src/hotspot/cpu/aarch64/macroAssembler_aarch64.hpp
changeset 47216 71c04702a3d5
parent 46961 c9094b1e5f87
child 47571 c19054f06c14
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/cpu/aarch64/macroAssembler_aarch64.hpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,1347 @@
+/*
+ * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifndef CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
+#define CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
+
+#include "asm/assembler.hpp"
+
+// MacroAssembler extends Assembler by frequently used macros.
+//
+// Instructions for which a 'better' code sequence exists depending
+// on arguments should also go in here.
+
+class MacroAssembler: public Assembler {
+  friend class LIR_Assembler;
+
+ public:
+  using Assembler::mov;
+  using Assembler::movi;
+
+ protected:
+
+  // Support for VM calls
+  //
+  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
+  // may customize this version by overriding it for its purposes (e.g., to save/restore
+  // additional registers when doing a VM call).
+  virtual void call_VM_leaf_base(
+    address entry_point,               // the entry point
+    int     number_of_arguments,        // the number of arguments to pop after the call
+    Label *retaddr = NULL
+  );
+
+  virtual void call_VM_leaf_base(
+    address entry_point,               // the entry point
+    int     number_of_arguments,        // the number of arguments to pop after the call
+    Label &retaddr) {
+    call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
+  }
+
+  // This is the base routine called by the different versions of call_VM. The interpreter
+  // may customize this version by overriding it for its purposes (e.g., to save/restore
+  // additional registers when doing a VM call).
+  //
+  // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
+  // returns the register which contains the thread upon return. If a thread register has been
+  // specified, the return value will correspond to that register. If no last_java_sp is specified
+  // (noreg) than rsp will be used instead.
+  virtual void call_VM_base(           // returns the register containing the thread upon return
+    Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
+    Register java_thread,              // the thread if computed before     ; use noreg otherwise
+    Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
+    address  entry_point,              // the entry point
+    int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
+    bool     check_exceptions          // whether to check for pending exceptions after return
+  );
+
+  void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
+
+  // Maximum size of class area in Metaspace when compressed
+  uint64_t use_XOR_for_compressed_class_base;
+
+ public:
+  MacroAssembler(CodeBuffer* code) : Assembler(code) {
+    use_XOR_for_compressed_class_base
+      = (operand_valid_for_logical_immediate(false /*is32*/,
+                                             (uint64_t)Universe::narrow_klass_base())
+         && ((uint64_t)Universe::narrow_klass_base()
+             > (1u << log2_intptr(CompressedClassSpaceSize))));
+  }
+
+ // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
+ // The implementation is only non-empty for the InterpreterMacroAssembler,
+ // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
+ virtual void check_and_handle_popframe(Register java_thread);
+ virtual void check_and_handle_earlyret(Register java_thread);
+
+  // Biased locking support
+  // lock_reg and obj_reg must be loaded up with the appropriate values.
+  // swap_reg is killed.
+  // tmp_reg must be supplied and must not be rscratch1 or rscratch2
+  // Optional slow case is for implementations (interpreter and C1) which branch to
+  // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
+  // Returns offset of first potentially-faulting instruction for null
+  // check info (currently consumed only by C1). If
+  // swap_reg_contains_mark is true then returns -1 as it is assumed
+  // the calling code has already passed any potential faults.
+  int biased_locking_enter(Register lock_reg, Register obj_reg,
+                           Register swap_reg, Register tmp_reg,
+                           bool swap_reg_contains_mark,
+                           Label& done, Label* slow_case = NULL,
+                           BiasedLockingCounters* counters = NULL);
+  void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
+
+
+  // Helper functions for statistics gathering.
+  // Unconditional atomic increment.
+  void atomic_incw(Register counter_addr, Register tmp, Register tmp2);
+  void atomic_incw(Address counter_addr, Register tmp1, Register tmp2, Register tmp3) {
+    lea(tmp1, counter_addr);
+    atomic_incw(tmp1, tmp2, tmp3);
+  }
+  // Load Effective Address
+  void lea(Register r, const Address &a) {
+    InstructionMark im(this);
+    code_section()->relocate(inst_mark(), a.rspec());
+    a.lea(this, r);
+  }
+
+  void addmw(Address a, Register incr, Register scratch) {
+    ldrw(scratch, a);
+    addw(scratch, scratch, incr);
+    strw(scratch, a);
+  }
+
+  // Add constant to memory word
+  void addmw(Address a, int imm, Register scratch) {
+    ldrw(scratch, a);
+    if (imm > 0)
+      addw(scratch, scratch, (unsigned)imm);
+    else
+      subw(scratch, scratch, (unsigned)-imm);
+    strw(scratch, a);
+  }
+
+  void bind(Label& L) {
+    Assembler::bind(L);
+    code()->clear_last_membar();
+  }
+
+  void membar(Membar_mask_bits order_constraint);
+
+  // Frame creation and destruction shared between JITs.
+  void build_frame(int framesize);
+  void remove_frame(int framesize);
+
+  virtual void _call_Unimplemented(address call_site) {
+    mov(rscratch2, call_site);
+    haltsim();
+  }
+
+#define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
+
+  virtual void notify(int type);
+
+  // aliases defined in AARCH64 spec
+
+  template<class T>
+  inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
+  // imm is limited to 12 bits.
