| <- lock_slot_offset
+  //      | klass (if static)   |
+  //      |---------------------| <- klass_slot_offset
+  //      | oopHandle area      |
+  //      |---------------------| <- oop_handle_offset (8 java arg registers)
+  //      | outbound memory     |
+  //      | based arguments     |
+  //      |                     |
+  //      |---------------------|
+  //      |                     |
+  // SP-> | out_preserved_slots |
+  //
+  //
+
+
+  // Now compute actual number of stack words we need rounding to make
+  // stack properly aligned.
+  stack_slots = align_up(stack_slots, StackAlignmentInSlots);
+
+  int stack_size = stack_slots * VMRegImpl::stack_slot_size;
+
+  // First thing make an ic check to see if we should even be here
+
+  // We are free to use all registers as temps without saving them and
+  // restoring them except rfp. rfp is the only callee save register
+  // as far as the interpreter and the compiler(s) are concerned.
+
+
+  const Register ic_reg = rscratch2;
+  const Register receiver = j_rarg0;
+
+  Label hit;
+  Label exception_pending;
+
+  assert_different_registers(ic_reg, receiver, rscratch1);
+  __ verify_oop(receiver);
+  __ cmp_klass(receiver, ic_reg, rscratch1);
+  __ br(Assembler::EQ, hit);
+
+  __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
+
+  // Verified entry point must be aligned
+  __ align(8);
+
+  __ bind(hit);
+
+  int vep_offset = ((intptr_t)__ pc()) - start;
+
+  // If we have to make this method not-entrant we'll overwrite its
+  // first instruction with a jump.  For this action to be legal we
+  // must ensure that this first instruction is a B, BL, NOP, BKPT,
+  // SVC, HVC, or SMC.  Make it a NOP.
+  __ nop();
+
+  // Generate stack overflow check
+  if (UseStackBanging) {
+    __ bang_stack_with_offset(JavaThread::stack_shadow_zone_size());
+  } else {
+    Unimplemented();
+  }
+
+  // Generate a new frame for the wrapper.
+  __ enter();
+  // -2 because return address is already present and so is saved rfp
+  __ sub(sp, sp, stack_size - 2*wordSize);
+
+  // Frame is now completed as far as size and linkage.
+  int frame_complete = ((intptr_t)__ pc()) - start;
+
+  // record entry into native wrapper code
+  if (NotifySimulator) {
+    __ notify(Assembler::method_entry);
+  }
+
+  // We use r20 as the oop handle for the receiver/klass
+  // It is callee save so it survives the call to native
+
+  const Register oop_handle_reg = r20;
+
+  if (is_critical_native) {
+    check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
+                                       oop_handle_offset, oop_maps, in_regs, in_sig_bt);
+  }
+
+  //
+  // We immediately shuffle the arguments so that any vm call we have to
+  // make from here on out (sync slow path, jvmti, etc.) we will have
+  // captured the oops from our caller and have a valid oopMap for
+  // them.
+
+  // -----------------
+  // The Grand Shuffle
+
+  // The Java calling convention is either equal (linux) or denser (win64) than the
+  // c calling convention. However the because of the jni_env argument the c calling
+  // convention always has at least one more (and two for static) arguments than Java.
+  // Therefore if we move the args from java -> c backwards then we will never have
+  // a register->register conflict and we don't have to build a dependency graph
+  // and figure out how to break any cycles.
+  //
+
+  // Record esp-based slot for receiver on stack for non-static methods
+  int receiver_offset = -1;
+
+  // This is a trick. We double the stack slots so we can claim
+  // the oops in the caller's frame. Since we are sure to have
+  // more args than the caller doubling is enough to make
+  // sure we can capture all the incoming oop args from the
+  // caller.
+  //
+  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
+
+  // Mark location of rfp (someday)
+  // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rfp));
+
+
+  int float_args = 0;
+  int int_args = 0;
+
+#ifdef ASSERT
+  bool reg_destroyed[RegisterImpl::number_of_registers];
+  bool freg_destroyed[FloatRegisterImpl::number_of_registers];
+  for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
+    reg_destroyed[r] = false;
+  }
+  for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
+    freg_destroyed[f] = false;
+  }
+
+#endif /* ASSERT */
+
+  // This may iterate in two different directions depending on the
+  // kind of native it is.  The reason is that for regular JNI natives
+  // the incoming and outgoing registers are offset upwards and for
+  // critical natives they are offset down.
+  GrowableArray<int> arg_order(2 * total_in_args);
+  VMRegPair tmp_vmreg;
+  tmp_vmreg.set1(r19->as_VMReg());
+
+  if (!is_critical_native) {
+    for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
+      arg_order.push(i);
+      arg_order.push(c_arg);
+    }
+  } else {
+    // Compute a valid move order, using tmp_vmreg to break any cycles
+    ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
+  }
+
+  int temploc = -1;
+  for (int ai = 0; ai < arg_order.length(); ai += 2) {
+    int i = arg_order.at(ai);
+    int c_arg = arg_order.at(ai + 1);
+    __ block_comment(err_msg("move %d -> %d", i, c_arg));
+    if (c_arg == -1) {
+      assert(is_critical_native, "should only be required for critical natives");
+      // This arg needs to be moved to a temporary
+      __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
+      in_regs[i] = tmp_vmreg;
+      temploc = i;
+      continue;
+    } else if (i == -1) {
+      assert(is_critical_native, "should only be required for critical natives");
+      // Read from the temporary location
+      assert(temploc != -1, "must be valid");
+      i = temploc;
+      temploc = -1;
+    }
+#ifdef ASSERT
+    if (in_regs[i].first()->is_Register()) {
+      assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
+    } else if (in_regs[i].first()->is_FloatRegister()) {
+      assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!");
+    }
+    if (out_regs[c_arg].first()->is_Register()) {
+      reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
+    } else if (out_regs[c_arg].first()->is_FloatRegister()) {
+      freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true;
+    }
+#endif /* ASSERT */
+    switch (in_sig_bt[i]) {
+      case T_ARRAY:
+        if (is_critical_native) {
+          unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
+          c_arg++;
+#ifdef ASSERT
+          if (out_regs[c_arg].first()->is_Register()) {
+            reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
+          } else if (out_regs[c_arg].first()->is_FloatRegister()) {
+            freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true;
+          }
+#endif
+          int_args++;
+          break;
+        }
+      case T_OBJECT:
+        assert(!is_critical_native, "no oop arguments");
+        object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
+                    ((i == 0) && (!is_static)),
+                    &receiver_offset);
+        int_args++;
+        break;
+      case T_VOID:
+        break;
+
+      case T_FLOAT:
+        float_move(masm, in_regs[i], out_regs[c_arg]);
+        float_args++;
+        break;
+
+      case T_DOUBLE:
+        assert( i + 1 < total_in_args &&
+                in_sig_bt[i + 1] == T_VOID &&
+                out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
+        double_move(masm, in_regs[i], out_regs[c_arg]);
+        float_args++;
+        break;
+
+      case T_LONG :
+        long_move(masm, in_regs[i], out_regs[c_arg]);
+        int_args++;
+        break;
+
+      case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
+
+      default:
+        move32_64(masm, in_regs[i], out_regs[c_arg]);
+        int_args++;
+    }
+  }
+
+  // point c_arg at the first arg that is already loaded in case we
+  // need to spill before we call out
+  int c_arg = total_c_args - total_in_args;
+
+  // Pre-load a static method's oop into c_rarg1.
