hotspot/src/cpu/s390/vm/c1_LIRGenerator_s390.cpp
changeset 42065 6032b31e3719
child 42897 57e7b1c75d17
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/cpu/s390/vm/c1_LIRGenerator_s390.cpp	Thu Oct 13 14:49:34 2016 +0200
@@ -0,0 +1,1246 @@
+/*
+ * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2016 SAP SE. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "c1/c1_Compilation.hpp"
+#include "c1/c1_FrameMap.hpp"
+#include "c1/c1_Instruction.hpp"
+#include "c1/c1_LIRAssembler.hpp"
+#include "c1/c1_LIRGenerator.hpp"
+#include "c1/c1_Runtime1.hpp"
+#include "c1/c1_ValueStack.hpp"
+#include "ci/ciArray.hpp"
+#include "ci/ciObjArrayKlass.hpp"
+#include "ci/ciTypeArrayKlass.hpp"
+#include "runtime/sharedRuntime.hpp"
+#include "runtime/stubRoutines.hpp"
+#include "vmreg_s390.inline.hpp"
+
+#ifdef ASSERT
+#define __ gen()->lir(__FILE__, __LINE__)->
+#else
+#define __ gen()->lir()->
+#endif
+
+void LIRItem::load_byte_item() {
+  // Byte loads use same registers as other loads.
+  load_item();
+}
+
+void LIRItem::load_nonconstant(int bits) {
+  LIR_Opr r = value()->operand();
+  if (_gen->can_inline_as_constant(value(), bits)) {
+    if (!r->is_constant()) {
+      r = LIR_OprFact::value_type(value()->type());
+    }
+    _result = r;
+  } else {
+    load_item();
+  }
+}
+
+inline void load_int_as_long(LIR_List *ll, LIRItem &li, LIR_Opr dst) {
+  LIR_Opr r = li.value()->operand();
+  if (r->is_constant()) {
+    // Constants get loaded with sign extend on this platform.
+    ll->move(li.result(), dst);
+  } else {
+    if (!r->is_register()) {
+      li.load_item_force(dst);
+    }
+    LIR_Opr dst_l = FrameMap::as_long_opr(dst->as_register());
+    ll->convert(Bytecodes::_i2l, li.result(), dst_l); // Convert.
+  }
+}
+
+//--------------------------------------------------------------
+//               LIRGenerator
+//--------------------------------------------------------------
+
+LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::as_oop_opr(Z_EXC_OOP); }
+LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::as_opr(Z_EXC_PC); }
+LIR_Opr LIRGenerator::divInOpr()        { return FrameMap::Z_R11_opr; }
+LIR_Opr LIRGenerator::divOutOpr()       { return FrameMap::Z_R11_opr; }
+LIR_Opr LIRGenerator::remOutOpr()       { return FrameMap::Z_R10_opr; }
+LIR_Opr LIRGenerator::ldivInOpr()       { return FrameMap::Z_R11_long_opr; }
+LIR_Opr LIRGenerator::ldivOutOpr()      { return FrameMap::Z_R11_long_opr; }
+LIR_Opr LIRGenerator::lremOutOpr()      { return FrameMap::Z_R10_long_opr; }
+LIR_Opr LIRGenerator::syncLockOpr()     { return new_register(T_INT); }
+LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::Z_R13_opr; }
+LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
+
+LIR_Opr LIRGenerator::result_register_for (ValueType* type, bool callee) {
+  LIR_Opr opr;
+  switch (type->tag()) {
+    case intTag:    opr = FrameMap::Z_R2_opr;        break;
+    case objectTag: opr = FrameMap::Z_R2_oop_opr;    break;
+    case longTag:   opr = FrameMap::Z_R2_long_opr;   break;
+    case floatTag:  opr = FrameMap::Z_F0_opr;        break;
+    case doubleTag: opr = FrameMap::Z_F0_double_opr; break;
+
+    case addressTag:
+    default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
+  }
+
+  assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
+  return opr;
+}
+
+LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
+  return new_register(T_INT);
+}
+
+//--------- Loading items into registers. --------------------------------
+
+// z/Architecture cannot inline all constants.
+bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
+  if (v->type()->as_IntConstant() != NULL) {
+    return Immediate::is_simm16(v->type()->as_IntConstant()->value());
+  } else if (v->type()->as_LongConstant() != NULL) {
+    return Immediate::is_simm16(v->type()->as_LongConstant()->value());
+  } else if (v->type()->as_ObjectConstant() != NULL) {
+    return v->type()->as_ObjectConstant()->value()->is_null_object();
+  } else {
+    return false;
+  }
+}
+
+bool LIRGenerator::can_inline_as_constant(Value i, int bits) const {
+  if (i->type()->as_IntConstant() != NULL) {
+    return Assembler::is_simm(i->type()->as_IntConstant()->value(), bits);
+  } else if (i->type()->as_LongConstant() != NULL) {
+    return Assembler::is_simm(i->type()->as_LongConstant()->value(), bits);
+  } else {
+    return can_store_as_constant(i, as_BasicType(i->type()));
+  }
+}
+
+bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
+  if (c->type() == T_INT) {
+    return Immediate::is_simm20(c->as_jint());
+  } else   if (c->type() == T_LONG) {
+    return Immediate::is_simm20(c->as_jlong());
+  }
+  return false;
+}
+
+LIR_Opr LIRGenerator::safepoint_poll_register() {
+  return new_register(longType);
+}
+
+LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
+                                            int shift, int disp, BasicType type) {
+  assert(base->is_register(), "must be");
+  if (index->is_constant()) {
+    intptr_t large_disp = ((intx)(index->as_constant_ptr()->as_jint()) << shift) + disp;
+    if (Displacement::is_validDisp(large_disp)) {
+      return new LIR_Address(base, large_disp, type);
+    }
+    // Index is illegal so replace it with the displacement loaded into a register.
