src/hotspot/cpu/aarch64/c1_LIRAssembler_aarch64.cpp
changeset 47216 71c04702a3d5
parent 46538 44ea5e0f2901
child 47698 d4bfafe600d0
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/cpu/aarch64/c1_LIRAssembler_aarch64.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,3196 @@
+/*
+ * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "asm/assembler.hpp"
+#include "c1/c1_CodeStubs.hpp"
+#include "c1/c1_Compilation.hpp"
+#include "c1/c1_LIRAssembler.hpp"
+#include "c1/c1_MacroAssembler.hpp"
+#include "c1/c1_Runtime1.hpp"
+#include "c1/c1_ValueStack.hpp"
+#include "ci/ciArrayKlass.hpp"
+#include "ci/ciInstance.hpp"
+#include "gc/shared/barrierSet.hpp"
+#include "gc/shared/cardTableModRefBS.hpp"
+#include "gc/shared/collectedHeap.hpp"
+#include "nativeInst_aarch64.hpp"
+#include "oops/objArrayKlass.hpp"
+#include "runtime/sharedRuntime.hpp"
+#include "vmreg_aarch64.inline.hpp"
+
+
+
+#ifndef PRODUCT
+#define COMMENT(x)   do { __ block_comment(x); } while (0)
+#else
+#define COMMENT(x)
+#endif
+
+NEEDS_CLEANUP // remove this definitions ?
+const Register IC_Klass    = rscratch2;   // where the IC klass is cached
+const Register SYNC_header = r0;   // synchronization header
+const Register SHIFT_count = r0;   // where count for shift operations must be
+
+#define __ _masm->
+
+
+static void select_different_registers(Register preserve,
+                                       Register extra,
+                                       Register &tmp1,
+                                       Register &tmp2) {
+  if (tmp1 == preserve) {
+    assert_different_registers(tmp1, tmp2, extra);
+    tmp1 = extra;
+  } else if (tmp2 == preserve) {
+    assert_different_registers(tmp1, tmp2, extra);
+    tmp2 = extra;
+  }
+  assert_different_registers(preserve, tmp1, tmp2);
+}
+
+
+
+static void select_different_registers(Register preserve,
+                                       Register extra,
+                                       Register &tmp1,
+                                       Register &tmp2,
+                                       Register &tmp3) {
+  if (tmp1 == preserve) {
+    assert_different_registers(tmp1, tmp2, tmp3, extra);
+    tmp1 = extra;
+  } else if (tmp2 == preserve) {
+    assert_different_registers(tmp1, tmp2, tmp3, extra);
+    tmp2 = extra;
+  } else if (tmp3 == preserve) {
+    assert_different_registers(tmp1, tmp2, tmp3, extra);
+    tmp3 = extra;
+  }
+  assert_different_registers(preserve, tmp1, tmp2, tmp3);
+}
+
+
+bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; }
+
+
+LIR_Opr LIR_Assembler::receiverOpr() {
+  return FrameMap::receiver_opr;
+}
+
+LIR_Opr LIR_Assembler::osrBufferPointer() {
+  return FrameMap::as_pointer_opr(receiverOpr()->as_register());
+}
+
+//--------------fpu register translations-----------------------
+
+
+address LIR_Assembler::float_constant(float f) {
+  address const_addr = __ float_constant(f);
+  if (const_addr == NULL) {
+    bailout("const section overflow");
+    return __ code()->consts()->start();
+  } else {
+    return const_addr;
+  }
+}
+
+
+address LIR_Assembler::double_constant(double d) {
+  address const_addr = __ double_constant(d);
+  if (const_addr == NULL) {
+    bailout("const section overflow");
+    return __ code()->consts()->start();
+  } else {
+    return const_addr;
+  }
+}
+
+address LIR_Assembler::int_constant(jlong n) {
+  address const_addr = __ long_constant(n);
+  if (const_addr == NULL) {
+    bailout("const section overflow");
+    return __ code()->consts()->start();
+  } else {
+    return const_addr;
+  }
+}
+
+void LIR_Assembler::set_24bit_FPU() { Unimplemented(); }
+
+void LIR_Assembler::reset_FPU() { Unimplemented(); }
+
+void LIR_Assembler::fpop() { Unimplemented(); }
+
+void LIR_Assembler::fxch(int i) { Unimplemented(); }
+
+void LIR_Assembler::fld(int i) { Unimplemented(); }
+
+void LIR_Assembler::ffree(int i) { Unimplemented(); }
+
+void LIR_Assembler::breakpoint() { Unimplemented(); }
+
+void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); }
+
+void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); }
+
+bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; }
+//-------------------------------------------
+
+static Register as_reg(LIR_Opr op) {
+  return op->is_double_cpu() ? op->as_register_lo() : op->as_register();
+}
+
+static jlong as_long(LIR_Opr data) {
+  jlong result;
+  switch (data->type()) {
+  case T_INT:
+    result = (data->as_jint());
+    break;
+  case T_LONG:
+    result = (data->as_jlong());
+    break;
+  default:
+    ShouldNotReachHere();
+    result = 0;  // unreachable
+  }
+  return result;
+}
+
+Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
+  Register base = addr->base()->as_pointer_register();
+  LIR_Opr opr = addr->index();
+  if (opr->is_cpu_register()) {
+    Register index;
+    if (opr->is_single_cpu())
+      index = opr->as_register();
+    else
+      index = opr->as_register_lo();
+    assert(addr->disp() == 0, "must be");
+    switch(opr->type()) {
+      case T_INT:
+        return Address(base, index, Address::sxtw(addr->scale()));
+      case T_LONG:
+        return Address(base, index, Address::lsl(addr->scale()));
+      default:
+        ShouldNotReachHere();
+      }
+  } else  {
+    intptr_t addr_offset = intptr_t(addr->disp());
+    if (Address::offset_ok_for_immed(addr_offset, addr->scale()))
+      return Address(base, addr_offset, Address::lsl(addr->scale()));
+    else {
+      __ mov(tmp, addr_offset);
+      return Address(base, tmp, Address::lsl(addr->scale()));
+    }
+  }
+  return Address();
+}
+
+Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
+  ShouldNotReachHere();
+  return Address();
+}
+
+Address LIR_Assembler::as_Address(LIR_Address* addr) {
+  return as_Address(addr, rscratch1);
+}
+
+Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
+  return as_Address(addr, rscratch1);  // Ouch
+  // FIXME: This needs to be much more clever.  See x86.
+}
+
+
+void LIR_Assembler::osr_entry() {
+  offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
+  BlockBegin* osr_entry = compilation()->hir()->osr_entry();
+  ValueStack* entry_state = osr_entry->state();
+  int number_of_locks = entry_state->locks_size();
+
+  // we jump here if osr happens with the interpreter
+  // state set up to continue at the beginning of the
+  // loop that triggered osr - in particular, we have
+  // the following registers setup:
+  //
+  // r2: osr buffer
+  //
+
+  // build frame
+  ciMethod* m = compilation()->method();
+  __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
+
+  // OSR buffer is
+  //
+  // locals[nlocals-1..0]
+  // monitors[0..number_of_locks]
+  //
+  // locals is a direct copy of the interpreter frame so in the osr buffer
+  // so first slot in the local array is the last local from the interpreter
+  // and last slot is local[0] (receiver) from the interpreter
+  //
+  // Similarly with locks. The first lock slot in the osr buffer is the nth lock
+  // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
+  // in the interpreter frame (the method lock if a sync method)
+
+  // Initialize monitors in the compiled activation.
+  //   r2: pointer to osr buffer
+  //
+  // All other registers are dead at this point and the locals will be
+  // copied into place by code emitted in the IR.
+
+  Register OSR_buf = osrBufferPointer()->as_pointer_register();
+  { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
+    int monitor_offset = BytesPerWord * method()->max_locals() +
+      (2 * BytesPerWord) * (number_of_locks - 1);
+    // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
+    // the OSR buffer using 2 word entries: first the lock and then
+    // the oop.
+    for (int i = 0; i < number_of_locks; i++) {
+      int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
+#ifdef ASSERT
+      // verify the interpreter's monitor has a non-null object
+      {
+        Label L;
+        __ ldr(rscratch1, Address(OSR_buf, slot_offset + 1*BytesPerWord));
+        __ cbnz(rscratch1, L);
+        __ stop("locked object is NULL");
+        __ bind(L);
+      }
+#endif
+      __ ldr(r19, Address(OSR_buf, slot_offset + 0));
+      __ str(r19, frame_map()->address_for_monitor_lock(i));
+      __ ldr(r19, Address(OSR_buf, slot_offset + 1*BytesPerWord));
+      __ str(r19, frame_map()->address_for_monitor_object(i));
+    }
+  }
+}
+
+
+// inline cache check; done before the frame is built.
+int LIR_Assembler::check_icache() {
+  Register receiver = FrameMap::receiver_opr->as_register();
+  Register ic_klass = IC_Klass;
+  int start_offset = __ offset();
+  __ inline_cache_check(receiver, ic_klass);
+
+  // if icache check fails, then jump to runtime routine
+  // Note: RECEIVER must still contain the receiver!
+  Label dont;
+  __ br(Assembler::EQ, dont);
+  __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
+
+  // We align the verified entry point unless the method body
+  // (including its inline cache check) will fit in a single 64-byte
+  // icache line.
+  if (! method()->is_accessor() || __ offset() - start_offset > 4 * 4) {
+    // force alignment after the cache check.
+    __ align(CodeEntryAlignment);
+  }
+
+  __ bind(dont);
+  return start_offset;
+}
+
+
+void LIR_Assembler::jobject2reg(jobject o, Register reg) {
+  if (o == NULL) {
+    __ mov(reg, zr);
+  } else {
+    __ movoop(reg, o, /*immediate*/true);
+  }
+}
+
+void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) {
+  address target = NULL;
+  relocInfo::relocType reloc_type = relocInfo::none;
+
+  switch (patching_id(info)) {
+  case PatchingStub::access_field_id:
+    target = Runtime1::entry_for(Runtime1::access_field_patching_id);
+    reloc_type = relocInfo::section_word_type;
+    break;
+  case PatchingStub::load_klass_id:
+    target = Runtime1::entry_for(Runtime1::load_klass_patching_id);
+    reloc_type = relocInfo::metadata_type;
+    break;
+  case PatchingStub::load_mirror_id:
+    target = Runtime1::entry_for(Runtime1::load_mirror_patching_id);
+    reloc_type = relocInfo::oop_type;
+    break;
+  case PatchingStub::load_appendix_id:
+    target = Runtime1::entry_for(Runtime1::load_appendix_patching_id);
+    reloc_type = relocInfo::oop_type;
+    break;
+  default: ShouldNotReachHere();
+  }
+
+  __ far_call(RuntimeAddress(target));
+  add_call_info_here(info);
+}
+
+void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
+  deoptimize_trap(info);
+}
+
+
+// This specifies the rsp decrement needed to build the frame
+int LIR_Assembler::initial_frame_size_in_bytes() const {
+  // if rounding, must let FrameMap know!
+
+  // The frame_map records size in slots (32bit word)
+
+  // subtract two words to account for return address and link
+  return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
+}
+
+
+int LIR_Assembler::emit_exception_handler() {
+  // if the last instruction is a call (typically to do a throw which
+  // is coming at the end after block reordering) the return address
+  // must still point into the code area in order to avoid assertion
+  // failures when searching for the corresponding bci => add a nop
+  // (was bug 5/14/1999 - gri)
+  __ nop();
+
+  // generate code for exception handler
+  address handler_base = __ start_a_stub(exception_handler_size());
+  if (handler_base == NULL) {
+    // not enough space left for the handler
+    bailout("exception handler overflow");
+    return -1;
+  }
+
+  int offset = code_offset();
+
+  // the exception oop and pc are in r0, and r3
+  // no other registers need to be preserved, so invalidate them
+  __ invalidate_registers(false, true, true, false, true, true);
+
+  // check that there is really an exception
+  __ verify_not_null_oop(r0);
+
+  // search an exception handler (r0: exception oop, r3: throwing pc)
+  __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));  __ should_not_reach_here();
+  guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
+  __ end_a_stub();
+
+  return offset;
+}
+
+
+// Emit the code to remove the frame from the stack in the exception
+// unwind path.