+  inline void cmp(Register Rd, unsigned imm)  { subs(zr, Rd, imm); }
+
+  inline void cmnw(Register Rd, unsigned imm) { addsw(zr, Rd, imm); }
+  inline void cmn(Register Rd, unsigned imm) { adds(zr, Rd, imm); }
+
+  void cset(Register Rd, Assembler::Condition cond) {
+    csinc(Rd, zr, zr, ~cond);
+  }
+  void csetw(Register Rd, Assembler::Condition cond) {
+    csincw(Rd, zr, zr, ~cond);
+  }
+
+  void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
+    csneg(Rd, Rn, Rn, ~cond);
+  }
+  void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
+    csnegw(Rd, Rn, Rn, ~cond);
+  }
+
+  inline void movw(Register Rd, Register Rn) {
+    if (Rd == sp || Rn == sp) {
+      addw(Rd, Rn, 0U);
+    } else {
+      orrw(Rd, zr, Rn);
+    }
+  }
+  inline void mov(Register Rd, Register Rn) {
+    assert(Rd != r31_sp && Rn != r31_sp, "should be");
+    if (Rd == Rn) {
+    } else if (Rd == sp || Rn == sp) {
+      add(Rd, Rn, 0U);
+    } else {
+      orr(Rd, zr, Rn);
+    }
+  }
+
+  inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
+  inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
+
+  inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
+  inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
+
+  inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
+  inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
+
+  inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
+    bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
+  }
+  inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
+    bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
+  }
+
+  inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
+    bfmw(Rd, Rn, lsb, (lsb + width - 1));
+  }
+  inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
+    bfm(Rd, Rn, lsb , (lsb + width - 1));
+  }
+
+  inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
+    sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
+  }
+  inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
+    sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
+  }
+
+  inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
+    sbfmw(Rd, Rn, lsb, (lsb + width - 1));
+  }
+  inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
+    sbfm(Rd, Rn, lsb , (lsb + width - 1));
+  }
+
+  inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
+    ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
+  }
+  inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
+    ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
+  }
+
+  inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
+    ubfmw(Rd, Rn, lsb, (lsb + width - 1));
+  }
+  inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
+    ubfm(Rd, Rn, lsb , (lsb + width - 1));
+  }
+
+  inline void asrw(Register Rd, Register Rn, unsigned imm) {
+    sbfmw(Rd, Rn, imm, 31);
+  }
+
+  inline void asr(Register Rd, Register Rn, unsigned imm) {
+    sbfm(Rd, Rn, imm, 63);
+  }
+
+  inline void lslw(Register Rd, Register Rn, unsigned imm) {
+    ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
+  }
+
+  inline void lsl(Register Rd, Register Rn, unsigned imm) {
+    ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
+  }
+
+  inline void lsrw(Register Rd, Register Rn, unsigned imm) {
+    ubfmw(Rd, Rn, imm, 31);
+  }
+
+  inline void lsr(Register Rd, Register Rn, unsigned imm) {
+    ubfm(Rd, Rn, imm, 63);
+  }
+
+  inline void rorw(Register Rd, Register Rn, unsigned imm) {
+    extrw(Rd, Rn, Rn, imm);
+  }
+
+  inline void ror(Register Rd, Register Rn, unsigned imm) {
+    extr(Rd, Rn, Rn, imm);
+  }
+
+  inline void sxtbw(Register Rd, Register Rn) {
+    sbfmw(Rd, Rn, 0, 7);
+  }
+  inline void sxthw(Register Rd, Register Rn) {
+    sbfmw(Rd, Rn, 0, 15);
+  }
+  inline void sxtb(Register Rd, Register Rn) {
+    sbfm(Rd, Rn, 0, 7);
+  }
+  inline void sxth(Register Rd, Register Rn) {
+    sbfm(Rd, Rn, 0, 15);
+  }
+  inline void sxtw(Register Rd, Register Rn) {
+    sbfm(Rd, Rn, 0, 31);
+  }
+
+  inline void uxtbw(Register Rd, Register Rn) {
+    ubfmw(Rd, Rn, 0, 7);
+  }
+  inline void uxthw(Register Rd, Register Rn) {
+    ubfmw(Rd, Rn, 0, 15);
+  }
+  inline void uxtb(Register Rd, Register Rn) {
+    ubfm(Rd, Rn, 0, 7);
+  }
+  inline void uxth(Register Rd, Register Rn) {
+    ubfm(Rd, Rn, 0, 15);
+  }
+  inline void uxtw(Register Rd, Register Rn) {
+    ubfm(Rd, Rn, 0, 31);
+  }
+
+  inline void cmnw(Register Rn, Register Rm) {
+    addsw(zr, Rn, Rm);
+  }
+  inline void cmn(Register Rn, Register Rm) {
+    adds(zr, Rn, Rm);
+  }
+
+  inline void cmpw(Register Rn, Register Rm) {
+    subsw(zr, Rn, Rm);
+  }
+  inline void cmp(Register Rn, Register Rm) {
+    subs(zr, Rn, Rm);
+  }
+
+  inline void negw(Register Rd, Register Rn) {
+    subw(Rd, zr, Rn);
+  }
+
+  inline void neg(Register Rd, Register Rn) {
+    sub(Rd, zr, Rn);
+  }
+
+  inline void negsw(Register Rd, Register Rn) {
+    subsw(Rd, zr, Rn);
+  }
+
+  inline void negs(Register Rd, Register Rn) {
+    subs(Rd, zr, Rn);
+  }
+
+  inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
+    addsw(zr, Rn, Rm, kind, shift);
+  }
+  inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
+    adds(zr, Rn, Rm, kind, shift);
+  }
+
+  inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
+    subsw(zr, Rn, Rm, kind, shift);
+  }
+  inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
+    subs(zr, Rn, Rm, kind, shift);
+  }
+
