newrandom/SplittableRandom.java
branchbriangoetz-test-branch
changeset 57369 6d87e9f7a1ec
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/newrandom/SplittableRandom.java	Thu May 23 16:45:56 2019 -0400
@@ -0,0 +1,292 @@
+/*
+ * Copyright (c) 2013, 2019, Oracle and/or its affiliates. All rights reserved.
+ * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ */
+
+// package java.util;
+
+import java.math.BigInteger;
+import java.util.concurrent.atomic.AtomicLong;
+
+/**
+ * A generator of uniform pseudorandom values applicable for use in
+ * (among other contexts) isolated parallel computations that may
+ * generate subtasks. Class {@code SplittableRandom} supports methods for
+ * producing pseudorandom numbers of type {@code int}, {@code long},
+ * and {@code double} with similar usages as for class
+ * {@link java.util.Random} but differs in the following ways:
+ *
+ * <ul>
+ *
+ * <li>Series of generated values pass the DieHarder suite testing
+ * independence and uniformity properties of random number generators.
+ * (Most recently validated with <a
+ * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
+ * 3.31.1</a>.) These tests validate only the methods for certain
+ * types and ranges, but similar properties are expected to hold, at
+ * least approximately, for others as well. The <em>period</em>
+ * (length of any series of generated values before it repeats) is at
+ * least 2<sup>64</sup>. </li>
+ *
+ * <li> Method {@link #split} constructs and returns a new
+ * SplittableRandom instance that shares no mutable state with the
+ * current instance. However, with very high probability, the
+ * values collectively generated by the two objects have the same
+ * statistical properties as if the same quantity of values were
+ * generated by a single thread using a single {@code
+ * SplittableRandom} object.  </li>
+ *
+ * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
+ * They are designed to be split, not shared, across threads. For
+ * example, a {@link java.util.concurrent.ForkJoinTask
+ * fork/join-style} computation using random numbers might include a
+ * construction of the form {@code new
+ * Subtask(aSplittableRandom.split()).fork()}.
+ *
+ * <li>This class provides additional methods for generating random
+ * streams, that employ the above techniques when used in {@code
+ * stream.parallel()} mode.</li>
+ *
+ * </ul>
+ *
+ * <p>Instances of {@code SplittableRandom} are not cryptographically
+ * secure.  Consider instead using {@link java.security.SecureRandom}
+ * in security-sensitive applications. Additionally,
+ * default-constructed instances do not use a cryptographically random
+ * seed unless the {@linkplain System#getProperty system property}
+ * {@code java.util.secureRandomSeed} is set to {@code true}.
+ *
+ * @author  Guy Steele
+ * @author  Doug Lea
+ * @since   1.8
+ */
+public final class SplittableRandom extends AbstractSplittableRng {
+
+    /*
+     * Implementation Overview.
+     *
+     * This algorithm was inspired by the "DotMix" algorithm by
+     * Leiserson, Schardl, and Sukha "Deterministic Parallel
+     * Random-Number Generation for Dynamic-Multithreading Platforms",
+     * PPoPP 2012, as well as those in "Parallel random numbers: as
+     * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011.  It
+     * differs mainly in simplifying and cheapening operations.
+     *
+     * The primary update step (method nextSeed()) is to add a
+     * constant ("gamma") to the current (64 bit) seed, forming a
+     * simple sequence.  The seed and the gamma values for any two
+     * SplittableRandom instances are highly likely to be different.
+     *
+     * Methods nextLong, nextInt, and derivatives do not return the
+     * sequence (seed) values, but instead a hash-like bit-mix of
+     * their bits, producing more independently distributed sequences.
+     * For nextLong, the mix64 function is based on David Stafford's
+     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
+     * "Mix13" variant of the "64-bit finalizer" function in Austin
+     * Appleby's MurmurHash3 algorithm (see
+     * http://code.google.com/p/smhasher/wiki/MurmurHash3). The mix32
+     * function is based on Stafford's Mix04 mix function, but returns
+     * the upper 32 bits cast as int.
+     *
+     * The split operation uses the current generator to form the seed
+     * and gamma for another SplittableRandom.  To conservatively
+     * avoid potential correlations between seed and value generation,
+     * gamma selection (method mixGamma) uses different
+     * (Murmurhash3's) mix constants.  To avoid potential weaknesses
+     * in bit-mixing transformations, we restrict gammas to odd values
+     * with at least 24 0-1 or 1-0 bit transitions.  Rather than
+     * rejecting candidates with too few or too many bits set, method
+     * mixGamma flips some bits (which has the effect of mapping at
+     * most 4 to any given gamma value).  This reduces the effective
+     * set of 64bit odd gamma values by about 2%, and serves as an
+     * automated screening for sequence constant selection that is
+     * left as an empirical decision in some other hashing and crypto
+     * algorithms.
+     *
+     * The resulting generator thus transforms a sequence in which
+     * (typically) many bits change on each step, with an inexpensive
+     * mixer with good (but less than cryptographically secure)
+     * avalanching.