+int LIR_Assembler::emit_unwind_handler() {
+#ifndef PRODUCT
+  if (CommentedAssembly) {
+    _masm->block_comment("Unwind handler");
+  }
+#endif
+
+  int offset = code_offset();
+
+  // Fetch the exception from TLS and clear out exception related thread state
+  __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
+  __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
+  __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
+
+  __ bind(_unwind_handler_entry);
+  __ verify_not_null_oop(r0);
+  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
+    __ mov(r19, r0);  // Preserve the exception
+  }
+
+  // Preform needed unlocking
+  MonitorExitStub* stub = NULL;
+  if (method()->is_synchronized()) {
+    monitor_address(0, FrameMap::r0_opr);
+    stub = new MonitorExitStub(FrameMap::r0_opr, true, 0);
+    __ unlock_object(r5, r4, r0, *stub->entry());
+    __ bind(*stub->continuation());
+  }
+
+  if (compilation()->env()->dtrace_method_probes()) {
+    __ call_Unimplemented();
+#if 0
+    __ movptr(Address(rsp, 0), rax);
+    __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
+    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
+#endif
+  }
+
+  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
+    __ mov(r0, r19);  // Restore the exception
+  }
+
+  // remove the activation and dispatch to the unwind handler
+  __ block_comment("remove_frame and dispatch to the unwind handler");
+  __ remove_frame(initial_frame_size_in_bytes());
+  __ far_jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
+
+  // Emit the slow path assembly
+  if (stub != NULL) {
+    stub->emit_code(this);
+  }
+
+  return offset;
+}
+
+
+int LIR_Assembler::emit_deopt_handler() {
+  // if the last instruction is a call (typically to do a throw which
+  // is coming at the end after block reordering) the return address
+  // must still point into the code area in order to avoid assertion
+  // failures when searching for the corresponding bci => add a nop
+  // (was bug 5/14/1999 - gri)
+  __ nop();
+
+  // generate code for exception handler
+  address handler_base = __ start_a_stub(deopt_handler_size());
+  if (handler_base == NULL) {
+    // not enough space left for the handler
+    bailout("deopt handler overflow");
+    return -1;
+  }
+
+  int offset = code_offset();
+
+  __ adr(lr, pc());
+  __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
+  guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
+  __ end_a_stub();
+
+  return offset;
+}
+
+void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) {
+  _masm->code_section()->relocate(adr, relocInfo::poll_type);
+  int pc_offset = code_offset();
+  flush_debug_info(pc_offset);
+  info->record_debug_info(compilation()->debug_info_recorder(), pc_offset);
+  if (info->exception_handlers() != NULL) {
+    compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers());
+  }
+}
+
+// Rather than take a segfault when the polling page is protected,
+// explicitly check for a safepoint in progress and if there is one,
+// fake a call to the handler as if a segfault had been caught.
+void LIR_Assembler::poll_for_safepoint(relocInfo::relocType rtype, CodeEmitInfo* info) {
+  __ mov(rscratch1, SafepointSynchronize::address_of_state());
+  __ ldrb(rscratch1, Address(rscratch1));
+  Label nope, poll;
+  __ cbz(rscratch1, nope);
+  __ block_comment("safepoint");
+  __ enter();
+  __ push(0x3, sp);                // r0 & r1
+  __ push(0x3ffffffc, sp);         // integer registers except lr & sp & r0 & r1
+  __ adr(r0, poll);
+  __ str(r0, Address(rthread, JavaThread::saved_exception_pc_offset()));
+  __ mov(rscratch1, CAST_FROM_FN_PTR(address, SharedRuntime::get_poll_stub));
+  __ blrt(rscratch1, 1, 0, 1);
+  __ maybe_isb();
+  __ pop(0x3ffffffc, sp);          // integer registers except lr & sp & r0 & r1
+  __ mov(rscratch1, r0);
+  __ pop(0x3, sp);                 // r0 & r1
+  __ leave();
+  __ br(rscratch1);
+  address polling_page(os::get_polling_page());
+  assert(os::is_poll_address(polling_page), "should be");
+  unsigned long off;
+  __ adrp(rscratch1, Address(polling_page, rtype), off);
+  __ bind(poll);
+  if (info)
+    add_debug_info_for_branch(info);  // This isn't just debug info:
+                                      // it's the oop map
+  else
+    __ code_section()->relocate(pc(), rtype);
+  __ ldrw(zr, Address(rscratch1, off));
+  __ bind(nope);
+}
+
+void LIR_Assembler::return_op(LIR_Opr result) {
+  assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,");
+
+  // Pop the stack before the safepoint code
+  __ remove_frame(initial_frame_size_in_bytes());
+
+  if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
+    __ reserved_stack_check();
+  }
+
+  address polling_page(os::get_polling_page());
+  __ read_polling_page(rscratch1, polling_page, relocInfo::poll_return_type);
+  __ ret(lr);
+}
+
+int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
+  address polling_page(os::get_polling_page());
+  guarantee(info != NULL, "Shouldn't be NULL");
+  assert(os::is_poll_address(polling_page), "should be");
+  unsigned long off;
+  __ adrp(rscratch1, Address(polling_page, relocInfo::poll_type), off);
+  assert(off == 0, "must be");
+  add_debug_info_for_branch(info);  // This isn't just debug info:
+  // it's the oop map
+  __ read_polling_page(rscratch1, relocInfo::poll_type);
+  return __ offset();
+}
+
+
+void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
+  if (from_reg == r31_sp)
+    from_reg = sp;
+  if (to_reg == r31_sp)
+    to_reg = sp;
+  __ mov(to_reg, from_reg);
+}
+
+void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); }
+
+
+void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
+  assert(src->is_constant(), "should not call otherwise");
+  assert(dest->is_register(), "should not call otherwise");
+  LIR_Const* c = src->as_constant_ptr();
+
+  switch (c->type()) {
+    case T_INT: {
+      assert(patch_code == lir_patch_none, "no patching handled here");
+      __ movw(dest->as_register(), c->as_jint());
+      break;
+    }
+
+    case T_ADDRESS: {
+      assert(patch_code == lir_patch_none, "no patching handled here");
+      __ mov(dest->as_register(), c->as_jint());
+      break;
+    }
+
+    case T_LONG: {
+      assert(patch_code == lir_patch_none, "no patching handled here");
+      __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong());
+      break;
+    }
+
+    case T_OBJECT: {
+        if (patch_code == lir_patch_none) {
+          jobject2reg(c->as_jobject(), dest->as_register());
+        } else {
+          jobject2reg_with_patching(dest->as_register(), info);
+        }
+      break;
+    }
+
+    case T_METADATA: {
+      if (patch_code != lir_patch_none) {
+        klass2reg_with_patching(dest->as_register(), info);
+      } else {
+        __ mov_metadata(dest->as_register(), c->as_metadata());
+      }
+      break;
+    }
+
+    case T_FLOAT: {
+      if (__ operand_valid_for_float_immediate(c->as_jfloat())) {
+        __ fmovs(dest->as_float_reg(), (c->as_jfloat()));
+      } else {
+        __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat())));
+        __ ldrs(dest->as_float_reg(), Address(rscratch1));
+      }
+      break;
+    }
+
+    case T_DOUBLE: {
+      if (__ operand_valid_for_float_immediate(c->as_jdouble())) {
+        __ fmovd(dest->as_double_reg(), (c->as_jdouble()));
+      } else {
+        __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble())));
+        __ ldrd(dest->as_double_reg(), Address(rscratch1));
+      }
+      break;
+    }
+
+    default:
+      ShouldNotReachHere();
+  }
+}
+
+void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
+  LIR_Const* c = src->as_constant_ptr();
+  switch (c->type()) {
+  case T_OBJECT:
+    {
+      if (! c->as_jobject())
+        __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
+      else {
+        const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, NULL);
+        reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
+      }
+    }
+    break;
+  case T_ADDRESS:
+    {
+      const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, NULL);
+      reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
+    }
+  case T_INT:
+  case T_FLOAT:
+    {
+      Register reg = zr;
+      if (c->as_jint_bits() == 0)
+        __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
+      else {
+        __ movw(rscratch1, c->as_jint_bits());
+        __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix()));
+      }
+    }
+    break;
+  case T_LONG:
+  case T_DOUBLE:
+    {
+      Register reg = zr;
+      if (c->as_jlong_bits() == 0)
+        __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(),
+                                                 lo_word_offset_in_bytes));
+      else {
+        __ mov(rscratch1, (intptr_t)c->as_jlong_bits());
+        __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(),
+                                                        lo_word_offset_in_bytes));
+      }
+    }
+    break;
+  default:
+    ShouldNotReachHere();
+  }
+}
+
+void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
+  assert(src->is_constant(), "should not call otherwise");
+  LIR_Const* c = src->as_constant_ptr();
+  LIR_Address* to_addr = dest->as_address_ptr();
+
+  void (Assembler::* insn)(Register Rt, const Address &adr);
+
+  switch (type) {
+  case T_ADDRESS:
+    assert(c->as_jint() == 0, "should be");
+    insn = &Assembler::str;
+    break;
+  case T_LONG:
+    assert(c->as_jlong() == 0, "should be");
+    insn = &Assembler::str;
+    break;
+  case T_INT:
+    assert(c->as_jint() == 0, "should be");
+    insn = &Assembler::strw;
+    break;
+  case T_OBJECT:
+  case T_ARRAY:
+    assert(c->as_jobject() == 0, "should be");
+    if (UseCompressedOops && !wide) {
+      insn = &Assembler::strw;
+    } else {
+      insn = &Assembler::str;
+    }
+    break;
+  case T_CHAR:
+  case T_SHORT:
+    assert(c->as_jint() == 0, "should be");
+    insn = &Assembler::strh;
+    break;
+  case T_BOOLEAN:
+  case T_BYTE:
+    assert(c->as_jint() == 0, "should be");
+    insn = &Assembler::strb;
+    break;
+  default:
+    ShouldNotReachHere();
+    insn = &Assembler::str;  // unreachable
+  }
+
+  if (info) add_debug_info_for_null_check_here(info);
+  (_masm->*insn)(zr, as_Address(to_addr, rscratch1));
+}
+
+void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
+  assert(src->is_register(), "should not call otherwise");
+  assert(dest->is_register(), "should not call otherwise");
+
+  // move between cpu-registers
+  if (dest->is_single_cpu()) {
+    if (src->type() == T_LONG) {
+      // Can do LONG -> OBJECT
+      move_regs(src->as_register_lo(), dest->as_register());
+      return;
+    }
+    assert(src->is_single_cpu(), "must match");
+    if (src->type() == T_OBJECT) {
+      __ verify_oop(src->as_register());
+    }
+    move_regs(src->as_register(), dest->as_register());
+
+  } else if (dest->is_double_cpu()) {
+    if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
+      // Surprising to me but we can see move of a long to t_object
+      __ verify_oop(src->as_register());
+      move_regs(src->as_register(), dest->as_register_lo());
+      return;
+    }
+    assert(src->is_double_cpu(), "must match");
+    Register f_lo = src->as_register_lo();
+    Register f_hi = src->as_register_hi();
+    Register t_lo = dest->as_register_lo();
+    Register t_hi = dest->as_register_hi();
+    assert(f_hi == f_lo, "must be same");
+    assert(t_hi == t_lo, "must be same");
+    move_regs(f_lo, t_lo);
+
+  } else if (dest->is_single_fpu()) {
+    __ fmovs(dest->as_float_reg(), src->as_float_reg());
+
+  } else if (dest->is_double_fpu()) {
+    __ fmovd(dest->as_double_reg(), src->as_double_reg());
+
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
+  if (src->is_single_cpu()) {
+    if (type == T_ARRAY || type == T_OBJECT) {
+      __ str(src->as_register(), frame_map()->address_for_slot(dest->single_stack_ix()));
+      __ verify_oop(src->as_register());
+    } else if (type == T_METADATA || type == T_DOUBLE) {
+      __ str(src->as_register(), frame_map()->address_for_slot(dest->single_stack_ix()));
+    } else {
+      __ strw(src->as_register(), frame_map()->address_for_slot(dest->single_stack_ix()));
+    }
+
+  } else if (src->is_double_cpu()) {
+    Address dest_addr_LO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
+    __ str(src->as_register_lo(), dest_addr_LO);
+
+  } else if (src->is_single_fpu()) {
+    Address dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
+    __ strs(src->as_float_reg(), dest_addr);
+
+  } else if (src->is_double_fpu()) {
+    Address dest_addr = frame_map()->address_for_slot(dest->double_stack_ix());
+    __ strd(src->as_double_reg(), dest_addr);
+
+  } else {
+    ShouldNotReachHere();
+  }
+
+}
+
+
+void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
+  LIR_Address* to_addr = dest->as_address_ptr();
+  PatchingStub* patch = NULL;
+  Register compressed_src = rscratch1;
+
+  if (patch_code != lir_patch_none) {
+    deoptimize_trap(info);
+    return;
+  }
+
+  if (type == T_ARRAY || type == T_OBJECT) {
+    __ verify_oop(src->as_register());
+
+    if (UseCompressedOops && !wide) {
+      __ encode_heap_oop(compressed_src, src->as_register());
+    } else {
+      compressed_src = src->as_register();
+    }
+  }
+
+  int null_check_here = code_offset();
+  switch (type) {
+    case T_FLOAT: {
+      __ strs(src->as_float_reg(), as_Address(to_addr));
+      break;
+    }
+
+    case T_DOUBLE: {
+      __ strd(src->as_double_reg(), as_Address(to_addr));
+      break;
+    }
+
+    case T_ARRAY:   // fall through
+    case T_OBJECT:  // fall through
+      if (UseCompressedOops && !wide) {
+        __ strw(compressed_src, as_Address(to_addr, rscratch2));
+      } else {
+         __ str(compressed_src, as_Address(to_addr));
+      }
+      break;
+    case T_METADATA:
+      // We get here to store a method pointer to the stack to pass to
+      // a dtrace runtime call. This can't work on 64 bit with
+      // compressed klass ptrs: T_METADATA can be a compressed klass
+      // ptr or a 64 bit method pointer.