+    index = new_pointer_register();
+    __ move(LIR_OprFact::intptrConst(large_disp), index);
+    return new LIR_Address(base, index, type);
+  } else {
+    if (shift > 0) {
+      LIR_Opr tmp = new_pointer_register();
+      __ shift_left(index, shift, tmp);
+      index = tmp;
+    }
+    return new LIR_Address(base, index, disp, type);
+  }
+}
+
+LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
+                                              BasicType type, bool needs_card_mark) {
+  int elem_size = type2aelembytes(type);
+  int shift = exact_log2(elem_size);
+  int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
+
+  LIR_Address* addr;
+  if (index_opr->is_constant()) {
+    addr = new LIR_Address(array_opr,
+                           offset_in_bytes + (intx)(index_opr->as_jint()) * elem_size, type);
+  } else {
+    if (index_opr->type() == T_INT) {
+      LIR_Opr tmp = new_register(T_LONG);
+      __ convert(Bytecodes::_i2l, index_opr, tmp);
+      index_opr = tmp;
+    }
+    if (shift > 0) {
+      __ shift_left(index_opr, shift, index_opr);
+    }
+    addr = new LIR_Address(array_opr,
+                           index_opr,
+                           offset_in_bytes, type);
+  }
+  if (needs_card_mark) {
+    // This store will need a precise card mark, so go ahead and
+    // compute the full adddres instead of computing once for the
+    // store and again for the card mark.
+    LIR_Opr tmp = new_pointer_register();
+    __ leal(LIR_OprFact::address(addr), tmp);
+    return new LIR_Address(tmp, type);
+  } else {
+    return addr;
+  }
+}
+
+LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
+  LIR_Opr r = LIR_OprFact::illegalOpr;
+  if (type == T_LONG) {
+    r = LIR_OprFact::longConst(x);
+  } else if (type == T_INT) {
+    r = LIR_OprFact::intConst(x);
+  } else {
+    ShouldNotReachHere();
+  }
+  return r;
+}
+
+void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
+  LIR_Opr pointer = new_pointer_register();
+  __ move(LIR_OprFact::intptrConst(counter), pointer);
+  LIR_Address* addr = new LIR_Address(pointer, type);
+  increment_counter(addr, step);
+}
+
+void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
+  __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
+}
+
+void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
+  LIR_Opr scratch = FrameMap::Z_R1_opr;
+  __ load(new LIR_Address(base, disp, T_INT), scratch, info);
+  __ cmp(condition, scratch, c);
+}
+
+void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
+  __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
+}
+
+void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
+  __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
+}
+
+bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
+  if (tmp->is_valid()) {
+    if (is_power_of_2(c + 1)) {
+      __ move(left, tmp);
+      __ shift_left(left, log2_intptr(c + 1), left);
+      __ sub(left, tmp, result);
+      return true;
+    } else if (is_power_of_2(c - 1)) {
+      __ move(left, tmp);
+      __ shift_left(left, log2_intptr(c - 1), left);
+      __ add(left, tmp, result);
+      return true;
+    }
+  }
+  return false;
+}
+
+void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
+  BasicType type = item->type();
+  __ store(item, new LIR_Address(FrameMap::Z_SP_opr, in_bytes(offset_from_sp), type));
+}
+
+//----------------------------------------------------------------------
+//             visitor functions
+//----------------------------------------------------------------------
+
+void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
+  assert(x->is_pinned(),"");
+  bool needs_range_check = x->compute_needs_range_check();
+  bool use_length = x->length() != NULL;
+  bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
+  bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
+                                         !get_jobject_constant(x->value())->is_null_object() ||
+                                         x->should_profile());
+
+  LIRItem array(x->array(), this);
+  LIRItem index(x->index(), this);
+  LIRItem value(x->value(), this);
+  LIRItem length(this);
+
+  array.load_item();
+  index.load_nonconstant(20);
+
+  if (use_length && needs_range_check) {
+    length.set_instruction(x->length());
+    length.load_item();
+  }
+  if (needs_store_check) {
+    value.load_item();
+  } else {
+    value.load_for_store(x->elt_type());
+  }
+
+  set_no_result(x);
+
+  // The CodeEmitInfo must be duplicated for each different
+  // LIR-instruction because spilling can occur anywhere between two
+  // instructions and so the debug information must be different.
+  CodeEmitInfo* range_check_info = state_for (x);
+  CodeEmitInfo* null_check_info = NULL;
+  if (x->needs_null_check()) {
+    null_check_info = new CodeEmitInfo(range_check_info);
+  }
+
+  // Emit array address setup early so it schedules better.
+  LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
+  if (value.result()->is_constant() && array_addr->index()->is_valid()) {
+    // Constants cannot be stored with index register on ZARCH_64 (see LIR_Assembler::const2mem()).