+  if (method->is_static() && !is_critical_native) {
+
+    //  load oop into a register
+    __ movoop(c_rarg1,
+              JNIHandles::make_local(method->method_holder()->java_mirror()),
+              /*immediate*/true);
+
+    // Now handlize the static class mirror it's known not-null.
+    __ str(c_rarg1, Address(sp, klass_offset));
+    map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
+
+    // Now get the handle
+    __ lea(c_rarg1, Address(sp, klass_offset));
+    // and protect the arg if we must spill
+    c_arg--;
+  }
+
+  // Change state to native (we save the return address in the thread, since it might not
+  // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
+  // points into the right code segment. It does not have to be the correct return pc.
+  // We use the same pc/oopMap repeatedly when we call out
+
+  intptr_t the_pc = (intptr_t) __ pc();
+  oop_maps->add_gc_map(the_pc - start, map);
+
+  __ set_last_Java_frame(sp, noreg, (address)the_pc, rscratch1);
+
+  Label dtrace_method_entry, dtrace_method_entry_done;
+  {
+    unsigned long offset;
+    __ adrp(rscratch1, ExternalAddress((address)&DTraceMethodProbes), offset);
+    __ ldrb(rscratch1, Address(rscratch1, offset));
+    __ cbnzw(rscratch1, dtrace_method_entry);
+    __ bind(dtrace_method_entry_done);
+  }
+
+  // RedefineClasses() tracing support for obsolete method entry
+  if (log_is_enabled(Trace, redefine, class, obsolete)) {
+    // protect the args we've loaded
+    save_args(masm, total_c_args, c_arg, out_regs);
+    __ mov_metadata(c_rarg1, method());
+    __ call_VM_leaf(
+      CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
+      rthread, c_rarg1);
+    restore_args(masm, total_c_args, c_arg, out_regs);
+  }
+
+  // Lock a synchronized method
+
+  // Register definitions used by locking and unlocking
+
+  const Register swap_reg = r0;
+  const Register obj_reg  = r19;  // Will contain the oop
+  const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
+  const Register old_hdr  = r13;  // value of old header at unlock time
+  const Register tmp = lr;
+
+  Label slow_path_lock;
+  Label lock_done;
+
+  if (method->is_synchronized()) {
+    assert(!is_critical_native, "unhandled");
+
+    const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
+
+    // Get the handle (the 2nd argument)
+    __ mov(oop_handle_reg, c_rarg1);
+
+    // Get address of the box
+
+    __ lea(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
+
+    // Load the oop from the handle
+    __ ldr(obj_reg, Address(oop_handle_reg, 0));
+
+    if (UseBiasedLocking) {
+      __ biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp, false, lock_done, &slow_path_lock);
+    }
+
+    // Load (object->mark() | 1) into swap_reg %r0
+    __ ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
+    __ orr(swap_reg, rscratch1, 1);
+
+    // Save (object->mark() | 1) into BasicLock's displaced header
+    __ str(swap_reg, Address(lock_reg, mark_word_offset));
+
+    // src -> dest iff dest == r0 else r0 <- dest
+    { Label here;
+      __ cmpxchg_obj_header(r0, lock_reg, obj_reg, rscratch1, lock_done, /*fallthrough*/NULL);
+    }
+
+    // Hmm should this move to the slow path code area???
+
+    // Test if the oopMark is an obvious stack pointer, i.e.,
+    //  1) (mark & 3) == 0, and
+    //  2) sp <= mark < mark + os::pagesize()
+    // These 3 tests can be done by evaluating the following
+    // expression: ((mark - sp) & (3 - os::vm_page_size())),
+    // assuming both stack pointer and pagesize have their
+    // least significant 2 bits clear.
+    // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg
+
+    __ sub(swap_reg, sp, swap_reg);
+    __ neg(swap_reg, swap_reg);
+    __ ands(swap_reg, swap_reg, 3 - os::vm_page_size());
+
+    // Save the test result, for recursive case, the result is zero
+    __ str(swap_reg, Address(lock_reg, mark_word_offset));
+    __ br(Assembler::NE, slow_path_lock);
+
+    // Slow path will re-enter here
+
+    __ bind(lock_done);
+  }
+
+
+  // Finally just about ready to make the JNI call
+
+  // get JNIEnv* which is first argument to native
+  if (!is_critical_native) {
+    __ lea(c_rarg0, Address(rthread, in_bytes(JavaThread::jni_environment_offset())));
+  }
+
+  // Now set thread in native
+  __ mov(rscratch1, _thread_in_native);
+  __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
+  __ stlrw(rscratch1, rscratch2);
+
+  {
+    int return_type = 0;
+    switch (ret_type) {
+    case T_VOID: break;
+      return_type = 0; break;
+    case T_CHAR:
+    case T_BYTE:
+    case T_SHORT:
+    case T_INT:
+    case T_BOOLEAN:
+    case T_LONG:
+      return_type = 1; break;
+    case T_ARRAY:
+    case T_OBJECT:
+      return_type = 1; break;
+    case T_FLOAT:
+      return_type = 2; break;
+    case T_DOUBLE:
+      return_type = 3; break;
+    default:
+      ShouldNotReachHere();
+    }
+    rt_call(masm, native_func,
+            int_args + 2, // AArch64 passes up to 8 args in int registers
+            float_args,   // and up to 8 float args
+            return_type);
+  }
+
+  // Unpack native results.
+  switch (ret_type) {
+  case T_BOOLEAN: __ ubfx(r0, r0, 0, 8);             break;
+  case T_CHAR   : __ ubfx(r0, r0, 0, 16);            break;
+  case T_BYTE   : __ sbfx(r0, r0, 0, 8);             break;
+  case T_SHORT  : __ sbfx(r0, r0, 0, 16);            break;
+  case T_INT    : __ sbfx(r0, r0, 0, 32);            break;
+  case T_DOUBLE :
+  case T_FLOAT  :
+    // Result is in v0 we'll save as needed
+    break;
+  case T_ARRAY:                 // Really a handle
+  case T_OBJECT:                // Really a handle
+      break; // can't de-handlize until after safepoint check
+  case T_VOID: break;
+  case T_LONG: break;
+  default       : ShouldNotReachHere();
+  }
+
+  // Switch thread to "native transition" state before reading the synchronization state.
+  // This additional state is necessary because reading and testing the synchronization
+  // state is not atomic w.r.t. GC, as this scenario demonstrates:
+  //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
+  //     VM thread changes sync state to synchronizing and suspends threads for GC.
+  //     Thread A is resumed to finish this native method, but doesn't block here since it
+  //     didn't see any synchronization is progress, and escapes.