+      ShouldNotReachHere();
+      __ str(src->as_register(), as_Address(to_addr));
+      break;
+    case T_ADDRESS:
+      __ str(src->as_register(), as_Address(to_addr));
+      break;
+    case T_INT:
+      __ strw(src->as_register(), as_Address(to_addr));
+      break;
+
+    case T_LONG: {
+      __ str(src->as_register_lo(), as_Address_lo(to_addr));
+      break;
+    }
+
+    case T_BYTE:    // fall through
+    case T_BOOLEAN: {
+      __ strb(src->as_register(), as_Address(to_addr));
+      break;
+    }
+
+    case T_CHAR:    // fall through
+    case T_SHORT:
+      __ strh(src->as_register(), as_Address(to_addr));
+      break;
+
+    default:
+      ShouldNotReachHere();
+  }
+  if (info != NULL) {
+    add_debug_info_for_null_check(null_check_here, info);
+  }
+}
+
+
+void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
+  assert(src->is_stack(), "should not call otherwise");
+  assert(dest->is_register(), "should not call otherwise");
+
+  if (dest->is_single_cpu()) {
+    if (type == T_ARRAY || type == T_OBJECT) {
+      __ ldr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
+      __ verify_oop(dest->as_register());
+    } else if (type == T_METADATA) {
+      __ ldr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
+    } else {
+      __ ldrw(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
+    }
+
+  } else if (dest->is_double_cpu()) {
+    Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
+    __ ldr(dest->as_register_lo(), src_addr_LO);
+
+  } else if (dest->is_single_fpu()) {
+    Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
+    __ ldrs(dest->as_float_reg(), src_addr);
+
+  } else if (dest->is_double_fpu()) {
+    Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
+    __ ldrd(dest->as_double_reg(), src_addr);
+
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+
+void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
+  address target = NULL;
+  relocInfo::relocType reloc_type = relocInfo::none;
+
+  switch (patching_id(info)) {
+  case PatchingStub::access_field_id:
+    target = Runtime1::entry_for(Runtime1::access_field_patching_id);
+    reloc_type = relocInfo::section_word_type;
+    break;
+  case PatchingStub::load_klass_id:
+    target = Runtime1::entry_for(Runtime1::load_klass_patching_id);
+    reloc_type = relocInfo::metadata_type;
+    break;
+  case PatchingStub::load_mirror_id:
+    target = Runtime1::entry_for(Runtime1::load_mirror_patching_id);
+    reloc_type = relocInfo::oop_type;
+    break;
+  case PatchingStub::load_appendix_id:
+    target = Runtime1::entry_for(Runtime1::load_appendix_patching_id);
+    reloc_type = relocInfo::oop_type;
+    break;
+  default: ShouldNotReachHere();
+  }
+
+  __ far_call(RuntimeAddress(target));
+  add_call_info_here(info);
+}
+
+void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
+
+  LIR_Opr temp;
+  if (type == T_LONG || type == T_DOUBLE)
+    temp = FrameMap::rscratch1_long_opr;
+  else
+    temp = FrameMap::rscratch1_opr;
+
+  stack2reg(src, temp, src->type());
+  reg2stack(temp, dest, dest->type(), false);
+}
+
+
+void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
+  LIR_Address* addr = src->as_address_ptr();
+  LIR_Address* from_addr = src->as_address_ptr();
+
+  if (addr->base()->type() == T_OBJECT) {
+    __ verify_oop(addr->base()->as_pointer_register());
+  }
+
+  if (patch_code != lir_patch_none) {
+    deoptimize_trap(info);
+    return;
+  }
+
+  if (info != NULL) {
+    add_debug_info_for_null_check_here(info);
+  }
+  int null_check_here = code_offset();
+  switch (type) {
+    case T_FLOAT: {
+      __ ldrs(dest->as_float_reg(), as_Address(from_addr));
+      break;
+    }
+
+    case T_DOUBLE: {
+      __ ldrd(dest->as_double_reg(), as_Address(from_addr));
+      break;
+    }
+
+    case T_ARRAY:   // fall through
+    case T_OBJECT:  // fall through
+      if (UseCompressedOops && !wide) {
+        __ ldrw(dest->as_register(), as_Address(from_addr));
+      } else {
+         __ ldr(dest->as_register(), as_Address(from_addr));
+      }
+      break;
+    case T_METADATA:
+      // We get here to store a method pointer to the stack to pass to
+      // a dtrace runtime call. This can't work on 64 bit with
+      // compressed klass ptrs: T_METADATA can be a compressed klass
+      // ptr or a 64 bit method pointer.
+      ShouldNotReachHere();
+      __ ldr(dest->as_register(), as_Address(from_addr));
+      break;
+    case T_ADDRESS:
+      // FIXME: OMG this is a horrible kludge.  Any offset from an
+      // address that matches klass_offset_in_bytes() will be loaded
+      // as a word, not a long.
+      if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
+        __ ldrw(dest->as_register(), as_Address(from_addr));
+      } else {
+        __ ldr(dest->as_register(), as_Address(from_addr));
+      }
+      break;
+    case T_INT:
+      __ ldrw(dest->as_register(), as_Address(from_addr));
+      break;
+
+    case T_LONG: {
+      __ ldr(dest->as_register_lo(), as_Address_lo(from_addr));
+      break;
+    }
+
+    case T_BYTE:
+      __ ldrsb(dest->as_register(), as_Address(from_addr));
+      break;
+    case T_BOOLEAN: {
+      __ ldrb(dest->as_register(), as_Address(from_addr));
+      break;
+    }
+
+    case T_CHAR:
+      __ ldrh(dest->as_register(), as_Address(from_addr));
+      break;
+    case T_SHORT:
+      __ ldrsh(dest->as_register(), as_Address(from_addr));
+      break;
+
+    default:
+      ShouldNotReachHere();
+  }
+
+  if (type == T_ARRAY || type == T_OBJECT) {
+    if (UseCompressedOops && !wide) {
+      __ decode_heap_oop(dest->as_register());
+    }
+    __ verify_oop(dest->as_register());
+  } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
+    if (UseCompressedClassPointers) {
+      __ decode_klass_not_null(dest->as_register());
+    }
+  }
+}
+
+
+int LIR_Assembler::array_element_size(BasicType type) const {
+  int elem_size = type2aelembytes(type);
+  return exact_log2(elem_size);
+}
+
+void LIR_Assembler::arithmetic_idiv(LIR_Op3* op, bool is_irem) {
+  Register Rdividend = op->in_opr1()->as_register();
+  Register Rdivisor  = op->in_opr2()->as_register();
+  Register Rscratch  = op->in_opr3()->as_register();
+  Register Rresult   = op->result_opr()->as_register();
+  int divisor = -1;
+
+  /*
+  TODO: For some reason, using the Rscratch that gets passed in is
+  not possible because the register allocator does not see the tmp reg
+  as used, and assignes it the same register as Rdividend. We use rscratch1
+   instead.
+
+  assert(Rdividend != Rscratch, "");
+  assert(Rdivisor  != Rscratch, "");
+  */
+
+  if (Rdivisor == noreg && is_power_of_2(divisor)) {
+    // convert division by a power of two into some shifts and logical operations
+  }
+
+  __ corrected_idivl(Rresult, Rdividend, Rdivisor, is_irem, rscratch1);
+}
+
+void LIR_Assembler::emit_op3(LIR_Op3* op) {
+  switch (op->code()) {
+  case lir_idiv:
+    arithmetic_idiv(op, false);
+    break;
+  case lir_irem:
+    arithmetic_idiv(op, true);
+    break;
+  case lir_fmad:
+    __ fmaddd(op->result_opr()->as_double_reg(),
+              op->in_opr1()->as_double_reg(),
+              op->in_opr2()->as_double_reg(),
+              op->in_opr3()->as_double_reg());
+    break;
+  case lir_fmaf:
+    __ fmadds(op->result_opr()->as_float_reg(),
+              op->in_opr1()->as_float_reg(),
+              op->in_opr2()->as_float_reg(),
+              op->in_opr3()->as_float_reg());
+    break;
+  default:      ShouldNotReachHere(); break;
+  }
+}
+
+void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
+#ifdef ASSERT
+  assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
+  if (op->block() != NULL)  _branch_target_blocks.append(op->block());
+  if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
+#endif
+
+  if (op->cond() == lir_cond_always) {
+    if (op->info() != NULL) add_debug_info_for_branch(op->info());
+    __ b(*(op->label()));
+  } else {
+    Assembler::Condition acond;
+    if (op->code() == lir_cond_float_branch) {
+      bool is_unordered = (op->ublock() == op->block());
+      // Assembler::EQ does not permit unordered branches, so we add
+      // another branch here.  Likewise, Assembler::NE does not permit
+      // ordered branches.