+  inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
+    subw(Rd, zr, Rn, kind, shift);
+  }
+
+  inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
+    sub(Rd, zr, Rn, kind, shift);
+  }
+
+  inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
+    subsw(Rd, zr, Rn, kind, shift);
+  }
+
+  inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
+    subs(Rd, zr, Rn, kind, shift);
+  }
+
+  inline void mnegw(Register Rd, Register Rn, Register Rm) {
+    msubw(Rd, Rn, Rm, zr);
+  }
+  inline void mneg(Register Rd, Register Rn, Register Rm) {
+    msub(Rd, Rn, Rm, zr);
+  }
+
+  inline void mulw(Register Rd, Register Rn, Register Rm) {
+    maddw(Rd, Rn, Rm, zr);
+  }
+  inline void mul(Register Rd, Register Rn, Register Rm) {
+    madd(Rd, Rn, Rm, zr);
+  }
+
+  inline void smnegl(Register Rd, Register Rn, Register Rm) {
+    smsubl(Rd, Rn, Rm, zr);
+  }
+  inline void smull(Register Rd, Register Rn, Register Rm) {
+    smaddl(Rd, Rn, Rm, zr);
+  }
+
+  inline void umnegl(Register Rd, Register Rn, Register Rm) {
+    umsubl(Rd, Rn, Rm, zr);
+  }
+  inline void umull(Register Rd, Register Rn, Register Rm) {
+    umaddl(Rd, Rn, Rm, zr);
+  }
+
+#define WRAP(INSN)                                                            \
+  void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
+    if ((VM_Version::features() & VM_Version::CPU_A53MAC) && Ra != zr)        \
+      nop();                                                                  \
+    Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
+  }
+
+  WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
+  WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
+#undef WRAP
+
+
+  // macro assembly operations needed for aarch64
+
+  // first two private routines for loading 32 bit or 64 bit constants
+private:
+
+  void mov_immediate64(Register dst, u_int64_t imm64);
+  void mov_immediate32(Register dst, u_int32_t imm32);
+
+  int push(unsigned int bitset, Register stack);
+  int pop(unsigned int bitset, Register stack);
+
+  void mov(Register dst, Address a);
+
+public:
+  void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
+  void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
+
+  // Push and pop everything that might be clobbered by a native
+  // runtime call except rscratch1 and rscratch2.  (They are always
+  // scratch, so we don't have to protect them.)  Only save the lower
+  // 64 bits of each vector register.
+  void push_call_clobbered_registers();
+  void pop_call_clobbered_registers();
+
+  // now mov instructions for loading absolute addresses and 32 or
+  // 64 bit integers
+
+  inline void mov(Register dst, address addr)
+  {
+    mov_immediate64(dst, (u_int64_t)addr);
+  }
+
+  inline void mov(Register dst, u_int64_t imm64)
+  {
+    mov_immediate64(dst, imm64);
+  }
+
+  inline void movw(Register dst, u_int32_t imm32)
+  {
+    mov_immediate32(dst, imm32);
+  }
+
+  inline void mov(Register dst, long l)
+  {
+    mov(dst, (u_int64_t)l);
+  }
+
+  inline void mov(Register dst, int i)
+  {
+    mov(dst, (long)i);
+  }
+
+  void mov(Register dst, RegisterOrConstant src) {
+    if (src.is_register())
+      mov(dst, src.as_register());
+    else
+      mov(dst, src.as_constant());
+  }
+
+  void movptr(Register r, uintptr_t imm64);
+
+  void mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32);
+
+  void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
+    orr(Vd, T, Vn, Vn);
+  }
+
+public:
+
+  // Generalized Test Bit And Branch, including a "far" variety which
+  // spans more than 32KiB.
+  void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool far = false) {
+    assert(cond == EQ || cond == NE, "must be");
+
+    if (far)
+      cond = ~cond;
+
+    void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
+    if (cond == Assembler::EQ)
+      branch = &Assembler::tbz;
+    else
+      branch = &Assembler::tbnz;
+
+    if (far) {
+      Label L;
+      (this->*branch)(Rt, bitpos, L);
+      b(dest);
+      bind(L);
+    } else {
+      (this->*branch)(Rt, bitpos, dest);
+    }
+  }
+
+  // macro instructions for accessing and updating floating point
+  // status register
+  //
+  // FPSR : op1 == 011
+  //        CRn == 0100
+  //        CRm == 0100
+  //        op2 == 001
+
+  inline void get_fpsr(Register reg)
+  {
+    mrs(0b11, 0b0100, 0b0100, 0b001, reg);
+  }
+
+  inline void set_fpsr(Register reg)
+  {
+    msr(0b011, 0b0100, 0b0100, 0b001, reg);
+  }
+
+  inline void clear_fpsr()
+  {
+    msr(0b011, 0b0100, 0b0100, 0b001, zr);
+  }
+
+  // DCZID_EL0: op1 == 011
+  //            CRn == 0000
+  //            CRm == 0000
+  //            op2 == 111
+  inline void get_dczid_el0(Register reg)
+  {
+    mrs(0b011, 0b0000, 0b0000, 0b111, reg);
+  }
+
+  // CTR_EL0:   op1 == 011
+  //            CRn == 0000
+  //            CRm == 0000
+  //            op2 == 001
+  inline void get_ctr_el0(Register reg)
+  {
+    mrs(0b011, 0b0000, 0b0000, 0b001, reg);
+  }
+
+  // idiv variant which deals with MINLONG as dividend and -1 as divisor
+  int corrected_idivl(Register result, Register ra, Register rb,
+                      bool want_remainder, Register tmp = rscratch1);
+  int corrected_idivq(Register result, Register ra, Register rb,
+                      bool want_remainder, Register tmp = rscratch1);
+
+  // Support for NULL-checks
+  //
+  // Generates code that causes a NULL OS exception if the content of reg is NULL.