+  __ mov(rscratch1, _thread_in_native_trans);
+
+  if(os::is_MP()) {
+    if (UseMembar) {
+      __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset()));
+
+      // Force this write out before the read below
+      __ dmb(Assembler::SY);
+    } else {
+      __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
+      __ stlrw(rscratch1, rscratch2);
+
+      // Write serialization page so VM thread can do a pseudo remote membar.
+      // We use the current thread pointer to calculate a thread specific
+      // offset to write to within the page. This minimizes bus traffic
+      // due to cache line collision.
+      __ serialize_memory(rthread, r2);
+    }
+  } else {
+    __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset()));
+  }
+
+  // check for safepoint operation in progress and/or pending suspend requests
+  Label safepoint_in_progress, safepoint_in_progress_done;
+  {
+    assert(SafepointSynchronize::_not_synchronized == 0, "fix this code");
+    unsigned long offset;
+    __ adrp(rscratch1,
+            ExternalAddress((address)SafepointSynchronize::address_of_state()),
+            offset);
+    __ ldrw(rscratch1, Address(rscratch1, offset));
+    __ cbnzw(rscratch1, safepoint_in_progress);
+    __ ldrw(rscratch1, Address(rthread, JavaThread::suspend_flags_offset()));
+    __ cbnzw(rscratch1, safepoint_in_progress);
+    __ bind(safepoint_in_progress_done);
+  }
+
+  // change thread state
+  Label after_transition;
+  __ mov(rscratch1, _thread_in_Java);
+  __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
+  __ stlrw(rscratch1, rscratch2);
+  __ bind(after_transition);
+
+  Label reguard;
+  Label reguard_done;
+  __ ldrb(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset()));
+  __ cmpw(rscratch1, JavaThread::stack_guard_yellow_reserved_disabled);
+  __ br(Assembler::EQ, reguard);
+  __ bind(reguard_done);
+
+  // native result if any is live
+
+  // Unlock
+  Label unlock_done;
+  Label slow_path_unlock;
+  if (method->is_synchronized()) {
+
+    // Get locked oop from the handle we passed to jni
+    __ ldr(obj_reg, Address(oop_handle_reg, 0));
+
+    Label done;
+
+    if (UseBiasedLocking) {
+      __ biased_locking_exit(obj_reg, old_hdr, done);
+    }
+
+    // Simple recursive lock?
+
+    __ ldr(rscratch1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
+    __ cbz(rscratch1, done);
+
+    // Must save r0 if if it is live now because cmpxchg must use it
+    if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
+      save_native_result(masm, ret_type, stack_slots);
+    }
+
+
+    // get address of the stack lock
+    __ lea(r0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
+    //  get old displaced header
+    __ ldr(old_hdr, Address(r0, 0));
+
+    // Atomic swap old header if oop still contains the stack lock
+    Label succeed;
+    __ cmpxchg_obj_header(r0, old_hdr, obj_reg, rscratch1, succeed, &slow_path_unlock);
+    __ bind(succeed);
+
+    // slow path re-enters here
+    __ bind(unlock_done);
+    if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
+      restore_native_result(masm, ret_type, stack_slots);
+    }
+
+    __ bind(done);
+  }
+
+  Label dtrace_method_exit, dtrace_method_exit_done;
+  {
+    unsigned long offset;
+    __ adrp(rscratch1, ExternalAddress((address)&DTraceMethodProbes), offset);
+    __ ldrb(rscratch1, Address(rscratch1, offset));
+    __ cbnzw(rscratch1, dtrace_method_exit);
+    __ bind(dtrace_method_exit_done);
+  }
+
+  __ reset_last_Java_frame(false);
+
+  // Unbox oop result, e.g. JNIHandles::resolve result.
+  if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
+    Label done, not_weak;
+    __ cbz(r0, done);           // Use NULL as-is.
+    STATIC_ASSERT(JNIHandles::weak_tag_mask == 1u);
+    __ tbz(r0, 0, not_weak);    // Test for jweak tag.
+    // Resolve jweak.
+    __ ldr(r0, Address(r0, -JNIHandles::weak_tag_value));
+    __ verify_oop(r0);
+#if INCLUDE_ALL_GCS
+    if (UseG1GC) {
+      __ g1_write_barrier_pre(noreg /* obj */,
+                              r0 /* pre_val */,
+                              rthread /* thread */,
+                              rscratch2 /* tmp */,
+                              true /* tosca_live */,
+                              true /* expand_call */);
+    }
+#endif // INCLUDE_ALL_GCS
+    __ b(done);
+    __ bind(not_weak);
+    // Resolve (untagged) jobject.
+    __ ldr(r0, Address(r0, 0));
+    __ verify_oop(r0);
+    __ bind(done);
+  }
+
+  if (CheckJNICalls) {
+    // clear_pending_jni_exception_check
+    __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset()));
+  }
+
+  if (!is_critical_native) {
+    // reset handle block
+    __ ldr(r2, Address(rthread, JavaThread::active_handles_offset()));
+    __ str(zr, Address(r2, JNIHandleBlock::top_offset_in_bytes()));
+  }
+
+  __ leave();
+
+  if (!is_critical_native) {
+    // Any exception pending?
+    __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
+    __ cbnz(rscratch1, exception_pending);
+  }
+
+  // record exit from native wrapper code
+  if (NotifySimulator) {
+    __ notify(Assembler::method_reentry);
+  }
+
+  // We're done
+  __ ret(lr);
+
+  // Unexpected paths are out of line and go here
+
+  if (!is_critical_native) {
+    // forward the exception
+    __ bind(exception_pending);
+
+    // and forward the exception
+    __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
+  }
+
+  // Slow path locking & unlocking
+  if (method->is_synchronized()) {
+
+    __ block_comment("Slow path lock {");
+    __ bind(slow_path_lock);
+
+    // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
+    // args are (oop obj, BasicLock* lock, JavaThread* thread)
+
+    // protect the args we've loaded
+    save_args(masm, total_c_args, c_arg, out_regs);
+
+    __ mov(c_rarg0, obj_reg);
+    __ mov(c_rarg1, lock_reg);
+    __ mov(c_rarg2, rthread);
+
+    // Not a leaf but we have last_Java_frame setup as we want
+    __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
+    restore_args(masm, total_c_args, c_arg, out_regs);
+
+#ifdef ASSERT
+    { Label L;
+      __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
+      __ cbz(rscratch1, L);
+      __ stop("no pending exception allowed on exit from monitorenter");
+      __ bind(L);
+    }
+#endif
+    __ b(lock_done);
+
+    __ block_comment("} Slow path lock");
+
+    __ block_comment("Slow path unlock {");
+    __ bind(slow_path_unlock);
+
+    // If we haven't already saved the native result we must save it now as xmm registers
+    // are still exposed.