+      if (is_unordered && op->cond() == lir_cond_equal
+          || !is_unordered && op->cond() == lir_cond_notEqual)
+        __ br(Assembler::VS, *(op->ublock()->label()));
+      switch(op->cond()) {
+      case lir_cond_equal:        acond = Assembler::EQ; break;
+      case lir_cond_notEqual:     acond = Assembler::NE; break;
+      case lir_cond_less:         acond = (is_unordered ? Assembler::LT : Assembler::LO); break;
+      case lir_cond_lessEqual:    acond = (is_unordered ? Assembler::LE : Assembler::LS); break;
+      case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break;
+      case lir_cond_greater:      acond = (is_unordered ? Assembler::HI : Assembler::GT); break;
+      default:                    ShouldNotReachHere();
+        acond = Assembler::EQ;  // unreachable
+      }
+    } else {
+      switch (op->cond()) {
+        case lir_cond_equal:        acond = Assembler::EQ; break;
+        case lir_cond_notEqual:     acond = Assembler::NE; break;
+        case lir_cond_less:         acond = Assembler::LT; break;
+        case lir_cond_lessEqual:    acond = Assembler::LE; break;
+        case lir_cond_greaterEqual: acond = Assembler::GE; break;
+        case lir_cond_greater:      acond = Assembler::GT; break;
+        case lir_cond_belowEqual:   acond = Assembler::LS; break;
+        case lir_cond_aboveEqual:   acond = Assembler::HS; break;
+        default:                    ShouldNotReachHere();
+          acond = Assembler::EQ;  // unreachable
+      }
+    }
+    __ br(acond,*(op->label()));
+  }
+}
+
+
+
+void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
+  LIR_Opr src  = op->in_opr();
+  LIR_Opr dest = op->result_opr();
+
+  switch (op->bytecode()) {
+    case Bytecodes::_i2f:
+      {
+        __ scvtfws(dest->as_float_reg(), src->as_register());
+        break;
+      }
+    case Bytecodes::_i2d:
+      {
+        __ scvtfwd(dest->as_double_reg(), src->as_register());
+        break;
+      }
+    case Bytecodes::_l2d:
+      {
+        __ scvtfd(dest->as_double_reg(), src->as_register_lo());
+        break;
+      }
+    case Bytecodes::_l2f:
+      {
+        __ scvtfs(dest->as_float_reg(), src->as_register_lo());
+        break;
+      }
+    case Bytecodes::_f2d:
+      {
+        __ fcvts(dest->as_double_reg(), src->as_float_reg());
+        break;
+      }
+    case Bytecodes::_d2f:
+      {
+        __ fcvtd(dest->as_float_reg(), src->as_double_reg());
+        break;
+      }
+    case Bytecodes::_i2c:
+      {
+        __ ubfx(dest->as_register(), src->as_register(), 0, 16);
+        break;
+      }
+    case Bytecodes::_i2l:
+      {
+        __ sxtw(dest->as_register_lo(), src->as_register());
+        break;
+      }
+    case Bytecodes::_i2s:
+      {
+        __ sxth(dest->as_register(), src->as_register());
+        break;
+      }
+    case Bytecodes::_i2b:
+      {
+        __ sxtb(dest->as_register(), src->as_register());
+        break;
+      }
+    case Bytecodes::_l2i:
+      {
+        _masm->block_comment("FIXME: This could be a no-op");
+        __ uxtw(dest->as_register(), src->as_register_lo());
+        break;
+      }
+    case Bytecodes::_d2l:
+      {
+        __ fcvtzd(dest->as_register_lo(), src->as_double_reg());
+        break;
+      }
+    case Bytecodes::_f2i:
+      {
+        __ fcvtzsw(dest->as_register(), src->as_float_reg());
+        break;
+      }
+    case Bytecodes::_f2l:
+      {
+        __ fcvtzs(dest->as_register_lo(), src->as_float_reg());
+        break;
+      }
+    case Bytecodes::_d2i:
+      {
+        __ fcvtzdw(dest->as_register(), src->as_double_reg());
+        break;
+      }
+    default: ShouldNotReachHere();
+  }
+}
+
+void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
+  if (op->init_check()) {
+    __ ldrb(rscratch1, Address(op->klass()->as_register(),
+                               InstanceKlass::init_state_offset()));
+    __ cmpw(rscratch1, InstanceKlass::fully_initialized);
+    add_debug_info_for_null_check_here(op->stub()->info());
+    __ br(Assembler::NE, *op->stub()->entry());
+  }
+  __ allocate_object(op->obj()->as_register(),
+                     op->tmp1()->as_register(),
+                     op->tmp2()->as_register(),
+                     op->header_size(),
+                     op->object_size(),
+                     op->klass()->as_register(),
+                     *op->stub()->entry());
+  __ bind(*op->stub()->continuation());
+}
+
+void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
+  Register len =  op->len()->as_register();
+  __ uxtw(len, len);
+
+  if (UseSlowPath ||
+      (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
+      (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
+    __ b(*op->stub()->entry());
+  } else {
+    Register tmp1 = op->tmp1()->as_register();
+    Register tmp2 = op->tmp2()->as_register();
+    Register tmp3 = op->tmp3()->as_register();
+    if (len == tmp1) {
+      tmp1 = tmp3;
+    } else if (len == tmp2) {
+      tmp2 = tmp3;
+    } else if (len == tmp3) {
+      // everything is ok
+    } else {
+      __ mov(tmp3, len);
+    }
+    __ allocate_array(op->obj()->as_register(),
+                      len,
+                      tmp1,
+                      tmp2,
+                      arrayOopDesc::header_size(op->type()),
+                      array_element_size(op->type()),
+                      op->klass()->as_register(),
+                      *op->stub()->entry());
+  }
+  __ bind(*op->stub()->continuation());
+}
+
+void LIR_Assembler::type_profile_helper(Register mdo,
+                                        ciMethodData *md, ciProfileData *data,
+                                        Register recv, Label* update_done) {
+  for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
+    Label next_test;
+    // See if the receiver is receiver[n].
+    __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
+    __ ldr(rscratch1, Address(rscratch2));
+    __ cmp(recv, rscratch1);
+    __ br(Assembler::NE, next_test);
+    Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
+    __ addptr(data_addr, DataLayout::counter_increment);
+    __ b(*update_done);
+    __ bind(next_test);
+  }
+
+  // Didn't find receiver; find next empty slot and fill it in
+  for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
+    Label next_test;
+    __ lea(rscratch2,
+           Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
+    Address recv_addr(rscratch2);
+    __ ldr(rscratch1, recv_addr);
+    __ cbnz(rscratch1, next_test);
+    __ str(recv, recv_addr);
+    __ mov(rscratch1, DataLayout::counter_increment);
+    __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))));
+    __ str(rscratch1, Address(rscratch2));
+    __ b(*update_done);
+    __ bind(next_test);
+  }
+}
+
+void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
+  // we always need a stub for the failure case.
+  CodeStub* stub = op->stub();
+  Register obj = op->object()->as_register();
+  Register k_RInfo = op->tmp1()->as_register();
+  Register klass_RInfo = op->tmp2()->as_register();
+  Register dst = op->result_opr()->as_register();
+  ciKlass* k = op->klass();
+  Register Rtmp1 = noreg;
+
+  // check if it needs to be profiled
+  ciMethodData* md;
+  ciProfileData* data;
+
+  const bool should_profile = op->should_profile();
+
+  if (should_profile) {
+    ciMethod* method = op->profiled_method();
+    assert(method != NULL, "Should have method");
+    int bci = op->profiled_bci();
+    md = method->method_data_or_null();
+    assert(md != NULL, "Sanity");
+    data = md->bci_to_data(bci);
+    assert(data != NULL,                "need data for type check");
+    assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
+  }
+  Label profile_cast_success, profile_cast_failure;
+  Label *success_target = should_profile ? &profile_cast_success : success;
+  Label *failure_target = should_profile ? &profile_cast_failure : failure;
+
+  if (obj == k_RInfo) {
+    k_RInfo = dst;
+  } else if (obj == klass_RInfo) {
+    klass_RInfo = dst;
+  }
+  if (k->is_loaded() && !UseCompressedClassPointers) {
+    select_different_registers(obj, dst, k_RInfo, klass_RInfo);
+  } else {
+    Rtmp1 = op->tmp3()->as_register();
+    select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
+  }
+
+  assert_different_registers(obj, k_RInfo, klass_RInfo);
+
+    if (should_profile) {
+      Label not_null;
+      __ cbnz(obj, not_null);
+      // Object is null; update MDO and exit
+      Register mdo  = klass_RInfo;
+      __ mov_metadata(mdo, md->constant_encoding());
+      Address data_addr
+        = __ form_address(rscratch2, mdo,
+                          md->byte_offset_of_slot(data, DataLayout::DataLayout::header_offset()),
+                          LogBytesPerWord);
+      int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
+      __ ldr(rscratch1, data_addr);
+      __ orr(rscratch1, rscratch1, header_bits);
+      __ str(rscratch1, data_addr);
+      __ b(*obj_is_null);
+      __ bind(not_null);
+    } else {
+      __ cbz(obj, *obj_is_null);
+    }
+
+  if (!k->is_loaded()) {
+    klass2reg_with_patching(k_RInfo, op->info_for_patch());
+  } else {
+    __ mov_metadata(k_RInfo, k->constant_encoding());
+  }
+  __ verify_oop(obj);
+
+  if (op->fast_check()) {
+    // get object class
+    // not a safepoint as obj null check happens earlier
+    __ load_klass(rscratch1, obj);
+    __ cmp( rscratch1, k_RInfo);
+
+    __ br(Assembler::NE, *failure_target);
+    // successful cast, fall through to profile or jump
+  } else {
+    // get object class
+    // not a safepoint as obj null check happens earlier
+    __ load_klass(klass_RInfo, obj);
+    if (k->is_loaded()) {
+      // See if we get an immediate positive hit
+      __ ldr(rscratch1, Address(klass_RInfo, long(k->super_check_offset())));
+      __ cmp(k_RInfo, rscratch1);
+      if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
+        __ br(Assembler::NE, *failure_target);
+        // successful cast, fall through to profile or jump
+      } else {
+        // See if we get an immediate positive hit
+        __ br(Assembler::EQ, *success_target);
+        // check for self
+        __ cmp(klass_RInfo, k_RInfo);
+        __ br(Assembler::EQ, *success_target);
+
+        __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
+        __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
+        __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize)));
+        // result is a boolean
+        __ cbzw(klass_RInfo, *failure_target);
+        // successful cast, fall through to profile or jump
+      }
+    } else {
+      // perform the fast part of the checking logic
+      __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
+      // call out-of-line instance of __ check_klass_subtype_slow_path(...):
+      __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
+      __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
+      __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
+      // result is a boolean
+      __ cbz(k_RInfo, *failure_target);
+      // successful cast, fall through to profile or jump
+    }
+  }
+  if (should_profile) {
+    Register mdo  = klass_RInfo, recv = k_RInfo;
+    __ bind(profile_cast_success);
+    __ mov_metadata(mdo, md->constant_encoding());
+    __ load_klass(recv, obj);
+    Label update_done;
+    type_profile_helper(mdo, md, data, recv, success);
+    __ b(*success);
+
+    __ bind(profile_cast_failure);
+    __ mov_metadata(mdo, md->constant_encoding());
+    Address counter_addr
+      = __ form_address(rscratch2, mdo,
+                        md->byte_offset_of_slot(data, CounterData::count_offset()),
+                        LogBytesPerWord);
+    __ ldr(rscratch1, counter_addr);
+    __ sub(rscratch1, rscratch1, DataLayout::counter_increment);
+    __ str(rscratch1, counter_addr);
+    __ b(*failure);
+  }
+  __ b(*success);
+}
+
+
+void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
+  const bool should_profile = op->should_profile();
+
+  LIR_Code code = op->code();
+  if (code == lir_store_check) {
+    Register value = op->object()->as_register();
+    Register array = op->array()->as_register();
+    Register k_RInfo = op->tmp1()->as_register();
+    Register klass_RInfo = op->tmp2()->as_register();
+    Register Rtmp1 = op->tmp3()->as_register();
+
+    CodeStub* stub = op->stub();
+
+    // check if it needs to be profiled
+    ciMethodData* md;
+    ciProfileData* data;
+
+    if (should_profile) {
+      ciMethod* method = op->profiled_method();
+      assert(method != NULL, "Should have method");
+      int bci = op->profiled_bci();
+      md = method->method_data_or_null();
+      assert(md != NULL, "Sanity");
+      data = md->bci_to_data(bci);
+      assert(data != NULL,                "need data for type check");
+      assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
+    }
+    Label profile_cast_success, profile_cast_failure, done;
+    Label *success_target = should_profile ? &profile_cast_success : &done;
+    Label *failure_target = should_profile ? &profile_cast_failure : stub->entry();
+
+    if (should_profile) {
+      Label not_null;
+      __ cbnz(value, not_null);
+      // Object is null; update MDO and exit
+      Register mdo  = klass_RInfo;
+      __ mov_metadata(mdo, md->constant_encoding());
+      Address data_addr
+        = __ form_address(rscratch2, mdo,
+                          md->byte_offset_of_slot(data, DataLayout::header_offset()),
+                          LogBytesPerInt);
+      int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
+      __ ldrw(rscratch1, data_addr);
+      __ orrw(rscratch1, rscratch1, header_bits);
+      __ strw(rscratch1, data_addr);
+      __ b(done);
+      __ bind(not_null);
+    } else {
+      __ cbz(value, done);
+    }
+
+    add_debug_info_for_null_check_here(op->info_for_exception());
+    __ load_klass(k_RInfo, array);
+    __ load_klass(klass_RInfo, value);
+
+    // get instance klass (it's already uncompressed)
+    __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
+    // perform the fast part of the checking logic
+    __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
+    // call out-of-line instance of __ check_klass_subtype_slow_path(...):
+    __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
+    __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
+    __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
+    // result is a boolean
+    __ cbzw(k_RInfo, *failure_target);
+    // fall through to the success case
+
+    if (should_profile) {
+      Register mdo  = klass_RInfo, recv = k_RInfo;
+      __ bind(profile_cast_success);
+      __ mov_metadata(mdo, md->constant_encoding());
+      __ load_klass(recv, value);
+      Label update_done;
+      type_profile_helper(mdo, md, data, recv, &done);
+      __ b(done);
+
+      __ bind(profile_cast_failure);
+      __ mov_metadata(mdo, md->constant_encoding());
+      Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
+      __ lea(rscratch2, counter_addr);
+      __ ldr(rscratch1, Address(rscratch2));
+      __ sub(rscratch1, rscratch1, DataLayout::counter_increment);
+      __ str(rscratch1, Address(rscratch2));
+      __ b(*stub->entry());
+    }
+
+    __ bind(done);
+  } else if (code == lir_checkcast) {
+    Register obj = op->object()->as_register();
+    Register dst = op->result_opr()->as_register();
+    Label success;
+    emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
+    __ bind(success);
+    if (dst != obj) {
+      __ mov(dst, obj);
+    }
+  } else if (code == lir_instanceof) {
+    Register obj = op->object()->as_register();
+    Register dst = op->result_opr()->as_register();
+    Label success, failure, done;
+    emit_typecheck_helper(op, &success, &failure, &failure);
+    __ bind(failure);