+  // If the accessed location is M[reg + offset] and the offset is known, provide the
+  // offset. No explicit code generation is needed if the offset is within a certain
+  // range (0 <= offset <= page_size).
+
+  virtual void null_check(Register reg, int offset = -1);
+  static bool needs_explicit_null_check(intptr_t offset);
+
+  static address target_addr_for_insn(address insn_addr, unsigned insn);
+  static address target_addr_for_insn(address insn_addr) {
+    unsigned insn = *(unsigned*)insn_addr;
+    return target_addr_for_insn(insn_addr, insn);
+  }
+
+  // Required platform-specific helpers for Label::patch_instructions.
+  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
+  static int pd_patch_instruction_size(address branch, address target);
+  static void pd_patch_instruction(address branch, address target) {
+    pd_patch_instruction_size(branch, target);
+  }
+  static address pd_call_destination(address branch) {
+    return target_addr_for_insn(branch);
+  }
+#ifndef PRODUCT
+  static void pd_print_patched_instruction(address branch);
+#endif
+
+  static int patch_oop(address insn_addr, address o);
+  static int patch_narrow_klass(address insn_addr, narrowKlass n);
+
+  address emit_trampoline_stub(int insts_call_instruction_offset, address target);
+
+  // The following 4 methods return the offset of the appropriate move instruction
+
+  // Support for fast byte/short loading with zero extension (depending on particular CPU)
+  int load_unsigned_byte(Register dst, Address src);
+  int load_unsigned_short(Register dst, Address src);
+
+  // Support for fast byte/short loading with sign extension (depending on particular CPU)
+  int load_signed_byte(Register dst, Address src);
+  int load_signed_short(Register dst, Address src);
+
+  int load_signed_byte32(Register dst, Address src);
+  int load_signed_short32(Register dst, Address src);
+
+  // Support for sign-extension (hi:lo = extend_sign(lo))
+  void extend_sign(Register hi, Register lo);
+
+  // Load and store values by size and signed-ness
+  void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
+  void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
+
+  // Support for inc/dec with optimal instruction selection depending on value
+
+  // x86_64 aliases an unqualified register/address increment and
+  // decrement to call incrementq and decrementq but also supports
+  // explicitly sized calls to incrementq/decrementq or
+  // incrementl/decrementl
+
+  // for aarch64 the proper convention would be to use
+  // increment/decrement for 64 bit operatons and
+  // incrementw/decrementw for 32 bit operations. so when porting
+  // x86_64 code we can leave calls to increment/decrement as is,
+  // replace incrementq/decrementq with increment/decrement and
+  // replace incrementl/decrementl with incrementw/decrementw.
+
+  // n.b. increment/decrement calls with an Address destination will
+  // need to use a scratch register to load the value to be
+  // incremented. increment/decrement calls which add or subtract a
+  // constant value greater than 2^12 will need to use a 2nd scratch
+  // register to hold the constant. so, a register increment/decrement
+  // may trash rscratch2 and an address increment/decrement trash
+  // rscratch and rscratch2
+
+  void decrementw(Address dst, int value = 1);
+  void decrementw(Register reg, int value = 1);
+
+  void decrement(Register reg, int value = 1);
+  void decrement(Address dst, int value = 1);
+
+  void incrementw(Address dst, int value = 1);
+  void incrementw(Register reg, int value = 1);
+
+  void increment(Register reg, int value = 1);
+  void increment(Address dst, int value = 1);
+
+
+  // Alignment
+  void align(int modulus);
+
+  // Stack frame creation/removal
+  void enter()
+  {
+    stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
+    mov(rfp, sp);
+  }
+  void leave()
+  {
+    mov(sp, rfp);
+    ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
+  }
+
+  // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
+  // The pointer will be loaded into the thread register.
+  void get_thread(Register thread);
+
+
+  // Support for VM calls
+  //
+  // It is imperative that all calls into the VM are handled via the call_VM macros.