+     *
+     * The default (no-argument) constructor, in essence, invokes
+     * split() for a common "defaultGen" SplittableRandom.  Unlike
+     * other cases, this split must be performed in a thread-safe
+     * manner, so we use an AtomicLong to represent the seed rather
+     * than use an explicit SplittableRandom. To bootstrap the
+     * defaultGen, we start off using a seed based on current time
+     * unless the java.util.secureRandomSeed property is set. This
+     * serves as a slimmed-down (and insecure) variant of SecureRandom
+     * that also avoids stalls that may occur when using /dev/random.
+     *
+     * It is a relatively simple matter to apply the basic design here
+     * to use 128 bit seeds. However, emulating 128bit arithmetic and
+     * carrying around twice the state add more overhead than appears
+     * warranted for current usages.
+     *
+     * File organization: First the non-public methods that constitute
+     * the main algorithm, then the main public methods, followed by
+     * some custom spliterator classes needed for stream methods.
+     */
+
+    /**
+     * The golden ratio scaled to 64bits, used as the initial gamma
+     * value for (unsplit) SplittableRandoms.
+     */
+    private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
+
+    /**
+     * The seed. Updated only via method nextSeed.
+     */
+    private long seed;
+
+    /**
+     * The step value.
+     */
+    private final long gamma;
+
+    /**
+     * Internal constructor used by all others except default constructor.
+     */
+    private SplittableRandom(long seed, long gamma) {
+        this.seed = seed;
+        this.gamma = gamma;
+    }
+
+    /* The implementation of AbstractSplittableRng requires this. */
+    // SplittableRandom getThis() { return this; }
+
+    /**
+     * Computes Stafford variant 13 of 64bit mix function.
+     * http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html
+     */
+    private static long mix64(long z) {
+        z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
+        z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
+        return z ^ (z >>> 31);
+    }
+
+    /**
+     * Returns the 32 high bits of Stafford variant 4 mix64 function as int.
+     * http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html
+     */
+    private static int mix32(long z) {
+        z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
+        return (int)(((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
+    }
+
+    /**
+     * Returns the gamma value to use for a new split instance.
+     * Uses the 64bit mix function from MurmurHash3.
+     * https://github.com/aappleby/smhasher/wiki/MurmurHash3     
+     */
+    private static long mixGamma(long z) {
+        z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL; // MurmurHash3 mix constants
+        z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
+        z = (z ^ (z >>> 33)) | 1L;                  // force to be odd
+        int n = Long.bitCount(z ^ (z >>> 1));       // ensure enough transitions
+        return (n < 24) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
+    }
+
+    /**
+     * Adds gamma to seed.
+     */
+    private long nextSeed() {
+        return seed += gamma;
+    }
+
+    /**
+     * The seed generator for default constructors.
+     */
+    private static final AtomicLong defaultGen = new AtomicLong(RngSupport.initialSeed());
+    
+    /* ---------------- public methods ---------------- */
+
+    /**
+     * Creates a new SplittableRandom instance using the specified
+     * initial seed. SplittableRandom instances created with the same
+     * seed in the same program generate identical sequences of values.
+     *
+     * @param seed the initial seed
+     */
+    public SplittableRandom(long seed) {
+        this(seed, GOLDEN_GAMMA);
+    }
+
+    /**
+     * Creates a new SplittableRandom instance that is likely to
+     * generate sequences of values that are statistically independent
+     * of those of any other instances in the current program; and
+     * may, and typically does, vary across program invocations.
+     */
+    public SplittableRandom() { // emulate defaultGen.split()
+        long s = defaultGen.getAndAdd(2 * GOLDEN_GAMMA);
+        this.seed = mix64(s);
+        this.gamma = mixGamma(s + GOLDEN_GAMMA);
+    }
+
+    //    public SplittableRandom copy() { return new SplittableRandom(seed, gamma); }
+    
+    /**
+     * Constructs and returns a new SplittableRandom instance that
+     * shares no mutable state with this instance. However, with very
+     * high probability, the set of values collectively generated by
+     * the two objects has the same statistical properties as if the
+     * same quantity of values were generated by a single thread using
+     * a single SplittableRandom object.  Either or both of the two
+     * objects may be further split using the {@code split()} method,
+     * and the same expected statistical properties apply to the
+     * entire set of generators constructed by such recursive
+     * splitting.
+     *
+     * @return the new SplittableRandom instance
+     */
+    public SplittableRandom split() {
+        return new SplittableRandom(nextLong(), mixGamma(nextSeed()));
+    }
+
+    public SplittableRandom split(SplittableRng source) {
+        return new SplittableRandom(source.nextLong(), mixGamma(source.nextLong()));
+    }
+
+    /**
+     * Returns a pseudorandom {@code int} value.
+     *
+     * @return a pseudorandom {@code int} value
+     */
+    public int nextInt() {
+        return mix32(nextSeed());
+    }
+
+    /**
+     * Returns a pseudorandom {@code long} value.
+     *
+     * @return a pseudorandom {@code long} value
+     */
+    public long nextLong() {
+        return mix64(nextSeed());
+    }
+
+    static final BigInteger thePeriod = BigInteger.ONE.shiftLeft(64);  // Period is 2**64
+    public BigInteger period() { return thePeriod; }
+
+}