+    __ mov(dst, zr);
+    __ b(done);
+    __ bind(success);
+    __ mov(dst, 1);
+    __ bind(done);
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) {
+  __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
+  __ cset(rscratch1, Assembler::NE);
+  __ membar(__ AnyAny);
+}
+
+void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) {
+  __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
+  __ cset(rscratch1, Assembler::NE);
+  __ membar(__ AnyAny);
+}
+
+
+void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
+  assert(VM_Version::supports_cx8(), "wrong machine");
+  Register addr = as_reg(op->addr());
+  Register newval = as_reg(op->new_value());
+  Register cmpval = as_reg(op->cmp_value());
+  Label succeed, fail, around;
+
+  if (op->code() == lir_cas_obj) {
+    if (UseCompressedOops) {
+      Register t1 = op->tmp1()->as_register();
+      assert(op->tmp1()->is_valid(), "must be");
+      __ encode_heap_oop(t1, cmpval);
+      cmpval = t1;
+      __ encode_heap_oop(rscratch2, newval);
+      newval = rscratch2;
+      casw(addr, newval, cmpval);
+    } else {
+      casl(addr, newval, cmpval);
+    }
+  } else if (op->code() == lir_cas_int) {
+    casw(addr, newval, cmpval);
+  } else {
+    casl(addr, newval, cmpval);
+  }
+}
+
+
+void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
+
+  Assembler::Condition acond, ncond;
+  switch (condition) {
+  case lir_cond_equal:        acond = Assembler::EQ; ncond = Assembler::NE; break;
+  case lir_cond_notEqual:     acond = Assembler::NE; ncond = Assembler::EQ; break;
+  case lir_cond_less:         acond = Assembler::LT; ncond = Assembler::GE; break;
+  case lir_cond_lessEqual:    acond = Assembler::LE; ncond = Assembler::GT; break;
+  case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break;
+  case lir_cond_greater:      acond = Assembler::GT; ncond = Assembler::LE; break;
+  case lir_cond_belowEqual:
+  case lir_cond_aboveEqual:
+  default:                    ShouldNotReachHere();
+    acond = Assembler::EQ; ncond = Assembler::NE;  // unreachable
+  }
+
+  assert(result->is_single_cpu() || result->is_double_cpu(),
+         "expect single register for result");
+  if (opr1->is_constant() && opr2->is_constant()
+      && opr1->type() == T_INT && opr2->type() == T_INT) {
+    jint val1 = opr1->as_jint();
+    jint val2 = opr2->as_jint();
+    if (val1 == 0 && val2 == 1) {
+      __ cset(result->as_register(), ncond);
+      return;
+    } else if (val1 == 1 && val2 == 0) {
+      __ cset(result->as_register(), acond);
+      return;
+    }
+  }
+
+  if (opr1->is_constant() && opr2->is_constant()
+      && opr1->type() == T_LONG && opr2->type() == T_LONG) {
+    jlong val1 = opr1->as_jlong();
+    jlong val2 = opr2->as_jlong();
+    if (val1 == 0 && val2 == 1) {
+      __ cset(result->as_register_lo(), ncond);
+      return;
+    } else if (val1 == 1 && val2 == 0) {
+      __ cset(result->as_register_lo(), acond);
+      return;
+    }
+  }
+
+  if (opr1->is_stack()) {
+    stack2reg(opr1, FrameMap::rscratch1_opr, result->type());
+    opr1 = FrameMap::rscratch1_opr;
+  } else if (opr1->is_constant()) {
+    LIR_Opr tmp
+      = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr;
+    const2reg(opr1, tmp, lir_patch_none, NULL);
+    opr1 = tmp;
+  }
+
+  if (opr2->is_stack()) {
+    stack2reg(opr2, FrameMap::rscratch2_opr, result->type());
+    opr2 = FrameMap::rscratch2_opr;
+  } else if (opr2->is_constant()) {
+    LIR_Opr tmp
+      = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr;
+    const2reg(opr2, tmp, lir_patch_none, NULL);
+    opr2 = tmp;
+  }
+
+  if (result->type() == T_LONG)
+    __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond);
+  else
+    __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond);
+}
+
+void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
+  assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
+
+  if (left->is_single_cpu()) {
+    Register lreg = left->as_register();
+    Register dreg = as_reg(dest);
+
+    if (right->is_single_cpu()) {
+      // cpu register - cpu register
+
+      assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT,
+             "should be");
+      Register rreg = right->as_register();
+      switch (code) {
+      case lir_add: __ addw (dest->as_register(), lreg, rreg); break;
+      case lir_sub: __ subw (dest->as_register(), lreg, rreg); break;
+      case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break;
+      default:      ShouldNotReachHere();
+      }
+
+    } else if (right->is_double_cpu()) {
+      Register rreg = right->as_register_lo();
+      // single_cpu + double_cpu: can happen with obj+long
+      assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
+      switch (code) {
+      case lir_add: __ add(dreg, lreg, rreg); break;
+      case lir_sub: __ sub(dreg, lreg, rreg); break;
+      default: ShouldNotReachHere();
+      }
+    } else if (right->is_constant()) {
+      // cpu register - constant
+      jlong c;
+
+      // FIXME.  This is fugly: we really need to factor all this logic.
+      switch(right->type()) {
+      case T_LONG:
+        c = right->as_constant_ptr()->as_jlong();
+        break;
+      case T_INT:
+      case T_ADDRESS:
+        c = right->as_constant_ptr()->as_jint();
+        break;
+      default:
+        ShouldNotReachHere();
+        c = 0;  // unreachable
+        break;
+      }
+
+      assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
+      if (c == 0 && dreg == lreg) {
+        COMMENT("effective nop elided");
+        return;
+      }
+      switch(left->type()) {
+      case T_INT:
+        switch (code) {
+        case lir_add: __ addw(dreg, lreg, c); break;
+        case lir_sub: __ subw(dreg, lreg, c); break;
+        default: ShouldNotReachHere();
+        }
+        break;
+      case T_OBJECT:
+      case T_ADDRESS:
+        switch (code) {
+        case lir_add: __ add(dreg, lreg, c); break;
+        case lir_sub: __ sub(dreg, lreg, c); break;
+        default: ShouldNotReachHere();
+        }
+        break;
+        ShouldNotReachHere();
+      }
+    } else {
+      ShouldNotReachHere();
+    }
+
+  } else if (left->is_double_cpu()) {
+    Register lreg_lo = left->as_register_lo();
+
+    if (right->is_double_cpu()) {
+      // cpu register - cpu register
+      Register rreg_lo = right->as_register_lo();
+      switch (code) {
+      case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break;
+      case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break;
+      case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break;
+      case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break;
+      case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break;
+      default:
+        ShouldNotReachHere();
+      }
+
+    } else if (right->is_constant()) {
+      jlong c = right->as_constant_ptr()->as_jlong_bits();
+      Register dreg = as_reg(dest);
+      assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
+      if (c == 0 && dreg == lreg_lo) {
+        COMMENT("effective nop elided");
+        return;
+      }
+      switch (code) {
+        case lir_add: __ add(dreg, lreg_lo, c); break;
+        case lir_sub: __ sub(dreg, lreg_lo, c); break;
+        default:
+          ShouldNotReachHere();
+      }
+    } else {
+      ShouldNotReachHere();
+    }
+  } else if (left->is_single_fpu()) {
+    assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register");
+    switch (code) {
+    case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
+    case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
+    case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
+    case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
+    default:
+      ShouldNotReachHere();
+    }
+  } else if (left->is_double_fpu()) {
+    if (right->is_double_fpu()) {
+      // cpu register - cpu register
+      switch (code) {
+      case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
+      case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
+      case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
+      case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
+      default:
+        ShouldNotReachHere();
+      }
+    } else {
+      if (right->is_constant()) {
+        ShouldNotReachHere();
+      }
+      ShouldNotReachHere();
+    }
+  } else if (left->is_single_stack() || left->is_address()) {
+    assert(left == dest, "left and dest must be equal");
+    ShouldNotReachHere();
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { Unimplemented(); }
+
+
+void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
+  switch(code) {
+  case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break;
+  case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break;
+  default      : ShouldNotReachHere();
+  }
+}
+
+void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
+
+  assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register");
+  Register Rleft = left->is_single_cpu() ? left->as_register() :
+                                           left->as_register_lo();
+   if (dst->is_single_cpu()) {
+     Register Rdst = dst->as_register();
+     if (right->is_constant()) {
+       switch (code) {
+         case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break;
+         case lir_logic_or:  __ orrw (Rdst, Rleft, right->as_jint()); break;
+         case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break;
+         default: ShouldNotReachHere(); break;
+       }
+     } else {
+       Register Rright = right->is_single_cpu() ? right->as_register() :
+                                                  right->as_register_lo();
+       switch (code) {
+         case lir_logic_and: __ andw (Rdst, Rleft, Rright); break;
+         case lir_logic_or:  __ orrw (Rdst, Rleft, Rright); break;
+         case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break;
+         default: ShouldNotReachHere(); break;
+       }
+     }
+   } else {
+     Register Rdst = dst->as_register_lo();
+     if (right->is_constant()) {
+       switch (code) {
+         case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break;
+         case lir_logic_or:  __ orr (Rdst, Rleft, right->as_jlong()); break;
+         case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break;
+         default: ShouldNotReachHere(); break;
+       }
+     } else {
+       Register Rright = right->is_single_cpu() ? right->as_register() :
+                                                  right->as_register_lo();
+       switch (code) {
+         case lir_logic_and: __ andr (Rdst, Rleft, Rright); break;
+         case lir_logic_or:  __ orr (Rdst, Rleft, Rright); break;
+         case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break;
+         default: ShouldNotReachHere(); break;
+       }
+     }
+   }
+}
+
+
+
+void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { Unimplemented(); }
+
+
+void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
+  if (opr1->is_constant() && opr2->is_single_cpu()) {
+    // tableswitch
+    Register reg = as_reg(opr2);
+    struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()];
+    __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after);
+  } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) {
+    Register reg1 = as_reg(opr1);
+    if (opr2->is_single_cpu()) {
+      // cpu register - cpu register
+      Register reg2 = opr2->as_register();
+      if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
+        __ cmp(reg1, reg2);
+      } else {
+        assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
+        __ cmpw(reg1, reg2);
+      }
+      return;
+    }
+    if (opr2->is_double_cpu()) {
+      // cpu register - cpu register
+      Register reg2 = opr2->as_register_lo();
+      __ cmp(reg1, reg2);
+      return;
+    }
+
+    if (opr2->is_constant()) {
+      bool is_32bit = false; // width of register operand
+      jlong imm;
+
+      switch(opr2->type()) {
+      case T_INT:
+        imm = opr2->as_constant_ptr()->as_jint();
+        is_32bit = true;
+        break;
+      case T_LONG:
+        imm = opr2->as_constant_ptr()->as_jlong();
+        break;
+      case T_ADDRESS:
+        imm = opr2->as_constant_ptr()->as_jint();
+        break;
+      case T_OBJECT:
+      case T_ARRAY:
+        imm = jlong(opr2->as_constant_ptr()->as_jobject());
+        break;
+      default:
+        ShouldNotReachHere();
+        imm = 0;  // unreachable
+        break;
+      }
+
+      if (Assembler::operand_valid_for_add_sub_immediate(imm)) {
+        if (is_32bit)
+          __ cmpw(reg1, imm);
+        else
+          __ cmp(reg1, imm);
+        return;
+      } else {
+        __ mov(rscratch1, imm);
+        if (is_32bit)
+          __ cmpw(reg1, rscratch1);
+        else
+          __ cmp(reg1, rscratch1);
+        return;
+      }
+    } else
+      ShouldNotReachHere();
+  } else if (opr1->is_single_fpu()) {
+    FloatRegister reg1 = opr1->as_float_reg();
+    assert(opr2->is_single_fpu(), "expect single float register");
+    FloatRegister reg2 = opr2->as_float_reg();
+    __ fcmps(reg1, reg2);
+  } else if (opr1->is_double_fpu()) {
+    FloatRegister reg1 = opr1->as_double_reg();
+    assert(opr2->is_double_fpu(), "expect double float register");
+    FloatRegister reg2 = opr2->as_double_reg();
+    __ fcmpd(reg1, reg2);
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
+  if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
+    bool is_unordered_less = (code == lir_ucmp_fd2i);
+    if (left->is_single_fpu()) {
+      __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
+    } else if (left->is_double_fpu()) {
+      __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
+    } else {
+      ShouldNotReachHere();
+    }
+  } else if (code == lir_cmp_l2i) {
+    Label done;
+    __ cmp(left->as_register_lo(), right->as_register_lo());
+    __ mov(dst->as_register(), (u_int64_t)-1L);
+    __ br(Assembler::LT, done);
+    __ csinc(dst->as_register(), zr, zr, Assembler::EQ);
+    __ bind(done);
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+
+void LIR_Assembler::align_call(LIR_Code code) {  }
+
+
+void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
+  address call = __ trampoline_call(Address(op->addr(), rtype));
+  if (call == NULL) {
+    bailout("trampoline stub overflow");
+    return;
+  }
+  add_call_info(code_offset(), op->info());
+}
+
+
+void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
+  address call = __ ic_call(op->addr());
+  if (call == NULL) {
+    bailout("trampoline stub overflow");
+    return;
+  }
+  add_call_info(code_offset(), op->info());
+}
+
+
+/* Currently, vtable-dispatch is only enabled for sparc platforms */
+void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
+  ShouldNotReachHere();
+}
+
+
+void LIR_Assembler::emit_static_call_stub() {
+  address call_pc = __ pc();
+  address stub = __ start_a_stub(call_stub_size());
+  if (stub == NULL) {
+    bailout("static call stub overflow");
+    return;
+  }
+
+  int start = __ offset();
+
+  __ relocate(static_stub_Relocation::spec(call_pc));
+  __ mov_metadata(rmethod, (Metadata*)NULL);
+  __ movptr(rscratch1, 0);
+  __ br(rscratch1);
+
+  assert(__ offset() - start <= call_stub_size(), "stub too big");
+  __ end_a_stub();
+}
+
+
+void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
+  assert(exceptionOop->as_register() == r0, "must match");
+  assert(exceptionPC->as_register() == r3, "must match");
+
+  // exception object is not added to oop map by LinearScan
+  // (LinearScan assumes that no oops are in fixed registers)
+  info->add_register_oop(exceptionOop);
+  Runtime1::StubID unwind_id;
+
+  // get current pc information
+  // pc is only needed if the method has an exception handler, the unwind code does not need it.