+  // They make sure that the stack linkage is setup correctly. call_VM's correspond
+  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
+
+
+  void call_VM(Register oop_result,
+               address entry_point,
+               bool check_exceptions = true);
+  void call_VM(Register oop_result,
+               address entry_point,
+               Register arg_1,
+               bool check_exceptions = true);
+  void call_VM(Register oop_result,
+               address entry_point,
+               Register arg_1, Register arg_2,
+               bool check_exceptions = true);
+  void call_VM(Register oop_result,
+               address entry_point,
+               Register arg_1, Register arg_2, Register arg_3,
+               bool check_exceptions = true);
+
+  // Overloadings with last_Java_sp
+  void call_VM(Register oop_result,
+               Register last_java_sp,
+               address entry_point,
+               int number_of_arguments = 0,
+               bool check_exceptions = true);
+  void call_VM(Register oop_result,
+               Register last_java_sp,
+               address entry_point,
+               Register arg_1, bool
+               check_exceptions = true);
+  void call_VM(Register oop_result,
+               Register last_java_sp,
+               address entry_point,
+               Register arg_1, Register arg_2,
+               bool check_exceptions = true);
+  void call_VM(Register oop_result,
+               Register last_java_sp,
+               address entry_point,
+               Register arg_1, Register arg_2, Register arg_3,
+               bool check_exceptions = true);
+
+  void get_vm_result  (Register oop_result, Register thread);
+  void get_vm_result_2(Register metadata_result, Register thread);
+
+  // These always tightly bind to MacroAssembler::call_VM_base
+  // bypassing the virtual implementation
+  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
+  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
+  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
+  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
+  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
+
+  void call_VM_leaf(address entry_point,
+                    int number_of_arguments = 0);
+  void call_VM_leaf(address entry_point,
+                    Register arg_1);
+  void call_VM_leaf(address entry_point,
+                    Register arg_1, Register arg_2);
+  void call_VM_leaf(address entry_point,
+                    Register arg_1, Register arg_2, Register arg_3);
+
+  // These always tightly bind to MacroAssembler::call_VM_leaf_base
+  // bypassing the virtual implementation
+  void super_call_VM_leaf(address entry_point);
+  void super_call_VM_leaf(address entry_point, Register arg_1);
+  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
+  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
+  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
+
+  // last Java Frame (fills frame anchor)
+  void set_last_Java_frame(Register last_java_sp,
+                           Register last_java_fp,
+                           address last_java_pc,
+                           Register scratch);
+
+  void set_last_Java_frame(Register last_java_sp,
+                           Register last_java_fp,
+                           Label &last_java_pc,
+                           Register scratch);
+
+  void set_last_Java_frame(Register last_java_sp,
+                           Register last_java_fp,
+                           Register last_java_pc,
+                           Register scratch);
+
+  void reset_last_Java_frame(Register thread);
+
+  // thread in the default location (rthread)
+  void reset_last_Java_frame(bool clear_fp);
+
+  // Stores
+  void store_check(Register obj);                // store check for obj - register is destroyed afterwards
+  void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
+
+#if INCLUDE_ALL_GCS
+
+  void g1_write_barrier_pre(Register obj,
+                            Register pre_val,
+                            Register thread,
+                            Register tmp,
+                            bool tosca_live,
+                            bool expand_call);
+
+  void g1_write_barrier_post(Register store_addr,
+                             Register new_val,
+                             Register thread,
+                             Register tmp,
+                             Register tmp2);
+
+#endif // INCLUDE_ALL_GCS
+
+  // oop manipulations
+  void load_klass(Register dst, Register src);
+  void store_klass(Register dst, Register src);
+  void cmp_klass(Register oop, Register trial_klass, Register tmp);
+
+  void resolve_oop_handle(Register result);
+  void load_mirror(Register dst, Register method);
+
+  void load_heap_oop(Register dst, Address src);
+
+  void load_heap_oop_not_null(Register dst, Address src);
+  void store_heap_oop(Address dst, Register src);
+
+  // currently unimplemented
+  // Used for storing NULL. All other oop constants should be
+  // stored using routines that take a jobject.
+  void store_heap_oop_null(Address dst);
+
+  void load_prototype_header(Register dst, Register src);
+
+  void store_klass_gap(Register dst, Register src);
+
+  // This dummy is to prevent a call to store_heap_oop from
+  // converting a zero (like NULL) into a Register by giving
+  // the compiler two choices it can't resolve
+
+  void store_heap_oop(Address dst, void* dummy);
+
+  void encode_heap_oop(Register d, Register s);
+  void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
+  void decode_heap_oop(Register d, Register s);
+  void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
+  void encode_heap_oop_not_null(Register r);
+  void decode_heap_oop_not_null(Register r);
+  void encode_heap_oop_not_null(Register dst, Register src);
+  void decode_heap_oop_not_null(Register dst, Register src);
+
+  void set_narrow_oop(Register dst, jobject obj);
+
+  void encode_klass_not_null(Register r);
+  void decode_klass_not_null(Register r);
+  void encode_klass_not_null(Register dst, Register src);
+  void decode_klass_not_null(Register dst, Register src);
+
+  void set_narrow_klass(Register dst, Klass* k);
+
+  // if heap base register is used - reinit it with the correct value
+  void reinit_heapbase();
+
+  DEBUG_ONLY(void verify_heapbase(const char* msg);)
+
+  void push_CPU_state(bool save_vectors = false);
+  void pop_CPU_state(bool restore_vectors = false) ;
+
+  // Round up to a power of two
+  void round_to(Register reg, int modulus);
+
+  // allocation
+  void eden_allocate(
+    Register obj,                      // result: pointer to object after successful allocation
+    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
+    int      con_size_in_bytes,        // object size in bytes if   known at compile time
+    Register t1,                       // temp register
+    Label&   slow_case                 // continuation point if fast allocation fails
+  );
+  void tlab_allocate(
+    Register obj,                      // result: pointer to object after successful allocation
+    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
+    int      con_size_in_bytes,        // object size in bytes if   known at compile time
+    Register t1,                       // temp register
+    Register t2,                       // temp register
+    Label&   slow_case                 // continuation point if fast allocation fails
+  );
+  Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
+  void zero_memory(Register addr, Register len, Register t1);
+  void verify_tlab();
+
+  void incr_allocated_bytes(Register thread,
+                            Register var_size_in_bytes, int con_size_in_bytes,
+                            Register t1 = noreg);
+
+  // interface method calling
+  void lookup_interface_method(Register recv_klass,
+                               Register intf_klass,
+                               RegisterOrConstant itable_index,
+                               Register method_result,
+                               Register scan_temp,
+                               Label& no_such_interface);
+
+  // virtual method calling
+  // n.b. x86 allows RegisterOrConstant for vtable_index
+  void lookup_virtual_method(Register recv_klass,
+                             RegisterOrConstant vtable_index,
+                             Register method_result);
+
+  // Test sub_klass against super_klass, with fast and slow paths.