+    LIR_Opr tmp = new_pointer_register();
+    __ leal(LIR_OprFact::address(array_addr), tmp);
+    array_addr = new LIR_Address(tmp, x->elt_type());
+  }
+
+  if (GenerateRangeChecks && needs_range_check) {
+    if (use_length) {
+      __ cmp(lir_cond_belowEqual, length.result(), index.result());
+      __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
+    } else {
+      array_range_check(array.result(), index.result(), null_check_info, range_check_info);
+      // Range_check also does the null check.
+      null_check_info = NULL;
+    }
+  }
+
+  if (GenerateArrayStoreCheck && needs_store_check) {
+    LIR_Opr tmp1 = new_register(objectType);
+    LIR_Opr tmp2 = new_register(objectType);
+    LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
+
+    CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
+    __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
+  }
+
+  if (obj_store) {
+    // Needs GC write barriers.
+    pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
+                true /* do_load */, false /* patch */, NULL);
+    __ move(value.result(), array_addr, null_check_info);
+    // Seems to be a precise.
+    post_barrier(LIR_OprFact::address(array_addr), value.result());
+  } else {
+    __ move(value.result(), array_addr, null_check_info);
+  }
+}
+
+void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
+  assert(x->is_pinned(),"");
+  LIRItem obj(x->obj(), this);
+  obj.load_item();
+
+  set_no_result(x);
+
+  // "lock" stores the address of the monitor stack slot, so this is not an oop.
+  LIR_Opr lock = new_register(T_INT);
+
+  CodeEmitInfo* info_for_exception = NULL;
+  if (x->needs_null_check()) {
+    info_for_exception = state_for (x);
+  }
+  // This CodeEmitInfo must not have the xhandlers because here the
+  // object is already locked (xhandlers expect object to be unlocked).
+  CodeEmitInfo* info = state_for (x, x->state(), true);
+  monitor_enter(obj.result(), lock, syncTempOpr(), LIR_OprFact::illegalOpr,
+                x->monitor_no(), info_for_exception, info);
+}
+
+void LIRGenerator::do_MonitorExit(MonitorExit* x) {
+  assert(x->is_pinned(),"");
+
+  LIRItem obj(x->obj(), this);
+  obj.dont_load_item();
+
+  LIR_Opr lock = new_register(T_INT);
+  LIR_Opr obj_temp = new_register(T_INT);
+  set_no_result(x);
+  monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
+}
+
+// _ineg, _lneg, _fneg, _dneg
+void LIRGenerator::do_NegateOp(NegateOp* x) {
+  LIRItem value(x->x(), this);
+  value.load_item();
+  LIR_Opr reg = rlock_result(x);
+  __ negate(value.result(), reg);
+}
+
+// for _fadd, _fmul, _fsub, _fdiv, _frem
+//     _dadd, _dmul, _dsub, _ddiv, _drem
+void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
+  LIRItem left(x->x(),  this);
+  LIRItem right(x->y(), this);
+  LIRItem* left_arg  = &left;
+  LIRItem* right_arg = &right;
+  assert(!left.is_stack(), "can't both be memory operands");
+  left.load_item();
+
+  if (right.is_register() || right.is_constant()) {
+    right.load_item();
+  } else {
+    right.dont_load_item();
+  }
+
+  if ((x->op() == Bytecodes::_frem) || (x->op() == Bytecodes::_drem)) {
+    address entry;
+    switch (x->op()) {
+    case Bytecodes::_frem:
+      entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
+      break;
+    case Bytecodes::_drem:
+      entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
+      break;
+    default:
+      ShouldNotReachHere();
+    }
+    LIR_Opr result = call_runtime(x->x(), x->y(), entry, x->type(), NULL);
+    set_result(x, result);
+  } else {
+    LIR_Opr reg = rlock(x);
+    LIR_Opr tmp = LIR_OprFact::illegalOpr;
+    arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
+    set_result(x, reg);
+  }
+}
+
+// for _ladd, _lmul, _lsub, _ldiv, _lrem
+void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
+  if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
+    // Use shifts if divisior is a power of 2 otherwise use DSGR instruction.
+    // Instruction: DSGR R1, R2
+    // input : R1+1: dividend   (R1, R1+1 designate a register pair, R1 must be even)
+    //         R2:   divisor
+    //
+    // output: R1+1: quotient
+    //         R1:   remainder
+    //
+    // Register selection: R1:   Z_R10
+    //                     R1+1: Z_R11
+    //                     R2:   to be chosen by register allocator (linear scan)
+
+    // R1, and R1+1 will be destroyed.
+
+    LIRItem right(x->y(), this);
+    LIRItem left(x->x() , this);   // Visit left second, so that the is_register test is valid.
+
+    // Call state_for before load_item_force because state_for may
+    // force the evaluation of other instructions that are needed for
+    // correct debug info. Otherwise the live range of the fix
+    // register might be too long.
+    CodeEmitInfo* info = state_for (x);
+
+    LIR_Opr result = rlock_result(x);
+    LIR_Opr result_reg = result;
+    LIR_Opr tmp = LIR_OprFact::illegalOpr;
+    LIR_Opr divisor_opr = right.result();
+    if (divisor_opr->is_constant() && is_power_of_2(divisor_opr->as_jlong())) {
+      left.load_item();
+      right.dont_load_item();
+    } else {
+      left.load_item_force(ldivInOpr());
+      right.load_item();
+
+      // DSGR instruction needs register pair.
+      if (x->op() == Bytecodes::_ldiv) {
+        result_reg = ldivOutOpr();
+        tmp        = lremOutOpr();
+      } else {
+        result_reg = lremOutOpr();
+        tmp        = ldivOutOpr();
+      }
+    }
+
+    if (!ImplicitDiv0Checks) {
+      __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
+      __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
+      // Idiv/irem cannot trap (passing info would generate an assertion).
+      info = NULL;
+    }
+
+    if (x->op() == Bytecodes::_lrem) {
+      __ irem(left.result(), right.result(), result_reg, tmp, info);
+    } else if (x->op() == Bytecodes::_ldiv) {
+      __ idiv(left.result(), right.result(), result_reg, tmp, info);
+    } else {
+      ShouldNotReachHere();
+    }
+
+    if (result_reg != result) {
+      __ move(result_reg, result);
+    }
+  } else {
+    LIRItem left(x->x(), this);
+    LIRItem right(x->y(), this);
+
+    left.load_item();
+    right.load_nonconstant(32);
+    rlock_result(x);
+    arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
+  }
+}
+
+// for: _iadd, _imul, _isub, _idiv, _irem
+void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
+  if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
+    // Use shifts if divisior is a power of 2 otherwise use DSGFR instruction.
+    // Instruction: DSGFR R1, R2
+    // input : R1+1: dividend   (R1, R1+1 designate a register pair, R1 must be even)
+    //         R2:   divisor
+    //
+    // output: R1+1: quotient
+    //         R1:   remainder
+    //
+    // Register selection: R1:   Z_R10
+    //                     R1+1: Z_R11
+    //                     R2:   To be chosen by register allocator (linear scan).
+
+    // R1, and R1+1 will be destroyed.
+
+    LIRItem right(x->y(), this);
+    LIRItem left(x->x() , this);   // Visit left second, so that the is_register test is valid.
+
+    // Call state_for before load_item_force because state_for may
+    // force the evaluation of other instructions that are needed for
+    // correct debug info. Otherwise the live range of the fix
+    // register might be too long.
+    CodeEmitInfo* info = state_for (x);
+
+    LIR_Opr result = rlock_result(x);
+    LIR_Opr result_reg = result;
+    LIR_Opr tmp = LIR_OprFact::illegalOpr;
+    LIR_Opr divisor_opr = right.result();
+    if (divisor_opr->is_constant() && is_power_of_2(divisor_opr->as_jint())) {
+      left.load_item();
+      right.dont_load_item();
+    } else {
+      left.load_item_force(divInOpr());
+      right.load_item();
+
+      // DSGFR instruction needs register pair.
+      if (x->op() == Bytecodes::_idiv) {
+        result_reg = divOutOpr();
+        tmp        = remOutOpr();
+      } else {
+        result_reg = remOutOpr();
+        tmp        = divOutOpr();
+      }
+    }
+
+    if (!ImplicitDiv0Checks) {
+      __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
+      __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
+      // Idiv/irem cannot trap (passing info would generate an assertion).
+      info = NULL;
+    }
+
+    if (x->op() == Bytecodes::_irem) {
+      __ irem(left.result(), right.result(), result_reg, tmp, info);
+    } else if (x->op() == Bytecodes::_idiv) {
+      __ idiv(left.result(), right.result(), result_reg, tmp, info);
+    } else {
+      ShouldNotReachHere();
+    }
+
+    if (result_reg != result) {
+      __ move(result_reg, result);
+    }
+  } else {
+    LIRItem left(x->x(),  this);
+    LIRItem right(x->y(), this);
+    LIRItem* left_arg = &left;
+    LIRItem* right_arg = &right;
+    if (x->is_commutative() && left.is_stack() && right.is_register()) {
+      // swap them if left is real stack (or cached) and right is real register(not cached)
+      left_arg = &right;
+      right_arg = &left;
+    }
+
+    left_arg->load_item();
+
+    // Do not need to load right, as we can handle stack and constants.
+    if (x->op() == Bytecodes::_imul) {
+      bool use_tmp = false;
+      if (right_arg->is_constant()) {
+        int iconst = right_arg->get_jint_constant();
+        if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
+          use_tmp = true;
+        }
+      }
+      right_arg->dont_load_item();
+      LIR_Opr tmp = LIR_OprFact::illegalOpr;
+      if (use_tmp) {
+        tmp = new_register(T_INT);
+      }
+      rlock_result(x);
+
+      arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
+    } else {
+      right_arg->dont_load_item();
+      rlock_result(x);
+      LIR_Opr tmp = LIR_OprFact::illegalOpr;
+      arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
+    }
+  }
+}
+
+void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
+  // If an operand with use count 1 is the left operand, then it is
+  // likely that no move for 2-operand-LIR-form is necessary.
+  if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
+    x->swap_operands();
+  }
+
+  ValueTag tag = x->type()->tag();
+  assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
+  switch (tag) {
+    case floatTag:
+    case doubleTag: do_ArithmeticOp_FPU(x);  return;
+    case longTag:   do_ArithmeticOp_Long(x); return;
+    case intTag:    do_ArithmeticOp_Int(x);  return;
+  }
+  ShouldNotReachHere();
+}
+
+// _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
+void LIRGenerator::do_ShiftOp(ShiftOp* x) {
+  // count must always be in rcx
+  LIRItem value(x->x(), this);
+  LIRItem count(x->y(), this);
+
+  ValueTag elemType = x->type()->tag();
+  bool must_load_count = !count.is_constant();
+  if (must_load_count) {
+    count.load_item();
+  } else {
+    count.dont_load_item();
+  }
+  value.load_item();
+  LIR_Opr reg = rlock_result(x);
+
+  shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
+}
+
+// _iand, _land, _ior, _lor, _ixor, _lxor
+void LIRGenerator::do_LogicOp(LogicOp* x) {
+  // IF an operand with use count 1 is the left operand, then it is
+  // likely that no move for 2-operand-LIR-form is necessary.
+  if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
+    x->swap_operands();
+  }
+
+  LIRItem left(x->x(), this);
+  LIRItem right(x->y(), this);
+
+  left.load_item();
+  right.load_nonconstant(32);
+  LIR_Opr reg = rlock_result(x);
+
+  logic_op(x->op(), reg, left.result(), right.result());
+}
+
+// _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
+void LIRGenerator::do_CompareOp(CompareOp* x) {
+  LIRItem left(x->x(), this);
+  LIRItem right(x->y(), this);
+  left.load_item();
+  right.load_item();
+  LIR_Opr reg = rlock_result(x);
+  if (x->x()->type()->is_float_kind()) {
+    Bytecodes::Code code = x->op();
+    __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
+  } else if (x->x()->type()->tag() == longTag) {
+    __ lcmp2int(left.result(), right.result(), reg);
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
+  assert(x->number_of_arguments() == 4, "wrong type");
+  LIRItem obj   (x->argument_at(0), this);  // object
+  LIRItem offset(x->argument_at(1), this);  // offset of field
+  LIRItem cmp   (x->argument_at(2), this);  // Value to compare with field.
+  LIRItem val   (x->argument_at(3), this);  // Replace field with val if matches cmp.
+
+  // Get address of field.
+  obj.load_item();
+  offset.load_nonconstant(20);
+  cmp.load_item();
+  val.load_item();
+
+  LIR_Opr addr = new_pointer_register();
+  LIR_Address* a;
+  if (offset.result()->is_constant()) {
+    assert(Immediate::is_simm20(offset.result()->as_jlong()), "should have been loaded into register");
+    a = new LIR_Address(obj.result(),
+                        offset.result()->as_jlong(),
+                        as_BasicType(type));
+  } else {
+    a = new LIR_Address(obj.result(),
+                        offset.result(),
+                        0,
+                        as_BasicType(type));
+  }
+  __ leal(LIR_OprFact::address(a), addr);
+
+  if (type == objectType) {  // Write-barrier needed for Object fields.
+    pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
+                true /* do_load */, false /* patch */, NULL);
+  }
+
+  LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
+  if (type == objectType) {
+    __ cas_obj(addr, cmp.result(), val.result(), new_register(T_OBJECT), new_register(T_OBJECT));
+  } else if (type == intType) {
+    __ cas_int(addr, cmp.result(), val.result(), ill, ill);
+  } else if (type == longType) {
+    __ cas_long(addr, cmp.result(), val.result(), ill, ill);
+  } else {
+    ShouldNotReachHere();
+  }
+  // Generate conditional move of boolean result.
+  LIR_Opr result = rlock_result(x);
+  __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
+           result, as_BasicType(type));
+  if (type == objectType) {  // Write-barrier needed for Object fields.
+    // Precise card mark since could either be object or array
+    post_barrier(addr, val.result());
+  }
+}
+
+
+void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
+  switch (x->id()) {
+    case vmIntrinsics::_dabs:
+    case vmIntrinsics::_dsqrt: {
+      assert(x->number_of_arguments() == 1, "wrong type");
+      LIRItem value(x->argument_at(0), this);
+      value.load_item();
+      LIR_Opr dst = rlock_result(x);
+
+      switch (x->id()) {
+      case vmIntrinsics::_dsqrt: {
+        __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
+        break;
+      }
+      case vmIntrinsics::_dabs: {
+        __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
+        break;
+      }
+      }
+      break;
+    }
+    case vmIntrinsics::_dlog10: // fall through
+    case vmIntrinsics::_dlog: // fall through
+    case vmIntrinsics::_dsin: // fall through
+    case vmIntrinsics::_dtan: // fall through
+    case vmIntrinsics::_dcos: // fall through
+    case vmIntrinsics::_dexp: {
+      assert(x->number_of_arguments() == 1, "wrong type");
+
+      address runtime_entry = NULL;
+      switch (x->id()) {
+      case vmIntrinsics::_dsin:
+        runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
+        break;
+      case vmIntrinsics::_dcos:
+        runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
+        break;
+      case vmIntrinsics::_dtan:
+        runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
+        break;
+      case vmIntrinsics::_dlog:
+        runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
+        break;
+      case vmIntrinsics::_dlog10:
+        runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
+        break;
+      case vmIntrinsics::_dexp:
+        runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
+        break;
+      default:
+        ShouldNotReachHere();
+      }
+
+      LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL);
+      set_result(x, result);
+      break;
+    }
+    case vmIntrinsics::_dpow: {
+      assert(x->number_of_arguments() == 2, "wrong type");
+      address runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
+      LIR_Opr result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_entry, x->type(), NULL);
+      set_result(x, result);
+      break;
+    }
+  }
+}
+
+void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
+  assert(x->number_of_arguments() == 5, "wrong type");
+
+  // Copy stubs possibly call C code, e.g. G1 barriers, so we need to reserve room
+  // for the C ABI (see frame::z_abi_160).
+  BasicTypeArray sig; // Empty signature is precise enough.
+  frame_map()->c_calling_convention(&sig);
+
+  // Make all state_for calls early since they can emit code.
+  CodeEmitInfo* info = state_for (x, x->state());
+
+  LIRItem src(x->argument_at(0), this);
+  LIRItem src_pos(x->argument_at(1), this);
+  LIRItem dst(x->argument_at(2), this);
+  LIRItem dst_pos(x->argument_at(3), this);
+  LIRItem length(x->argument_at(4), this);
+
+  // Operands for arraycopy must use fixed registers, otherwise
+  // LinearScan will fail allocation (because arraycopy always needs a
+  // call).
+
+  src.load_item_force     (FrameMap::as_oop_opr(Z_ARG1));
+  src_pos.load_item_force (FrameMap::as_opr(Z_ARG2));
+  dst.load_item_force     (FrameMap::as_oop_opr(Z_ARG3));
+  dst_pos.load_item_force (FrameMap::as_opr(Z_ARG4));
+  length.load_item_force  (FrameMap::as_opr(Z_ARG5));
+
+  LIR_Opr tmp =            FrameMap::as_opr(Z_R7);
+
+  set_no_result(x);
+
+  int flags;
+  ciArrayKlass* expected_type;
+  arraycopy_helper(x, &flags, &expected_type);
+
+  __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(),
+               length.result(), tmp, expected_type, flags, info); // does add_safepoint
+}
+
+// _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
+// _i2b, _i2c, _i2s
+void LIRGenerator::do_Convert(Convert* x) {
+  LIRItem value(x->value(), this);
+
+  value.load_item();
+  LIR_Opr reg = rlock_result(x);
+  __ convert(x->op(), value.result(), reg);
+}
+
+void LIRGenerator::do_NewInstance(NewInstance* x) {
+  print_if_not_loaded(x);
+
+  // This instruction can be deoptimized in the slow path : use
+  // Z_R2 as result register.
+  const LIR_Opr reg = result_register_for (x->type());
+
+  CodeEmitInfo* info = state_for (x, x->state());
+  LIR_Opr tmp1 = FrameMap::Z_R12_oop_opr;
+  LIR_Opr tmp2 = FrameMap::Z_R13_oop_opr;
+  LIR_Opr tmp3 = reg;
+  LIR_Opr tmp4 = LIR_OprFact::illegalOpr;
+  LIR_Opr klass_reg = FrameMap::Z_R11_metadata_opr;
+  new_instance(reg, x->klass(), x->is_unresolved(), tmp1, tmp2, tmp3, tmp4, klass_reg, info);
+  LIR_Opr result = rlock_result(x);
+  __ move(reg, result);
+}
+
+void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
+  CodeEmitInfo* info = state_for (x, x->state());
+
+  LIRItem length(x->length(), this);
+  length.load_item();
+
+  LIR_Opr reg = result_register_for (x->type());
+  LIR_Opr tmp1 = FrameMap::Z_R12_oop_opr;
+  LIR_Opr tmp2 = FrameMap::Z_R13_oop_opr;
+  LIR_Opr tmp3 = reg;
+  LIR_Opr tmp4 = LIR_OprFact::illegalOpr;
+  LIR_Opr klass_reg = FrameMap::Z_R11_metadata_opr;
+  LIR_Opr len = length.result();
+  BasicType elem_type = x->elt_type();
+
+  __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
+
+  CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
+  __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
+
+  LIR_Opr result = rlock_result(x);
+  __ move(reg, result);
+}
+
+void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
+  // Evaluate state_for early since it may emit code.
+  CodeEmitInfo* info = state_for (x, x->state());
+  // In case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
+  // and therefore provide the state before the parameters have been consumed.
+  CodeEmitInfo* patching_info = NULL;
+  if (!x->klass()->is_loaded() || PatchALot) {
+    patching_info = state_for (x, x->state_before());
+  }
+
+  LIRItem length(x->length(), this);
+  length.load_item();
+
+  const LIR_Opr reg = result_register_for (x->type());
+  LIR_Opr tmp1 = FrameMap::Z_R12_oop_opr;
+  LIR_Opr tmp2 = FrameMap::Z_R13_oop_opr;
+  LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
+  LIR_Opr tmp4 = LIR_OprFact::illegalOpr;
+  LIR_Opr klass_reg = FrameMap::Z_R11_metadata_opr;
+  LIR_Opr len = length.result();
+
+  CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
+  ciKlass* obj = ciObjArrayKlass::make(x->klass());
+  if (obj == ciEnv::unloaded_ciobjarrayklass()) {
+    BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
+  }
+  klass2reg_with_patching(klass_reg, obj, patching_info);
+  __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
+
+  LIR_Opr result = rlock_result(x);
+  __ move(reg, result);
+}
+
+void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
+  Values* dims = x->dims();
+  int i = dims->length();
+  LIRItemList* items = new LIRItemList(i, i, NULL);
+  while (i-- > 0) {
+    LIRItem* size = new LIRItem(dims->at(i), this);
+    items->at_put(i, size);
+  }
+
+  // Evaluate state_for early since it may emit code.
+  CodeEmitInfo* patching_info = NULL;
+  if (!x->klass()->is_loaded() || PatchALot) {
+    patching_info = state_for (x, x->state_before());
+
+    // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
+    // clone all handlers (NOTE: Usually this is handled transparently
+    // by the CodeEmitInfo cloning logic in CodeStub constructors but
+    // is done explicitly here because a stub isn't being used).
+    x->set_exception_handlers(new XHandlers(x->exception_handlers()));
+  }
+  CodeEmitInfo* info = state_for (x, x->state());
+
+  i = dims->length();
+  while (--i >= 0) {
+    LIRItem* size = items->at(i);
+    size->load_nonconstant(32);
+    // FrameMap::_reserved_argument_area_size includes the dimensions varargs, because
+    // it's initialized to hir()->max_stack() when the FrameMap is created.
+    store_stack_parameter(size->result(), in_ByteSize(i*sizeof(jint) + FrameMap::first_available_sp_in_frame));
+  }
+
+  LIR_Opr klass_reg = FrameMap::Z_R3_metadata_opr;
+  klass2reg_with_patching(klass_reg, x->klass(), patching_info);
+
+  LIR_Opr rank = FrameMap::Z_R4_opr;
+  __ move(LIR_OprFact::intConst(x->rank()), rank);
+  LIR_Opr varargs = FrameMap::Z_R5_opr;
+  __ leal(LIR_OprFact::address(new LIR_Address(FrameMap::Z_SP_opr, FrameMap::first_available_sp_in_frame, T_INT)),
+          varargs);
+  LIR_OprList* args = new LIR_OprList(3);
+  args->append(klass_reg);
+  args->append(rank);
+  args->append(varargs);
+  LIR_Opr reg = result_register_for (x->type());
+  __ call_runtime(Runtime1::entry_for (Runtime1::new_multi_array_id),
+                  LIR_OprFact::illegalOpr,
+                  reg, args, info);
+
+  LIR_Opr result = rlock_result(x);
+  __ move(reg, result);
+}
+
+void LIRGenerator::do_BlockBegin(BlockBegin* x) {
+  // Nothing to do.
+}
+
+void LIRGenerator::do_CheckCast(CheckCast* x) {
+  LIRItem obj(x->obj(), this);
+
+  CodeEmitInfo* patching_info = NULL;
+  if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
+    // Must do this before locking the destination register as an oop register,
+    // and before the obj is loaded (the latter is for deoptimization).
+    patching_info = state_for (x, x->state_before());
+  }
+  obj.load_item();
+
+  // info for exceptions
+  CodeEmitInfo* info_for_exception = state_for (x);
+
+  CodeStub* stub;
+  if (x->is_incompatible_class_change_check()) {
+    assert(patching_info == NULL, "can't patch this");
+    stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
+  } else {
+    stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
+  }
+  LIR_Opr reg = rlock_result(x);
+  LIR_Opr tmp1 = new_register(objectType);
+  LIR_Opr tmp2 = new_register(objectType);
+  LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
+  __ checkcast(reg, obj.result(), x->klass(),
+               tmp1, tmp2, tmp3,
+               x->direct_compare(), info_for_exception, patching_info, stub,
+               x->profiled_method(), x->profiled_bci());
+}
+
+
+void LIRGenerator::do_InstanceOf(InstanceOf* x) {
+  LIRItem obj(x->obj(), this);
+  CodeEmitInfo* patching_info = NULL;
+  if (!x->klass()->is_loaded() || PatchALot) {
+    patching_info = state_for (x, x->state_before());
+  }
+  // Ensure the result register is not the input register because the
+  // result is initialized before the patching safepoint.
+  obj.load_item();
+  LIR_Opr out_reg = rlock_result(x);
+  LIR_Opr tmp1 = new_register(objectType);
+  LIR_Opr tmp2 = new_register(objectType);
+  LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
+  __ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
+                x->direct_compare(), patching_info,
+                x->profiled_method(), x->profiled_bci());
+}
+
+
+void LIRGenerator::do_If (If* x) {
+  assert(x->number_of_sux() == 2, "inconsistency");
+  ValueTag tag = x->x()->type()->tag();
+  bool is_safepoint = x->is_safepoint();
+
+  If::Condition cond = x->cond();
+
+  LIRItem xitem(x->x(), this);
+  LIRItem yitem(x->y(), this);
+  LIRItem* xin = &xitem;
+  LIRItem* yin = &yitem;
+
+  if (tag == longTag) {
+    // For longs, only conditions "eql", "neq", "lss", "geq" are valid;
+    // mirror for other conditions.
+    if (cond == If::gtr || cond == If::leq) {
+      cond = Instruction::mirror(cond);
+      xin = &yitem;
+      yin = &xitem;
+    }
+    xin->set_destroys_register();
+  }
+  xin->load_item();
+  // TODO: don't load long constants != 0L
+  if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
+    // inline long zero
+    yin->dont_load_item();
+  } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
+    // Longs cannot handle constants at right side.
+    yin->load_item();
+  } else {
+    yin->dont_load_item();
+  }
+
+  // Add safepoint before generating condition code so it can be recomputed.
+  if (x->is_safepoint()) {
+    // Increment backedge counter if needed.
+    increment_backedge_counter(state_for (x, x->state_before()), x->profiled_bci());
+    // Use safepoint_poll_register() instead of LIR_OprFact::illegalOpr.
+    __ safepoint(safepoint_poll_register(), state_for (x, x->state_before()));
+  }
+  set_no_result(x);
+
+  LIR_Opr left = xin->result();
+  LIR_Opr right = yin->result();
+  __ cmp(lir_cond(cond), left, right);
+  // Generate branch profiling. Profiling code doesn't kill flags.
+  profile_branch(x, cond);
+  move_to_phi(x->state());
+  if (x->x()->type()->is_float_kind()) {
+    __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
+  } else {
+    __ branch(lir_cond(cond), right->type(), x->tsux());
+  }
+  assert(x->default_sux() == x->fsux(), "wrong destination above");
+  __ jump(x->default_sux());
+}
+
+LIR_Opr LIRGenerator::getThreadPointer() {
+  return FrameMap::as_pointer_opr(Z_thread);
+}
+
+void LIRGenerator::trace_block_entry(BlockBegin* block) {
+  __ move(LIR_OprFact::intConst(block->block_id()), FrameMap::Z_R2_opr);
+  LIR_OprList* args = new LIR_OprList(1);
+  args->append(FrameMap::Z_R2_opr);
+  address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
+  __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
+}
+
+void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
+                                        CodeEmitInfo* info) {
+  __ store(value, address, info);
+}
+
+void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
+                                       CodeEmitInfo* info) {
+  __ load(address, result, info);
+}
+
+
+void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
+                                     BasicType type, bool is_volatile) {
+  LIR_Address* addr = new LIR_Address(src, offset, type);
+  bool is_obj = (type == T_ARRAY || type == T_OBJECT);
+  if (is_obj) {
+    // Do the pre-write barrier, if any.
+    pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
+                true /* do_load */, false /* patch */, NULL);
+    __ move(data, addr);
+    assert(src->is_register(), "must be register");
+    // Seems to be a precise address.
+    post_barrier(LIR_OprFact::address(addr), data);
+  } else {
+    __ move(data, addr);
+  }
+}
+
+
+void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
+                                     BasicType type, bool is_volatile) {
+  LIR_Address* addr = new LIR_Address(src, offset, type);
+  __ load(addr, dst);
+}
+
+void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
+  BasicType type = x->basic_type();
+  assert (x->is_add() && type != T_ARRAY && type != T_OBJECT, "not supported");
+  LIRItem src(x->object(), this);
+  LIRItem off(x->offset(), this);
+  LIRItem value(x->value(), this);
+
+  src.load_item();
+  value.load_item();
+  off.load_nonconstant(20);
+
+  LIR_Opr dst = rlock_result(x, type);
+  LIR_Opr data = value.result();
+  LIR_Opr offset = off.result();
+
+  LIR_Address* addr;
+  if (offset->is_constant()) {
+    assert(Immediate::is_simm20(offset->as_jlong()), "should have been loaded into register");
+    addr = new LIR_Address(src.result(), offset->as_jlong(), type);
+  } else {
+    addr = new LIR_Address(src.result(), offset, type);
+  }
+
+  __ xadd(LIR_OprFact::address(addr), data, dst, LIR_OprFact::illegalOpr);
+}
+
+void LIRGenerator::do_update_CRC32(Intrinsic* x) {
+  assert(UseCRC32Intrinsics, "or should not be here");
+  LIR_Opr result = rlock_result(x);
+
+  switch (x->id()) {
+    case vmIntrinsics::_updateCRC32: {
+      LIRItem crc(x->argument_at(0), this);
+      LIRItem val(x->argument_at(1), this);
+      // Registers destroyed by update_crc32.
+      crc.set_destroys_register();
+      val.set_destroys_register();
+      crc.load_item();
+      val.load_item();
+      __ update_crc32(crc.result(), val.result(), result);
+      break;
+    }
+    case vmIntrinsics::_updateBytesCRC32:
+    case vmIntrinsics::_updateByteBufferCRC32: {
+      bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
+
+      LIRItem crc(x->argument_at(0), this);
+      LIRItem buf(x->argument_at(1), this);
+      LIRItem off(x->argument_at(2), this);
+      LIRItem len(x->argument_at(3), this);
+      buf.load_item();
+      off.load_nonconstant();
+
+      LIR_Opr index = off.result();
+      int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
+      if (off.result()->is_constant()) {
+        index = LIR_OprFact::illegalOpr;
+        offset += off.result()->as_jint();
+      }
+      LIR_Opr base_op = buf.result();
+
+      if (index->is_valid()) {
+        LIR_Opr tmp = new_register(T_LONG);
+        __ convert(Bytecodes::_i2l, index, tmp);
+        index = tmp;
+      }
+
+      LIR_Address* a = new LIR_Address(base_op, index, offset, T_BYTE);
+
+      BasicTypeList signature(3);
+      signature.append(T_INT);
+      signature.append(T_ADDRESS);
+      signature.append(T_INT);
+      CallingConvention* cc = frame_map()->c_calling_convention(&signature);
+      const LIR_Opr result_reg = result_register_for (x->type());
+
+      LIR_Opr arg1 = cc->at(0);
+      LIR_Opr arg2 = cc->at(1);
+      LIR_Opr arg3 = cc->at(2);
+
+      // CCallingConventionRequiresIntsAsLongs
+      crc.load_item_force(arg1); // We skip int->long conversion here, because CRC32 stub doesn't care about high bits.
+      __ leal(LIR_OprFact::address(a), arg2);
+      load_int_as_long(gen()->lir(), len, arg3);
+
+      __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), LIR_OprFact::illegalOpr, result_reg, cc->args());
+      __ move(result_reg, result);
+      break;
+    }
+    default: {
+      ShouldNotReachHere();
+    }
+  }
+}
+
+void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
+  Unimplemented();
+}
+
+void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
+  fatal("FMA intrinsic is not implemented on this platform");
+}
+
+void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
+  fatal("vectorizedMismatch intrinsic is not implemented on this platform");
+}
+