+  int pc_for_athrow_offset = __ offset();
+  InternalAddress pc_for_athrow(__ pc());
+  __ adr(exceptionPC->as_register(), pc_for_athrow);
+  add_call_info(pc_for_athrow_offset, info); // for exception handler
+
+  __ verify_not_null_oop(r0);
+  // search an exception handler (r0: exception oop, r3: throwing pc)
+  if (compilation()->has_fpu_code()) {
+    unwind_id = Runtime1::handle_exception_id;
+  } else {
+    unwind_id = Runtime1::handle_exception_nofpu_id;
+  }
+  __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
+
+  // FIXME: enough room for two byte trap   ????
+  __ nop();
+}
+
+
+void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
+  assert(exceptionOop->as_register() == r0, "must match");
+
+  __ b(_unwind_handler_entry);
+}
+
+
+void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
+  Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
+  Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
+
+  switch (left->type()) {
+    case T_INT: {
+      switch (code) {
+      case lir_shl:  __ lslvw (dreg, lreg, count->as_register()); break;
+      case lir_shr:  __ asrvw (dreg, lreg, count->as_register()); break;
+      case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break;
+      default:
+        ShouldNotReachHere();
+        break;
+      }
+      break;
+    case T_LONG:
+    case T_ADDRESS:
+    case T_OBJECT:
+      switch (code) {
+      case lir_shl:  __ lslv (dreg, lreg, count->as_register()); break;
+      case lir_shr:  __ asrv (dreg, lreg, count->as_register()); break;
+      case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break;
+      default:
+        ShouldNotReachHere();
+        break;
+      }
+      break;
+    default:
+      ShouldNotReachHere();
+      break;
+    }
+  }
+}
+
+
+void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
+  Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
+  Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
+
+  switch (left->type()) {
+    case T_INT: {
+      switch (code) {
+      case lir_shl:  __ lslw (dreg, lreg, count); break;
+      case lir_shr:  __ asrw (dreg, lreg, count); break;
+      case lir_ushr: __ lsrw (dreg, lreg, count); break;
+      default:
+        ShouldNotReachHere();
+        break;
+      }
+      break;
+    case T_LONG:
+    case T_ADDRESS:
+    case T_OBJECT:
+      switch (code) {
+      case lir_shl:  __ lsl (dreg, lreg, count); break;
+      case lir_shr:  __ asr (dreg, lreg, count); break;
+      case lir_ushr: __ lsr (dreg, lreg, count); break;
+      default:
+        ShouldNotReachHere();
+        break;
+      }
+      break;
+    default:
+      ShouldNotReachHere();
+      break;
+    }
+  }
+}
+
+
+void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
+  assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
+  int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
+  assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
+  __ str (r, Address(sp, offset_from_rsp_in_bytes));
+}
+
+
+void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
+  assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
+  int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
+  assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
+  __ mov (rscratch1, c);
+  __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes));
+}
+
+
+void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
+  ShouldNotReachHere();
+  assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
+  int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
+  assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
+  __ lea(rscratch1, __ constant_oop_address(o));
+  __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes));
+}
+
+
+// This code replaces a call to arraycopy; no exception may
+// be thrown in this code, they must be thrown in the System.arraycopy
+// activation frame; we could save some checks if this would not be the case
+void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
+  ciArrayKlass* default_type = op->expected_type();
+  Register src = op->src()->as_register();
+  Register dst = op->dst()->as_register();
+  Register src_pos = op->src_pos()->as_register();
+  Register dst_pos = op->dst_pos()->as_register();
+  Register length  = op->length()->as_register();
+  Register tmp = op->tmp()->as_register();
+
+  CodeStub* stub = op->stub();
+  int flags = op->flags();
+  BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
+  if (basic_type == T_ARRAY) basic_type = T_OBJECT;
+
+  // if we don't know anything, just go through the generic arraycopy
+  if (default_type == NULL // || basic_type == T_OBJECT
+      ) {
+    Label done;
+    assert(src == r1 && src_pos == r2, "mismatch in calling convention");
+
+    // Save the arguments in case the generic arraycopy fails and we
+    // have to fall back to the JNI stub
+    __ stp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
+    __ stp(length,  src_pos, Address(sp, 2*BytesPerWord));
+    __ str(src,              Address(sp, 4*BytesPerWord));
+
+    address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
+    address copyfunc_addr = StubRoutines::generic_arraycopy();
+
+    // The arguments are in java calling convention so we shift them
+    // to C convention
+    assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
+    __ mov(c_rarg0, j_rarg0);
+    assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
+    __ mov(c_rarg1, j_rarg1);
+    assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
+    __ mov(c_rarg2, j_rarg2);
+    assert_different_registers(c_rarg3, j_rarg4);
+    __ mov(c_rarg3, j_rarg3);
+    __ mov(c_rarg4, j_rarg4);
+    if (copyfunc_addr == NULL) { // Use C version if stub was not generated
+      __ mov(rscratch1, RuntimeAddress(C_entry));
+      __ blrt(rscratch1, 5, 0, 1);
+    } else {
+#ifndef PRODUCT
+      if (PrintC1Statistics) {
+        __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
+      }
+#endif
+      __ far_call(RuntimeAddress(copyfunc_addr));
+    }
+
+    __ cbz(r0, *stub->continuation());
+
+    // Reload values from the stack so they are where the stub
+    // expects them.
+    __ ldp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
+    __ ldp(length,  src_pos, Address(sp, 2*BytesPerWord));
+    __ ldr(src,              Address(sp, 4*BytesPerWord));
+
+    if (copyfunc_addr != NULL) {
+      // r0 is -1^K where K == partial copied count
+      __ eonw(rscratch1, r0, 0);
+      // adjust length down and src/end pos up by partial copied count
+      __ subw(length, length, rscratch1);
+      __ addw(src_pos, src_pos, rscratch1);
+      __ addw(dst_pos, dst_pos, rscratch1);
+    }
+    __ b(*stub->entry());
+
+    __ bind(*stub->continuation());
+    return;
+  }
+
+  assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
+
+  int elem_size = type2aelembytes(basic_type);
+  int shift_amount;
+  int scale = exact_log2(elem_size);
+
+  Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
+  Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
+  Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
+  Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
+
+  // test for NULL
+  if (flags & LIR_OpArrayCopy::src_null_check) {
+    __ cbz(src, *stub->entry());
+  }
+  if (flags & LIR_OpArrayCopy::dst_null_check) {
+    __ cbz(dst, *stub->entry());
+  }
+
+  // If the compiler was not able to prove that exact type of the source or the destination
+  // of the arraycopy is an array type, check at runtime if the source or the destination is
+  // an instance type.
+  if (flags & LIR_OpArrayCopy::type_check) {
+    if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
+      __ load_klass(tmp, dst);
+      __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
+      __ cmpw(rscratch1, Klass::_lh_neutral_value);
+      __ br(Assembler::GE, *stub->entry());
+    }
+
+    if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
+      __ load_klass(tmp, src);
+      __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
+      __ cmpw(rscratch1, Klass::_lh_neutral_value);
+      __ br(Assembler::GE, *stub->entry());
+    }
+  }
+
+  // check if negative
+  if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
+    __ cmpw(src_pos, 0);
+    __ br(Assembler::LT, *stub->entry());
+  }
+  if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
+    __ cmpw(dst_pos, 0);
+    __ br(Assembler::LT, *stub->entry());
+  }
+
+  if (flags & LIR_OpArrayCopy::length_positive_check) {
+    __ cmpw(length, 0);
+    __ br(Assembler::LT, *stub->entry());
+  }
+
+  if (flags & LIR_OpArrayCopy::src_range_check) {
+    __ addw(tmp, src_pos, length);
+    __ ldrw(rscratch1, src_length_addr);
+    __ cmpw(tmp, rscratch1);
+    __ br(Assembler::HI, *stub->entry());
+  }
+  if (flags & LIR_OpArrayCopy::dst_range_check) {
+    __ addw(tmp, dst_pos, length);
+    __ ldrw(rscratch1, dst_length_addr);
+    __ cmpw(tmp, rscratch1);
+    __ br(Assembler::HI, *stub->entry());
+  }
+
+  if (flags & LIR_OpArrayCopy::type_check) {
+    // We don't know the array types are compatible
+    if (basic_type != T_OBJECT) {
+      // Simple test for basic type arrays
+      if (UseCompressedClassPointers) {
+        __ ldrw(tmp, src_klass_addr);
+        __ ldrw(rscratch1, dst_klass_addr);
+        __ cmpw(tmp, rscratch1);
+      } else {
+        __ ldr(tmp, src_klass_addr);
+        __ ldr(rscratch1, dst_klass_addr);
+        __ cmp(tmp, rscratch1);
+      }
+      __ br(Assembler::NE, *stub->entry());
+    } else {
+      // For object arrays, if src is a sub class of dst then we can
+      // safely do the copy.
+      Label cont, slow;
+
+#define PUSH(r1, r2)                                    \
+      stp(r1, r2, __ pre(sp, -2 * wordSize));
+
+#define POP(r1, r2)                                     \
+      ldp(r1, r2, __ post(sp, 2 * wordSize));
+
+      __ PUSH(src, dst);
+
+      __ load_klass(src, src);
+      __ load_klass(dst, dst);
+
+      __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
+
+      __ PUSH(src, dst);
+      __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
+      __ POP(src, dst);
+
+      __ cbnz(src, cont);
+
+      __ bind(slow);
+      __ POP(src, dst);
+
+      address copyfunc_addr = StubRoutines::checkcast_arraycopy();
+      if (copyfunc_addr != NULL) { // use stub if available
+        // src is not a sub class of dst so we have to do a
+        // per-element check.
+
+        int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
+        if ((flags & mask) != mask) {
+          // Check that at least both of them object arrays.
+          assert(flags & mask, "one of the two should be known to be an object array");
+
+          if (!(flags & LIR_OpArrayCopy::src_objarray)) {
+            __ load_klass(tmp, src);
+          } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
+            __ load_klass(tmp, dst);
+          }
+          int lh_offset = in_bytes(Klass::layout_helper_offset());
+          Address klass_lh_addr(tmp, lh_offset);
+          jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
+          __ ldrw(rscratch1, klass_lh_addr);
+          __ mov(rscratch2, objArray_lh);
+          __ eorw(rscratch1, rscratch1, rscratch2);
+          __ cbnzw(rscratch1, *stub->entry());
+        }
+
+       // Spill because stubs can use any register they like and it's
+       // easier to restore just those that we care about.
+        __ stp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
+        __ stp(length,  src_pos, Address(sp, 2*BytesPerWord));
+        __ str(src,              Address(sp, 4*BytesPerWord));
+
+        __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
+        __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
+        assert_different_registers(c_rarg0, dst, dst_pos, length);
+        __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
+        __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
+        assert_different_registers(c_rarg1, dst, length);
+        __ uxtw(c_rarg2, length);
+        assert_different_registers(c_rarg2, dst);
+
+        __ load_klass(c_rarg4, dst);
+        __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
+        __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
+        __ far_call(RuntimeAddress(copyfunc_addr));
+
+#ifndef PRODUCT
+        if (PrintC1Statistics) {
+          Label failed;
+          __ cbnz(r0, failed);
+          __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
+          __ bind(failed);
+        }
+#endif
+
+        __ cbz(r0, *stub->continuation());
+
+#ifndef PRODUCT
+        if (PrintC1Statistics) {
+          __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
+        }
+#endif
+        assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1);
+
+        // Restore previously spilled arguments
+        __ ldp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
+        __ ldp(length,  src_pos, Address(sp, 2*BytesPerWord));
+        __ ldr(src,              Address(sp, 4*BytesPerWord));
+
+        // return value is -1^K where K is partial copied count
+        __ eonw(rscratch1, r0, zr);
+        // adjust length down and src/end pos up by partial copied count
+        __ subw(length, length, rscratch1);
+        __ addw(src_pos, src_pos, rscratch1);
+        __ addw(dst_pos, dst_pos, rscratch1);
+      }
+
+      __ b(*stub->entry());
+
+      __ bind(cont);
+      __ POP(src, dst);
+    }
+  }
+
+#ifdef ASSERT
+  if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
+    // Sanity check the known type with the incoming class.  For the
+    // primitive case the types must match exactly with src.klass and
+    // dst.klass each exactly matching the default type.  For the
+    // object array case, if no type check is needed then either the
+    // dst type is exactly the expected type and the src type is a
+    // subtype which we can't check or src is the same array as dst
+    // but not necessarily exactly of type default_type.
+    Label known_ok, halt;
+    __ mov_metadata(tmp, default_type->constant_encoding());
+    if (UseCompressedClassPointers) {
+      __ encode_klass_not_null(tmp);
+    }
+
+    if (basic_type != T_OBJECT) {
+
+      if (UseCompressedClassPointers) {
+        __ ldrw(rscratch1, dst_klass_addr);
+        __ cmpw(tmp, rscratch1);
+      } else {
+        __ ldr(rscratch1, dst_klass_addr);
+        __ cmp(tmp, rscratch1);
+      }
+      __ br(Assembler::NE, halt);
+      if (UseCompressedClassPointers) {
+        __ ldrw(rscratch1, src_klass_addr);
+        __ cmpw(tmp, rscratch1);
+      } else {
+        __ ldr(rscratch1, src_klass_addr);
+        __ cmp(tmp, rscratch1);
+      }
+      __ br(Assembler::EQ, known_ok);
+    } else {
+      if (UseCompressedClassPointers) {
+        __ ldrw(rscratch1, dst_klass_addr);
+        __ cmpw(tmp, rscratch1);
+      } else {
+        __ ldr(rscratch1, dst_klass_addr);
+        __ cmp(tmp, rscratch1);
+      }
+      __ br(Assembler::EQ, known_ok);
+      __ cmp(src, dst);
+      __ br(Assembler::EQ, known_ok);
+    }
+    __ bind(halt);
+    __ stop("incorrect type information in arraycopy");
+    __ bind(known_ok);
+  }
+#endif
+
+#ifndef PRODUCT
+  if (PrintC1Statistics) {
+    __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
+  }
+#endif
+
+  __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
+  __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
+  assert_different_registers(c_rarg0, dst, dst_pos, length);
+  __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
+  __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
+  assert_different_registers(c_rarg1, dst, length);
+  __ uxtw(c_rarg2, length);
+  assert_different_registers(c_rarg2, dst);
+
+  bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
+  bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
+  const char *name;
+  address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
+
+ CodeBlob *cb = CodeCache::find_blob(entry);
+ if (cb) {
+   __ far_call(RuntimeAddress(entry));
+ } else {
+   __ call_VM_leaf(entry, 3);
+ }
+
+  __ bind(*stub->continuation());
+}
+
+
+
+
+void LIR_Assembler::emit_lock(LIR_OpLock* op) {
+  Register obj = op->obj_opr()->as_register();  // may not be an oop
+  Register hdr = op->hdr_opr()->as_register();
+  Register lock = op->lock_opr()->as_register();
+  if (!UseFastLocking) {
+    __ b(*op->stub()->entry());
+  } else if (op->code() == lir_lock) {
+    Register scratch = noreg;
+    if (UseBiasedLocking) {
+      scratch = op->scratch_opr()->as_register();
+    }
+    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
+    // add debug info for NullPointerException only if one is possible
+    int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
+    if (op->info() != NULL) {
+      add_debug_info_for_null_check(null_check_offset, op->info());
+    }
+    // done
+  } else if (op->code() == lir_unlock) {
+    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
+    __ unlock_object(hdr, obj, lock, *op->stub()->entry());
+  } else {
+    Unimplemented();
+  }
+  __ bind(*op->stub()->continuation());
+}
+
+
+void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
+  ciMethod* method = op->profiled_method();
+  int bci          = op->profiled_bci();
+  ciMethod* callee = op->profiled_callee();
+
+  // Update counter for all call types
+  ciMethodData* md = method->method_data_or_null();
+  assert(md != NULL, "Sanity");
+  ciProfileData* data = md->bci_to_data(bci);
+  assert(data->is_CounterData(), "need CounterData for calls");
+  assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
+  Register mdo  = op->mdo()->as_register();
+  __ mov_metadata(mdo, md->constant_encoding());
+  Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
+  Bytecodes::Code bc = method->java_code_at_bci(bci);
+  const bool callee_is_static = callee->is_loaded() && callee->is_static();
+  // Perform additional virtual call profiling for invokevirtual and
+  // invokeinterface bytecodes
+  if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
+      !callee_is_static &&  // required for optimized MH invokes
+      C1ProfileVirtualCalls) {
+    assert(op->recv()->is_single_cpu(), "recv must be allocated");
+    Register recv = op->recv()->as_register();
+    assert_different_registers(mdo, recv);
+    assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
+    ciKlass* known_klass = op->known_holder();
+    if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
+      // We know the type that will be seen at this call site; we can
+      // statically update the MethodData* rather than needing to do
+      // dynamic tests on the receiver type
+
+      // NOTE: we should probably put a lock around this search to
+      // avoid collisions by concurrent compilations
+      ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
+      uint i;
+      for (i = 0; i < VirtualCallData::row_limit(); i++) {
+        ciKlass* receiver = vc_data->receiver(i);
+        if (known_klass->equals(receiver)) {
+          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
+          __ addptr(data_addr, DataLayout::counter_increment);
+          return;
+        }
+      }
+
+      // Receiver type not found in profile data; select an empty slot
+
+      // Note that this is less efficient than it should be because it
+      // always does a write to the receiver part of the
+      // VirtualCallData rather than just the first time
+      for (i = 0; i < VirtualCallData::row_limit(); i++) {
+        ciKlass* receiver = vc_data->receiver(i);
+        if (receiver == NULL) {
+          Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
+          __ mov_metadata(rscratch1, known_klass->constant_encoding());
+          __ lea(rscratch2, recv_addr);
+          __ str(rscratch1, Address(rscratch2));
+          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
+          __ addptr(data_addr, DataLayout::counter_increment);
+          return;
+        }
+      }
+    } else {
+      __ load_klass(recv, recv);
+      Label update_done;
+      type_profile_helper(mdo, md, data, recv, &update_done);
+      // Receiver did not match any saved receiver and there is no empty row for it.
+      // Increment total counter to indicate polymorphic case.
+      __ addptr(counter_addr, DataLayout::counter_increment);
+
+      __ bind(update_done);
+    }
+  } else {
+    // Static call
+    __ addptr(counter_addr, DataLayout::counter_increment);
+  }
+}
+
+
+void LIR_Assembler::emit_delay(LIR_OpDelay*) {
+  Unimplemented();
+}
+
+
+void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
+  __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
+}
+
+void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
+  assert(op->crc()->is_single_cpu(),  "crc must be register");
+  assert(op->val()->is_single_cpu(),  "byte value must be register");
+  assert(op->result_opr()->is_single_cpu(), "result must be register");
+  Register crc = op->crc()->as_register();
+  Register val = op->val()->as_register();
+  Register res = op->result_opr()->as_register();
+
+  assert_different_registers(val, crc, res);
+  unsigned long offset;
+  __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset);
+  if (offset) __ add(res, res, offset);
+
+  __ ornw(crc, zr, crc); // ~crc
+  __ update_byte_crc32(crc, val, res);
+  __ ornw(res, zr, crc); // ~crc
+}
+
+void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
+  COMMENT("emit_profile_type {");
+  Register obj = op->obj()->as_register();
+  Register tmp = op->tmp()->as_pointer_register();
+  Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
+  ciKlass* exact_klass = op->exact_klass();
+  intptr_t current_klass = op->current_klass();
+  bool not_null = op->not_null();
+  bool no_conflict = op->no_conflict();
+
+  Label update, next, none;
+
+  bool do_null = !not_null;
+  bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
+  bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
+
+  assert(do_null || do_update, "why are we here?");
+  assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
+  assert(mdo_addr.base() != rscratch1, "wrong register");
+
+  __ verify_oop(obj);
+
+  if (tmp != obj) {
+    __ mov(tmp, obj);
+  }
+  if (do_null) {
+    __ cbnz(tmp, update);
+    if (!TypeEntries::was_null_seen(current_klass)) {
+      __ ldr(rscratch2, mdo_addr);
+      __ orr(rscratch2, rscratch2, TypeEntries::null_seen);
+      __ str(rscratch2, mdo_addr);
+    }
+    if (do_update) {
+#ifndef ASSERT
+      __ b(next);
+    }
+#else
+      __ b(next);
+    }
+  } else {
+    __ cbnz(tmp, update);
+    __ stop("unexpected null obj");
+#endif
+  }
+
+  __ bind(update);
+
+  if (do_update) {
+#ifdef ASSERT
+    if (exact_klass != NULL) {
+      Label ok;
+      __ load_klass(tmp, tmp);
+      __ mov_metadata(rscratch1, exact_klass->constant_encoding());
+      __ eor(rscratch1, tmp, rscratch1);
+      __ cbz(rscratch1, ok);
+      __ stop("exact klass and actual klass differ");
+      __ bind(ok);
+    }
+#endif
+    if (!no_conflict) {
+      if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
+        if (exact_klass != NULL) {
+          __ mov_metadata(tmp, exact_klass->constant_encoding());
+        } else {
+          __ load_klass(tmp, tmp);
+        }
+
+        __ ldr(rscratch2, mdo_addr);
+        __ eor(tmp, tmp, rscratch2);
+        __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
+        // klass seen before, nothing to do. The unknown bit may have been
+        // set already but no need to check.
+        __ cbz(rscratch1, next);
+
+        __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
+
+        if (TypeEntries::is_type_none(current_klass)) {
+          __ cbz(rscratch2, none);
+          __ cmp(rscratch2, TypeEntries::null_seen);
+          __ br(Assembler::EQ, none);
+          // There is a chance that the checks above (re-reading profiling
+          // data from memory) fail if another thread has just set the
+          // profiling to this obj's klass
+          __ dmb(Assembler::ISHLD);
+          __ ldr(rscratch2, mdo_addr);
+          __ eor(tmp, tmp, rscratch2);
+          __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
+          __ cbz(rscratch1, next);
+        }
+      } else {
+        assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
+               ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
+
+        __ ldr(tmp, mdo_addr);
+        __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
+      }
+
+      // different than before. Cannot keep accurate profile.
+      __ ldr(rscratch2, mdo_addr);
+      __ orr(rscratch2, rscratch2, TypeEntries::type_unknown);
+      __ str(rscratch2, mdo_addr);
+
+      if (TypeEntries::is_type_none(current_klass)) {
+        __ b(next);
+
+        __ bind(none);
+        // first time here. Set profile type.
+        __ str(tmp, mdo_addr);
+      }
+    } else {
+      // There's a single possible klass at this profile point
+      assert(exact_klass != NULL, "should be");
+      if (TypeEntries::is_type_none(current_klass)) {
+        __ mov_metadata(tmp, exact_klass->constant_encoding());
+        __ ldr(rscratch2, mdo_addr);
+        __ eor(tmp, tmp, rscratch2);
+        __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
+        __ cbz(rscratch1, next);
+#ifdef ASSERT
+        {
+          Label ok;
+          __ ldr(rscratch1, mdo_addr);
+          __ cbz(rscratch1, ok);
+          __ cmp(rscratch1, TypeEntries::null_seen);
+          __ br(Assembler::EQ, ok);
+          // may have been set by another thread
+          __ dmb(Assembler::ISHLD);
+          __ mov_metadata(rscratch1, exact_klass->constant_encoding());
+          __ ldr(rscratch2, mdo_addr);
+          __ eor(rscratch2, rscratch1, rscratch2);
+          __ andr(rscratch2, rscratch2, TypeEntries::type_mask);
+          __ cbz(rscratch2, ok);
+
+          __ stop("unexpected profiling mismatch");
+          __ bind(ok);
+        }
+#endif
+        // first time here. Set profile type.
+        __ ldr(tmp, mdo_addr);
+      } else {
+        assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
+               ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
+
+        __ ldr(tmp, mdo_addr);
+        __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
+
+        __ orr(tmp, tmp, TypeEntries::type_unknown);
+        __ str(tmp, mdo_addr);
+        // FIXME: Write barrier needed here?
+      }
+    }
+
+    __ bind(next);
+  }
+  COMMENT("} emit_profile_type");
+}
+
+
+void LIR_Assembler::align_backward_branch_target() {
+}
+
+
+void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
+  if (left->is_single_cpu()) {
+    assert(dest->is_single_cpu(), "expect single result reg");
+    __ negw(dest->as_register(), left->as_register());
+  } else if (left->is_double_cpu()) {
+    assert(dest->is_double_cpu(), "expect double result reg");
+    __ neg(dest->as_register_lo(), left->as_register_lo());
+  } else if (left->is_single_fpu()) {
+    assert(dest->is_single_fpu(), "expect single float result reg");
+    __ fnegs(dest->as_float_reg(), left->as_float_reg());
+  } else {
+    assert(left->is_double_fpu(), "expect double float operand reg");
+    assert(dest->is_double_fpu(), "expect double float result reg");
+    __ fnegd(dest->as_double_reg(), left->as_double_reg());
+  }
+}
+
+
+void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
+  __ lea(dest->as_register_lo(), as_Address(addr->as_address_ptr()));
+}
+
+
+void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
+  assert(!tmp->is_valid(), "don't need temporary");
+
+  CodeBlob *cb = CodeCache::find_blob(dest);
+  if (cb) {
+    __ far_call(RuntimeAddress(dest));
+  } else {
+    __ mov(rscratch1, RuntimeAddress(dest));
+    int len = args->length();
+    int type = 0;
+    if (! result->is_illegal()) {
+      switch (result->type()) {
+      case T_VOID:
+        type = 0;
+        break;
+      case T_INT:
+      case T_LONG:
+      case T_OBJECT:
+        type = 1;
+        break;
+      case T_FLOAT:
+        type = 2;
+        break;
+      case T_DOUBLE:
+        type = 3;
+        break;
+      default:
+        ShouldNotReachHere();
+        break;
+      }
+    }
+    int num_gpargs = 0;
+    int num_fpargs = 0;
+    for (int i = 0; i < args->length(); i++) {
+      LIR_Opr arg = args->at(i);
+      if (arg->type() == T_FLOAT || arg->type() == T_DOUBLE) {
+        num_fpargs++;
+      } else {
+        num_gpargs++;
+      }
+    }
+    __ blrt(rscratch1, num_gpargs, num_fpargs, type);
+  }
+
+  if (info != NULL) {
+    add_call_info_here(info);
+  }
+  __ maybe_isb();
+}
+
+void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
+  if (dest->is_address() || src->is_address()) {
+    move_op(src, dest, type, lir_patch_none, info,
+            /*pop_fpu_stack*/false, /*unaligned*/false, /*wide*/false);
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+#ifdef ASSERT
+// emit run-time assertion
+void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
+  assert(op->code() == lir_assert, "must be");
+
+  if (op->in_opr1()->is_valid()) {
+    assert(op->in_opr2()->is_valid(), "both operands must be valid");
+    comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
+  } else {
+    assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
+    assert(op->condition() == lir_cond_always, "no other conditions allowed");
+  }
+
+  Label ok;
+  if (op->condition() != lir_cond_always) {
+    Assembler::Condition acond = Assembler::AL;
+    switch (op->condition()) {
+      case lir_cond_equal:        acond = Assembler::EQ;  break;
+      case lir_cond_notEqual:     acond = Assembler::NE;  break;
+      case lir_cond_less:         acond = Assembler::LT;  break;
+      case lir_cond_lessEqual:    acond = Assembler::LE;  break;
+      case lir_cond_greaterEqual: acond = Assembler::GE;  break;
+      case lir_cond_greater:      acond = Assembler::GT;  break;
+      case lir_cond_belowEqual:   acond = Assembler::LS;  break;
+      case lir_cond_aboveEqual:   acond = Assembler::HS;  break;
+      default:                    ShouldNotReachHere();
+    }
+    __ br(acond, ok);
+  }
+  if (op->halt()) {
+    const char* str = __ code_string(op->msg());
+    __ stop(str);
+  } else {
+    breakpoint();
+  }
+  __ bind(ok);
+}
+#endif
+
+#ifndef PRODUCT
+#define COMMENT(x)   do { __ block_comment(x); } while (0)
+#else
+#define COMMENT(x)
+#endif
+
+void LIR_Assembler::membar() {
+  COMMENT("membar");
+  __ membar(MacroAssembler::AnyAny);
+}
+
+void LIR_Assembler::membar_acquire() {
+  __ membar(Assembler::LoadLoad|Assembler::LoadStore);
+}
+
+void LIR_Assembler::membar_release() {
+  __ membar(Assembler::LoadStore|Assembler::StoreStore);
+}
+
+void LIR_Assembler::membar_loadload() {
+  __ membar(Assembler::LoadLoad);
+}
+
+void LIR_Assembler::membar_storestore() {
+  __ membar(MacroAssembler::StoreStore);
+}
+
+void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); }
+
+void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); }
+
+void LIR_Assembler::on_spin_wait() {
+  Unimplemented();
+}
+
+void LIR_Assembler::get_thread(LIR_Opr result_reg) {
+  __ mov(result_reg->as_register(), rthread);
+}
+
+
+void LIR_Assembler::peephole(LIR_List *lir) {
+#if 0
+  if (tableswitch_count >= max_tableswitches)
+    return;
+
+  /*
+    This finite-state automaton recognizes sequences of compare-and-
+    branch instructions.  We will turn them into a tableswitch.  You
+    could argue that C1 really shouldn't be doing this sort of
+    optimization, but without it the code is really horrible.
+  */
+
+  enum { start_s, cmp1_s, beq_s, cmp_s } state;
+  int first_key, last_key = -2147483648;
+  int next_key = 0;
+  int start_insn = -1;
+  int last_insn = -1;
+  Register reg = noreg;
+  LIR_Opr reg_opr;
+  state = start_s;
+
+  LIR_OpList* inst = lir->instructions_list();
+  for (int i = 0; i < inst->length(); i++) {
+    LIR_Op* op = inst->at(i);
+    switch (state) {
+    case start_s:
+      first_key = -1;
+      start_insn = i;
+      switch (op->code()) {
+      case lir_cmp:
+        LIR_Opr opr1 = op->as_Op2()->in_opr1();
+        LIR_Opr opr2 = op->as_Op2()->in_opr2();
+        if (opr1->is_cpu_register() && opr1->is_single_cpu()
+            && opr2->is_constant()
+            && opr2->type() == T_INT) {
+          reg_opr = opr1;
+          reg = opr1->as_register();
+          first_key = opr2->as_constant_ptr()->as_jint();
+          next_key = first_key + 1;
+          state = cmp_s;
+          goto next_state;
+        }
+        break;
+      }
+      break;
+    case cmp_s:
+      switch (op->code()) {
+      case lir_branch:
+        if (op->as_OpBranch()->cond() == lir_cond_equal) {
+          state = beq_s;
+          last_insn = i;
+          goto next_state;
+        }
+      }
+      state = start_s;
+      break;
+    case beq_s:
+      switch (op->code()) {
+      case lir_cmp: {
+        LIR_Opr opr1 = op->as_Op2()->in_opr1();
+        LIR_Opr opr2 = op->as_Op2()->in_opr2();
+        if (opr1->is_cpu_register() && opr1->is_single_cpu()
+            && opr1->as_register() == reg
+            && opr2->is_constant()
+            && opr2->type() == T_INT
+            && opr2->as_constant_ptr()->as_jint() == next_key) {
+          last_key = next_key;
+          next_key++;
+          state = cmp_s;
+          goto next_state;
+        }
+      }
+      }
+      last_key = next_key;
+      state = start_s;
+      break;
+    default:
+      assert(false, "impossible state");
+    }
+    if (state == start_s) {
+      if (first_key < last_key - 5L && reg != noreg) {
+        {
+          // printf("found run register %d starting at insn %d low value %d high value %d\n",
+          //        reg->encoding(),
+          //        start_insn, first_key, last_key);
+          //   for (int i = 0; i < inst->length(); i++) {
+          //     inst->at(i)->print();
+          //     tty->print("\n");
+          //   }
+          //   tty->print("\n");
+        }
+
+        struct tableswitch *sw = &switches[tableswitch_count];
+        sw->_insn_index = start_insn, sw->_first_key = first_key,
+          sw->_last_key = last_key, sw->_reg = reg;
+        inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after));
+        {
+          // Insert the new table of branches
+          int offset = last_insn;
+          for (int n = first_key; n < last_key; n++) {
+            inst->insert_before
+              (last_insn + 1,
+               new LIR_OpBranch(lir_cond_always, T_ILLEGAL,
+                                inst->at(offset)->as_OpBranch()->label()));
+            offset -= 2, i++;
+          }
+        }
+        // Delete all the old compare-and-branch instructions
+        for (int n = first_key; n < last_key; n++) {
+          inst->remove_at(start_insn);
+          inst->remove_at(start_insn);
+        }
+        // Insert the tableswitch instruction
+        inst->insert_before(start_insn,
+                            new LIR_Op2(lir_cmp, lir_cond_always,
+                                        LIR_OprFact::intConst(tableswitch_count),
+                                        reg_opr));
+        inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches));
+        tableswitch_count++;
+      }
+      reg = noreg;
+      last_key = -2147483648;
+    }
+  next_state:
+    ;
+  }
+#endif
+}
+
+void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) {
+  Address addr = as_Address(src->as_address_ptr());
+  BasicType type = src->type();
+  bool is_oop = type == T_OBJECT || type == T_ARRAY;
+
+  void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr);
+  void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr);
+
+  switch(type) {
+  case T_INT:
+    xchg = &MacroAssembler::atomic_xchgalw;
+    add = &MacroAssembler::atomic_addalw;
+    break;
+  case T_LONG:
+    xchg = &MacroAssembler::atomic_xchgal;
+    add = &MacroAssembler::atomic_addal;
+    break;
+  case T_OBJECT:
+  case T_ARRAY:
+    if (UseCompressedOops) {
+      xchg = &MacroAssembler::atomic_xchgalw;
+      add = &MacroAssembler::atomic_addalw;
+    } else {
+      xchg = &MacroAssembler::atomic_xchgal;
+      add = &MacroAssembler::atomic_addal;
+    }
+    break;
+  default:
+    ShouldNotReachHere();
+    xchg = &MacroAssembler::atomic_xchgal;
+    add = &MacroAssembler::atomic_addal; // unreachable
+  }
+
+  switch (code) {
+  case lir_xadd:
+    {
+      RegisterOrConstant inc;
+      Register tmp = as_reg(tmp_op);
+      Register dst = as_reg(dest);
+      if (data->is_constant()) {
+        inc = RegisterOrConstant(as_long(data));
+        assert_different_registers(dst, addr.base(), tmp,
+                                   rscratch1, rscratch2);
+      } else {
+        inc = RegisterOrConstant(as_reg(data));
+        assert_different_registers(inc.as_register(), dst, addr.base(), tmp,
+                                   rscratch1, rscratch2);
+      }
+      __ lea(tmp, addr);
+      (_masm->*add)(dst, inc, tmp);
+      break;
+    }
+  case lir_xchg:
+    {
+      Register tmp = tmp_op->as_register();
+      Register obj = as_reg(data);
+      Register dst = as_reg(dest);
+      if (is_oop && UseCompressedOops) {
+        __ encode_heap_oop(rscratch2, obj);
+        obj = rscratch2;
+      }
+      assert_different_registers(obj, addr.base(), tmp, rscratch1, dst);
+      __ lea(tmp, addr);
+      (_masm->*xchg)(dst, obj, tmp);
+      if (is_oop && UseCompressedOops) {
+        __ decode_heap_oop(dst);
+      }
+    }
+    break;
+  default:
+    ShouldNotReachHere();
+  }
+  __ membar(__ AnyAny);
+}
+
+#undef __