+
+  // The fast path produces a tri-state answer: yes / no / maybe-slow.
+  // One of the three labels can be NULL, meaning take the fall-through.
+  // If super_check_offset is -1, the value is loaded up from super_klass.
+  // No registers are killed, except temp_reg.
+  void check_klass_subtype_fast_path(Register sub_klass,
+                                     Register super_klass,
+                                     Register temp_reg,
+                                     Label* L_success,
+                                     Label* L_failure,
+                                     Label* L_slow_path,
+                RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
+
+  // The rest of the type check; must be wired to a corresponding fast path.
+  // It does not repeat the fast path logic, so don't use it standalone.
+  // The temp_reg and temp2_reg can be noreg, if no temps are available.
+  // Updates the sub's secondary super cache as necessary.
+  // If set_cond_codes, condition codes will be Z on success, NZ on failure.
+  void check_klass_subtype_slow_path(Register sub_klass,
+                                     Register super_klass,
+                                     Register temp_reg,
+                                     Register temp2_reg,
+                                     Label* L_success,
+                                     Label* L_failure,
+                                     bool set_cond_codes = false);
+
+  // Simplified, combined version, good for typical uses.
+  // Falls through on failure.
+  void check_klass_subtype(Register sub_klass,
+                           Register super_klass,
+                           Register temp_reg,
+                           Label& L_success);
+
+  Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
+
+
+  // Debugging
+
+  // only if +VerifyOops
+  void verify_oop(Register reg, const char* s = "broken oop");
+  void verify_oop_addr(Address addr, const char * s = "broken oop addr");
+
+// TODO: verify method and klass metadata (compare against vptr?)
+  void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
+  void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
+
+#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
+#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
+
+  // only if +VerifyFPU
+  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
+
+  // prints msg, dumps registers and stops execution
+  void stop(const char* msg);
+
+  // prints msg and continues
+  void warn(const char* msg);
+
+  static void debug64(char* msg, int64_t pc, int64_t regs[]);
+
+  void untested()                                { stop("untested"); }
+
+  void unimplemented(const char* what = "");
+
+  void should_not_reach_here()                   { stop("should not reach here"); }
+
+  // Stack overflow checking
+  void bang_stack_with_offset(int offset) {
+    // stack grows down, caller passes positive offset
+    assert(offset > 0, "must bang with negative offset");
+    sub(rscratch2, sp, offset);
+    str(zr, Address(rscratch2));
+  }
+
+  // Writes to stack successive pages until offset reached to check for
+  // stack overflow + shadow pages.  Also, clobbers tmp
+  void bang_stack_size(Register size, Register tmp);
+
+  // Check for reserved stack access in method being exited (for JIT)
+  void reserved_stack_check();
+
+  virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
+                                                Register tmp,
+                                                int offset);
+
+  // Support for serializing memory accesses between threads
+  void serialize_memory(Register thread, Register tmp);
+
+  // Arithmetics
+
+  void addptr(const Address &dst, int32_t src);
+  void cmpptr(Register src1, Address src2);
+
+  // Various forms of CAS
+
+  void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
+                          Label &suceed, Label *fail);
+  void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
+                  Label &suceed, Label *fail);
+
+  void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
+                  Label &suceed, Label *fail);
+
+  void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
+  void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
+  void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
+  void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
+
+  void atomic_xchg(Register prev, Register newv, Register addr);
+  void atomic_xchgw(Register prev, Register newv, Register addr);
+  void atomic_xchgal(Register prev, Register newv, Register addr);
+  void atomic_xchgalw(Register prev, Register newv, Register addr);
+
+  void orptr(Address adr, RegisterOrConstant src) {
+    ldr(rscratch2, adr);
+    if (src.is_register())
+      orr(rscratch2, rscratch2, src.as_register());
+    else
+      orr(rscratch2, rscratch2, src.as_constant());
+    str(rscratch2, adr);
+  }
+
+  // A generic CAS; success or failure is in the EQ flag.
+  // Clobbers rscratch1
+  void cmpxchg(Register addr, Register expected, Register new_val,
+               enum operand_size size,
+               bool acquire, bool release, bool weak,
+               Register result);
+
+  // Calls
+
+  address trampoline_call(Address entry, CodeBuffer *cbuf = NULL);
+
+  static bool far_branches() {
+    return ReservedCodeCacheSize > branch_range;
+  }
+
+  // Jumps that can reach anywhere in the code cache.
+  // Trashes tmp.
+  void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
+  void far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
+
+  static int far_branch_size() {
+    if (far_branches()) {
+      return 3 * 4;  // adrp, add, br
+    } else {
+      return 4;
+    }
+  }
+
+  // Emit the CompiledIC call idiom
+  address ic_call(address entry, jint method_index = 0);
+
+public:
+
+  // Data
+
+  void mov_metadata(Register dst, Metadata* obj);
+  Address allocate_metadata_address(Metadata* obj);
+  Address constant_oop_address(jobject obj);
+
+  void movoop(Register dst, jobject obj, bool immediate = false);
+
+  // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
+  void kernel_crc32(Register crc, Register buf, Register len,
+        Register table0, Register table1, Register table2, Register table3,
+        Register tmp, Register tmp2, Register tmp3);
+  // CRC32 code for java.util.zip.CRC32C::updateBytes() instrinsic.