+
+    if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
+      save_native_result(masm, ret_type, stack_slots);
+    }
+
+    __ mov(c_rarg2, rthread);
+    __ lea(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
+    __ mov(c_rarg0, obj_reg);
+
+    // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
+    // NOTE that obj_reg == r19 currently
+    __ ldr(r19, Address(rthread, in_bytes(Thread::pending_exception_offset())));
+    __ str(zr, Address(rthread, in_bytes(Thread::pending_exception_offset())));
+
+    rt_call(masm, CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), 3, 0, 1);
+
+#ifdef ASSERT
+    {
+      Label L;
+      __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
+      __ cbz(rscratch1, L);
+      __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
+      __ bind(L);
+    }
+#endif /* ASSERT */
+
+    __ str(r19, Address(rthread, in_bytes(Thread::pending_exception_offset())));
+
+    if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
+      restore_native_result(masm, ret_type, stack_slots);
+    }
+    __ b(unlock_done);
+
+    __ block_comment("} Slow path unlock");
+
+  } // synchronized
+
+  // SLOW PATH Reguard the stack if needed
+
+  __ bind(reguard);
+  save_native_result(masm, ret_type, stack_slots);
+  rt_call(masm, CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages), 0, 0, 0);
+  restore_native_result(masm, ret_type, stack_slots);
+  // and continue
+  __ b(reguard_done);
+
+  // SLOW PATH safepoint
+  {
+    __ block_comment("safepoint {");
+    __ bind(safepoint_in_progress);
+
+    // Don't use call_VM as it will see a possible pending exception and forward it
+    // and never return here preventing us from clearing _last_native_pc down below.
+    //
+    save_native_result(masm, ret_type, stack_slots);
+    __ mov(c_rarg0, rthread);
+#ifndef PRODUCT
+  assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
+#endif
+    if (!is_critical_native) {
+      __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
+    } else {
+      __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
+    }
+    __ blrt(rscratch1, 1, 0, 1);
+    __ maybe_isb();
+    // Restore any method result value
+    restore_native_result(masm, ret_type, stack_slots);
+
+    if (is_critical_native) {
+      // The call above performed the transition to thread_in_Java so
+      // skip the transition logic above.
+      __ b(after_transition);
+    }
+
+    __ b(safepoint_in_progress_done);
+    __ block_comment("} safepoint");
+  }
+
+  // SLOW PATH dtrace support
+  {
+    __ block_comment("dtrace entry {");
+    __ bind(dtrace_method_entry);
+
+    // We have all of the arguments setup at this point. We must not touch any register
+    // argument registers at this point (what if we save/restore them there are no oop?
+
+    save_args(masm, total_c_args, c_arg, out_regs);
+    __ mov_metadata(c_rarg1, method());
+    __ call_VM_leaf(
+      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
+      rthread, c_rarg1);
+    restore_args(masm, total_c_args, c_arg, out_regs);
+    __ b(dtrace_method_entry_done);
+    __ block_comment("} dtrace entry");
+  }
+
+  {
+    __ block_comment("dtrace exit {");
+    __ bind(dtrace_method_exit);
+    save_native_result(masm, ret_type, stack_slots);
+    __ mov_metadata(c_rarg1, method());
+    __ call_VM_leaf(
+         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
+         rthread, c_rarg1);
+    restore_native_result(masm, ret_type, stack_slots);
+    __ b(dtrace_method_exit_done);
+    __ block_comment("} dtrace exit");
+  }
+
+
+  __ flush();
+
+  nmethod *nm = nmethod::new_native_nmethod(method,
+                                            compile_id,
+                                            masm->code(),
+                                            vep_offset,
+                                            frame_complete,
+                                            stack_slots / VMRegImpl::slots_per_word,
+                                            (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
+                                            in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
+                                            oop_maps);
+
+  if (is_critical_native) {
+    nm->set_lazy_critical_native(true);
+  }
+
+  return nm;
+
+}
+
+// this function returns the adjust size (in number of words) to a c2i adapter
+// activation for use during deoptimization
+int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
+  assert(callee_locals >= callee_parameters,
+          "test and remove; got more parms than locals");
+  if (callee_locals < callee_parameters)
+    return 0;                   // No adjustment for negative locals
+  int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
+  // diff is counted in stack words
+  return align_up(diff, 2);
+}
+
+
+//------------------------------generate_deopt_blob----------------------------
+void SharedRuntime::generate_deopt_blob() {
+  // Allocate space for the code
+  ResourceMark rm;
+  // Setup code generation tools
+  int pad = 0;
+#if INCLUDE_JVMCI
+  if (EnableJVMCI) {
+    pad += 512; // Increase the buffer size when compiling for JVMCI
+  }
+#endif
+  CodeBuffer buffer("deopt_blob", 2048+pad, 1024);
+  MacroAssembler* masm = new MacroAssembler(&buffer);
+  int frame_size_in_words;
+  OopMap* map = NULL;
+  OopMapSet *oop_maps = new OopMapSet();
+
+#ifdef BUILTIN_SIM
+  AArch64Simulator *simulator;
+  if (NotifySimulator) {
+    simulator = AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck);
+    simulator->notifyCompile(const_cast<char*>("SharedRuntime::deopt_blob"), __ pc());
+  }
+#endif
+
+  // -------------
+  // This code enters when returning to a de-optimized nmethod.  A return
+  // address has been pushed on the the stack, and return values are in
+  // registers.
+  // If we are doing a normal deopt then we were called from the patched
+  // nmethod from the point we returned to the nmethod. So the return
+  // address on the stack is wrong by NativeCall::instruction_size
+  // We will adjust the value so it looks like we have the original return
+  // address on the stack (like when we eagerly deoptimized).
+  // In the case of an exception pending when deoptimizing, we enter
+  // with a return address on the stack that points after the call we patched
+  // into the exception handler. We have the following register state from,
+  // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
+  //    r0: exception oop
+  //    r19: exception handler
+  //    r3: throwing pc
+  // So in this case we simply jam r3 into the useless return address and
+  // the stack looks just like we want.
+  //
+  // At this point we need to de-opt.  We save the argument return
+  // registers.  We call the first C routine, fetch_unroll_info().  This
+  // routine captures the return values and returns a structure which
+  // describes the current frame size and the sizes of all replacement frames.
+  // The current frame is compiled code and may contain many inlined
+  // functions, each with their own JVM state.  We pop the current frame, then
+  // push all the new frames.  Then we call the C routine unpack_frames() to
+  // populate these frames.  Finally unpack_frames() returns us the new target
+  // address.  Notice that callee-save registers are BLOWN here; they have
+  // already been captured in the vframeArray at the time the return PC was
+  // patched.
+  address start = __ pc();
+  Label cont;
+
+  // Prolog for non exception case!
+
+  // Save everything in sight.
+  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
+
+  // Normal deoptimization.  Save exec mode for unpack_frames.
+  __ movw(rcpool, Deoptimization::Unpack_deopt); // callee-saved
+  __ b(cont);
+
+  int reexecute_offset = __ pc() - start;
+#if defined(INCLUDE_JVMCI) && !defined(COMPILER1)
+  if (EnableJVMCI && UseJVMCICompiler) {
+    // JVMCI does not use this kind of deoptimization
+    __ should_not_reach_here();
+  }
+#endif
+
+  // Reexecute case
+  // return address is the pc describes what bci to do re-execute at
+
+  // No need to update map as each call to save_live_registers will produce identical oopmap
+  (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
+
+  __ movw(rcpool, Deoptimization::Unpack_reexecute); // callee-saved
+  __ b(cont);
+
+#if INCLUDE_JVMCI
+  Label after_fetch_unroll_info_call;
+  int implicit_exception_uncommon_trap_offset = 0;
+  int uncommon_trap_offset = 0;
+
+  if (EnableJVMCI) {
+    implicit_exception_uncommon_trap_offset = __ pc() - start;
+
+    __ ldr(lr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
+    __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
+
+    uncommon_trap_offset = __ pc() - start;
+
+    // Save everything in sight.
+    RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
+    // fetch_unroll_info needs to call last_java_frame()
+    Label retaddr;
+    __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
+
+    __ ldrw(c_rarg1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset())));
+    __ movw(rscratch1, -1);
+    __ strw(rscratch1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset())));
+
+    __ movw(rcpool, (int32_t)Deoptimization::Unpack_reexecute);
+    __ mov(c_rarg0, rthread);
+    __ movw(c_rarg2, rcpool); // exec mode
+    __ lea(rscratch1,
+           RuntimeAddress(CAST_FROM_FN_PTR(address,
+                                           Deoptimization::uncommon_trap)));
+    __ blrt(rscratch1, 2, 0, MacroAssembler::ret_type_integral);
+    __ bind(retaddr);
+    oop_maps->add_gc_map( __ pc()-start, map->deep_copy());
+
+    __ reset_last_Java_frame(false);
+
+    __ b(after_fetch_unroll_info_call);
+  } // EnableJVMCI
+#endif // INCLUDE_JVMCI
+
+  int exception_offset = __ pc() - start;
+
+  // Prolog for exception case
+
+  // all registers are dead at this entry point, except for r0, and
+  // r3 which contain the exception oop and exception pc
+  // respectively.  Set them in TLS and fall thru to the
+  // unpack_with_exception_in_tls entry point.
+
+  __ str(r3, Address(rthread, JavaThread::exception_pc_offset()));
+  __ str(r0, Address(rthread, JavaThread::exception_oop_offset()));
+
+  int exception_in_tls_offset = __ pc() - start;
+
+  // new implementation because exception oop is now passed in JavaThread
+
+  // Prolog for exception case
+  // All registers must be preserved because they might be used by LinearScan
+  // Exceptiop oop and throwing PC are passed in JavaThread
+  // tos: stack at point of call to method that threw the exception (i.e. only
+  // args are on the stack, no return address)
+
+  // The return address pushed by save_live_registers will be patched
+  // later with the throwing pc. The correct value is not available
+  // now because loading it from memory would destroy registers.
+
+  // NB: The SP at this point must be the SP of the method that is
+  // being deoptimized.  Deoptimization assumes that the frame created
+  // here by save_live_registers is immediately below the method's SP.
+  // This is a somewhat fragile mechanism.
+
+  // Save everything in sight.
+  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
+
+  // Now it is safe to overwrite any register
+
+  // Deopt during an exception.  Save exec mode for unpack_frames.
+  __ mov(rcpool, Deoptimization::Unpack_exception); // callee-saved
+
+  // load throwing pc from JavaThread and patch it as the return address
+  // of the current frame. Then clear the field in JavaThread
+
+  __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset()));
+  __ str(r3, Address(rfp, wordSize));
+  __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
+
+#ifdef ASSERT
+  // verify that there is really an exception oop in JavaThread
+  __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
+  __ verify_oop(r0);
+
+  // verify that there is no pending exception
+  Label no_pending_exception;
+  __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
+  __ cbz(rscratch1, no_pending_exception);
+  __ stop("must not have pending exception here");
+  __ bind(no_pending_exception);
+#endif
+
+  __ bind(cont);
+
+  // Call C code.  Need thread and this frame, but NOT official VM entry
+  // crud.  We cannot block on this call, no GC can happen.
+  //
+  // UnrollBlock* fetch_unroll_info(JavaThread* thread)
+
+  // fetch_unroll_info needs to call last_java_frame().
+
+  Label retaddr;
+  __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
+#ifdef ASSERT0
+  { Label L;
+    __ ldr(rscratch1, Address(rthread,
+                              JavaThread::last_Java_fp_offset()));
+    __ cbz(rscratch1, L);
+    __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
+    __ bind(L);
+  }
+#endif // ASSERT
+  __ mov(c_rarg0, rthread);
+  __ mov(c_rarg1, rcpool);
+  __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
+  __ blrt(rscratch1, 1, 0, 1);
+  __ bind(retaddr);
+
+  // Need to have an oopmap that tells fetch_unroll_info where to
+  // find any register it might need.
+  oop_maps->add_gc_map(__ pc() - start, map);
+
+  __ reset_last_Java_frame(false);
+
+#if INCLUDE_JVMCI
+  if (EnableJVMCI) {
+    __ bind(after_fetch_unroll_info_call);
+  }
+#endif
+
+  // Load UnrollBlock* into r5
+  __ mov(r5, r0);
+
+  __ ldrw(rcpool, Address(r5, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
+   Label noException;
+  __ cmpw(rcpool, Deoptimization::Unpack_exception);   // Was exception pending?
+  __ br(Assembler::NE, noException);
+  __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
+  // QQQ this is useless it was NULL above
+  __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset()));
+  __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
+  __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
+
+  __ verify_oop(r0);
+
+  // Overwrite the result registers with the exception results.
+  __ str(r0, Address(sp, RegisterSaver::r0_offset_in_bytes()));
+  // I think this is useless
+  // __ str(r3, Address(sp, RegisterSaver::r3_offset_in_bytes()));
+
+  __ bind(noException);
+
+  // Only register save data is on the stack.
+  // Now restore the result registers.  Everything else is either dead
+  // or captured in the vframeArray.
+  RegisterSaver::restore_result_registers(masm);
+
+  // All of the register save area has been popped of the stack. Only the
+  // return address remains.
+
+  // Pop all the frames we must move/replace.
+  //
+  // Frame picture (youngest to oldest)
+  // 1: self-frame (no frame link)
+  // 2: deopting frame  (no frame link)
+  // 3: caller of deopting frame (could be compiled/interpreted).
+  //
+  // Note: by leaving the return address of self-frame on the stack
+  // and using the size of frame 2 to adjust the stack
+  // when we are done the return to frame 3 will still be on the stack.
+
+  // Pop deoptimized frame
+  __ ldrw(r2, Address(r5, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
+  __ sub(r2, r2, 2 * wordSize);
+  __ add(sp, sp, r2);
+  __ ldp(rfp, lr, __ post(sp, 2 * wordSize));
+  // LR should now be the return address to the caller (3)
+
+#ifdef ASSERT
+  // Compilers generate code that bang the stack by as much as the
+  // interpreter would need. So this stack banging should never
+  // trigger a fault. Verify that it does not on non product builds.
+  if (UseStackBanging) {
+    __ ldrw(r19, Address(r5, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
+    __ bang_stack_size(r19, r2);
+  }
+#endif
+  // Load address of array of frame pcs into r2
+  __ ldr(r2, Address(r5, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
+
+  // Trash the old pc
+  // __ addptr(sp, wordSize);  FIXME ????
+
+  // Load address of array of frame sizes into r4
+  __ ldr(r4, Address(r5, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
+
+  // Load counter into r3
+  __ ldrw(r3, Address(r5, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
+
+  // Now adjust the caller's stack to make up for the extra locals
+  // but record the original sp so that we can save it in the skeletal interpreter
+  // frame and the stack walking of interpreter_sender will get the unextended sp
+  // value and not the "real" sp value.
+
+  const Register sender_sp = r6;
+
+  __ mov(sender_sp, sp);
+  __ ldrw(r19, Address(r5,
+                       Deoptimization::UnrollBlock::
+                       caller_adjustment_offset_in_bytes()));
+  __ sub(sp, sp, r19);
+
+  // Push interpreter frames in a loop
+  __ mov(rscratch1, (address)0xDEADDEAD);        // Make a recognizable pattern
+  __ mov(rscratch2, rscratch1);
+  Label loop;
+  __ bind(loop);
+  __ ldr(r19, Address(__ post(r4, wordSize)));          // Load frame size
+  __ sub(r19, r19, 2*wordSize);           // We'll push pc and fp by hand
+  __ ldr(lr, Address(__ post(r2, wordSize)));  // Load pc
+  __ enter();                           // Save old & set new fp
+  __ sub(sp, sp, r19);                  // Prolog
+  // This value is corrected by layout_activation_impl
+  __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
+  __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable
+  __ mov(sender_sp, sp);               // Pass sender_sp to next frame
+  __ sub(r3, r3, 1);                   // Decrement counter
+  __ cbnz(r3, loop);
+
+    // Re-push self-frame
+  __ ldr(lr, Address(r2));
+  __ enter();
+
+  // Allocate a full sized register save area.  We subtract 2 because
+  // enter() just pushed 2 words
+  __ sub(sp, sp, (frame_size_in_words - 2) * wordSize);
+
+  // Restore frame locals after moving the frame
+  __ strd(v0, Address(sp, RegisterSaver::v0_offset_in_bytes()));
+  __ str(r0, Address(sp, RegisterSaver::r0_offset_in_bytes()));
+
+  // Call C code.  Need thread but NOT official VM entry
+  // crud.  We cannot block on this call, no GC can happen.  Call should
+  // restore return values to their stack-slots with the new SP.
+  //
+  // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
+
+  // Use rfp because the frames look interpreted now
+  // Don't need the precise return PC here, just precise enough to point into this code blob.
+  address the_pc = __ pc();
+  __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
+
+  __ mov(c_rarg0, rthread);
+  __ movw(c_rarg1, rcpool); // second arg: exec_mode
+  __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
+  __ blrt(rscratch1, 2, 0, 0);
+
+  // Set an oopmap for the call site
+  // Use the same PC we used for the last java frame
+  oop_maps->add_gc_map(the_pc - start,
+                       new OopMap( frame_size_in_words, 0 ));
+
+  // Clear fp AND pc
+  __ reset_last_Java_frame(true);
+
+  // Collect return values
+  __ ldrd(v0, Address(sp, RegisterSaver::v0_offset_in_bytes()));
+  __ ldr(r0, Address(sp, RegisterSaver::r0_offset_in_bytes()));
+  // I think this is useless (throwing pc?)
+  // __ ldr(r3, Address(sp, RegisterSaver::r3_offset_in_bytes()));
+
+  // Pop self-frame.
+  __ leave();                           // Epilog
+
+  // Jump to interpreter
+  __ ret(lr);
+
+  // Make sure all code is generated
+  masm->flush();
+
+  _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
+  _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
+#if INCLUDE_JVMCI
+  if (EnableJVMCI) {
+    _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
+    _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
+  }
+#endif
+#ifdef BUILTIN_SIM
+  if (NotifySimulator) {
+    unsigned char *base = _deopt_blob->code_begin();
+    simulator->notifyRelocate(start, base - start);
+  }
+#endif
+}
+
+uint SharedRuntime::out_preserve_stack_slots() {
+  return 0;
+}
+
+#if defined(COMPILER2) || INCLUDE_JVMCI
+//------------------------------generate_uncommon_trap_blob--------------------
+void SharedRuntime::generate_uncommon_trap_blob() {
+  // Allocate space for the code
+  ResourceMark rm;
+  // Setup code generation tools
+  CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
+  MacroAssembler* masm = new MacroAssembler(&buffer);
+
+#ifdef BUILTIN_SIM
+  AArch64Simulator *simulator;
+  if (NotifySimulator) {
+    simulator = AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck);
+    simulator->notifyCompile(const_cast<char*>("SharedRuntime:uncommon_trap_blob"), __ pc());
+  }
+#endif
+
+  assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
+
+  address start = __ pc();
+
+  // Push self-frame.  We get here with a return address in LR
+  // and sp should be 16 byte aligned
+  // push rfp and retaddr by hand
+  __ stp(rfp, lr, Address(__ pre(sp, -2 * wordSize)));
+  // we don't expect an arg reg save area
+#ifndef PRODUCT
+  assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
+#endif
+  // compiler left unloaded_class_index in j_rarg0 move to where the
+  // runtime expects it.
+  if (c_rarg1 != j_rarg0) {
+    __ movw(c_rarg1, j_rarg0);
+  }
+
+  // we need to set the past SP to the stack pointer of the stub frame
+  // and the pc to the address where this runtime call will return
+  // although actually any pc in this code blob will do).
+  Label retaddr;
+  __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
+
+  // Call C code.  Need thread but NOT official VM entry
+  // crud.  We cannot block on this call, no GC can happen.  Call should
+  // capture callee-saved registers as well as return values.
+  // Thread is in rdi already.
+  //
+  // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
+  //
+  // n.b. 2 gp args, 0 fp args, integral return type
+
+  __ mov(c_rarg0, rthread);
+  __ movw(c_rarg2, (unsigned)Deoptimization::Unpack_uncommon_trap);
+  __ lea(rscratch1,
+         RuntimeAddress(CAST_FROM_FN_PTR(address,
+                                         Deoptimization::uncommon_trap)));
+  __ blrt(rscratch1, 2, 0, MacroAssembler::ret_type_integral);
+  __ bind(retaddr);
+
+  // Set an oopmap for the call site
+  OopMapSet* oop_maps = new OopMapSet();
+  OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
+
+  // location of rfp is known implicitly by the frame sender code
+
+  oop_maps->add_gc_map(__ pc() - start, map);
+
+  __ reset_last_Java_frame(false);
+
+  // move UnrollBlock* into r4
+  __ mov(r4, r0);
+
+#ifdef ASSERT
+  { Label L;
+    __ ldrw(rscratch1, Address(r4, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
+    __ cmpw(rscratch1, (unsigned)Deoptimization::Unpack_uncommon_trap);
+    __ br(Assembler::EQ, L);
+    __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
+    __ bind(L);
+  }
+#endif
+
+  // Pop all the frames we must move/replace.
+  //
+  // Frame picture (youngest to oldest)
+  // 1: self-frame (no frame link)
+  // 2: deopting frame  (no frame link)
+  // 3: caller of deopting frame (could be compiled/interpreted).
+
+  // Pop self-frame.  We have no frame, and must rely only on r0 and sp.
+  __ add(sp, sp, (SimpleRuntimeFrame::framesize) << LogBytesPerInt); // Epilog!
+
+  // Pop deoptimized frame (int)
+  __ ldrw(r2, Address(r4,
+                      Deoptimization::UnrollBlock::
+                      size_of_deoptimized_frame_offset_in_bytes()));
+  __ sub(r2, r2, 2 * wordSize);
+  __ add(sp, sp, r2);
+  __ ldp(rfp, lr, __ post(sp, 2 * wordSize));
+  // LR should now be the return address to the caller (3) frame
+
+#ifdef ASSERT
+  // Compilers generate code that bang the stack by as much as the
+  // interpreter would need. So this stack banging should never
+  // trigger a fault. Verify that it does not on non product builds.
+  if (UseStackBanging) {
+    __ ldrw(r1, Address(r4,
+                        Deoptimization::UnrollBlock::
+                        total_frame_sizes_offset_in_bytes()));
+    __ bang_stack_size(r1, r2);
+  }
+#endif
+
+  // Load address of array of frame pcs into r2 (address*)
+  __ ldr(r2, Address(r4,
+                     Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
+
+  // Load address of array of frame sizes into r5 (intptr_t*)
+  __ ldr(r5, Address(r4,
+                     Deoptimization::UnrollBlock::
+                     frame_sizes_offset_in_bytes()));
+
+  // Counter
+  __ ldrw(r3, Address(r4,
+                      Deoptimization::UnrollBlock::
+                      number_of_frames_offset_in_bytes())); // (int)
+
+  // Now adjust the caller's stack to make up for the extra locals but
+  // record the original sp so that we can save it in the skeletal
+  // interpreter frame and the stack walking of interpreter_sender
+  // will get the unextended sp value and not the "real" sp value.
+
+  const Register sender_sp = r8;
+
+  __ mov(sender_sp, sp);
+  __ ldrw(r1, Address(r4,
+                      Deoptimization::UnrollBlock::
+                      caller_adjustment_offset_in_bytes())); // (int)
+  __ sub(sp, sp, r1);
+
+  // Push interpreter frames in a loop
+  Label loop;
+  __ bind(loop);
+  __ ldr(r1, Address(r5, 0));       // Load frame size
+  __ sub(r1, r1, 2 * wordSize);     // We'll push pc and rfp by hand
+  __ ldr(lr, Address(r2, 0));       // Save return address
+  __ enter();                       // and old rfp & set new rfp
+  __ sub(sp, sp, r1);               // Prolog
+  __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable
+  // This value is corrected by layout_activation_impl
+  __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
+  __ mov(sender_sp, sp);          // Pass sender_sp to next frame
+  __ add(r5, r5, wordSize);       // Bump array pointer (sizes)
+  __ add(r2, r2, wordSize);       // Bump array pointer (pcs)
+  __ subsw(r3, r3, 1);            // Decrement counter
+  __ br(Assembler::GT, loop);
+  __ ldr(lr, Address(r2, 0));     // save final return address
+  // Re-push self-frame
+  __ enter();                     // & old rfp & set new rfp
+
+  // Use rfp because the frames look interpreted now
+  // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
+  // Don't need the precise return PC here, just precise enough to point into this code blob.
+  address the_pc = __ pc();
+  __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
+
+  // Call C code.  Need thread but NOT official VM entry
+  // crud.  We cannot block on this call, no GC can happen.  Call should
+  // restore return values to their stack-slots with the new SP.
+  // Thread is in rdi already.
+  //
+  // BasicType unpack_frames(JavaThread* thread, int exec_mode);
+  //
+  // n.b. 2 gp args, 0 fp args, integral return type
+
+  // sp should already be aligned
+  __ mov(c_rarg0, rthread);
+  __ movw(c_rarg1, (unsigned)Deoptimization::Unpack_uncommon_trap);
+  __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
+  __ blrt(rscratch1, 2, 0, MacroAssembler::ret_type_integral);
+
+  // Set an oopmap for the call site
+  // Use the same PC we used for the last java frame
+  oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
+
+  // Clear fp AND pc
+  __ reset_last_Java_frame(true);
+
+  // Pop self-frame.
+  __ leave();                 // Epilog
+
+  // Jump to interpreter
+  __ ret(lr);
+
+  // Make sure all code is generated
+  masm->flush();
+
+  _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
+                                                 SimpleRuntimeFrame::framesize >> 1);
+
+#ifdef BUILTIN_SIM
+  if (NotifySimulator) {
+    unsigned char *base = _deopt_blob->code_begin();
+    simulator->notifyRelocate(start, base - start);
+  }
+#endif
+}
+#endif // COMPILER2
+
+
+//------------------------------generate_handler_blob------
+//
+// Generate a special Compile2Runtime blob that saves all registers,
+// and setup oopmap.
+//
+SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
+  ResourceMark rm;
+  OopMapSet *oop_maps = new OopMapSet();
+  OopMap* map;
+
+  // Allocate space for the code.  Setup code generation tools.
+  CodeBuffer buffer("handler_blob", 2048, 1024);
+  MacroAssembler* masm = new MacroAssembler(&buffer);
+
+  address start   = __ pc();
+  address call_pc = NULL;
+  int frame_size_in_words;
+  bool cause_return = (poll_type == POLL_AT_RETURN);
+  bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
+
+  // Save registers, fpu state, and flags
+  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
+
+  // The following is basically a call_VM.  However, we need the precise
+  // address of the call in order to generate an oopmap. Hence, we do all the
+  // work outselves.
+
+  Label retaddr;
+  __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
+
+  // The return address must always be correct so that frame constructor never
+  // sees an invalid pc.
+
+  if (!cause_return) {
+    // overwrite the return address pushed by save_live_registers
+    __ ldr(c_rarg0, Address(rthread, JavaThread::saved_exception_pc_offset()));
+    __ str(c_rarg0, Address(rfp, wordSize));
+  }
+
+  // Do the call
+  __ mov(c_rarg0, rthread);
+  __ lea(rscratch1, RuntimeAddress(call_ptr));
+  __ blrt(rscratch1, 1, 0, 1);
+  __ bind(retaddr);
+
+  // Set an oopmap for the call site.  This oopmap will map all
+  // oop-registers and debug-info registers as callee-saved.  This
+  // will allow deoptimization at this safepoint to find all possible
+  // debug-info recordings, as well as let GC find all oops.
+
+  oop_maps->add_gc_map( __ pc() - start, map);
+
+  Label noException;
+
+  __ reset_last_Java_frame(false);
+
+  __ maybe_isb();
+  __ membar(Assembler::LoadLoad | Assembler::LoadStore);
+
+  __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
+  __ cbz(rscratch1, noException);
+
+  // Exception pending
+
+  RegisterSaver::restore_live_registers(masm);
+
+  __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
+
+  // No exception case
+  __ bind(noException);
+
+  // Normal exit, restore registers and exit.
+  RegisterSaver::restore_live_registers(masm, save_vectors);
+
+  __ ret(lr);
+
+  // Make sure all code is generated
+  masm->flush();
+
+  // Fill-out other meta info
+  return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
+}
+
+//
+// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
+//
+// Generate a stub that calls into vm to find out the proper destination
+// of a java call. All the argument registers are live at this point
+// but since this is generic code we don't know what they are and the caller
+// must do any gc of the args.
+//
+RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
+  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
+
+  // allocate space for the code
+  ResourceMark rm;
+
+  CodeBuffer buffer(name, 1000, 512);
+  MacroAssembler* masm                = new MacroAssembler(&buffer);
+
+  int frame_size_in_words;
+
+  OopMapSet *oop_maps = new OopMapSet();
+  OopMap* map = NULL;
+
+  int start = __ offset();
+
+  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
+
+  int frame_complete = __ offset();
+
+  {
+    Label retaddr;
+    __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
+
+    __ mov(c_rarg0, rthread);
+    __ lea(rscratch1, RuntimeAddress(destination));
+
+    __ blrt(rscratch1, 1, 0, 1);
+    __ bind(retaddr);
+  }
+
+  // Set an oopmap for the call site.
+  // We need this not only for callee-saved registers, but also for volatile
+  // registers that the compiler might be keeping live across a safepoint.
+
+  oop_maps->add_gc_map( __ offset() - start, map);
+
+  __ maybe_isb();
+
+  // r0 contains the address we are going to jump to assuming no exception got installed
+
+  // clear last_Java_sp
+  __ reset_last_Java_frame(false);
+  // check for pending exceptions
+  Label pending;
+  __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
+  __ cbnz(rscratch1, pending);
+
+  // get the returned Method*
+  __ get_vm_result_2(rmethod, rthread);
+  __ str(rmethod, Address(sp, RegisterSaver::reg_offset_in_bytes(rmethod)));
+
+  // r0 is where we want to jump, overwrite rscratch1 which is saved and scratch
+  __ str(r0, Address(sp, RegisterSaver::rscratch1_offset_in_bytes()));
+  RegisterSaver::restore_live_registers(masm);
+
+  // We are back the the original state on entry and ready to go.
+
+  __ br(rscratch1);
+
+  // Pending exception after the safepoint
+
+  __ bind(pending);
+
+  RegisterSaver::restore_live_registers(masm);
+
+  // exception pending => remove activation and forward to exception handler
+
+  __ str(zr, Address(rthread, JavaThread::vm_result_offset()));
+
+  __ ldr(r0, Address(rthread, Thread::pending_exception_offset()));
+  __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
+
+  // -------------
+  // make sure all code is generated
+  masm->flush();
+
+  // return the  blob
+  // frame_size_words or bytes??
+  return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
+}
+
+
+#if defined(COMPILER2) || INCLUDE_JVMCI
+// This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
+//
+//------------------------------generate_exception_blob---------------------------
+// creates exception blob at the end
+// Using exception blob, this code is jumped from a compiled method.
+// (see emit_exception_handler in x86_64.ad file)
+//
+// Given an exception pc at a call we call into the runtime for the
+// handler in this method. This handler might merely restore state
+// (i.e. callee save registers) unwind the frame and jump to the
+// exception handler for the nmethod if there is no Java level handler
+// for the nmethod.
+//
+// This code is entered with a jmp.
+//
+// Arguments:
+//   r0: exception oop
+//   r3: exception pc
+//
+// Results:
+//   r0: exception oop
+//   r3: exception pc in caller or ???
+//   destination: exception handler of caller
+//
+// Note: the exception pc MUST be at a call (precise debug information)
+//       Registers r0, r3, r2, r4, r5, r8-r11 are not callee saved.
+//
+
+void OptoRuntime::generate_exception_blob() {
+  assert(!OptoRuntime::is_callee_saved_register(R3_num), "");
+  assert(!OptoRuntime::is_callee_saved_register(R0_num), "");
+  assert(!OptoRuntime::is_callee_saved_register(R2_num), "");
+
+  assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
+
+  // Allocate space for the code
+  ResourceMark rm;
+  // Setup code generation tools
+  CodeBuffer buffer("exception_blob", 2048, 1024);
+  MacroAssembler* masm = new MacroAssembler(&buffer);
+
+  // TODO check various assumptions made here
+  //
+  // make sure we do so before running this
+
+  address start = __ pc();
+
+  // push rfp and retaddr by hand
+  // Exception pc is 'return address' for stack walker
+  __ stp(rfp, lr, Address(__ pre(sp, -2 * wordSize)));
+  // there are no callee save registers and we don't expect an
+  // arg reg save area
+#ifndef PRODUCT
+  assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
+#endif
+  // Store exception in Thread object. We cannot pass any arguments to the
+  // handle_exception call, since we do not want to make any assumption
+  // about the size of the frame where the exception happened in.
+  __ str(r0, Address(rthread, JavaThread::exception_oop_offset()));
+  __ str(r3, Address(rthread, JavaThread::exception_pc_offset()));
+
+  // This call does all the hard work.  It checks if an exception handler
+  // exists in the method.
+  // If so, it returns the handler address.
+  // If not, it prepares for stack-unwinding, restoring the callee-save
+  // registers of the frame being removed.
+  //
+  // address OptoRuntime::handle_exception_C(JavaThread* thread)
+  //
+  // n.b. 1 gp arg, 0 fp args, integral return type
+
+  // the stack should always be aligned
+  address the_pc = __ pc();
+  __ set_last_Java_frame(sp, noreg, the_pc, rscratch1);
+  __ mov(c_rarg0, rthread);
+  __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
+  __ blrt(rscratch1, 1, 0, MacroAssembler::ret_type_integral);
+  __ maybe_isb();
+
+  // Set an oopmap for the call site.  This oopmap will only be used if we
+  // are unwinding the stack.  Hence, all locations will be dead.
+  // Callee-saved registers will be the same as the frame above (i.e.,
+  // handle_exception_stub), since they were restored when we got the
+  // exception.
+
+  OopMapSet* oop_maps = new OopMapSet();
+
+  oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
+
+  __ reset_last_Java_frame(false);
+
+  // Restore callee-saved registers
+
+  // rfp is an implicitly saved callee saved register (i.e. the calling
+  // convention will save restore it in prolog/epilog) Other than that
+  // there are no callee save registers now that adapter frames are gone.
+  // and we dont' expect an arg reg save area
+  __ ldp(rfp, r3, Address(__ post(sp, 2 * wordSize)));
+
+  // r0: exception handler
+
+  // We have a handler in r0 (could be deopt blob).
+  __ mov(r8, r0);
+
+  // Get the exception oop
+  __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
+  // Get the exception pc in case we are deoptimized
+  __ ldr(r4, Address(rthread, JavaThread::exception_pc_offset()));
+#ifdef ASSERT
+  __ str(zr, Address(rthread, JavaThread::exception_handler_pc_offset()));
+  __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
+#endif
+  // Clear the exception oop so GC no longer processes it as a root.
+  __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
+
+  // r0: exception oop
+  // r8:  exception handler
+  // r4: exception pc
+  // Jump to handler
+
+  __ br(r8);
+
+  // Make sure all code is generated
+  masm->flush();
+
+  // Set exception blob
+  _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
+}
+#endif // COMPILER2