+  void kernel_crc32c(Register crc, Register buf, Register len,
+        Register table0, Register table1, Register table2, Register table3,
+        Register tmp, Register tmp2, Register tmp3);
+
+  // Stack push and pop individual 64 bit registers
+  void push(Register src);
+  void pop(Register dst);
+
+  // push all registers onto the stack
+  void pusha();
+  void popa();
+
+  void repne_scan(Register addr, Register value, Register count,
+                  Register scratch);
+  void repne_scanw(Register addr, Register value, Register count,
+                   Register scratch);
+
+  typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
+  typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
+
+  // If a constant does not fit in an immediate field, generate some
+  // number of MOV instructions and then perform the operation
+  void wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
+                             add_sub_imm_insn insn1,
+                             add_sub_reg_insn insn2);
+  // Seperate vsn which sets the flags
+  void wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
+                             add_sub_imm_insn insn1,
+                             add_sub_reg_insn insn2);
+
+#define WRAP(INSN)                                                      \
+  void INSN(Register Rd, Register Rn, unsigned imm) {                   \
+    wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
+  }                                                                     \
+                                                                        \
+  void INSN(Register Rd, Register Rn, Register Rm,                      \
+             enum shift_kind kind, unsigned shift = 0) {                \
+    Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
+  }                                                                     \
+                                                                        \
+  void INSN(Register Rd, Register Rn, Register Rm) {                    \
+    Assembler::INSN(Rd, Rn, Rm);                                        \
+  }                                                                     \
+                                                                        \
+  void INSN(Register Rd, Register Rn, Register Rm,                      \
+           ext::operation option, int amount = 0) {                     \
+    Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
+  }
+
+  WRAP(add) WRAP(addw) WRAP(sub) WRAP(subw)
+
+#undef WRAP
+#define WRAP(INSN)                                                      \
+  void INSN(Register Rd, Register Rn, unsigned imm) {                   \
+    wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
+  }                                                                     \
+                                                                        \
+  void INSN(Register Rd, Register Rn, Register Rm,                      \
+             enum shift_kind kind, unsigned shift = 0) {                \
+    Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
+  }                                                                     \
+                                                                        \
+  void INSN(Register Rd, Register Rn, Register Rm) {                    \
+    Assembler::INSN(Rd, Rn, Rm);                                        \
+  }                                                                     \
+                                                                        \
+  void INSN(Register Rd, Register Rn, Register Rm,                      \
+           ext::operation option, int amount = 0) {                     \
+    Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
+  }
+
+  WRAP(adds) WRAP(addsw) WRAP(subs) WRAP(subsw)
+
+  void add(Register Rd, Register Rn, RegisterOrConstant increment);
+  void addw(Register Rd, Register Rn, RegisterOrConstant increment);
+  void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
+  void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
+
+  void adrp(Register reg1, const Address &dest, unsigned long &byte_offset);
+
+  void tableswitch(Register index, jint lowbound, jint highbound,
+                   Label &jumptable, Label &jumptable_end, int stride = 1) {
+    adr(rscratch1, jumptable);
+    subsw(rscratch2, index, lowbound);
+    subsw(zr, rscratch2, highbound - lowbound);
+    br(Assembler::HS, jumptable_end);
+    add(rscratch1, rscratch1, rscratch2,
+        ext::sxtw, exact_log2(stride * Assembler::instruction_size));
+    br(rscratch1);
+  }
+
+  // Form an address from base + offset in Rd.  Rd may or may not
+  // actually be used: you must use the Address that is returned.  It
+  // is up to you to ensure that the shift provided matches the size
+  // of your data.
+  Address form_address(Register Rd, Register base, long byte_offset, int shift);
+
+  // Return true iff an address is within the 48-bit AArch64 address
+  // space.
+  bool is_valid_AArch64_address(address a) {
+    return ((uint64_t)a >> 48) == 0;
+  }
+
+  // Load the base of the cardtable byte map into reg.
+  void load_byte_map_base(Register reg);
+
+  // Prolog generator routines to support switch between x86 code and
+  // generated ARM code
+
+  // routine to generate an x86 prolog for a stub function which
+  // bootstraps into the generated ARM code which directly follows the
+  // stub
+  //
+
+  public:
+  // enum used for aarch64--x86 linkage to define return type of x86 function
+  enum ret_type { ret_type_void, ret_type_integral, ret_type_float, ret_type_double};
+
+#ifdef BUILTIN_SIM
+  void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type, address *prolog_ptr = NULL);
+#else
+  void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type) { }
+#endif
+
+  // special version of call_VM_leaf_base needed for aarch64 simulator
+  // where we need to specify both the gp and fp arg counts and the
+  // return type so that the linkage routine from aarch64 to x86 and
+  // back knows which aarch64 registers to copy to x86 registers and
+  // which x86 result register to copy back to an aarch64 register
+
+  void call_VM_leaf_base1(
+    address  entry_point,             // the entry point
+    int      number_of_gp_arguments,  // the number of gp reg arguments to pass
+    int      number_of_fp_arguments,  // the number of fp reg arguments to pass
+    ret_type type,                    // the return type for the call
+    Label*   retaddr = NULL
+  );
+
+  void ldr_constant(Register dest, const Address &const_addr) {
+    if (NearCpool) {
+      ldr(dest, const_addr);
+    } else {
+      unsigned long offset;
+      adrp(dest, InternalAddress(const_addr.target()), offset);
+      ldr(dest, Address(dest, offset));
+    }
+  }
+
+  address read_polling_page(Register r, address page, relocInfo::relocType rtype);
+  address read_polling_page(Register r, relocInfo::relocType rtype);
+
+  // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
+  void update_byte_crc32(Register crc, Register val, Register table);
+  void update_word_crc32(Register crc, Register v, Register tmp,
+        Register table0, Register table1, Register table2, Register table3,
+        bool upper = false);
+
+  void string_compare(Register str1, Register str2,
+                      Register cnt1, Register cnt2, Register result,
+                      Register tmp1,
+                      FloatRegister vtmp, FloatRegister vtmpZ, int ae);
+
+  void has_negatives(Register ary1, Register len, Register result);
+
+  void arrays_equals(Register a1, Register a2,
+                     Register result, Register cnt1,
+                     int elem_size, bool is_string);
+
+  void fill_words(Register base, Register cnt, Register value);
+  void zero_words(Register base, u_int64_t cnt);
+  void zero_words(Register ptr, Register cnt);
+  void zero_dcache_blocks(Register base, Register cnt);
+
+  static const int zero_words_block_size;
+
+  void byte_array_inflate(Register src, Register dst, Register len,
+                          FloatRegister vtmp1, FloatRegister vtmp2,
+                          FloatRegister vtmp3, Register tmp4);
+
+  void char_array_compress(Register src, Register dst, Register len,
+                           FloatRegister tmp1Reg, FloatRegister tmp2Reg,
+                           FloatRegister tmp3Reg, FloatRegister tmp4Reg,
+                           Register result);
+
+  void encode_iso_array(Register src, Register dst,
+                        Register len, Register result,
+                        FloatRegister Vtmp1, FloatRegister Vtmp2,
+                        FloatRegister Vtmp3, FloatRegister Vtmp4);
+  void string_indexof(Register str1, Register str2,
+                      Register cnt1, Register cnt2,
+                      Register tmp1, Register tmp2,
+                      Register tmp3, Register tmp4,
+                      int int_cnt1, Register result, int ae);
+  void string_indexof_char(Register str1, Register cnt1,
+                           Register ch, Register result,
+                           Register tmp1, Register tmp2, Register tmp3);
+private:
+  void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
+                       Register src1, Register src2);
+  void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
+    add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
+  }
+  void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
+                             Register y, Register y_idx, Register z,
+                             Register carry, Register product,
+                             Register idx, Register kdx);
+  void multiply_128_x_128_loop(Register y, Register z,
+                               Register carry, Register carry2,
+                               Register idx, Register jdx,
+                               Register yz_idx1, Register yz_idx2,
+                               Register tmp, Register tmp3, Register tmp4,
+                               Register tmp7, Register product_hi);
+public:
+  void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
+                       Register zlen, Register tmp1, Register tmp2, Register tmp3,
+                       Register tmp4, Register tmp5, Register tmp6, Register tmp7);
+  // ISB may be needed because of a safepoint
+  void maybe_isb() { isb(); }
+
+private:
+  // Return the effective address r + (r1 << ext) + offset.
+  // Uses rscratch2.
+  Address offsetted_address(Register r, Register r1, Address::extend ext,
+                            int offset, int size);
+
+private:
+  // Returns an address on the stack which is reachable with a ldr/str of size
+  // Uses rscratch2 if the address is not directly reachable
+  Address spill_address(int size, int offset, Register tmp=rscratch2);
+
+public:
+  void spill(Register Rx, bool is64, int offset) {
+    if (is64) {
+      str(Rx, spill_address(8, offset));
+    } else {
+      strw(Rx, spill_address(4, offset));
+    }
+  }
+  void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
+    str(Vx, T, spill_address(1 << (int)T, offset));
+  }
+  void unspill(Register Rx, bool is64, int offset) {
+    if (is64) {
+      ldr(Rx, spill_address(8, offset));
+    } else {
+      ldrw(Rx, spill_address(4, offset));
+    }
+  }
+  void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
+    ldr(Vx, T, spill_address(1 << (int)T, offset));
+  }
+  void spill_copy128(int src_offset, int dst_offset,
+                     Register tmp1=rscratch1, Register tmp2=rscratch2) {
+    if (src_offset < 512 && (src_offset & 7) == 0 &&
+        dst_offset < 512 && (dst_offset & 7) == 0) {
+      ldp(tmp1, tmp2, Address(sp, src_offset));
+      stp(tmp1, tmp2, Address(sp, dst_offset));
+    } else {
+      unspill(tmp1, true, src_offset);
+      spill(tmp1, true, dst_offset);
+      unspill(tmp1, true, src_offset+8);
+      spill(tmp1, true, dst_offset+8);
+    }
+  }
+};
+
+#ifdef ASSERT
+inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
+#endif
+
+/**
+ * class SkipIfEqual:
+ *
+ * Instantiating this class will result in assembly code being output that will
+ * jump around any code emitted between the creation of the instance and it's
+ * automatic destruction at the end of a scope block, depending on the value of
+ * the flag passed to the constructor, which will be checked at run-time.
+ */
+class SkipIfEqual {
+ private:
+  MacroAssembler* _masm;
+  Label _label;
+
+ public:
+   SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
+   ~SkipIfEqual();
+};
+
+struct tableswitch {
+  Register _reg;
+  int _insn_index; jint _first_key; jint _last_key;
+  Label _after;
+  Label _branches;
+};
+
+#endif // CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP