hotspot/src/cpu/x86/vm/assembler_x86_32.cpp
changeset 1107 5d33babdf375
parent 1106 a4639ed3162c
parent 1105 40fa1299b995
child 1111 a98b896e5485
--- a/hotspot/src/cpu/x86/vm/assembler_x86_32.cpp	Thu Aug 28 11:05:22 2008 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,5001 +0,0 @@
-/*
- * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
- * CA 95054 USA or visit www.sun.com if you need additional information or
- * have any questions.
- *
- */
-
-#include "incls/_precompiled.incl"
-#include "incls/_assembler_x86_32.cpp.incl"
-
-// Implementation of AddressLiteral
-
-AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
-  _is_lval = false;
-  _target = target;
-  switch (rtype) {
-  case relocInfo::oop_type:
-    // Oops are a special case. Normally they would be their own section
-    // but in cases like icBuffer they are literals in the code stream that
-    // we don't have a section for. We use none so that we get a literal address
-    // which is always patchable.
-    break;
-  case relocInfo::external_word_type:
-    _rspec = external_word_Relocation::spec(target);
-    break;
-  case relocInfo::internal_word_type:
-    _rspec = internal_word_Relocation::spec(target);
-    break;
-  case relocInfo::opt_virtual_call_type:
-    _rspec = opt_virtual_call_Relocation::spec();
-    break;
-  case relocInfo::static_call_type:
-    _rspec = static_call_Relocation::spec();
-    break;
-  case relocInfo::runtime_call_type:
-    _rspec = runtime_call_Relocation::spec();
-    break;
-  case relocInfo::poll_type:
-  case relocInfo::poll_return_type:
-    _rspec = Relocation::spec_simple(rtype);
-    break;
-  case relocInfo::none:
-    break;
-  default:
-    ShouldNotReachHere();
-    break;
-  }
-}
-
-// Implementation of Address
-
-Address Address::make_array(ArrayAddress adr) {
-#ifdef _LP64
-  // Not implementable on 64bit machines
-  // Should have been handled higher up the call chain.
-  ShouldNotReachHere();
-#else
-  AddressLiteral base = adr.base();
-  Address index = adr.index();
-  assert(index._disp == 0, "must not have disp"); // maybe it can?
-  Address array(index._base, index._index, index._scale, (intptr_t) base.target());
-  array._rspec = base._rspec;
-  return array;
-#endif // _LP64
-}
-
-#ifndef _LP64
-
-// exceedingly dangerous constructor
-Address::Address(address loc, RelocationHolder spec) {
-  _base  = noreg;
-  _index = noreg;
-  _scale = no_scale;
-  _disp  = (intptr_t) loc;
-  _rspec = spec;
-}
-#endif // _LP64
-
-// Convert the raw encoding form into the form expected by the constructor for
-// Address.  An index of 4 (rsp) corresponds to having no index, so convert
-// that to noreg for the Address constructor.
-Address Address::make_raw(int base, int index, int scale, int disp) {
-  bool valid_index = index != rsp->encoding();
-  if (valid_index) {
-    Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
-    return madr;
-  } else {
-    Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
-    return madr;
-  }
-}
-
-// Implementation of Assembler
-
-int AbstractAssembler::code_fill_byte() {
-  return (u_char)'\xF4'; // hlt
-}
-
-// make this go away someday
-void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
-  if (rtype == relocInfo::none)
-        emit_long(data);
-  else  emit_data(data, Relocation::spec_simple(rtype), format);
-}
-
-
-void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
-  assert(imm32_operand == 0, "default format must be imm32 in this file");
-  assert(inst_mark() != NULL, "must be inside InstructionMark");
-  if (rspec.type() !=  relocInfo::none) {
-    #ifdef ASSERT
-      check_relocation(rspec, format);
-    #endif
-    // Do not use AbstractAssembler::relocate, which is not intended for
-    // embedded words.  Instead, relocate to the enclosing instruction.
-
-    // hack. call32 is too wide for mask so use disp32
-    if (format == call32_operand)
-      code_section()->relocate(inst_mark(), rspec, disp32_operand);
-    else
-      code_section()->relocate(inst_mark(), rspec, format);
-  }
-  emit_long(data);
-}
-
-
-void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
-  assert(dst->has_byte_register(), "must have byte register");
-  assert(isByte(op1) && isByte(op2), "wrong opcode");
-  assert(isByte(imm8), "not a byte");
-  assert((op1 & 0x01) == 0, "should be 8bit operation");
-  emit_byte(op1);
-  emit_byte(op2 | dst->encoding());
-  emit_byte(imm8);
-}
-
-
-void Assembler::emit_arith(int op1, int op2, Register dst, int imm32) {
-  assert(isByte(op1) && isByte(op2), "wrong opcode");
-  assert((op1 & 0x01) == 1, "should be 32bit operation");
-  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
-  if (is8bit(imm32)) {
-    emit_byte(op1 | 0x02); // set sign bit
-    emit_byte(op2 | dst->encoding());
-    emit_byte(imm32 & 0xFF);
-  } else {
-    emit_byte(op1);
-    emit_byte(op2 | dst->encoding());
-    emit_long(imm32);
-  }
-}
-
-// immediate-to-memory forms
-void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int imm32) {
-  assert((op1 & 0x01) == 1, "should be 32bit operation");
-  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
-  if (is8bit(imm32)) {
-    emit_byte(op1 | 0x02); // set sign bit
-    emit_operand(rm,adr);
-    emit_byte(imm32 & 0xFF);
-  } else {
-    emit_byte(op1);
-    emit_operand(rm,adr);
-    emit_long(imm32);
-  }
-}
-
-void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
-  assert(isByte(op1) && isByte(op2), "wrong opcode");
-  assert((op1 & 0x01) == 1, "should be 32bit operation");
-  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
-  InstructionMark im(this);
-  emit_byte(op1);
-  emit_byte(op2 | dst->encoding());
-  emit_data((int)obj, relocInfo::oop_type, 0);
-}
-
-
-void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
-  assert(isByte(op1) && isByte(op2), "wrong opcode");
-  emit_byte(op1);
-  emit_byte(op2 | dst->encoding() << 3 | src->encoding());
-}
-
-
-void Assembler::emit_operand(Register reg,
-                             Register base,
-                             Register index,
-                             Address::ScaleFactor scale,
-                             int disp,
-                             RelocationHolder const& rspec) {
-
-  relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
-  if (base->is_valid()) {
-    if (index->is_valid()) {
-      assert(scale != Address::no_scale, "inconsistent address");
-      // [base + index*scale + disp]
-      if (disp == 0 && rtype == relocInfo::none && base != rbp) {
-        // [base + index*scale]
-        // [00 reg 100][ss index base]
-        assert(index != rsp, "illegal addressing mode");
-        emit_byte(0x04 | reg->encoding() << 3);
-        emit_byte(scale << 6 | index->encoding() << 3 | base->encoding());
-      } else if (is8bit(disp) && rtype == relocInfo::none) {
-        // [base + index*scale + imm8]
-        // [01 reg 100][ss index base] imm8
-        assert(index != rsp, "illegal addressing mode");
-        emit_byte(0x44 | reg->encoding() << 3);
-        emit_byte(scale << 6 | index->encoding() << 3 | base->encoding());
-        emit_byte(disp & 0xFF);
-      } else {
-        // [base + index*scale + imm32]
-        // [10 reg 100][ss index base] imm32
-        assert(index != rsp, "illegal addressing mode");
-        emit_byte(0x84 | reg->encoding() << 3);
-        emit_byte(scale << 6 | index->encoding() << 3 | base->encoding());
-        emit_data(disp, rspec, disp32_operand);
-      }
-    } else if (base == rsp) {
-      // [esp + disp]
-      if (disp == 0 && rtype == relocInfo::none) {
-        // [esp]
-        // [00 reg 100][00 100 100]
-        emit_byte(0x04 | reg->encoding() << 3);
-        emit_byte(0x24);
-      } else if (is8bit(disp) && rtype == relocInfo::none) {
-        // [esp + imm8]
-        // [01 reg 100][00 100 100] imm8
-        emit_byte(0x44 | reg->encoding() << 3);
-        emit_byte(0x24);
-        emit_byte(disp & 0xFF);
-      } else {
-        // [esp + imm32]
-        // [10 reg 100][00 100 100] imm32
-        emit_byte(0x84 | reg->encoding() << 3);
-        emit_byte(0x24);
-        emit_data(disp, rspec, disp32_operand);
-      }
-    } else {
-      // [base + disp]
-      assert(base != rsp, "illegal addressing mode");
-      if (disp == 0 && rtype == relocInfo::none && base != rbp) {
-        // [base]
-        // [00 reg base]
-        assert(base != rbp, "illegal addressing mode");
-        emit_byte(0x00 | reg->encoding() << 3 | base->encoding());
-      } else if (is8bit(disp) && rtype == relocInfo::none) {
-        // [base + imm8]
-        // [01 reg base] imm8
-        emit_byte(0x40 | reg->encoding() << 3 | base->encoding());
-        emit_byte(disp & 0xFF);
-      } else {
-        // [base + imm32]
-        // [10 reg base] imm32
-        emit_byte(0x80 | reg->encoding() << 3 | base->encoding());
-        emit_data(disp, rspec, disp32_operand);
-      }
-    }
-  } else {
-    if (index->is_valid()) {
-      assert(scale != Address::no_scale, "inconsistent address");
-      // [index*scale + disp]
-      // [00 reg 100][ss index 101] imm32
-      assert(index != rsp, "illegal addressing mode");
-      emit_byte(0x04 | reg->encoding() << 3);
-      emit_byte(scale << 6 | index->encoding() << 3 | 0x05);
-      emit_data(disp, rspec, disp32_operand);
-    } else {
-      // [disp]
-      // [00 reg 101] imm32
-      emit_byte(0x05 | reg->encoding() << 3);
-      emit_data(disp, rspec, disp32_operand);
-    }
-  }
-}
-
-// Secret local extension to Assembler::WhichOperand:
-#define end_pc_operand (_WhichOperand_limit)
-
-address Assembler::locate_operand(address inst, WhichOperand which) {
-  // Decode the given instruction, and return the address of
-  // an embedded 32-bit operand word.
-
-  // If "which" is disp32_operand, selects the displacement portion
-  // of an effective address specifier.
-  // If "which" is imm32_operand, selects the trailing immediate constant.
-  // If "which" is call32_operand, selects the displacement of a call or jump.
-  // Caller is responsible for ensuring that there is such an operand,
-  // and that it is 32 bits wide.
-
-  // If "which" is end_pc_operand, find the end of the instruction.
-
-  address ip = inst;
-
-  debug_only(bool has_imm32 = false);
-  int tail_size = 0;    // other random bytes (#32, #16, etc.) at end of insn
-
- again_after_prefix:
-  switch (0xFF & *ip++) {
-
-  // These convenience macros generate groups of "case" labels for the switch.
-  #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
-  #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
-             case (x)+4: case (x)+5: case (x)+6: case (x)+7
-  #define REP16(x) REP8((x)+0): \
-              case REP8((x)+8)
-
-  case CS_segment:
-  case SS_segment:
-  case DS_segment:
-  case ES_segment:
-  case FS_segment:
-  case GS_segment:
-    assert(ip == inst+1, "only one prefix allowed");
-    goto again_after_prefix;
-
-  case 0xFF: // pushl a; decl a; incl a; call a; jmp a
-  case 0x88: // movb a, r
-  case 0x89: // movl a, r
-  case 0x8A: // movb r, a
-  case 0x8B: // movl r, a
-  case 0x8F: // popl a
-    break;
-
-  case 0x68: // pushl #32(oop?)
-    if (which == end_pc_operand)  return ip + 4;
-    assert(which == imm32_operand, "pushl has no disp32");
-    return ip;                  // not produced by emit_operand
-
-  case 0x66: // movw ... (size prefix)
-    switch (0xFF & *ip++) {
-    case 0x8B: // movw r, a
-    case 0x89: // movw a, r
-      break;
-    case 0xC7: // movw a, #16
-      tail_size = 2;  // the imm16
-      break;
-    case 0x0F: // several SSE/SSE2 variants
-      ip--;    // reparse the 0x0F
-      goto again_after_prefix;
-    default:
-      ShouldNotReachHere();
-    }
-    break;
-
-  case REP8(0xB8): // movl r, #32(oop?)
-    if (which == end_pc_operand)  return ip + 4;
-    assert(which == imm32_operand || which == disp32_operand, "");
-    return ip;
-
-  case 0x69: // imul r, a, #32
-  case 0xC7: // movl a, #32(oop?)
-    tail_size = 4;
-    debug_only(has_imm32 = true); // has both kinds of operands!
-    break;
-
-  case 0x0F: // movx..., etc.
-    switch (0xFF & *ip++) {
-    case 0x12: // movlps
-    case 0x28: // movaps
-    case 0x2E: // ucomiss
-    case 0x2F: // comiss
-    case 0x54: // andps
-    case 0x55: // andnps
-    case 0x56: // orps
-    case 0x57: // xorps
-    case 0x6E: // movd
-    case 0x7E: // movd
-    case 0xAE: // ldmxcsr   a
-      // amd side says it these have both operands but that doesn't
-      // appear to be true.
-      // debug_only(has_imm32 = true); // has both kinds of operands!
-      break;
-
-    case 0xAD: // shrd r, a, %cl
-    case 0xAF: // imul r, a
-    case 0xBE: // movsxb r, a
-    case 0xBF: // movsxw r, a
-    case 0xB6: // movzxb r, a
-    case 0xB7: // movzxw r, a
-    case REP16(0x40): // cmovl cc, r, a
-    case 0xB0: // cmpxchgb
-    case 0xB1: // cmpxchg
-    case 0xC1: // xaddl
-    case 0xC7: // cmpxchg8
-    case REP16(0x90): // setcc a
-      // fall out of the switch to decode the address
-      break;
-    case 0xAC: // shrd r, a, #8
-      tail_size = 1;  // the imm8
-      break;
-    case REP16(0x80): // jcc rdisp32
-      if (which == end_pc_operand)  return ip + 4;
-      assert(which == call32_operand, "jcc has no disp32 or imm32");
-      return ip;
-    default:
-      ShouldNotReachHere();
-    }
-    break;
-
-  case 0x81: // addl a, #32; addl r, #32
-    // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
-    // in the case of cmpl, the imm32 might be an oop
-    tail_size = 4;
-    debug_only(has_imm32 = true); // has both kinds of operands!
-    break;
-
-  case 0x85: // test r/m, r
-    break;
-
-  case 0x83: // addl a, #8; addl r, #8
-    // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
-    tail_size = 1;
-    break;
-
-  case 0x9B:
-    switch (0xFF & *ip++) {
-    case 0xD9: // fnstcw a
-      break;
-    default:
-      ShouldNotReachHere();
-    }
-    break;
-
-  case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
-  case REP4(0x10): // adc...
-  case REP4(0x20): // and...
-  case REP4(0x30): // xor...
-  case REP4(0x08): // or...
-  case REP4(0x18): // sbb...
-  case REP4(0x28): // sub...
-  case REP4(0x38): // cmp...
-  case 0xF7: // mull a
-  case 0x8D: // leal r, a
-  case 0x87: // xchg r, a
-    break;
-
-  case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
-  case 0xC6: // movb a, #8
-  case 0x80: // cmpb a, #8
-  case 0x6B: // imul r, a, #8
-    tail_size = 1; // the imm8
-    break;
-
-  case 0xE8: // call rdisp32
-  case 0xE9: // jmp  rdisp32
-    if (which == end_pc_operand)  return ip + 4;
-    assert(which == call32_operand, "call has no disp32 or imm32");
-    return ip;
-
-  case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
-  case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
-  case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
-  case 0xDD: // fld_d a; fst_d a; fstp_d a
-  case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
-  case 0xDF: // fild_d a; fistp_d a
-  case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
-  case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
-  case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
-    break;
-
-  case 0xF3:                    // For SSE
-  case 0xF2:                    // For SSE2
-    ip++; ip++;
-    break;
-
-  default:
-    ShouldNotReachHere();
-
-  #undef REP8
-  #undef REP16
-  }
-
-  assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
-  assert(which != imm32_operand || has_imm32, "instruction has no imm32 field");
-
-  // parse the output of emit_operand
-  int op2 = 0xFF & *ip++;
-  int base = op2 & 0x07;
-  int op3 = -1;
-  const int b100 = 4;
-  const int b101 = 5;
-  if (base == b100 && (op2 >> 6) != 3) {
-    op3 = 0xFF & *ip++;
-    base = op3 & 0x07;   // refetch the base
-  }
-  // now ip points at the disp (if any)
-
-  switch (op2 >> 6) {
-  case 0:
-    // [00 reg  100][ss index base]
-    // [00 reg  100][00   100  rsp]
-    // [00 reg base]
-    // [00 reg  100][ss index  101][disp32]
-    // [00 reg  101]               [disp32]
-
-    if (base == b101) {
-      if (which == disp32_operand)
-        return ip;              // caller wants the disp32
-      ip += 4;                  // skip the disp32
-    }
-    break;
-
-  case 1:
-    // [01 reg  100][ss index base][disp8]
-    // [01 reg  100][00   100  rsp][disp8]
-    // [01 reg base]               [disp8]
-    ip += 1;                    // skip the disp8
-    break;
-
-  case 2:
-    // [10 reg  100][ss index base][disp32]
-    // [10 reg  100][00   100  rsp][disp32]
-    // [10 reg base]               [disp32]
-    if (which == disp32_operand)
-      return ip;                // caller wants the disp32
-    ip += 4;                    // skip the disp32
-    break;
-
-  case 3:
-    // [11 reg base]  (not a memory addressing mode)
-    break;
-  }
-
-  if (which == end_pc_operand) {
-    return ip + tail_size;
-  }
-
-  assert(which == imm32_operand, "instruction has only an imm32 field");
-  return ip;
-}
-
-address Assembler::locate_next_instruction(address inst) {
-  // Secretly share code with locate_operand:
-  return locate_operand(inst, end_pc_operand);
-}
-
-
-#ifdef ASSERT
-void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
-  address inst = inst_mark();
-  assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
-  address opnd;
-
-  Relocation* r = rspec.reloc();
-  if (r->type() == relocInfo::none) {
-    return;
-  } else if (r->is_call() || format == call32_operand) {
-    // assert(format == imm32_operand, "cannot specify a nonzero format");
-    opnd = locate_operand(inst, call32_operand);
-  } else if (r->is_data()) {
-    assert(format == imm32_operand || format == disp32_operand, "format ok");
-    opnd = locate_operand(inst, (WhichOperand)format);
-  } else {
-    assert(format == imm32_operand, "cannot specify a format");
-    return;
-  }
-  assert(opnd == pc(), "must put operand where relocs can find it");
-}
-#endif
-
-
-
-void Assembler::emit_operand(Register reg, Address adr) {
-  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
-}
-
-
-void Assembler::emit_farith(int b1, int b2, int i) {
-  assert(isByte(b1) && isByte(b2), "wrong opcode");
-  assert(0 <= i &&  i < 8, "illegal stack offset");
-  emit_byte(b1);
-  emit_byte(b2 + i);
-}
-
-
-void Assembler::pushad() {
-  emit_byte(0x60);
-}
-
-void Assembler::popad() {
-  emit_byte(0x61);
-}
-
-void Assembler::pushfd() {
-  emit_byte(0x9C);
-}
-
-void Assembler::popfd() {
-  emit_byte(0x9D);
-}
-
-void Assembler::pushl(int imm32) {
-  emit_byte(0x68);
-  emit_long(imm32);
-}
-
-#ifndef _LP64
-void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
-  InstructionMark im(this);
-  emit_byte(0x68);
-  emit_data(imm32, rspec, 0);
-}
-#endif // _LP64
-
-void Assembler::pushl(Register src) {
-  emit_byte(0x50 | src->encoding());
-}
-
-
-void Assembler::pushl(Address src) {
-  InstructionMark im(this);
-  emit_byte(0xFF);
-  emit_operand(rsi, src);
-}
-
-void Assembler::popl(Register dst) {
-  emit_byte(0x58 | dst->encoding());
-}
-
-
-void Assembler::popl(Address dst) {
-  InstructionMark im(this);
-  emit_byte(0x8F);
-  emit_operand(rax, dst);
-}
-
-
-void Assembler::prefix(Prefix p) {
-  a_byte(p);
-}
-
-
-void Assembler::movb(Register dst, Address src) {
-  assert(dst->has_byte_register(), "must have byte register");
-  InstructionMark im(this);
-  emit_byte(0x8A);
-  emit_operand(dst, src);
-}
-
-
-void Assembler::movb(Address dst, int imm8) {
-  InstructionMark im(this);
-  emit_byte(0xC6);
-  emit_operand(rax, dst);
-  emit_byte(imm8);
-}
-
-
-void Assembler::movb(Address dst, Register src) {
-  assert(src->has_byte_register(), "must have byte register");
-  InstructionMark im(this);
-  emit_byte(0x88);
-  emit_operand(src, dst);
-}
-
-
-void Assembler::movw(Address dst, int imm16) {
-  InstructionMark im(this);
-
-  emit_byte(0x66); // switch to 16-bit mode
-  emit_byte(0xC7);
-  emit_operand(rax, dst);
-  emit_word(imm16);
-}
-
-
-void Assembler::movw(Register dst, Address src) {
-  InstructionMark im(this);
-  emit_byte(0x66);
-  emit_byte(0x8B);
-  emit_operand(dst, src);
-}
-
-
-void Assembler::movw(Address dst, Register src) {
-  InstructionMark im(this);
-  emit_byte(0x66);
-  emit_byte(0x89);
-  emit_operand(src, dst);
-}
-
-
-void Assembler::movl(Register dst, int imm32) {
-  emit_byte(0xB8 | dst->encoding());
-  emit_long(imm32);
-}
-
-#ifndef _LP64
-void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
-
-  InstructionMark im(this);
-  emit_byte(0xB8 | dst->encoding());
-  emit_data((int)imm32, rspec, 0);
-}
-#endif // _LP64
-
-void Assembler::movl(Register dst, Register src) {
-  emit_byte(0x8B);
-  emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
-}
-
-
-void Assembler::movl(Register dst, Address src) {
-  InstructionMark im(this);
-  emit_byte(0x8B);
-  emit_operand(dst, src);
-}
-
-
-void Assembler::movl(Address dst, int imm32) {
-  InstructionMark im(this);
-  emit_byte(0xC7);
-  emit_operand(rax, dst);
-  emit_long(imm32);
-}
-
-#ifndef _LP64
-void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
-  InstructionMark im(this);
-  emit_byte(0xC7);
-  emit_operand(rax, dst);
-  emit_data((int)imm32, rspec, 0);
-}
-#endif // _LP64
-
-void Assembler::movl(Address dst, Register src) {
-  InstructionMark im(this);
-  emit_byte(0x89);
-  emit_operand(src, dst);
-}
-
-void Assembler::movsxb(Register dst, Address src) {
-  InstructionMark im(this);
-  emit_byte(0x0F);
-  emit_byte(0xBE);
-  emit_operand(dst, src);
-}
-
-void Assembler::movsxb(Register dst, Register src) {
-  assert(src->has_byte_register(), "must have byte register");
-  emit_byte(0x0F);
-  emit_byte(0xBE);
-  emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
-}
-
-
-void Assembler::movsxw(Register dst, Address src) {
-  InstructionMark im(this);
-  emit_byte(0x0F);
-  emit_byte(0xBF);
-  emit_operand(dst, src);
-}
-
-
-void Assembler::movsxw(Register dst, Register src) {
-  emit_byte(0x0F);
-  emit_byte(0xBF);
-  emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
-}
-
-
-void Assembler::movzxb(Register dst, Address src) {
-  InstructionMark im(this);
-  emit_byte(0x0F);
-  emit_byte(0xB6);
-  emit_operand(dst, src);
-}
-
-
-void Assembler::movzxb(Register dst, Register src) {
-  assert(src->has_byte_register(), "must have byte register");
-  emit_byte(0x0F);
-  emit_byte(0xB6);
-  emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
-}
-
-
-void Assembler::movzxw(Register dst, Address src) {
-  InstructionMark im(this);
-  emit_byte(0x0F);
-  emit_byte(0xB7);
-  emit_operand(dst, src);
-}
-
-
-void Assembler::movzxw(Register dst, Register src) {
-  emit_byte(0x0F);
-  emit_byte(0xB7);
-  emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
-}
-
-
-void Assembler::cmovl(Condition cc, Register dst, Register src) {
-  guarantee(VM_Version::supports_cmov(), "illegal instruction");
-  emit_byte(0x0F);
-  emit_byte(0x40 | cc);
-  emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
-}
-
-
-void Assembler::cmovl(Condition cc, Register dst, Address src) {
-  guarantee(VM_Version::supports_cmov(), "illegal instruction");
-  // The code below seems to be wrong - however the manual is inconclusive
-  // do not use for now (remember to enable all callers when fixing this)
-  Unimplemented();
-  // wrong bytes?
-  InstructionMark im(this);
-  emit_byte(0x0F);
-  emit_byte(0x40 | cc);
-  emit_operand(dst, src);
-}
-
-
-void Assembler::prefetcht0(Address src) {
-  assert(VM_Version::supports_sse(), "must support");
-  InstructionMark im(this);
-  emit_byte(0x0F);
-  emit_byte(0x18);
-  emit_operand(rcx, src); // 1, src
-}
-
-
-void Assembler::prefetcht1(Address src) {
-  assert(VM_Version::supports_sse(), "must support");
-  InstructionMark im(this);
-  emit_byte(0x0F);
-  emit_byte(0x18);
-  emit_operand(rdx, src); // 2, src
-}
-
-
-void Assembler::prefetcht2(Address src) {
-  assert(VM_Version::supports_sse(), "must support");
-  InstructionMark im(this);
-  emit_byte(0x0F);
-  emit_byte(0x18);
-  emit_operand(rbx, src); // 3, src
-}
-
-
-void Assembler::prefetchnta(Address src) {
-  assert(VM_Version::supports_sse2(), "must support");
-  InstructionMark im(this);
-  emit_byte(0x0F);
-  emit_byte(0x18);
-  emit_operand(rax, src); // 0, src
-}
-
-
-void Assembler::prefetchw(Address src) {
-  assert(VM_Version::supports_3dnow(), "must support");
-  InstructionMark im(this);
-  emit_byte(0x0F);
-  emit_byte(0x0D);
-  emit_operand(rcx, src); // 1, src
-}
-
-
-void Assembler::prefetchr(Address src) {
-  assert(VM_Version::supports_3dnow(), "must support");
-  InstructionMark im(this);
-  emit_byte(0x0F);
-  emit_byte(0x0D);
-  emit_operand(rax, src); // 0, src
-}
-
-
-void Assembler::adcl(Register dst, int imm32) {
-  emit_arith(0x81, 0xD0, dst, imm32);
-}
-
-
-void Assembler::adcl(Register dst, Address src) {
-  InstructionMark im(this);
-  emit_byte(0x13);
-  emit_operand(dst, src);
-}
-
-
-void Assembler::adcl(Register dst, Register src) {
-  emit_arith(0x13, 0xC0, dst, src);
-}
-
-
-void Assembler::addl(Address dst, int imm32) {
-  InstructionMark im(this);
-  emit_arith_operand(0x81,rax,dst,imm32);
-}
-
-
-void Assembler::addl(Address dst, Register src) {
-  InstructionMark im(this);
-  emit_byte(0x01);
-  emit_operand(src, dst);
-}
-
-
-void Assembler::addl(Register dst, int imm32) {
-  emit_arith(0x81, 0xC0, dst, imm32);
-}
-
-
-void Assembler::addl(Register dst, Address src) {
-  InstructionMark im(this);
-  emit_byte(0x03);
-  emit_operand(dst, src);
-}
-
-
-void Assembler::addl(Register dst, Register src) {
-  emit_arith(0x03, 0xC0, dst, src);
-}
-
-
-void Assembler::andl(Register dst, int imm32) {
-  emit_arith(0x81, 0xE0, dst, imm32);
-}
-
-
-void Assembler::andl(Register dst, Address src) {
-  InstructionMark im(this);
-  emit_byte(0x23);
-  emit_operand(dst, src);
-}
-
-
-void Assembler::andl(Register dst, Register src) {
-  emit_arith(0x23, 0xC0, dst, src);
-}
-
-
-void Assembler::cmpb(Address dst, int imm8) {
-  InstructionMark im(this);
-  emit_byte(0x80);
-  emit_operand(rdi, dst);
-  emit_byte(imm8);
-}
-
-void Assembler::cmpw(Address dst, int imm16) {
-  InstructionMark im(this);
-  emit_byte(0x66);
-  emit_byte(0x81);
-  emit_operand(rdi, dst);
-  emit_word(imm16);
-}
-
-void Assembler::cmpl(Address dst, int imm32) {
-  InstructionMark im(this);
-  emit_byte(0x81);
-  emit_operand(rdi, dst);
-  emit_long(imm32);
-}
-
-#ifndef _LP64
-void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
-  InstructionMark im(this);
-  emit_byte(0x81);
-  emit_byte(0xF8 | src1->encoding());
-  emit_data(imm32, rspec, 0);
-}
-
-void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
-  InstructionMark im(this);
-  emit_byte(0x81);
-  emit_operand(rdi, src1);
-  emit_data(imm32, rspec, 0);
-}
-#endif // _LP64
-
-
-void Assembler::cmpl(Register dst, int imm32) {
-  emit_arith(0x81, 0xF8, dst, imm32);
-}
-
-
-void Assembler::cmpl(Register dst, Register src) {
-  emit_arith(0x3B, 0xC0, dst, src);
-}
-
-
-void Assembler::cmpl(Register dst, Address  src) {
-  InstructionMark im(this);
-  emit_byte(0x3B);
-  emit_operand(dst, src);
-}
-
-
-void Assembler::decl(Register dst) {
-  // Don't use it directly. Use MacroAssembler::decrement() instead.
-  emit_byte(0x48 | dst->encoding());
-}
-
-
-void Assembler::decl(Address dst) {
-  // Don't use it directly. Use MacroAssembler::decrement() instead.
-  InstructionMark im(this);
-  emit_byte(0xFF);
-  emit_operand(rcx, dst);
-}
-
-
-void Assembler::idivl(Register src) {
-  emit_byte(0xF7);
-  emit_byte(0xF8 | src->encoding());
-}
-
-
-void Assembler::cdql() {
-  emit_byte(0x99);
-}
-
-
-void Assembler::imull(Register dst, Register src) {
-  emit_byte(0x0F);
-  emit_byte(0xAF);
-  emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
-}
-
-
-void Assembler::imull(Register dst, Register src, int value) {
-  if (is8bit(value)) {
-    emit_byte(0x6B);
-    emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
-    emit_byte(value);
-  } else {
-    emit_byte(0x69);
-    emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
-    emit_long(value);
-  }
-}
-
-
-void Assembler::incl(Register dst) {
-  // Don't use it directly. Use MacroAssembler::increment() instead.
-  emit_byte(0x40 | dst->encoding());
-}
-
-
-void Assembler::incl(Address dst) {
-  // Don't use it directly. Use MacroAssembler::increment() instead.
-  InstructionMark im(this);
-  emit_byte(0xFF);
-  emit_operand(rax, dst);
-}
-
-
-void Assembler::leal(Register dst, Address src) {
-  InstructionMark im(this);
-  emit_byte(0x8D);
-  emit_operand(dst, src);
-}
-
-void Assembler::mull(Address src) {
-  InstructionMark im(this);
-  emit_byte(0xF7);
-  emit_operand(rsp, src);
-}
-
-
-void Assembler::mull(Register src) {
-  emit_byte(0xF7);
-  emit_byte(0xE0 | src->encoding());
-}
-
-
-void Assembler::negl(Register dst) {
-  emit_byte(0xF7);
-  emit_byte(0xD8 | dst->encoding());
-}
-
-
-void Assembler::notl(Register dst) {
-  emit_byte(0xF7);
-  emit_byte(0xD0 | dst->encoding());
-}
-
-
-void Assembler::orl(Address dst, int imm32) {
-  InstructionMark im(this);
-  emit_byte(0x81);
-  emit_operand(rcx, dst);
-  emit_long(imm32);
-}
-
-void Assembler::orl(Register dst, int imm32) {
-  emit_arith(0x81, 0xC8, dst, imm32);
-}
-
-
-void Assembler::orl(Register dst, Address src) {
-  InstructionMark im(this);
-  emit_byte(0x0B);
-  emit_operand(dst, src);
-}
-
-
-void Assembler::orl(Register dst, Register src) {
-  emit_arith(0x0B, 0xC0, dst, src);
-}
-
-
-void Assembler::rcll(Register dst, int imm8) {
-  assert(isShiftCount(imm8), "illegal shift count");
-  if (imm8 == 1) {
-    emit_byte(0xD1);
-    emit_byte(0xD0 | dst->encoding());
-  } else {
-    emit_byte(0xC1);
-    emit_byte(0xD0 | dst->encoding());
-    emit_byte(imm8);
-  }
-}
-
-
-void Assembler::sarl(Register dst, int imm8) {
-  assert(isShiftCount(imm8), "illegal shift count");
-  if (imm8 == 1) {
-    emit_byte(0xD1);
-    emit_byte(0xF8 | dst->encoding());
-  } else {
-    emit_byte(0xC1);
-    emit_byte(0xF8 | dst->encoding());
-    emit_byte(imm8);
-  }
-}
-
-
-void Assembler::sarl(Register dst) {
-  emit_byte(0xD3);
-  emit_byte(0xF8 | dst->encoding());
-}
-
-
-void Assembler::sbbl(Address dst, int imm32) {
-  InstructionMark im(this);
-  emit_arith_operand(0x81,rbx,dst,imm32);
-}
-
-
-void Assembler::sbbl(Register dst, int imm32) {
-  emit_arith(0x81, 0xD8, dst, imm32);
-}
-
-
-void Assembler::sbbl(Register dst, Address src) {
-  InstructionMark im(this);
-  emit_byte(0x1B);
-  emit_operand(dst, src);
-}
-
-
-void Assembler::sbbl(Register dst, Register src) {
-  emit_arith(0x1B, 0xC0, dst, src);
-}
-
-
-void Assembler::shldl(Register dst, Register src) {
-  emit_byte(0x0F);
-  emit_byte(0xA5);
-  emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
-}
-
-
-void Assembler::shll(Register dst, int imm8) {
-  assert(isShiftCount(imm8), "illegal shift count");
-  if (imm8 == 1 ) {
-    emit_byte(0xD1);
-    emit_byte(0xE0 | dst->encoding());
-  } else {
-    emit_byte(0xC1);
-    emit_byte(0xE0 | dst->encoding());
-    emit_byte(imm8);
-  }
-}
-
-
-void Assembler::shll(Register dst) {
-  emit_byte(0xD3);
-  emit_byte(0xE0 | dst->encoding());
-}
-
-
-void Assembler::shrdl(Register dst, Register src) {
-  emit_byte(0x0F);
-  emit_byte(0xAD);
-  emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
-}
-
-
-void Assembler::shrl(Register dst, int imm8) {
-  assert(isShiftCount(imm8), "illegal shift count");
-  emit_byte(0xC1);
-  emit_byte(0xE8 | dst->encoding());
-  emit_byte(imm8);
-}
-
-
-void Assembler::shrl(Register dst) {
-  emit_byte(0xD3);
-  emit_byte(0xE8 | dst->encoding());
-}
-
-
-void Assembler::subl(Address dst, int imm32) {
-  if (is8bit(imm32)) {
-    InstructionMark im(this);
-    emit_byte(0x83);
-    emit_operand(rbp, dst);
-    emit_byte(imm32 & 0xFF);
-  } else {
-    InstructionMark im(this);
-    emit_byte(0x81);
-    emit_operand(rbp, dst);
-    emit_long(imm32);
-  }
-}
-
-
-void Assembler::subl(Register dst, int imm32) {
-  emit_arith(0x81, 0xE8, dst, imm32);
-}
-
-
-void Assembler::subl(Address dst, Register src) {
-  InstructionMark im(this);
-  emit_byte(0x29);
-  emit_operand(src, dst);
-}
-
-
-void Assembler::subl(Register dst, Address src) {
-  InstructionMark im(this);
-  emit_byte(0x2B);
-  emit_operand(dst, src);
-}
-
-
-void Assembler::subl(Register dst, Register src) {
-  emit_arith(0x2B, 0xC0, dst, src);
-}
-
-
-void Assembler::testb(Register dst, int imm8) {
-  assert(dst->has_byte_register(), "must have byte register");
-  emit_arith_b(0xF6, 0xC0, dst, imm8);
-}
-
-
-void Assembler::testl(Register dst, int imm32) {
-  // not using emit_arith because test
-  // doesn't support sign-extension of
-  // 8bit operands
-  if (dst->encoding() == 0) {
-    emit_byte(0xA9);
-  } else {
-    emit_byte(0xF7);
-    emit_byte(0xC0 | dst->encoding());
-  }
-  emit_long(imm32);
-}
-
-
-void Assembler::testl(Register dst, Register src) {
-  emit_arith(0x85, 0xC0, dst, src);
-}
-
-void Assembler::testl(Register dst, Address  src) {
-  InstructionMark im(this);
-  emit_byte(0x85);
-  emit_operand(dst, src);
-}
-
-void Assembler::xaddl(Address dst, Register src) {
-  InstructionMark im(this);
-  emit_byte(0x0F);
-  emit_byte(0xC1);
-  emit_operand(src, dst);
-}
-
-void Assembler::xorl(Register dst, int imm32) {
-  emit_arith(0x81, 0xF0, dst, imm32);
-}
-
-
-void Assembler::xorl(Register dst, Address src) {
-  InstructionMark im(this);
-  emit_byte(0x33);
-  emit_operand(dst, src);
-}
-
-
-void Assembler::xorl(Register dst, Register src) {
-  emit_arith(0x33, 0xC0, dst, src);
-}
-
-
-void Assembler::bswap(Register reg) {
-  emit_byte(0x0F);
-  emit_byte(0xC8 | reg->encoding());
-}
-
-
-void Assembler::lock() {
-  if (Atomics & 1) {
-     // Emit either nothing, a NOP, or a NOP: prefix
-     emit_byte(0x90) ;
-  } else {
-     emit_byte(0xF0);
-  }
-}
-
-
-void Assembler::xchg(Register reg, Address adr) {
-  InstructionMark im(this);
-  emit_byte(0x87);
-  emit_operand(reg, adr);
-}
-
-
-void Assembler::xchgl(Register dst, Register src) {
-  emit_byte(0x87);
-  emit_byte(0xc0 | dst->encoding() << 3 | src->encoding());
-}
-
-
-// The 32-bit cmpxchg compares the value at adr with the contents of rax,
-// and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
-// The ZF is set if the compared values were equal, and cleared otherwise.
-void Assembler::cmpxchg(Register reg, Address adr) {
-  if (Atomics & 2) {
-     // caveat: no instructionmark, so this isn't relocatable.
-     // Emit a synthetic, non-atomic, CAS equivalent.
-     // Beware.  The synthetic form sets all ICCs, not just ZF.
-     // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
-     cmpl (rax, adr) ;
-     movl (rax, adr) ;
-     if (reg != rax) {
-        Label L ;
-        jcc (Assembler::notEqual, L) ;
-        movl (adr, reg) ;
-        bind (L) ;
-     }
-  } else {
-     InstructionMark im(this);
-     emit_byte(0x0F);
-     emit_byte(0xB1);
-     emit_operand(reg, adr);
-  }
-}
-
-// The 64-bit cmpxchg compares the value at adr with the contents of rdx:rax,
-// and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
-// into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
-void Assembler::cmpxchg8(Address adr) {
-  InstructionMark im(this);
-  emit_byte(0x0F);
-  emit_byte(0xc7);
-  emit_operand(rcx, adr);
-}
-
-void Assembler::hlt() {
-  emit_byte(0xF4);
-}
-
-
-void Assembler::addr_nop_4() {
-  // 4 bytes: NOP DWORD PTR [EAX+0]
-  emit_byte(0x0F);
-  emit_byte(0x1F);
-  emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
-  emit_byte(0);    // 8-bits offset (1 byte)
-}
-
-void Assembler::addr_nop_5() {
-  // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
-  emit_byte(0x0F);
-  emit_byte(0x1F);
-  emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
-  emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
-  emit_byte(0);    // 8-bits offset (1 byte)
-}
-
-void Assembler::addr_nop_7() {
-  // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
-  emit_byte(0x0F);
-  emit_byte(0x1F);
-  emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
-  emit_long(0);    // 32-bits offset (4 bytes)
-}
-
-void Assembler::addr_nop_8() {
-  // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
-  emit_byte(0x0F);
-  emit_byte(0x1F);
-  emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
-  emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
-  emit_long(0);    // 32-bits offset (4 bytes)
-}
-
-void Assembler::nop(int i) {
-  assert(i > 0, " ");
-  if (UseAddressNop && VM_Version::is_intel()) {
-    //
-    // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
-    //  1: 0x90
-    //  2: 0x66 0x90
-    //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
-    //  4: 0x0F 0x1F 0x40 0x00
-    //  5: 0x0F 0x1F 0x44 0x00 0x00
-    //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
-    //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
-    //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
-    //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
-    // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
-    // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
-
-    // The rest coding is Intel specific - don't use consecutive address nops
-
-    // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
-    // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
-    // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
-    // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
-
-    while(i >= 15) {
-      // For Intel don't generate consecutive addess nops (mix with regular nops)
-      i -= 15;
-      emit_byte(0x66);   // size prefix
-      emit_byte(0x66);   // size prefix
-      emit_byte(0x66);   // size prefix
-      addr_nop_8();
-      emit_byte(0x66);   // size prefix
-      emit_byte(0x66);   // size prefix
-      emit_byte(0x66);   // size prefix
-      emit_byte(0x90);   // nop
-    }
-    switch (i) {
-      case 14:
-        emit_byte(0x66); // size prefix
-      case 13:
-        emit_byte(0x66); // size prefix
-      case 12:
-        addr_nop_8();
-        emit_byte(0x66); // size prefix
-        emit_byte(0x66); // size prefix
-        emit_byte(0x66); // size prefix
-        emit_byte(0x90); // nop
-        break;
-      case 11:
-        emit_byte(0x66); // size prefix
-      case 10:
-        emit_byte(0x66); // size prefix
-      case 9:
-        emit_byte(0x66); // size prefix
-      case 8:
-        addr_nop_8();
-        break;
-      case 7:
-        addr_nop_7();
-        break;
-      case 6:
-        emit_byte(0x66); // size prefix
-      case 5:
-        addr_nop_5();
-        break;
-      case 4:
-        addr_nop_4();
-        break;
-      case 3:
-        // Don't use "0x0F 0x1F 0x00" - need patching safe padding
-        emit_byte(0x66); // size prefix
-      case 2:
-        emit_byte(0x66); // size prefix
-      case 1:
-        emit_byte(0x90); // nop
-        break;
-      default:
-        assert(i == 0, " ");
-    }
-    return;
-  }
-  if (UseAddressNop && VM_Version::is_amd()) {
-    //
-    // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
-    //  1: 0x90
-    //  2: 0x66 0x90
-    //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
-    //  4: 0x0F 0x1F 0x40 0x00
-    //  5: 0x0F 0x1F 0x44 0x00 0x00
-    //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
-    //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
-    //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
-    //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
-    // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
-    // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
-
-    // The rest coding is AMD specific - use consecutive address nops
-
-    // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
-    // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
-    // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
-    // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
-    // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
-    //     Size prefixes (0x66) are added for larger sizes
-
-    while(i >= 22) {
-      i -= 11;
-      emit_byte(0x66); // size prefix
-      emit_byte(0x66); // size prefix
-      emit_byte(0x66); // size prefix
-      addr_nop_8();
-    }
-    // Generate first nop for size between 21-12
-    switch (i) {
-      case 21:
-        i -= 1;
-        emit_byte(0x66); // size prefix
-      case 20:
-      case 19:
-        i -= 1;
-        emit_byte(0x66); // size prefix
-      case 18:
-      case 17:
-        i -= 1;
-        emit_byte(0x66); // size prefix
-      case 16:
-      case 15:
-        i -= 8;
-        addr_nop_8();
-        break;
-      case 14:
-      case 13:
-        i -= 7;
-        addr_nop_7();
-        break;
-      case 12:
-        i -= 6;
-        emit_byte(0x66); // size prefix
-        addr_nop_5();
-        break;
-      default:
-        assert(i < 12, " ");
-    }
-
-    // Generate second nop for size between 11-1
-    switch (i) {
-      case 11:
-        emit_byte(0x66); // size prefix
-      case 10:
-        emit_byte(0x66); // size prefix
-      case 9:
-        emit_byte(0x66); // size prefix
-      case 8:
-        addr_nop_8();
-        break;
-      case 7:
-        addr_nop_7();
-        break;
-      case 6:
-        emit_byte(0x66); // size prefix
-      case 5:
-        addr_nop_5();
-        break;
-      case 4:
-        addr_nop_4();
-        break;
-      case 3:
-        // Don't use "0x0F 0x1F 0x00" - need patching safe padding
-        emit_byte(0x66); // size prefix
-      case 2:
-        emit_byte(0x66); // size prefix
-      case 1:
-        emit_byte(0x90); // nop
-        break;
-      default:
-        assert(i == 0, " ");
-    }
-    return;
-  }
-
-  // Using nops with size prefixes "0x66 0x90".
-  // From AMD Optimization Guide:
-  //  1: 0x90
-  //  2: 0x66 0x90
-  //  3: 0x66 0x66 0x90
-  //  4: 0x66 0x66 0x66 0x90
-  //  5: 0x66 0x66 0x90 0x66 0x90
-  //  6: 0x66 0x66 0x90 0x66 0x66 0x90
-  //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
-  //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
-  //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
-  // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
-  //
-  while(i > 12) {
-    i -= 4;
-    emit_byte(0x66); // size prefix
-    emit_byte(0x66);
-    emit_byte(0x66);
-    emit_byte(0x90); // nop
-  }
-  // 1 - 12 nops
-  if(i > 8) {
-    if(i > 9) {
-      i -= 1;
-      emit_byte(0x66);
-    }
-    i -= 3;
-    emit_byte(0x66);
-    emit_byte(0x66);
-    emit_byte(0x90);
-  }
-  // 1 - 8 nops
-  if(i > 4) {
-    if(i > 6) {
-      i -= 1;
-      emit_byte(0x66);
-    }
-    i -= 3;
-    emit_byte(0x66);
-    emit_byte(0x66);
-    emit_byte(0x90);
-  }
-  switch (i) {
-    case 4:
-      emit_byte(0x66);
-    case 3:
-      emit_byte(0x66);
-    case 2:
-      emit_byte(0x66);
-    case 1:
-      emit_byte(0x90);
-      break;
-    default:
-      assert(i == 0, " ");
-  }
-}
-
-void Assembler::ret(int imm16) {
-  if (imm16 == 0) {
-    emit_byte(0xC3);
-  } else {
-    emit_byte(0xC2);
-    emit_word(imm16);
-  }
-}
-
-
-void Assembler::set_byte_if_not_zero(Register dst) {
-  emit_byte(0x0F);
-  emit_byte(0x95);
-  emit_byte(0xE0 | dst->encoding());
-}
-
-
-// copies a single word from [esi] to [edi]
-void Assembler::smovl() {
-  emit_byte(0xA5);
-}
-
-// copies data from [esi] to [edi] using rcx double words (m32)
-void Assembler::rep_movl() {
-  emit_byte(0xF3);
-  emit_byte(0xA5);
-}
-
-
-// sets rcx double words (m32) with rax, value at [edi]
-void Assembler::rep_set() {
-  emit_byte(0xF3);
-  emit_byte(0xAB);
-}
-
-// scans rcx double words (m32) at [edi] for occurance of rax,
-void Assembler::repne_scan() {
-  emit_byte(0xF2);
-  emit_byte(0xAF);
-}
-
-
-void Assembler::setb(Condition cc, Register dst) {
-  assert(0 <= cc && cc < 16, "illegal cc");
-  emit_byte(0x0F);
-  emit_byte(0x90 | cc);
-  emit_byte(0xC0 | dst->encoding());
-}
-
-void Assembler::cld() {
-  emit_byte(0xfc);
-}
-
-void Assembler::std() {
-  emit_byte(0xfd);
-}
-
-void Assembler::emit_raw (unsigned char b) {
-  emit_byte (b) ;
-}
-
-// Serializes memory.
-void Assembler::membar() {
-    // Memory barriers are only needed on multiprocessors
-  if (os::is_MP()) {
-    if( VM_Version::supports_sse2() ) {
-      emit_byte( 0x0F );                // MFENCE; faster blows no regs
-      emit_byte( 0xAE );
-      emit_byte( 0xF0 );
-    } else {
-      // All usable chips support "locked" instructions which suffice
-      // as barriers, and are much faster than the alternative of
-      // using cpuid instruction. We use here a locked add [esp],0.
-      // This is conveniently otherwise a no-op except for blowing
-      // flags (which we save and restore.)
-      pushfd();                // Save eflags register
-      lock();
-      addl(Address(rsp, 0), 0);// Assert the lock# signal here
-      popfd();                 // Restore eflags register
-    }
-  }
-}
-
-// Identify processor type and features
-void Assembler::cpuid() {
-  // Note: we can't assert VM_Version::supports_cpuid() here
-  //       because this instruction is used in the processor
-  //       identification code.
-  emit_byte( 0x0F );
-  emit_byte( 0xA2 );
-}
-
-void Assembler::call(Label& L, relocInfo::relocType rtype) {
-  if (L.is_bound()) {
-    const int long_size = 5;
-    int offs = target(L) - pc();
-    assert(offs <= 0, "assembler error");
-    InstructionMark im(this);
-    // 1110 1000 #32-bit disp
-    emit_byte(0xE8);
-    emit_data(offs - long_size, rtype, 0);
-  } else {
-    InstructionMark im(this);
-    // 1110 1000 #32-bit disp
-    L.add_patch_at(code(), locator());
-    emit_byte(0xE8);
-    emit_data(int(0), rtype, 0);
-  }
-}
-
-void Assembler::call(Register dst) {
-  emit_byte(0xFF);
-  emit_byte(0xD0 | dst->encoding());
-}
-
-
-void Assembler::call(Address adr) {
-  InstructionMark im(this);
-  relocInfo::relocType rtype = adr.reloc();
-  if (rtype !=  relocInfo::runtime_call_type) {
-    emit_byte(0xFF);
-    emit_operand(rdx, adr);
-  } else {
-    assert(false, "ack");
-  }
-
-}
-
-void Assembler::call_literal(address dest, RelocationHolder const& rspec) {
-  InstructionMark im(this);
-  emit_byte(0xE8);
-  intptr_t disp = dest - (_code_pos + sizeof(int32_t));
-  assert(dest != NULL, "must have a target");
-  emit_data(disp, rspec, call32_operand);
-
-}
-
-void Assembler::jmp(Register entry) {
-  emit_byte(0xFF);
-  emit_byte(0xE0 | entry->encoding());
-}
-
-
-void Assembler::jmp(Address adr) {
-  InstructionMark im(this);
-  emit_byte(0xFF);
-  emit_operand(rsp, adr);
-}
-
-void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
-  InstructionMark im(this);
-  emit_byte(0xE9);
-  assert(dest != NULL, "must have a target");
-  intptr_t disp = dest - (_code_pos + sizeof(int32_t));
-  emit_data(disp, rspec.reloc(), call32_operand);
-}
-
-void Assembler::jmp(Label& L, relocInfo::relocType rtype) {
-  if (L.is_bound()) {
-    address entry = target(L);
-    assert(entry != NULL, "jmp most probably wrong");
-    InstructionMark im(this);
-    const int short_size = 2;
-    const int long_size = 5;
-    intptr_t offs = entry - _code_pos;
-    if (rtype == relocInfo::none && is8bit(offs - short_size)) {
-      emit_byte(0xEB);
-      emit_byte((offs - short_size) & 0xFF);
-    } else {
-      emit_byte(0xE9);
-      emit_long(offs - long_size);
-    }
-  } else {
-    // By default, forward jumps are always 32-bit displacements, since
-    // we can't yet know where the label will be bound.  If you're sure that
-    // the forward jump will not run beyond 256 bytes, use jmpb to
-    // force an 8-bit displacement.
-    InstructionMark im(this);
-    relocate(rtype);
-    L.add_patch_at(code(), locator());
-    emit_byte(0xE9);
-    emit_long(0);
-  }
-}
-
-void Assembler::jmpb(Label& L) {
-  if (L.is_bound()) {
-    const int short_size = 2;
-    address entry = target(L);
-    assert(is8bit((entry - _code_pos) + short_size),
-           "Dispacement too large for a short jmp");
-    assert(entry != NULL, "jmp most probably wrong");
-    intptr_t offs = entry - _code_pos;
-    emit_byte(0xEB);
-    emit_byte((offs - short_size) & 0xFF);
-  } else {
-    InstructionMark im(this);
-    L.add_patch_at(code(), locator());
-    emit_byte(0xEB);
-    emit_byte(0);
-  }
-}
-
-void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) {
-  InstructionMark im(this);
-  relocate(rtype);
-  assert((0 <= cc) && (cc < 16), "illegal cc");
-  if (L.is_bound()) {
-    address dst = target(L);
-    assert(dst != NULL, "jcc most probably wrong");
-
-    const int short_size = 2;
-    const int long_size = 6;
-    int offs = (int)dst - ((int)_code_pos);
-    if (rtype == relocInfo::none && is8bit(offs - short_size)) {
-      // 0111 tttn #8-bit disp
-      emit_byte(0x70 | cc);
-      emit_byte((offs - short_size) & 0xFF);
-    } else {
-      // 0000 1111 1000 tttn #32-bit disp
-      emit_byte(0x0F);
-      emit_byte(0x80 | cc);
-      emit_long(offs - long_size);
-    }
-  } else {
-    // Note: could eliminate cond. jumps to this jump if condition
-    //       is the same however, seems to be rather unlikely case.
-    // Note: use jccb() if label to be bound is very close to get
-    //       an 8-bit displacement
-    L.add_patch_at(code(), locator());
-    emit_byte(0x0F);
-    emit_byte(0x80 | cc);
-    emit_long(0);
-  }
-}
-
-void Assembler::jccb(Condition cc, Label& L) {
-  if (L.is_bound()) {
-    const int short_size = 2;
-    address entry = target(L);
-    assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
-           "Dispacement too large for a short jmp");
-    intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
-    // 0111 tttn #8-bit disp
-    emit_byte(0x70 | cc);
-    emit_byte((offs - short_size) & 0xFF);
-    jcc(cc, L);
-  } else {
-    InstructionMark im(this);
-    L.add_patch_at(code(), locator());
-    emit_byte(0x70 | cc);
-    emit_byte(0);
-  }
-}
-
-// FPU instructions
-
-void Assembler::fld1() {
-  emit_byte(0xD9);
-  emit_byte(0xE8);
-}
-
-
-void Assembler::fldz() {
-  emit_byte(0xD9);
-  emit_byte(0xEE);
-}
-
-
-void Assembler::fld_s(Address adr) {
-  InstructionMark im(this);
-  emit_byte(0xD9);
-  emit_operand(rax, adr);
-}
-
-
-void Assembler::fld_s (int index) {
-  emit_farith(0xD9, 0xC0, index);
-}
-
-
-void Assembler::fld_d(Address adr) {
-  InstructionMark im(this);
-  emit_byte(0xDD);
-  emit_operand(rax, adr);
-}
-
-
-void Assembler::fld_x(Address adr) {
-  InstructionMark im(this);
-  emit_byte(0xDB);
-  emit_operand(rbp, adr);
-}
-
-
-void Assembler::fst_s(Address adr) {
-  InstructionMark im(this);
-  emit_byte(0xD9);
-  emit_operand(rdx, adr);
-}
-
-
-void Assembler::fst_d(Address adr) {
-  InstructionMark im(this);
-  emit_byte(0xDD);
-  emit_operand(rdx, adr);
-}
-
-
-void Assembler::fstp_s(Address adr) {
-  InstructionMark im(this);
-  emit_byte(0xD9);
-  emit_operand(rbx, adr);
-}
-
-
-void Assembler::fstp_d(Address adr) {
-  InstructionMark im(this);
-  emit_byte(0xDD);
-  emit_operand(rbx, adr);
-}
-
-
-void Assembler::fstp_x(Address adr) {
-  InstructionMark im(this);
-  emit_byte(0xDB);
-  emit_operand(rdi, adr);
-}
-
-
-void Assembler::fstp_d(int index) {
-  emit_farith(0xDD, 0xD8, index);
-}
-
-
-void Assembler::fild_s(Address adr) {
-  InstructionMark im(this);
-  emit_byte(0xDB);
-  emit_operand(rax, adr);
-}
-
-
-void Assembler::fild_d(Address adr) {
-  InstructionMark im(this);
-  emit_byte(0xDF);
-  emit_operand(rbp, adr);
-}
-
-
-void Assembler::fistp_s(Address adr) {
-  InstructionMark im(this);
-  emit_byte(0xDB);
-  emit_operand(rbx, adr);
-}
-
-
-void Assembler::fistp_d(Address adr) {
-  InstructionMark im(this);
-  emit_byte(0xDF);
-  emit_operand(rdi, adr);
-}
-
-
-void Assembler::fist_s(Address adr) {
-  InstructionMark im(this);
-  emit_byte(0xDB);
-  emit_operand(rdx, adr);
-}
-
-
-void Assembler::fabs() {
-  emit_byte(0xD9);
-  emit_byte(0xE1);
-}
-
-
-void Assembler::fldln2() {
-  emit_byte(0xD9);
-  emit_byte(0xED);
-}
-
-void Assembler::fyl2x() {
-  emit_byte(0xD9);
-  emit_byte(0xF1);
-}
-
-
-void Assembler::fldlg2() {
-  emit_byte(0xD9);
-  emit_byte(0xEC);
-}
-
-
-void Assembler::flog() {
-  fldln2();
-  fxch();
-  fyl2x();
-}
-
-
-void Assembler::flog10() {
-  fldlg2();
-  fxch();
-  fyl2x();
-}
-
-
-void Assembler::fsin() {
-  emit_byte(0xD9);
-  emit_byte(0xFE);
-}
-
-
-void Assembler::fcos() {
-  emit_byte(0xD9);
-  emit_byte(0xFF);
-}
-
-void Assembler::ftan() {
-  emit_byte(0xD9);
-  emit_byte(0xF2);
-  emit_byte(0xDD);
-  emit_byte(0xD8);
-}
-
-void Assembler::fsqrt() {
-  emit_byte(0xD9);
-  emit_byte(0xFA);
-}
-
-
-void Assembler::fchs() {
-  emit_byte(0xD9);
-  emit_byte(0xE0);
-}
-
-
-void Assembler::fadd_s(Address src) {
-  InstructionMark im(this);
-  emit_byte(0xD8);
-  emit_operand(rax, src);
-}
-
-
-void Assembler::fadd_d(Address src) {
-  InstructionMark im(this);
-  emit_byte(0xDC);
-  emit_operand(rax, src);
-}
-
-
-void Assembler::fadd(int i) {
-  emit_farith(0xD8, 0xC0, i);
-}
-
-
-void Assembler::fadda(int i) {
-  emit_farith(0xDC, 0xC0, i);
-}
-
-
-void Assembler::fsub_d(Address src) {
-  InstructionMark im(this);
-  emit_byte(0xDC);
-  emit_operand(rsp, src);
-}
-
-
-void Assembler::fsub_s(Address src) {
-  InstructionMark im(this);
-  emit_byte(0xD8);
-  emit_operand(rsp, src);
-}
-
-
-void Assembler::fsubr_s(Address src) {
-  InstructionMark im(this);
-  emit_byte(0xD8);
-  emit_operand(rbp, src);
-}
-
-
-void Assembler::fsubr_d(Address src) {
-  InstructionMark im(this);
-  emit_byte(0xDC);
-  emit_operand(rbp, src);
-}
-
-
-void Assembler::fmul_s(Address src) {
-  InstructionMark im(this);
-  emit_byte(0xD8);
-  emit_operand(rcx, src);
-}
-
-
-void Assembler::fmul_d(Address src) {
-  InstructionMark im(this);
-  emit_byte(0xDC);
-  emit_operand(rcx, src);
-}
-
-
-void Assembler::fmul(int i) {
-  emit_farith(0xD8, 0xC8, i);
-}
-
-
-void Assembler::fmula(int i) {
-  emit_farith(0xDC, 0xC8, i);
-}
-
-
-void Assembler::fdiv_s(Address src) {
-  InstructionMark im(this);
-  emit_byte(0xD8);
-  emit_operand(rsi, src);
-}
-
-
-void Assembler::fdiv_d(Address src) {
-  InstructionMark im(this);
-  emit_byte(0xDC);
-  emit_operand(rsi, src);
-}
-
-
-void Assembler::fdivr_s(Address src) {
-  InstructionMark im(this);
-  emit_byte(0xD8);
-  emit_operand(rdi, src);
-}
-
-
-void Assembler::fdivr_d(Address src) {
-  InstructionMark im(this);
-  emit_byte(0xDC);
-  emit_operand(rdi, src);
-}
-
-
-void Assembler::fsub(int i) {
-  emit_farith(0xD8, 0xE0, i);
-}
-
-
-void Assembler::fsuba(int i) {
-  emit_farith(0xDC, 0xE8, i);
-}
-
-
-void Assembler::fsubr(int i) {
-  emit_farith(0xD8, 0xE8, i);
-}
-
-
-void Assembler::fsubra(int i) {
-  emit_farith(0xDC, 0xE0, i);
-}
-
-
-void Assembler::fdiv(int i) {
-  emit_farith(0xD8, 0xF0, i);
-}
-
-
-void Assembler::fdiva(int i) {
-  emit_farith(0xDC, 0xF8, i);
-}
-
-
-void Assembler::fdivr(int i) {
-  emit_farith(0xD8, 0xF8, i);
-}
-
-
-void Assembler::fdivra(int i) {
-  emit_farith(0xDC, 0xF0, i);
-}
-
-
-// Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
-//       is erroneous for some of the floating-point instructions below.
-
-void Assembler::fdivp(int i) {
-  emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
-}
-
-
-void Assembler::fdivrp(int i) {
-  emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
-}
-
-
-void Assembler::fsubp(int i) {
-  emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
-}
-
-
-void Assembler::fsubrp(int i) {
-  emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
-}
-
-
-void Assembler::faddp(int i) {
-  emit_farith(0xDE, 0xC0, i);
-}
-
-
-void Assembler::fmulp(int i) {
-  emit_farith(0xDE, 0xC8, i);
-}
-
-
-void Assembler::fprem() {
-  emit_byte(0xD9);
-  emit_byte(0xF8);
-}
-
-
-void Assembler::fprem1() {
-  emit_byte(0xD9);
-  emit_byte(0xF5);
-}
-
-
-void Assembler::fxch(int i) {
-  emit_farith(0xD9, 0xC8, i);
-}
-
-
-void Assembler::fincstp() {
-  emit_byte(0xD9);
-  emit_byte(0xF7);
-}
-
-
-void Assembler::fdecstp() {
-  emit_byte(0xD9);
-  emit_byte(0xF6);
-}
-
-
-void Assembler::ffree(int i) {
-  emit_farith(0xDD, 0xC0, i);
-}
-
-
-void Assembler::fcomp_s(Address src) {
-  InstructionMark im(this);
-  emit_byte(0xD8);
-  emit_operand(rbx, src);
-}
-
-
-void Assembler::fcomp_d(Address src) {
-  InstructionMark im(this);
-  emit_byte(0xDC);
-  emit_operand(rbx, src);
-}
-
-
-void Assembler::fcom(int i) {
-  emit_farith(0xD8, 0xD0, i);
-}
-
-
-void Assembler::fcomp(int i) {
-  emit_farith(0xD8, 0xD8, i);
-}
-
-
-void Assembler::fcompp() {
-  emit_byte(0xDE);
-  emit_byte(0xD9);
-}
-
-
-void Assembler::fucomi(int i) {
-  // make sure the instruction is supported (introduced for P6, together with cmov)
-  guarantee(VM_Version::supports_cmov(), "illegal instruction");
-  emit_farith(0xDB, 0xE8, i);
-}
-
-
-void Assembler::fucomip(int i) {
-  // make sure the instruction is supported (introduced for P6, together with cmov)
-  guarantee(VM_Version::supports_cmov(), "illegal instruction");
-  emit_farith(0xDF, 0xE8, i);
-}
-
-
-void Assembler::ftst() {
-  emit_byte(0xD9);
-  emit_byte(0xE4);
-}
-
-
-void Assembler::fnstsw_ax() {
-  emit_byte(0xdF);
-  emit_byte(0xE0);
-}
-
-
-void Assembler::fwait() {
-  emit_byte(0x9B);
-}
-
-
-void Assembler::finit() {
-  emit_byte(0x9B);
-  emit_byte(0xDB);
-  emit_byte(0xE3);
-}
-
-
-void Assembler::fldcw(Address src) {
-  InstructionMark im(this);
-  emit_byte(0xd9);
-  emit_operand(rbp, src);
-}
-
-
-void Assembler::fnstcw(Address src) {
-  InstructionMark im(this);
-  emit_byte(0x9B);
-  emit_byte(0xD9);
-  emit_operand(rdi, src);
-}
-
-void Assembler::fnsave(Address dst) {
-  InstructionMark im(this);
-  emit_byte(0xDD);
-  emit_operand(rsi, dst);
-}
-
-
-void Assembler::frstor(Address src) {
-  InstructionMark im(this);
-  emit_byte(0xDD);
-  emit_operand(rsp, src);
-}
-
-
-void Assembler::fldenv(Address src) {
-  InstructionMark im(this);
-  emit_byte(0xD9);
-  emit_operand(rsp, src);
-}
-
-
-void Assembler::sahf() {
-  emit_byte(0x9E);
-}
-
-// MMX operations
-void Assembler::emit_operand(MMXRegister reg, Address adr) {
-  emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
-}
-
-void Assembler::movq( MMXRegister dst, Address src ) {
-  assert( VM_Version::supports_mmx(), "" );
-  emit_byte(0x0F);
-  emit_byte(0x6F);
-  emit_operand(dst,src);
-}
-
-void Assembler::movq( Address dst, MMXRegister src ) {
-  assert( VM_Version::supports_mmx(), "" );
-  emit_byte(0x0F);
-  emit_byte(0x7F);
-  emit_operand(src,dst);
-}
-
-void Assembler::emms() {
-  emit_byte(0x0F);
-  emit_byte(0x77);
-}
-
-
-
-
-// SSE and SSE2 instructions
-inline void Assembler::emit_sse_operand(XMMRegister reg, Address adr) {
-  assert(((Register)reg)->encoding() == reg->encoding(), "otherwise typecast is invalid");
-  emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
-}
-inline void Assembler::emit_sse_operand(Register reg, Address adr) {
-  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
-}
-
-inline void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) {
-  emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
-}
-inline void Assembler::emit_sse_operand(XMMRegister dst, Register src) {
-  emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
-}
-inline void Assembler::emit_sse_operand(Register dst, XMMRegister src) {
-  emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
-}
-
-
-// Macro for creation of SSE2 instructions
-// The SSE2 instricution set is highly regular, so this macro saves
-// a lot of cut&paste
-// Each macro expansion creates two methods (same name with different
-// parameter list)
-//
-// Macro parameters:
-//  * name: name of the created methods
-//  * sse_version: either sse or sse2 for the assertion if instruction supported by processor
-//  * prefix: first opcode byte of the instruction (or 0 if no prefix byte)
-//  * opcode: last opcode byte of the instruction
-//  * conversion instruction have parameters of type Register instead of XMMRegister,
-//    so this can also configured with macro parameters
-#define emit_sse_instruction(name, sse_version, prefix, opcode, dst_register_type, src_register_type)      \
-                                                                         \
-  void Assembler:: name (dst_register_type dst, Address src) {           \
-    assert(VM_Version::supports_##sse_version(), "");                    \
-                                                                         \
-    InstructionMark im(this);                                            \
-    if (prefix != 0) emit_byte(prefix);                                  \
-    emit_byte(0x0F);                                                     \
-    emit_byte(opcode);                                                   \
-    emit_sse_operand(dst, src);                                          \
-  }                                                                      \
-                                                                         \
-  void Assembler:: name (dst_register_type dst, src_register_type src) { \
-    assert(VM_Version::supports_##sse_version(), "");                    \
-                                                                         \
-    if (prefix != 0) emit_byte(prefix);                                  \
-    emit_byte(0x0F);                                                     \
-    emit_byte(opcode);                                                   \
-    emit_sse_operand(dst, src);                                          \
-  }                                                                      \
-
-emit_sse_instruction(addss,  sse,  0xF3, 0x58, XMMRegister, XMMRegister);
-emit_sse_instruction(addsd,  sse2, 0xF2, 0x58, XMMRegister, XMMRegister)
-emit_sse_instruction(subss,  sse,  0xF3, 0x5C, XMMRegister, XMMRegister)
-emit_sse_instruction(subsd,  sse2, 0xF2, 0x5C, XMMRegister, XMMRegister)
-emit_sse_instruction(mulss,  sse,  0xF3, 0x59, XMMRegister, XMMRegister)
-emit_sse_instruction(mulsd,  sse2, 0xF2, 0x59, XMMRegister, XMMRegister)
-emit_sse_instruction(divss,  sse,  0xF3, 0x5E, XMMRegister, XMMRegister)
-emit_sse_instruction(divsd,  sse2, 0xF2, 0x5E, XMMRegister, XMMRegister)
-emit_sse_instruction(sqrtss, sse,  0xF3, 0x51, XMMRegister, XMMRegister)
-emit_sse_instruction(sqrtsd, sse2, 0xF2, 0x51, XMMRegister, XMMRegister)
-
-emit_sse_instruction(pxor,  sse2,  0x66, 0xEF, XMMRegister, XMMRegister)
-
-emit_sse_instruction(comiss,  sse,  0,    0x2F, XMMRegister, XMMRegister)
-emit_sse_instruction(comisd,  sse2, 0x66, 0x2F, XMMRegister, XMMRegister)
-emit_sse_instruction(ucomiss, sse,  0,    0x2E, XMMRegister, XMMRegister)
-emit_sse_instruction(ucomisd, sse2, 0x66, 0x2E, XMMRegister, XMMRegister)
-
-emit_sse_instruction(cvtss2sd,  sse2, 0xF3, 0x5A, XMMRegister, XMMRegister);
-emit_sse_instruction(cvtsd2ss,  sse2, 0xF2, 0x5A, XMMRegister, XMMRegister)
-emit_sse_instruction(cvtsi2ss,  sse,  0xF3, 0x2A, XMMRegister, Register);
-emit_sse_instruction(cvtsi2sd,  sse2, 0xF2, 0x2A, XMMRegister, Register)
-emit_sse_instruction(cvtss2si,  sse,  0xF3, 0x2D, Register, XMMRegister);
-emit_sse_instruction(cvtsd2si,  sse2, 0xF2, 0x2D, Register, XMMRegister)
-emit_sse_instruction(cvttss2si, sse,  0xF3, 0x2C, Register, XMMRegister);
-emit_sse_instruction(cvttsd2si, sse2, 0xF2, 0x2C, Register, XMMRegister)
-
-emit_sse_instruction(movss, sse,  0xF3, 0x10, XMMRegister, XMMRegister)
-emit_sse_instruction(movsd, sse2, 0xF2, 0x10, XMMRegister, XMMRegister)
-
-emit_sse_instruction(movq,  sse2, 0xF3, 0x7E, XMMRegister, XMMRegister);
-emit_sse_instruction(movd,  sse2, 0x66, 0x6E, XMMRegister, Register);
-emit_sse_instruction(movdqa, sse2, 0x66, 0x6F, XMMRegister, XMMRegister);
-
-emit_sse_instruction(punpcklbw,  sse2, 0x66, 0x60, XMMRegister, XMMRegister);
-
-
-// Instruction not covered by macro
-void Assembler::movq(Address dst, XMMRegister src) {
-  assert(VM_Version::supports_sse2(), "");
-
-  InstructionMark im(this);
-  emit_byte(0x66);
-  emit_byte(0x0F);
-  emit_byte(0xD6);
-  emit_sse_operand(src, dst);
-}
-
-void Assembler::movd(Address dst, XMMRegister src) {
-  assert(VM_Version::supports_sse2(), "");
-
-  InstructionMark im(this);
-  emit_byte(0x66);
-  emit_byte(0x0F);
-  emit_byte(0x7E);
-  emit_sse_operand(src, dst);
-}
-
-void Assembler::movd(Register dst, XMMRegister src) {
-  assert(VM_Version::supports_sse2(), "");
-
-  emit_byte(0x66);
-  emit_byte(0x0F);
-  emit_byte(0x7E);
-  emit_sse_operand(src, dst);
-}
-
-void Assembler::movdqa(Address dst, XMMRegister src) {
-  assert(VM_Version::supports_sse2(), "");
-
-  InstructionMark im(this);
-  emit_byte(0x66);
-  emit_byte(0x0F);
-  emit_byte(0x7F);
-  emit_sse_operand(src, dst);
-}
-
-void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
-  assert(isByte(mode), "invalid value");
-  assert(VM_Version::supports_sse2(), "");
-
-  emit_byte(0x66);
-  emit_byte(0x0F);
-  emit_byte(0x70);
-  emit_sse_operand(dst, src);
-  emit_byte(mode & 0xFF);
-}
-
-void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
-  assert(isByte(mode), "invalid value");
-  assert(VM_Version::supports_sse2(), "");
-
-  InstructionMark im(this);
-  emit_byte(0x66);
-  emit_byte(0x0F);
-  emit_byte(0x70);
-  emit_sse_operand(dst, src);
-  emit_byte(mode & 0xFF);
-}
-
-void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
-  assert(isByte(mode), "invalid value");
-  assert(VM_Version::supports_sse2(), "");
-
-  emit_byte(0xF2);
-  emit_byte(0x0F);
-  emit_byte(0x70);
-  emit_sse_operand(dst, src);
-  emit_byte(mode & 0xFF);
-}
-
-void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
-  assert(isByte(mode), "invalid value");
-  assert(VM_Version::supports_sse2(), "");
-
-  InstructionMark im(this);
-  emit_byte(0xF2);
-  emit_byte(0x0F);
-  emit_byte(0x70);
-  emit_sse_operand(dst, src);
-  emit_byte(mode & 0xFF);
-}
-
-void Assembler::psrlq(XMMRegister dst, int shift) {
-  assert(VM_Version::supports_sse2(), "");
-
-  emit_byte(0x66);
-  emit_byte(0x0F);
-  emit_byte(0x73);
-  emit_sse_operand(xmm2, dst);
-  emit_byte(shift);
-}
-
-void Assembler::movss( Address dst, XMMRegister src ) {
-  assert(VM_Version::supports_sse(), "");
-
-  InstructionMark im(this);
-  emit_byte(0xF3); // single
-  emit_byte(0x0F);
-  emit_byte(0x11); // store
-  emit_sse_operand(src, dst);
-}
-
-void Assembler::movsd( Address dst, XMMRegister src ) {
-  assert(VM_Version::supports_sse2(), "");
-
-  InstructionMark im(this);
-  emit_byte(0xF2); // double
-  emit_byte(0x0F);
-  emit_byte(0x11); // store
-  emit_sse_operand(src,dst);
-}
-
-// New cpus require to use movaps and movapd to avoid partial register stall
-// when moving between registers.
-void Assembler::movaps(XMMRegister dst, XMMRegister src) {
-  assert(VM_Version::supports_sse(), "");
-
-  emit_byte(0x0F);
-  emit_byte(0x28);
-  emit_sse_operand(dst, src);
-}
-void Assembler::movapd(XMMRegister dst, XMMRegister src) {
-  assert(VM_Version::supports_sse2(), "");
-
-  emit_byte(0x66);
-  emit_byte(0x0F);
-  emit_byte(0x28);
-  emit_sse_operand(dst, src);
-}
-
-// New cpus require to use movsd and movss to avoid partial register stall
-// when loading from memory. But for old Opteron use movlpd instead of movsd.
-// The selection is done in MacroAssembler::movdbl() and movflt().
-void Assembler::movlpd(XMMRegister dst, Address src) {
-  assert(VM_Version::supports_sse(), "");
-
-  InstructionMark im(this);
-  emit_byte(0x66);
-  emit_byte(0x0F);
-  emit_byte(0x12);
-  emit_sse_operand(dst, src);
-}
-
-void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
-  assert(VM_Version::supports_sse2(), "");
-
-  emit_byte(0xF3);
-  emit_byte(0x0F);
-  emit_byte(0xE6);
-  emit_sse_operand(dst, src);
-}
-
-void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
-  assert(VM_Version::supports_sse2(), "");
-
-  emit_byte(0x0F);
-  emit_byte(0x5B);
-  emit_sse_operand(dst, src);
-}
-
-emit_sse_instruction(andps,  sse,  0,    0x54, XMMRegister, XMMRegister);
-emit_sse_instruction(andpd,  sse2, 0x66, 0x54, XMMRegister, XMMRegister);
-emit_sse_instruction(andnps, sse,  0,    0x55, XMMRegister, XMMRegister);
-emit_sse_instruction(andnpd, sse2, 0x66, 0x55, XMMRegister, XMMRegister);
-emit_sse_instruction(orps,   sse,  0,    0x56, XMMRegister, XMMRegister);
-emit_sse_instruction(orpd,   sse2, 0x66, 0x56, XMMRegister, XMMRegister);
-emit_sse_instruction(xorps,  sse,  0,    0x57, XMMRegister, XMMRegister);
-emit_sse_instruction(xorpd,  sse2, 0x66, 0x57, XMMRegister, XMMRegister);
-
-
-void Assembler::ldmxcsr( Address src) {
-  InstructionMark im(this);
-  emit_byte(0x0F);
-  emit_byte(0xAE);
-  emit_operand(rdx /* 2 */, src);
-}
-
-void Assembler::stmxcsr( Address dst) {
-  InstructionMark im(this);
-  emit_byte(0x0F);
-  emit_byte(0xAE);
-  emit_operand(rbx /* 3 */, dst);
-}
-
-// Implementation of MacroAssembler
-
-Address MacroAssembler::as_Address(AddressLiteral adr) {
-  // amd64 always does this as a pc-rel
-  // we can be absolute or disp based on the instruction type
-  // jmp/call are displacements others are absolute
-  assert(!adr.is_lval(), "must be rval");
-
-  return Address(adr.target(), adr.rspec());
-}
-
-Address MacroAssembler::as_Address(ArrayAddress adr) {
-  return Address::make_array(adr);
-}
-
-void MacroAssembler::fat_nop() {
-  // A 5 byte nop that is safe for patching (see patch_verified_entry)
-  emit_byte(0x26); // es:
-  emit_byte(0x2e); // cs:
-  emit_byte(0x64); // fs:
-  emit_byte(0x65); // gs:
-  emit_byte(0x90);
-}
-
-// 32bit can do a case table jump in one instruction but we no longer allow the base
-// to be installed in the Address class
-void MacroAssembler::jump(ArrayAddress entry) {
-  jmp(as_Address(entry));
-}
-
-void MacroAssembler::jump(AddressLiteral dst) {
-  jmp_literal(dst.target(), dst.rspec());
-}
-
-void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
-  assert((0 <= cc) && (cc < 16), "illegal cc");
-
-  InstructionMark im(this);
-
-  relocInfo::relocType rtype = dst.reloc();
-  relocate(rtype);
-  const int short_size = 2;
-  const int long_size = 6;
-  int offs = (int)dst.target() - ((int)_code_pos);
-  if (rtype == relocInfo::none && is8bit(offs - short_size)) {
-    // 0111 tttn #8-bit disp
-    emit_byte(0x70 | cc);
-    emit_byte((offs - short_size) & 0xFF);
-  } else {
-    // 0000 1111 1000 tttn #32-bit disp
-    emit_byte(0x0F);
-    emit_byte(0x80 | cc);
-    emit_long(offs - long_size);
-  }
-}
-
-// Calls
-void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
-  Assembler::call(L, rtype);
-}
-
-void MacroAssembler::call(Register entry) {
-  Assembler::call(entry);
-}
-
-void MacroAssembler::call(AddressLiteral entry) {
-  Assembler::call_literal(entry.target(), entry.rspec());
-}
-
-
-void MacroAssembler::cmp8(AddressLiteral src1, int8_t imm) {
-  Assembler::cmpb(as_Address(src1), imm);
-}
-
-void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
-  Assembler::cmpl(as_Address(src1), imm);
-}
-
-void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
-  if (src2.is_lval()) {
-    cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
-  } else {
-    Assembler::cmpl(src1, as_Address(src2));
-  }
-}
-
-void MacroAssembler::cmp32(Register src1, int32_t imm) {
-  Assembler::cmpl(src1, imm);
-}
-
-void MacroAssembler::cmp32(Register src1, Address src2) {
-  Assembler::cmpl(src1, src2);
-}
-
-void MacroAssembler::cmpoop(Address src1, jobject obj) {
-  cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
-}
-
-void MacroAssembler::cmpoop(Register src1, jobject obj) {
-  cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
-}
-
-void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
-  if (src2.is_lval()) {
-    // compare the effect address of src2 to src1
-    cmp_literal32(src1, (int32_t)src2.target(), src2.rspec());
-  } else {
-    Assembler::cmpl(src1, as_Address(src2));
-  }
-}
-
-void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
-  assert(src2.is_lval(), "not a mem-mem compare");
-  cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
-}
-
-
-void MacroAssembler::cmpxchgptr(Register reg, AddressLiteral adr) {
-  cmpxchg(reg, as_Address(adr));
-}
-
-void MacroAssembler::increment(AddressLiteral dst) {
-  increment(as_Address(dst));
-}
-
-void MacroAssembler::increment(ArrayAddress dst) {
-  increment(as_Address(dst));
-}
-
-void MacroAssembler::lea(Register dst, AddressLiteral adr) {
-  // leal(dst, as_Address(adr));
-  // see note in movl as to why we musr use a move
-  mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
-}
-
-void MacroAssembler::lea(Address dst, AddressLiteral adr) {
-  // leal(dst, as_Address(adr));
-  // see note in movl as to why we musr use a move
-  mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
-}
-
-void MacroAssembler::mov32(AddressLiteral dst, Register src) {
-  Assembler::movl(as_Address(dst), src);
-}
-
-void MacroAssembler::mov32(Register dst, AddressLiteral src) {
-  Assembler::movl(dst, as_Address(src));
-}
-
-void MacroAssembler::movbyte(ArrayAddress dst, int src) {
-  movb(as_Address(dst), src);
-}
-
-void MacroAssembler::movoop(Address dst, jobject obj) {
-  mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
-}
-
-void MacroAssembler::movoop(Register dst, jobject obj) {
-  mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
-}
-
-void MacroAssembler::movptr(Register dst, AddressLiteral src) {
-  if (src.is_lval()) {
-    // essentially an lea
-    mov_literal32(dst, (int32_t) src.target(), src.rspec());
-  } else {
-    // mov 32bits from an absolute address
-    movl(dst, as_Address(src));
-  }
-}
-
-void MacroAssembler::movptr(ArrayAddress dst, Register src) {
-  movl(as_Address(dst), src);
-}
-
-void MacroAssembler::movptr(Register dst, ArrayAddress src) {
-  movl(dst, as_Address(src));
-}
-
-void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
-  movss(dst, as_Address(src));
-}
-
-void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
-  if (UseXmmLoadAndClearUpper) { movsd (dst, as_Address(src)); return; }
-  else                         { movlpd(dst, as_Address(src)); return; }
-}
-
-void Assembler::pushoop(jobject obj) {
-  push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
-}
-
-
-void MacroAssembler::pushptr(AddressLiteral src) {
-  if (src.is_lval()) {
-    push_literal32((int32_t)src.target(), src.rspec());
-  } else {
-    pushl(as_Address(src));
-  }
-}
-
-void MacroAssembler::test32(Register src1, AddressLiteral src2) {
-  // src2 must be rval
-  testl(src1, as_Address(src2));
-}
-
-// FPU
-
-void MacroAssembler::fld_x(AddressLiteral src) {
-  Assembler::fld_x(as_Address(src));
-}
-
-void MacroAssembler::fld_d(AddressLiteral src) {
-  fld_d(as_Address(src));
-}
-
-void MacroAssembler::fld_s(AddressLiteral src) {
-  fld_s(as_Address(src));
-}
-
-void MacroAssembler::fldcw(AddressLiteral src) {
-  Assembler::fldcw(as_Address(src));
-}
-
-void MacroAssembler::ldmxcsr(AddressLiteral src) {
-  Assembler::ldmxcsr(as_Address(src));
-}
-
-// SSE
-
-void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
-  andpd(dst, as_Address(src));
-}
-
-void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
-  comisd(dst, as_Address(src));
-}
-
-void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
-  comiss(dst, as_Address(src));
-}
-
-void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
-  movsd(dst, as_Address(src));
-}
-
-void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
-  movss(dst, as_Address(src));
-}
-
-void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
-  xorpd(dst, as_Address(src));
-}
-
-void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
-  xorps(dst, as_Address(src));
-}
-
-void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
-  ucomisd(dst, as_Address(src));
-}
-
-void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
-  ucomiss(dst, as_Address(src));
-}
-
-void MacroAssembler::null_check(Register reg, int offset) {
-  if (needs_explicit_null_check(offset)) {
-    // provoke OS NULL exception if reg = NULL by
-    // accessing M[reg] w/o changing any (non-CC) registers
-    cmpl(rax, Address(reg, 0));
-    // Note: should probably use testl(rax, Address(reg, 0));
-    //       may be shorter code (however, this version of
-    //       testl needs to be implemented first)
-  } else {
-    // nothing to do, (later) access of M[reg + offset]
-    // will provoke OS NULL exception if reg = NULL
-  }
-}
-
-
-int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
-  // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
-  // and "3.9 Partial Register Penalties", p. 22).
-  int off;
-  if (VM_Version::is_P6() || src.uses(dst)) {
-    off = offset();
-    movzxb(dst, src);
-  } else {
-    xorl(dst, dst);
-    off = offset();
-    movb(dst, src);
-  }
-  return off;
-}
-
-
-int MacroAssembler::load_unsigned_word(Register dst, Address src) {
-  // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
-  // and "3.9 Partial Register Penalties", p. 22).
-  int off;
-  if (VM_Version::is_P6() || src.uses(dst)) {
-    off = offset();
-    movzxw(dst, src);
-  } else {
-    xorl(dst, dst);
-    off = offset();
-    movw(dst, src);
-  }
-  return off;
-}
-
-
-int MacroAssembler::load_signed_byte(Register dst, Address src) {
-  int off;
-  if (VM_Version::is_P6()) {
-    off = offset();
-    movsxb(dst, src);
-  } else {
-    off = load_unsigned_byte(dst, src);
-    shll(dst, 24);
-    sarl(dst, 24);
-  }
-  return off;
-}
-
-
-int MacroAssembler::load_signed_word(Register dst, Address src) {
-  int off;
-  if (VM_Version::is_P6()) {
-    off = offset();
-    movsxw(dst, src);
-  } else {
-    off = load_unsigned_word(dst, src);
-    shll(dst, 16);
-    sarl(dst, 16);
-  }
-  return off;
-}
-
-
-void MacroAssembler::extend_sign(Register hi, Register lo) {
-  // According to Intel Doc. AP-526, "Integer Divide", p.18.
-  if (VM_Version::is_P6() && hi == rdx && lo == rax) {
-    cdql();
-  } else {
-    movl(hi, lo);
-    sarl(hi, 31);
-  }
-}
-
-
-void MacroAssembler::increment(Register reg, int value) {
-  if (value == min_jint) {addl(reg, value); return; }
-  if (value <  0) { decrement(reg, -value); return; }
-  if (value == 0) {                       ; return; }
-  if (value == 1 && UseIncDec) { incl(reg); return; }
-  /* else */      { addl(reg, value)      ; return; }
-}
-
-void MacroAssembler::increment(Address dst, int value) {
-  if (value == min_jint) {addl(dst, value); return; }
-  if (value <  0) { decrement(dst, -value); return; }
-  if (value == 0) {                       ; return; }
-  if (value == 1 && UseIncDec) { incl(dst); return; }
-  /* else */      { addl(dst, value)      ; return; }
-}
-
-void MacroAssembler::decrement(Register reg, int value) {
-  if (value == min_jint) {subl(reg, value); return; }
-  if (value <  0) { increment(reg, -value); return; }
-  if (value == 0) {                       ; return; }
-  if (value == 1 && UseIncDec) { decl(reg); return; }
-  /* else */      { subl(reg, value)      ; return; }
-}
-
-void MacroAssembler::decrement(Address dst, int value) {
-  if (value == min_jint) {subl(dst, value); return; }
-  if (value <  0) { increment(dst, -value); return; }
-  if (value == 0) {                       ; return; }
-  if (value == 1 && UseIncDec) { decl(dst); return; }
-  /* else */      { subl(dst, value)      ; return; }
-}
-
-void MacroAssembler::align(int modulus) {
-  if (offset() % modulus != 0) nop(modulus - (offset() % modulus));
-}
-
-
-void MacroAssembler::enter() {
-  pushl(rbp);
-  movl(rbp, rsp);
-}
-
-
-void MacroAssembler::leave() {
-  movl(rsp, rbp);
-  popl(rbp);
-}
-
-void MacroAssembler::set_last_Java_frame(Register java_thread,
-                                         Register last_java_sp,
-                                         Register last_java_fp,
-                                         address  last_java_pc) {
-  // determine java_thread register
-  if (!java_thread->is_valid()) {
-    java_thread = rdi;
-    get_thread(java_thread);
-  }
-  // determine last_java_sp register
-  if (!last_java_sp->is_valid()) {
-    last_java_sp = rsp;
-  }
-
-  // last_java_fp is optional
-
-  if (last_java_fp->is_valid()) {
-    movl(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
-  }
-
-  // last_java_pc is optional
-
-  if (last_java_pc != NULL) {
-    lea(Address(java_thread,
-                 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
-        InternalAddress(last_java_pc));
-
-  }
-  movl(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
-}
-
-void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
-  // determine java_thread register
-  if (!java_thread->is_valid()) {
-    java_thread = rdi;
-    get_thread(java_thread);
-  }
-  // we must set sp to zero to clear frame
-  movl(Address(java_thread, JavaThread::last_Java_sp_offset()), 0);
-  if (clear_fp) {
-    movl(Address(java_thread, JavaThread::last_Java_fp_offset()), 0);
-  }
-
-  if (clear_pc)
-    movl(Address(java_thread, JavaThread::last_Java_pc_offset()), 0);
-
-}
-
-
-
-// Implementation of call_VM versions
-
-void MacroAssembler::call_VM_leaf_base(
-  address entry_point,
-  int     number_of_arguments
-) {
-  call(RuntimeAddress(entry_point));
-  increment(rsp, number_of_arguments * wordSize);
-}
-
-
-void MacroAssembler::call_VM_base(
-  Register oop_result,
-  Register java_thread,
-  Register last_java_sp,
-  address  entry_point,
-  int      number_of_arguments,
-  bool     check_exceptions
-) {
-  // determine java_thread register
-  if (!java_thread->is_valid()) {
-    java_thread = rdi;
-    get_thread(java_thread);
-  }
-  // determine last_java_sp register
-  if (!last_java_sp->is_valid()) {
-    last_java_sp = rsp;
-  }
-  // debugging support
-  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
-  assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
-  assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
-  // push java thread (becomes first argument of C function)
-  pushl(java_thread);
-  // set last Java frame before call
-  assert(last_java_sp != rbp, "this code doesn't work for last_java_sp == rbp, which currently can't portably work anyway since C2 doesn't save rbp,");
-  // Only interpreter should have to set fp
-  set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
-  // do the call
-  call(RuntimeAddress(entry_point));
-  // restore the thread (cannot use the pushed argument since arguments
-  // may be overwritten by C code generated by an optimizing compiler);
-  // however can use the register value directly if it is callee saved.
-  if (java_thread == rdi || java_thread == rsi) {
-    // rdi & rsi are callee saved -> nothing to do
-#ifdef ASSERT
-    guarantee(java_thread != rax, "change this code");
-    pushl(rax);
-    { Label L;
-      get_thread(rax);
-      cmpl(java_thread, rax);
-      jcc(Assembler::equal, L);
-      stop("MacroAssembler::call_VM_base: rdi not callee saved?");
-      bind(L);
-    }
-    popl(rax);
-#endif
-  } else {
-    get_thread(java_thread);
-  }
-  // reset last Java frame
-  // Only interpreter should have to clear fp
-  reset_last_Java_frame(java_thread, true, false);
-  // discard thread and arguments
-  addl(rsp, (1 + number_of_arguments)*wordSize);
-
-#ifndef CC_INTERP
-   // C++ interp handles this in the interpreter
-  check_and_handle_popframe(java_thread);
-  check_and_handle_earlyret(java_thread);
-#endif /* CC_INTERP */
-
-  if (check_exceptions) {
-    // check for pending exceptions (java_thread is set upon return)
-    cmpl(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD);
-    jump_cc(Assembler::notEqual,
-            RuntimeAddress(StubRoutines::forward_exception_entry()));
-  }
-
-  // get oop result if there is one and reset the value in the thread
-  if (oop_result->is_valid()) {
-    movl(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
-    movl(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
-    verify_oop(oop_result);
-  }
-}
-
-
-void MacroAssembler::check_and_handle_popframe(Register java_thread) {
-}
-
-void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
-}
-
-void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
-  leal(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
-  call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
-}
-
-
-void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
-  Label C, E;
-  call(C, relocInfo::none);
-  jmp(E);
-
-  bind(C);
-  call_VM_helper(oop_result, entry_point, 0, check_exceptions);
-  ret(0);
-
-  bind(E);
-}
-
-
-void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
-  Label C, E;
-  call(C, relocInfo::none);
-  jmp(E);
-
-  bind(C);
-  pushl(arg_1);
-  call_VM_helper(oop_result, entry_point, 1, check_exceptions);
-  ret(0);
-
-  bind(E);
-}
-
-
-void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
-  Label C, E;
-  call(C, relocInfo::none);
-  jmp(E);
-
-  bind(C);
-  pushl(arg_2);
-  pushl(arg_1);
-  call_VM_helper(oop_result, entry_point, 2, check_exceptions);
-  ret(0);
-
-  bind(E);
-}
-
-
-void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
-  Label C, E;
-  call(C, relocInfo::none);
-  jmp(E);
-
-  bind(C);
-  pushl(arg_3);
-  pushl(arg_2);
-  pushl(arg_1);
-  call_VM_helper(oop_result, entry_point, 3, check_exceptions);
-  ret(0);
-
-  bind(E);
-}
-
-
-void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
-  call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
-}
-
-
-void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
-  pushl(arg_1);
-  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
-}
-
-
-void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
-  pushl(arg_2);
-  pushl(arg_1);
-  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
-}
-
-
-void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
-  pushl(arg_3);
-  pushl(arg_2);
-  pushl(arg_1);
-  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
-}
-
-
-void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
-  call_VM_leaf_base(entry_point, number_of_arguments);
-}
-
-
-void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
-  pushl(arg_1);
-  call_VM_leaf(entry_point, 1);
-}
-
-
-void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
-  pushl(arg_2);
-  pushl(arg_1);
-  call_VM_leaf(entry_point, 2);
-}
-
-
-void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
-  pushl(arg_3);
-  pushl(arg_2);
-  pushl(arg_1);
-  call_VM_leaf(entry_point, 3);
-}
-
-
-// Calls to C land
-//
-// When entering C land, the rbp, & rsp of the last Java frame have to be recorded
-// in the (thread-local) JavaThread object. When leaving C land, the last Java fp
-// has to be reset to 0. This is required to allow proper stack traversal.
-
-void MacroAssembler::store_check(Register obj) {
-  // Does a store check for the oop in register obj. The content of
-  // register obj is destroyed afterwards.
-  store_check_part_1(obj);
-  store_check_part_2(obj);
-}
-
-
-void MacroAssembler::store_check(Register obj, Address dst) {
-  store_check(obj);
-}
-
-
-// split the store check operation so that other instructions can be scheduled inbetween
-void MacroAssembler::store_check_part_1(Register obj) {
-  BarrierSet* bs = Universe::heap()->barrier_set();
-  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
-  shrl(obj, CardTableModRefBS::card_shift);
-}
-
-
-void MacroAssembler::store_check_part_2(Register obj) {
-  BarrierSet* bs = Universe::heap()->barrier_set();
-  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
-  CardTableModRefBS* ct = (CardTableModRefBS*)bs;
-  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
-
-  // The calculation for byte_map_base is as follows:
-  // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
-  // So this essentially converts an address to a displacement and
-  // it will never need to be relocated. On 64bit however the value may be too
-  // large for a 32bit displacement
-
-  intptr_t disp = (intptr_t) ct->byte_map_base;
-  Address cardtable(noreg, obj, Address::times_1, disp);
-  movb(cardtable, 0);
-}
-
-
-void MacroAssembler::c2bool(Register x) {
-  // implements x == 0 ? 0 : 1
-  // note: must only look at least-significant byte of x
-  //       since C-style booleans are stored in one byte
-  //       only! (was bug)
-  andl(x, 0xFF);
-  setb(Assembler::notZero, x);
-}
-
-
-int MacroAssembler::corrected_idivl(Register reg) {
-  // Full implementation of Java idiv and irem; checks for
-  // special case as described in JVM spec., p.243 & p.271.
-  // The function returns the (pc) offset of the idivl
-  // instruction - may be needed for implicit exceptions.
-  //
-  //         normal case                           special case
-  //
-  // input : rax,: dividend                         min_int
-  //         reg: divisor   (may not be rax,/rdx)   -1
-  //
-  // output: rax,: quotient  (= rax, idiv reg)       min_int
-  //         rdx: remainder (= rax, irem reg)       0
-  assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
-  const int min_int = 0x80000000;
-  Label normal_case, special_case;
-
-  // check for special case
-  cmpl(rax, min_int);
-  jcc(Assembler::notEqual, normal_case);
-  xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
-  cmpl(reg, -1);
-  jcc(Assembler::equal, special_case);
-
-  // handle normal case
-  bind(normal_case);
-  cdql();
-  int idivl_offset = offset();
-  idivl(reg);
-
-  // normal and special case exit
-  bind(special_case);
-
-  return idivl_offset;
-}
-
-
-void MacroAssembler::lneg(Register hi, Register lo) {
-  negl(lo);
-  adcl(hi, 0);
-  negl(hi);
-}
-
-
-void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
-  // Multiplication of two Java long values stored on the stack
-  // as illustrated below. Result is in rdx:rax.
-  //
-  // rsp ---> [  ??  ] \               \
-  //            ....    | y_rsp_offset  |
-  //          [ y_lo ] /  (in bytes)    | x_rsp_offset
-  //          [ y_hi ]                  | (in bytes)
-  //            ....                    |
-  //          [ x_lo ]                 /
-  //          [ x_hi ]
-  //            ....
-  //
-  // Basic idea: lo(result) = lo(x_lo * y_lo)
-  //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
-  Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
-  Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
-  Label quick;
-  // load x_hi, y_hi and check if quick
-  // multiplication is possible
-  movl(rbx, x_hi);
-  movl(rcx, y_hi);
-  movl(rax, rbx);
-  orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
-  jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
-  // do full multiplication
-  // 1st step
-  mull(y_lo);                                    // x_hi * y_lo
-  movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
-  // 2nd step
-  movl(rax, x_lo);
-  mull(rcx);                                     // x_lo * y_hi
-  addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
-  // 3rd step
-  bind(quick);                                   // note: rbx, = 0 if quick multiply!
-  movl(rax, x_lo);
-  mull(y_lo);                                    // x_lo * y_lo
-  addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
-}
-
-
-void MacroAssembler::lshl(Register hi, Register lo) {
-  // Java shift left long support (semantics as described in JVM spec., p.305)
-  // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
-  // shift value is in rcx !
-  assert(hi != rcx, "must not use rcx");
-  assert(lo != rcx, "must not use rcx");
-  const Register s = rcx;                        // shift count
-  const int      n = BitsPerWord;
-  Label L;
-  andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
-  cmpl(s, n);                                    // if (s < n)
-  jcc(Assembler::less, L);                       // else (s >= n)
-  movl(hi, lo);                                  // x := x << n
-  xorl(lo, lo);
-  // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
-  bind(L);                                       // s (mod n) < n
-  shldl(hi, lo);                                 // x := x << s
-  shll(lo);
-}
-
-
-void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
-  // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
-  // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
-  assert(hi != rcx, "must not use rcx");
-  assert(lo != rcx, "must not use rcx");
-  const Register s = rcx;                        // shift count
-  const int      n = BitsPerWord;
-  Label L;
-  andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
-  cmpl(s, n);                                    // if (s < n)
-  jcc(Assembler::less, L);                       // else (s >= n)
-  movl(lo, hi);                                  // x := x >> n
-  if (sign_extension) sarl(hi, 31);
-  else                xorl(hi, hi);
-  // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
-  bind(L);                                       // s (mod n) < n
-  shrdl(lo, hi);                                 // x := x >> s
-  if (sign_extension) sarl(hi);
-  else                shrl(hi);
-}
-
-
-// Note: y_lo will be destroyed
-void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
-  // Long compare for Java (semantics as described in JVM spec.)
-  Label high, low, done;
-
-  cmpl(x_hi, y_hi);
-  jcc(Assembler::less, low);
-  jcc(Assembler::greater, high);
-  // x_hi is the return register
-  xorl(x_hi, x_hi);
-  cmpl(x_lo, y_lo);
-  jcc(Assembler::below, low);
-  jcc(Assembler::equal, done);
-
-  bind(high);
-  xorl(x_hi, x_hi);
-  increment(x_hi);
-  jmp(done);
-
-  bind(low);
-  xorl(x_hi, x_hi);
-  decrement(x_hi);
-
-  bind(done);
-}
-
-
-void MacroAssembler::save_rax(Register tmp) {
-  if (tmp == noreg) pushl(rax);
-  else if (tmp != rax) movl(tmp, rax);
-}
-
-
-void MacroAssembler::restore_rax(Register tmp) {
-  if (tmp == noreg) popl(rax);
-  else if (tmp != rax) movl(rax, tmp);
-}
-
-
-void MacroAssembler::fremr(Register tmp) {
-  save_rax(tmp);
-  { Label L;
-    bind(L);
-    fprem();
-    fwait(); fnstsw_ax();
-    sahf();
-    jcc(Assembler::parity, L);
-  }
-  restore_rax(tmp);
-  // Result is in ST0.
-  // Note: fxch & fpop to get rid of ST1
-  // (otherwise FPU stack could overflow eventually)
-  fxch(1);
-  fpop();
-}
-
-
-static const double     pi_4 =  0.7853981633974483;
-
-void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
-  // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
-  // was attempted in this code; unfortunately it appears that the
-  // switch to 80-bit precision and back causes this to be
-  // unprofitable compared with simply performing a runtime call if
-  // the argument is out of the (-pi/4, pi/4) range.
-
-  Register tmp = noreg;
-  if (!VM_Version::supports_cmov()) {
-    // fcmp needs a temporary so preserve rbx,
-    tmp = rbx;
-    pushl(tmp);
-  }
-
-  Label slow_case, done;
-
-  // x ?<= pi/4
-  fld_d(ExternalAddress((address)&pi_4));
-  fld_s(1);                // Stack:  X  PI/4  X
-  fabs();                  // Stack: |X| PI/4  X
-  fcmp(tmp);
-  jcc(Assembler::above, slow_case);
-
-  // fastest case: -pi/4 <= x <= pi/4
-  switch(trig) {
-  case 's':
-    fsin();
-    break;
-  case 'c':
-    fcos();
-    break;
-  case 't':
-    ftan();
-    break;
-  default:
-    assert(false, "bad intrinsic");
-    break;
-  }
-  jmp(done);
-
-  // slow case: runtime call
-  bind(slow_case);
-  // Preserve registers across runtime call
-  pushad();
-  int incoming_argument_and_return_value_offset = -1;
-  if (num_fpu_regs_in_use > 1) {
-    // Must preserve all other FPU regs (could alternatively convert
-    // SharedRuntime::dsin and dcos into assembly routines known not to trash
-    // FPU state, but can not trust C compiler)
-    NEEDS_CLEANUP;
-    // NOTE that in this case we also push the incoming argument to
-    // the stack and restore it later; we also use this stack slot to
-    // hold the return value from dsin or dcos.
-    for (int i = 0; i < num_fpu_regs_in_use; i++) {
-      subl(rsp, wordSize*2);
-      fstp_d(Address(rsp, 0));
-    }
-    incoming_argument_and_return_value_offset = 2*wordSize*(num_fpu_regs_in_use-1);
-    fld_d(Address(rsp, incoming_argument_and_return_value_offset));
-  }
-  subl(rsp, wordSize*2);
-  fstp_d(Address(rsp, 0));
-  // NOTE: we must not use call_VM_leaf here because that requires a
-  // complete interpreter frame in debug mode -- same bug as 4387334
-  NEEDS_CLEANUP;
-  // Need to add stack banging before this runtime call if it needs to
-  // be taken; however, there is no generic stack banging routine at
-  // the MacroAssembler level
-  switch(trig) {
-  case 's':
-    {
-      call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dsin)));
-    }
-    break;
-  case 'c':
-    {
-      call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dcos)));
-    }
-    break;
-  case 't':
-    {
-      call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtan)));
-    }
-    break;
-  default:
-    assert(false, "bad intrinsic");
-    break;
-  }
-  addl(rsp, wordSize * 2);
-  if (num_fpu_regs_in_use > 1) {
-    // Must save return value to stack and then restore entire FPU stack
-    fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
-    for (int i = 0; i < num_fpu_regs_in_use; i++) {
-      fld_d(Address(rsp, 0));
-      addl(rsp, wordSize*2);
-    }
-  }
-  popad();
-
-  // Come here with result in F-TOS
-  bind(done);
-
-  if (tmp != noreg) {
-    popl(tmp);
-  }
-}
-
-void MacroAssembler::jC2(Register tmp, Label& L) {
-  // set parity bit if FPU flag C2 is set (via rax)
-  save_rax(tmp);
-  fwait(); fnstsw_ax();
-  sahf();
-  restore_rax(tmp);
-  // branch
-  jcc(Assembler::parity, L);
-}
-
-
-void MacroAssembler::jnC2(Register tmp, Label& L) {
-  // set parity bit if FPU flag C2 is set (via rax)
-  save_rax(tmp);
-  fwait(); fnstsw_ax();
-  sahf();
-  restore_rax(tmp);
-  // branch
-  jcc(Assembler::noParity, L);
-}
-
-
-void MacroAssembler::fcmp(Register tmp) {
-  fcmp(tmp, 1, true, true);
-}
-
-
-void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
-  assert(!pop_right || pop_left, "usage error");
-  if (VM_Version::supports_cmov()) {
-    assert(tmp == noreg, "unneeded temp");
-    if (pop_left) {
-      fucomip(index);
-    } else {
-      fucomi(index);
-    }
-    if (pop_right) {
-      fpop();
-    }
-  } else {
-    assert(tmp != noreg, "need temp");
-    if (pop_left) {
-      if (pop_right) {
-        fcompp();
-      } else {
-        fcomp(index);
-      }
-    } else {
-      fcom(index);
-    }
-    // convert FPU condition into eflags condition via rax,
-    save_rax(tmp);
-    fwait(); fnstsw_ax();
-    sahf();
-    restore_rax(tmp);
-  }
-  // condition codes set as follows:
-  //
-  // CF (corresponds to C0) if x < y
-  // PF (corresponds to C2) if unordered
-  // ZF (corresponds to C3) if x = y
-}
-
-
-void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
-  fcmp2int(dst, unordered_is_less, 1, true, true);
-}
-
-
-void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
-  fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
-  Label L;
-  if (unordered_is_less) {
-    movl(dst, -1);
-    jcc(Assembler::parity, L);
-    jcc(Assembler::below , L);
-    movl(dst, 0);
-    jcc(Assembler::equal , L);
-    increment(dst);
-  } else { // unordered is greater
-    movl(dst, 1);
-    jcc(Assembler::parity, L);
-    jcc(Assembler::above , L);
-    movl(dst, 0);
-    jcc(Assembler::equal , L);
-    decrement(dst);
-  }
-  bind(L);
-}
-
-void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
-  ucomiss(opr1, opr2);
-
-  Label L;
-  if (unordered_is_less) {
-    movl(dst, -1);
-    jcc(Assembler::parity, L);
-    jcc(Assembler::below , L);
-    movl(dst, 0);
-    jcc(Assembler::equal , L);
-    increment(dst);
-  } else { // unordered is greater
-    movl(dst, 1);
-    jcc(Assembler::parity, L);
-    jcc(Assembler::above , L);
-    movl(dst, 0);
-    jcc(Assembler::equal , L);
-    decrement(dst);
-  }
-  bind(L);
-}
-
-void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
-  ucomisd(opr1, opr2);
-
-  Label L;
-  if (unordered_is_less) {
-    movl(dst, -1);
-    jcc(Assembler::parity, L);
-    jcc(Assembler::below , L);
-    movl(dst, 0);
-    jcc(Assembler::equal , L);
-    increment(dst);
-  } else { // unordered is greater
-    movl(dst, 1);
-    jcc(Assembler::parity, L);
-    jcc(Assembler::above , L);
-    movl(dst, 0);
-    jcc(Assembler::equal , L);
-    decrement(dst);
-  }
-  bind(L);
-}
-
-
-
-void MacroAssembler::fpop() {
-  ffree();
-  fincstp();
-}
-
-
-void MacroAssembler::sign_extend_short(Register reg) {
-  if (VM_Version::is_P6()) {
-    movsxw(reg, reg);
-  } else {
-    shll(reg, 16);
-    sarl(reg, 16);
-  }
-}
-
-
-void MacroAssembler::sign_extend_byte(Register reg) {
-  if (VM_Version::is_P6() && reg->has_byte_register()) {
-    movsxb(reg, reg);
-  } else {
-    shll(reg, 24);
-    sarl(reg, 24);
-  }
-}
-
-
-void MacroAssembler::division_with_shift (Register reg, int shift_value) {
-  assert (shift_value > 0, "illegal shift value");
-  Label _is_positive;
-  testl (reg, reg);
-  jcc (Assembler::positive, _is_positive);
-  int offset = (1 << shift_value) - 1 ;
-
-  increment(reg, offset);
-
-  bind (_is_positive);
-  sarl(reg, shift_value);
-}
-
-
-void MacroAssembler::round_to(Register reg, int modulus) {
-  addl(reg, modulus - 1);
-  andl(reg, -modulus);
-}
-
-// C++ bool manipulation
-
-void MacroAssembler::movbool(Register dst, Address src) {
-  if(sizeof(bool) == 1)
-    movb(dst, src);
-  else if(sizeof(bool) == 2)
-    movw(dst, src);
-  else if(sizeof(bool) == 4)
-    movl(dst, src);
-  else
-    // unsupported
-    ShouldNotReachHere();
-}
-
-void MacroAssembler::movbool(Address dst, bool boolconst) {
-  if(sizeof(bool) == 1)
-    movb(dst, (int) boolconst);
-  else if(sizeof(bool) == 2)
-    movw(dst, (int) boolconst);
-  else if(sizeof(bool) == 4)
-    movl(dst, (int) boolconst);
-  else
-    // unsupported
-    ShouldNotReachHere();
-}
-
-void MacroAssembler::movbool(Address dst, Register src) {
-  if(sizeof(bool) == 1)
-    movb(dst, src);
-  else if(sizeof(bool) == 2)
-    movw(dst, src);
-  else if(sizeof(bool) == 4)
-    movl(dst, src);
-  else
-    // unsupported
-    ShouldNotReachHere();
-}
-
-void MacroAssembler::testbool(Register dst) {
-  if(sizeof(bool) == 1)
-    testb(dst, (int) 0xff);
-  else if(sizeof(bool) == 2) {
-    // testw implementation needed for two byte bools
-    ShouldNotReachHere();
-  } else if(sizeof(bool) == 4)
-    testl(dst, dst);
-  else
-    // unsupported
-    ShouldNotReachHere();
-}
-
-void MacroAssembler::verify_oop(Register reg, const char* s) {
-  if (!VerifyOops) return;
-  // Pass register number to verify_oop_subroutine
-  char* b = new char[strlen(s) + 50];
-  sprintf(b, "verify_oop: %s: %s", reg->name(), s);
-  pushl(rax);                          // save rax,
-  pushl(reg);                          // pass register argument
-  ExternalAddress buffer((address) b);
-  pushptr(buffer.addr());
-  // call indirectly to solve generation ordering problem
-  movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
-  call(rax);
-}
-
-
-void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
-  if (!VerifyOops) return;
-  // QQQ fix this
-  // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
-  // Pass register number to verify_oop_subroutine
-  char* b = new char[strlen(s) + 50];
-  sprintf(b, "verify_oop_addr: %s", s);
-  pushl(rax);                          // save rax,
-  // addr may contain rsp so we will have to adjust it based on the push
-  // we just did
-  if (addr.uses(rsp)) {
-    leal(rax, addr);
-    pushl(Address(rax, BytesPerWord));
-  } else {
-    pushl(addr);
-  }
-  ExternalAddress buffer((address) b);
-  // pass msg argument
-  pushptr(buffer.addr());
-  // call indirectly to solve generation ordering problem
-  movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
-  call(rax);
-  // Caller pops the arguments and restores rax, from the stack
-}
-
-
-void MacroAssembler::stop(const char* msg) {
-  ExternalAddress message((address)msg);
-  // push address of message
-  pushptr(message.addr());
-  { Label L; call(L, relocInfo::none); bind(L); }     // push eip
-  pushad();                                           // push registers
-  call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug)));
-  hlt();
-}
-
-
-void MacroAssembler::warn(const char* msg) {
-  push_CPU_state();
-
-  ExternalAddress message((address) msg);
-  // push address of message
-  pushptr(message.addr());
-
-  call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
-  addl(rsp, wordSize);       // discard argument
-  pop_CPU_state();
-}
-
-
-void MacroAssembler::debug(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
-  // In order to get locks to work, we need to fake a in_VM state
-  JavaThread* thread = JavaThread::current();
-  JavaThreadState saved_state = thread->thread_state();
-  thread->set_thread_state(_thread_in_vm);
-  if (ShowMessageBoxOnError) {
-    JavaThread* thread = JavaThread::current();
-    JavaThreadState saved_state = thread->thread_state();
-    thread->set_thread_state(_thread_in_vm);
-    ttyLocker ttyl;
-    if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
-      BytecodeCounter::print();
-    }
-    // To see where a verify_oop failed, get $ebx+40/X for this frame.
-    // This is the value of eip which points to where verify_oop will return.
-    if (os::message_box(msg, "Execution stopped, print registers?")) {
-      tty->print_cr("eip = 0x%08x", eip);
-      tty->print_cr("rax, = 0x%08x", rax);
-      tty->print_cr("rbx, = 0x%08x", rbx);
-      tty->print_cr("rcx = 0x%08x", rcx);
-      tty->print_cr("rdx = 0x%08x", rdx);
-      tty->print_cr("rdi = 0x%08x", rdi);
-      tty->print_cr("rsi = 0x%08x", rsi);
-      tty->print_cr("rbp, = 0x%08x", rbp);
-      tty->print_cr("rsp = 0x%08x", rsp);
-      BREAKPOINT;
-    }
-  } else {
-    ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
-    assert(false, "DEBUG MESSAGE");
-  }
-  ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
-}
-
-
-
-void MacroAssembler::os_breakpoint() {
-  // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
-  // (e.g., MSVC can't call ps() otherwise)
-  call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
-}
-
-
-void MacroAssembler::push_fTOS() {
-  subl(rsp, 2 * wordSize);
-  fstp_d(Address(rsp, 0));
-}
-
-
-void MacroAssembler::pop_fTOS() {
-  fld_d(Address(rsp, 0));
-  addl(rsp, 2 * wordSize);
-}
-
-
-void MacroAssembler::empty_FPU_stack() {
-  if (VM_Version::supports_mmx()) {
-    emms();
-  } else {
-    for (int i = 8; i-- > 0; ) ffree(i);
-  }
-}
-
-
-class ControlWord {
- public:
-  int32_t _value;
-
-  int  rounding_control() const        { return  (_value >> 10) & 3      ; }
-  int  precision_control() const       { return  (_value >>  8) & 3      ; }
-  bool precision() const               { return ((_value >>  5) & 1) != 0; }
-  bool underflow() const               { return ((_value >>  4) & 1) != 0; }
-  bool overflow() const                { return ((_value >>  3) & 1) != 0; }
-  bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
-  bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
-  bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
-
-  void print() const {
-    // rounding control
-    const char* rc;
-    switch (rounding_control()) {
-      case 0: rc = "round near"; break;
-      case 1: rc = "round down"; break;
-      case 2: rc = "round up  "; break;
-      case 3: rc = "chop      "; break;
-    };
-    // precision control
-    const char* pc;
-    switch (precision_control()) {
-      case 0: pc = "24 bits "; break;
-      case 1: pc = "reserved"; break;
-      case 2: pc = "53 bits "; break;
-      case 3: pc = "64 bits "; break;
-    };
-    // flags
-    char f[9];
-    f[0] = ' ';
-    f[1] = ' ';
-    f[2] = (precision   ()) ? 'P' : 'p';
-    f[3] = (underflow   ()) ? 'U' : 'u';
-    f[4] = (overflow    ()) ? 'O' : 'o';
-    f[5] = (zero_divide ()) ? 'Z' : 'z';
-    f[6] = (denormalized()) ? 'D' : 'd';
-    f[7] = (invalid     ()) ? 'I' : 'i';
-    f[8] = '\x0';
-    // output
-    printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
-  }
-
-};
-
-
-class StatusWord {
- public:
-  int32_t _value;
-
-  bool busy() const                    { return ((_value >> 15) & 1) != 0; }
-  bool C3() const                      { return ((_value >> 14) & 1) != 0; }
-  bool C2() const                      { return ((_value >> 10) & 1) != 0; }
-  bool C1() const                      { return ((_value >>  9) & 1) != 0; }
-  bool C0() const                      { return ((_value >>  8) & 1) != 0; }
-  int  top() const                     { return  (_value >> 11) & 7      ; }
-  bool error_status() const            { return ((_value >>  7) & 1) != 0; }
-  bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
-  bool precision() const               { return ((_value >>  5) & 1) != 0; }
-  bool underflow() const               { return ((_value >>  4) & 1) != 0; }
-  bool overflow() const                { return ((_value >>  3) & 1) != 0; }
-  bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
-  bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
-  bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
-
-  void print() const {
-    // condition codes
-    char c[5];
-    c[0] = (C3()) ? '3' : '-';
-    c[1] = (C2()) ? '2' : '-';
-    c[2] = (C1()) ? '1' : '-';
-    c[3] = (C0()) ? '0' : '-';
-    c[4] = '\x0';
-    // flags
-    char f[9];
-    f[0] = (error_status()) ? 'E' : '-';
-    f[1] = (stack_fault ()) ? 'S' : '-';
-    f[2] = (precision   ()) ? 'P' : '-';
-    f[3] = (underflow   ()) ? 'U' : '-';
-    f[4] = (overflow    ()) ? 'O' : '-';
-    f[5] = (zero_divide ()) ? 'Z' : '-';
-    f[6] = (denormalized()) ? 'D' : '-';
-    f[7] = (invalid     ()) ? 'I' : '-';
-    f[8] = '\x0';
-    // output
-    printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
-  }
-
-};
-
-
-class TagWord {
- public:
-  int32_t _value;
-
-  int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
-
-  void print() const {
-    printf("%04x", _value & 0xFFFF);
-  }
-
-};
-
-
-class FPU_Register {
- public:
-  int32_t _m0;
-  int32_t _m1;
-  int16_t _ex;
-
-  bool is_indefinite() const           {
-    return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
-  }
-
-  void print() const {
-    char  sign = (_ex < 0) ? '-' : '+';
-    const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
-    printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
-  };
-
-};
-
-
-class FPU_State {
- public:
-  enum {
-    register_size       = 10,
-    number_of_registers =  8,
-    register_mask       =  7
-  };
-
-  ControlWord  _control_word;
-  StatusWord   _status_word;
-  TagWord      _tag_word;
-  int32_t      _error_offset;
-  int32_t      _error_selector;
-  int32_t      _data_offset;
-  int32_t      _data_selector;
-  int8_t       _register[register_size * number_of_registers];
-
-  int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
-  FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
-
-  const char* tag_as_string(int tag) const {
-    switch (tag) {
-      case 0: return "valid";
-      case 1: return "zero";
-      case 2: return "special";
-      case 3: return "empty";
-    }
-    ShouldNotReachHere()
-    return NULL;
-  }
-
-  void print() const {
-    // print computation registers
-    { int t = _status_word.top();
-      for (int i = 0; i < number_of_registers; i++) {
-        int j = (i - t) & register_mask;
-        printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
-        st(j)->print();
-        printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
-      }
-    }
-    printf("\n");
-    // print control registers
-    printf("ctrl = "); _control_word.print(); printf("\n");
-    printf("stat = "); _status_word .print(); printf("\n");
-    printf("tags = "); _tag_word    .print(); printf("\n");
-  }
-
-};
-
-
-class Flag_Register {
- public:
-  int32_t _value;
-
-  bool overflow() const                { return ((_value >> 11) & 1) != 0; }
-  bool direction() const               { return ((_value >> 10) & 1) != 0; }
-  bool sign() const                    { return ((_value >>  7) & 1) != 0; }
-  bool zero() const                    { return ((_value >>  6) & 1) != 0; }
-  bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
-  bool parity() const                  { return ((_value >>  2) & 1) != 0; }
-  bool carry() const                   { return ((_value >>  0) & 1) != 0; }
-
-  void print() const {
-    // flags
-    char f[8];
-    f[0] = (overflow       ()) ? 'O' : '-';
-    f[1] = (direction      ()) ? 'D' : '-';
-    f[2] = (sign           ()) ? 'S' : '-';
-    f[3] = (zero           ()) ? 'Z' : '-';
-    f[4] = (auxiliary_carry()) ? 'A' : '-';
-    f[5] = (parity         ()) ? 'P' : '-';
-    f[6] = (carry          ()) ? 'C' : '-';
-    f[7] = '\x0';
-    // output
-    printf("%08x  flags = %s", _value, f);
-  }
-
-};
-
-
-class IU_Register {
- public:
-  int32_t _value;
-
-  void print() const {
-    printf("%08x  %11d", _value, _value);
-  }
-
-};
-
-
-class IU_State {
- public:
-  Flag_Register _eflags;
-  IU_Register   _rdi;
-  IU_Register   _rsi;
-  IU_Register   _rbp;
-  IU_Register   _rsp;
-  IU_Register   _rbx;
-  IU_Register   _rdx;
-  IU_Register   _rcx;
-  IU_Register   _rax;
-
-  void print() const {
-    // computation registers
-    printf("rax,  = "); _rax.print(); printf("\n");
-    printf("rbx,  = "); _rbx.print(); printf("\n");
-    printf("rcx  = "); _rcx.print(); printf("\n");
-    printf("rdx  = "); _rdx.print(); printf("\n");
-    printf("rdi  = "); _rdi.print(); printf("\n");
-    printf("rsi  = "); _rsi.print(); printf("\n");
-    printf("rbp,  = "); _rbp.print(); printf("\n");
-    printf("rsp  = "); _rsp.print(); printf("\n");
-    printf("\n");
-    // control registers
-    printf("flgs = "); _eflags.print(); printf("\n");
-  }
-};
-
-
-class CPU_State {
- public:
-  FPU_State _fpu_state;
-  IU_State  _iu_state;
-
-  void print() const {
-    printf("--------------------------------------------------\n");
-    _iu_state .print();
-    printf("\n");
-    _fpu_state.print();
-    printf("--------------------------------------------------\n");
-  }
-
-};
-
-
-static void _print_CPU_state(CPU_State* state) {
-  state->print();
-};
-
-
-void MacroAssembler::print_CPU_state() {
-  push_CPU_state();
-  pushl(rsp);                // pass CPU state
-  call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
-  addl(rsp, wordSize);       // discard argument
-  pop_CPU_state();
-}
-
-
-static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
-  static int counter = 0;
-  FPU_State* fs = &state->_fpu_state;
-  counter++;
-  // For leaf calls, only verify that the top few elements remain empty.
-  // We only need 1 empty at the top for C2 code.
-  if( stack_depth < 0 ) {
-    if( fs->tag_for_st(7) != 3 ) {
-      printf("FPR7 not empty\n");
-      state->print();
-      assert(false, "error");
-      return false;
-    }
-    return true;                // All other stack states do not matter
-  }
-
-  assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
-         "bad FPU control word");
-
-  // compute stack depth
-  int i = 0;
-  while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
-  int d = i;
-  while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
-  // verify findings
-  if (i != FPU_State::number_of_registers) {
-    // stack not contiguous
-    printf("%s: stack not contiguous at ST%d\n", s, i);
-    state->print();
-    assert(false, "error");
-    return false;
-  }
-  // check if computed stack depth corresponds to expected stack depth
-  if (stack_depth < 0) {
-    // expected stack depth is -stack_depth or less
-    if (d > -stack_depth) {
-      // too many elements on the stack
-      printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
-      state->print();
-      assert(false, "error");
-      return false;
-    }
-  } else {
-    // expected stack depth is stack_depth
-    if (d != stack_depth) {
-      // wrong stack depth
-      printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
-      state->print();
-      assert(false, "error");
-      return false;
-    }
-  }
-  // everything is cool
-  return true;
-}
-
-
-void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
-  if (!VerifyFPU) return;
-  push_CPU_state();
-  pushl(rsp);                // pass CPU state
-  ExternalAddress msg((address) s);
-  // pass message string s
-  pushptr(msg.addr());
-  pushl(stack_depth);        // pass stack depth
-  call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
-  addl(rsp, 3 * wordSize);   // discard arguments
-  // check for error
-  { Label L;
-    testl(rax, rax);
-    jcc(Assembler::notZero, L);
-    int3();                  // break if error condition
-    bind(L);
-  }
-  pop_CPU_state();
-}
-
-
-void MacroAssembler::push_IU_state() {
-  pushad();
-  pushfd();
-}
-
-
-void MacroAssembler::pop_IU_state() {
-  popfd();
-  popad();
-}
-
-
-void MacroAssembler::push_FPU_state() {
-  subl(rsp, FPUStateSizeInWords * wordSize);
-  fnsave(Address(rsp, 0));
-  fwait();
-}
-
-
-void MacroAssembler::pop_FPU_state() {
-  frstor(Address(rsp, 0));
-  addl(rsp, FPUStateSizeInWords * wordSize);
-}
-
-
-void MacroAssembler::push_CPU_state() {
-  push_IU_state();
-  push_FPU_state();
-}
-
-
-void MacroAssembler::pop_CPU_state() {
-  pop_FPU_state();
-  pop_IU_state();
-}
-
-
-void MacroAssembler::push_callee_saved_registers() {
-  pushl(rsi);
-  pushl(rdi);
-  pushl(rdx);
-  pushl(rcx);
-}
-
-
-void MacroAssembler::pop_callee_saved_registers() {
-  popl(rcx);
-  popl(rdx);
-  popl(rdi);
-  popl(rsi);
-}
-
-
-void MacroAssembler::set_word_if_not_zero(Register dst) {
-  xorl(dst, dst);
-  set_byte_if_not_zero(dst);
-}
-
-// Write serialization page so VM thread can do a pseudo remote membar.
-// We use the current thread pointer to calculate a thread specific
-// offset to write to within the page. This minimizes bus traffic
-// due to cache line collision.
-void MacroAssembler::serialize_memory(Register thread, Register tmp) {
-  movl(tmp, thread);
-  shrl(tmp, os::get_serialize_page_shift_count());
-  andl(tmp, (os::vm_page_size() - sizeof(int)));
-
-  Address index(noreg, tmp, Address::times_1);
-  ExternalAddress page(os::get_memory_serialize_page());
-
-  movptr(ArrayAddress(page, index), tmp);
-}
-
-
-void MacroAssembler::verify_tlab() {
-#ifdef ASSERT
-  if (UseTLAB && VerifyOops) {
-    Label next, ok;
-    Register t1 = rsi;
-    Register thread_reg = rbx;
-
-    pushl(t1);
-    pushl(thread_reg);
-    get_thread(thread_reg);
-
-    movl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
-    cmpl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
-    jcc(Assembler::aboveEqual, next);
-    stop("assert(top >= start)");
-    should_not_reach_here();
-
-    bind(next);
-    movl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
-    cmpl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
-    jcc(Assembler::aboveEqual, ok);
-    stop("assert(top <= end)");
-    should_not_reach_here();
-
-    bind(ok);
-    popl(thread_reg);
-    popl(t1);
-  }
-#endif
-}
-
-
-// Defines obj, preserves var_size_in_bytes
-void MacroAssembler::eden_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes,
-                                   Register t1, Label& slow_case) {
-  assert(obj == rax, "obj must be in rax, for cmpxchg");
-  assert_different_registers(obj, var_size_in_bytes, t1);
-  Register end = t1;
-  Label retry;
-  bind(retry);
-  ExternalAddress heap_top((address) Universe::heap()->top_addr());
-  movptr(obj, heap_top);
-  if (var_size_in_bytes == noreg) {
-    leal(end, Address(obj, con_size_in_bytes));
-  } else {
-    leal(end, Address(obj, var_size_in_bytes, Address::times_1));
-  }
-  // if end < obj then we wrapped around => object too long => slow case
-  cmpl(end, obj);
-  jcc(Assembler::below, slow_case);
-  cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
-  jcc(Assembler::above, slow_case);
-  // Compare obj with the top addr, and if still equal, store the new top addr in
-  // end at the address of the top addr pointer. Sets ZF if was equal, and clears
-  // it otherwise. Use lock prefix for atomicity on MPs.
-  if (os::is_MP()) {
-    lock();
-  }
-  cmpxchgptr(end, heap_top);
-  jcc(Assembler::notEqual, retry);
-}
-
-
-// Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
-void MacroAssembler::tlab_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes,
-                                   Register t1, Register t2, Label& slow_case) {
-  assert_different_registers(obj, t1, t2);
-  assert_different_registers(obj, var_size_in_bytes, t1);
-  Register end = t2;
-  Register thread = t1;
-
-  verify_tlab();
-
-  get_thread(thread);
-
-  movl(obj, Address(thread, JavaThread::tlab_top_offset()));
-  if (var_size_in_bytes == noreg) {
-    leal(end, Address(obj, con_size_in_bytes));
-  } else {
-    leal(end, Address(obj, var_size_in_bytes, Address::times_1));
-  }
-  cmpl(end, Address(thread, JavaThread::tlab_end_offset()));
-  jcc(Assembler::above, slow_case);
-
-  // update the tlab top pointer
-  movl(Address(thread, JavaThread::tlab_top_offset()), end);
-
-  // recover var_size_in_bytes if necessary
-  if (var_size_in_bytes == end) {
-    subl(var_size_in_bytes, obj);
-  }
-  verify_tlab();
-}
-
-// Preserves rbx, and rdx.
-void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
-  Register top = rax;
-  Register t1  = rcx;
-  Register t2  = rsi;
-  Register thread_reg = rdi;
-  assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
-  Label do_refill, discard_tlab;
-
-  if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
-    // No allocation in the shared eden.
-    jmp(slow_case);
-  }
-
-  get_thread(thread_reg);
-
-  movl(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
-  movl(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
-
-  // calculate amount of free space
-  subl(t1, top);
-  shrl(t1, LogHeapWordSize);
-
-  // Retain tlab and allocate object in shared space if
-  // the amount free in the tlab is too large to discard.
-  cmpl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
-  jcc(Assembler::lessEqual, discard_tlab);
-
-  // Retain
-  movl(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment());
-  addl(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
-  if (TLABStats) {
-    // increment number of slow_allocations
-    addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
-  }
-  jmp(try_eden);
-
-  bind(discard_tlab);
-  if (TLABStats) {
-    // increment number of refills
-    addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
-    // accumulate wastage -- t1 is amount free in tlab
-    addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
-  }
-
-  // if tlab is currently allocated (top or end != null) then
-  // fill [top, end + alignment_reserve) with array object
-  testl (top, top);
-  jcc(Assembler::zero, do_refill);
-
-  // set up the mark word
-  movl(Address(top, oopDesc::mark_offset_in_bytes()), (int)markOopDesc::prototype()->copy_set_hash(0x2));
-  // set the length to the remaining space
-  subl(t1, typeArrayOopDesc::header_size(T_INT));
-  addl(t1, ThreadLocalAllocBuffer::alignment_reserve());
-  shll(t1, log2_intptr(HeapWordSize/sizeof(jint)));
-  movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
-  // set klass to intArrayKlass
-  // dubious reloc why not an oop reloc?
-  movptr(t1, ExternalAddress((address) Universe::intArrayKlassObj_addr()));
-  movl(Address(top, oopDesc::klass_offset_in_bytes()), t1);
-
-  // refill the tlab with an eden allocation
-  bind(do_refill);
-  movl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
-  shll(t1, LogHeapWordSize);
-  // add object_size ??
-  eden_allocate(top, t1, 0, t2, slow_case);
-
-  // Check that t1 was preserved in eden_allocate.
-#ifdef ASSERT
-  if (UseTLAB) {
-    Label ok;
-    Register tsize = rsi;
-    assert_different_registers(tsize, thread_reg, t1);
-    pushl(tsize);
-    movl(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
-    shll(tsize, LogHeapWordSize);
-    cmpl(t1, tsize);
-    jcc(Assembler::equal, ok);
-    stop("assert(t1 != tlab size)");
-    should_not_reach_here();
-
-    bind(ok);
-    popl(tsize);
-  }
-#endif
-  movl(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
-  movl(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
-  addl(top, t1);
-  subl(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
-  movl(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
-  verify_tlab();
-  jmp(retry);
-}
-
-
-int MacroAssembler::biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg,
-                                         bool swap_reg_contains_mark,
-                                         Label& done, Label* slow_case,
-                                         BiasedLockingCounters* counters) {
-  assert(UseBiasedLocking, "why call this otherwise?");
-  assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
-  assert_different_registers(lock_reg, obj_reg, swap_reg);
-
-  if (PrintBiasedLockingStatistics && counters == NULL)
-    counters = BiasedLocking::counters();
-
-  bool need_tmp_reg = false;
-  if (tmp_reg == noreg) {
-    need_tmp_reg = true;
-    tmp_reg = lock_reg;
-  } else {
-    assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
-  }
-  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
-  Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
-  Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
-  Address saved_mark_addr(lock_reg, 0);
-
-  // Biased locking
-  // See whether the lock is currently biased toward our thread and
-  // whether the epoch is still valid
-  // Note that the runtime guarantees sufficient alignment of JavaThread
-  // pointers to allow age to be placed into low bits
-  // First check to see whether biasing is even enabled for this object
-  Label cas_label;
-  int null_check_offset = -1;
-  if (!swap_reg_contains_mark) {
-    null_check_offset = offset();
-    movl(swap_reg, mark_addr);
-  }
-  if (need_tmp_reg) {
-    pushl(tmp_reg);
-  }
-  movl(tmp_reg, swap_reg);
-  andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
-  cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
-  if (need_tmp_reg) {
-    popl(tmp_reg);
-  }
-  jcc(Assembler::notEqual, cas_label);
-  // The bias pattern is present in the object's header. Need to check
-  // whether the bias owner and the epoch are both still current.
-  // Note that because there is no current thread register on x86 we
-  // need to store off the mark word we read out of the object to
-  // avoid reloading it and needing to recheck invariants below. This
-  // store is unfortunate but it makes the overall code shorter and
-  // simpler.
-  movl(saved_mark_addr, swap_reg);
-  if (need_tmp_reg) {
-    pushl(tmp_reg);
-  }
-  get_thread(tmp_reg);
-  xorl(swap_reg, tmp_reg);
-  if (swap_reg_contains_mark) {
-    null_check_offset = offset();
-  }
-  movl(tmp_reg, klass_addr);
-  xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
-  andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
-  if (need_tmp_reg) {
-    popl(tmp_reg);
-  }
-  if (counters != NULL) {
-    cond_inc32(Assembler::zero,
-               ExternalAddress((address)counters->biased_lock_entry_count_addr()));
-  }
-  jcc(Assembler::equal, done);
-
-  Label try_revoke_bias;
-  Label try_rebias;
-
-  // At this point we know that the header has the bias pattern and
-  // that we are not the bias owner in the current epoch. We need to
-  // figure out more details about the state of the header in order to
-  // know what operations can be legally performed on the object's
-  // header.
-
-  // If the low three bits in the xor result aren't clear, that means
-  // the prototype header is no longer biased and we have to revoke
-  // the bias on this object.
-  testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
-  jcc(Assembler::notZero, try_revoke_bias);
-
-  // Biasing is still enabled for this data type. See whether the
-  // epoch of the current bias is still valid, meaning that the epoch
-  // bits of the mark word are equal to the epoch bits of the
-  // prototype header. (Note that the prototype header's epoch bits
-  // only change at a safepoint.) If not, attempt to rebias the object
-  // toward the current thread. Note that we must be absolutely sure
-  // that the current epoch is invalid in order to do this because
-  // otherwise the manipulations it performs on the mark word are
-  // illegal.
-  testl(swap_reg, markOopDesc::epoch_mask_in_place);
-  jcc(Assembler::notZero, try_rebias);
-
-  // The epoch of the current bias is still valid but we know nothing
-  // about the owner; it might be set or it might be clear. Try to
-  // acquire the bias of the object using an atomic operation. If this
-  // fails we will go in to the runtime to revoke the object's bias.
-  // Note that we first construct the presumed unbiased header so we
-  // don't accidentally blow away another thread's valid bias.
-  movl(swap_reg, saved_mark_addr);
-  andl(swap_reg,
-       markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
-  if (need_tmp_reg) {
-    pushl(tmp_reg);
-  }
-  get_thread(tmp_reg);
-  orl(tmp_reg, swap_reg);
-  if (os::is_MP()) {
-    lock();
-  }
-  cmpxchg(tmp_reg, Address(obj_reg, 0));
-  if (need_tmp_reg) {
-    popl(tmp_reg);
-  }
-  // If the biasing toward our thread failed, this means that
-  // another thread succeeded in biasing it toward itself and we
-  // need to revoke that bias. The revocation will occur in the
-  // interpreter runtime in the slow case.
-  if (counters != NULL) {
-    cond_inc32(Assembler::zero,
-               ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
-  }
-  if (slow_case != NULL) {
-    jcc(Assembler::notZero, *slow_case);
-  }
-  jmp(done);
-
-  bind(try_rebias);
-  // At this point we know the epoch has expired, meaning that the
-  // current "bias owner", if any, is actually invalid. Under these
-  // circumstances _only_, we are allowed to use the current header's
-  // value as the comparison value when doing the cas to acquire the
-  // bias in the current epoch. In other words, we allow transfer of
-  // the bias from one thread to another directly in this situation.
-  //
-  // FIXME: due to a lack of registers we currently blow away the age
-  // bits in this situation. Should attempt to preserve them.
-  if (need_tmp_reg) {
-    pushl(tmp_reg);
-  }
-  get_thread(tmp_reg);
-  movl(swap_reg, klass_addr);
-  orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
-  movl(swap_reg, saved_mark_addr);
-  if (os::is_MP()) {
-    lock();
-  }
-  cmpxchg(tmp_reg, Address(obj_reg, 0));
-  if (need_tmp_reg) {
-    popl(tmp_reg);
-  }
-  // If the biasing toward our thread failed, then another thread
-  // succeeded in biasing it toward itself and we need to revoke that
-  // bias. The revocation will occur in the runtime in the slow case.
-  if (counters != NULL) {
-    cond_inc32(Assembler::zero,
-               ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
-  }
-  if (slow_case != NULL) {
-    jcc(Assembler::notZero, *slow_case);
-  }
-  jmp(done);
-
-  bind(try_revoke_bias);
-  // The prototype mark in the klass doesn't have the bias bit set any
-  // more, indicating that objects of this data type are not supposed
-  // to be biased any more. We are going to try to reset the mark of
-  // this object to the prototype value and fall through to the
-  // CAS-based locking scheme. Note that if our CAS fails, it means
-  // that another thread raced us for the privilege of revoking the
-  // bias of this particular object, so it's okay to continue in the
-  // normal locking code.
-  //
-  // FIXME: due to a lack of registers we currently blow away the age
-  // bits in this situation. Should attempt to preserve them.
-  movl(swap_reg, saved_mark_addr);
-  if (need_tmp_reg) {
-    pushl(tmp_reg);
-  }
-  movl(tmp_reg, klass_addr);
-  movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
-  if (os::is_MP()) {
-    lock();
-  }
-  cmpxchg(tmp_reg, Address(obj_reg, 0));
-  if (need_tmp_reg) {
-    popl(tmp_reg);
-  }
-  // Fall through to the normal CAS-based lock, because no matter what
-  // the result of the above CAS, some thread must have succeeded in
-  // removing the bias bit from the object's header.
-  if (counters != NULL) {
-    cond_inc32(Assembler::zero,
-               ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
-  }
-
-  bind(cas_label);
-
-  return null_check_offset;
-}
-
-
-void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
-  assert(UseBiasedLocking, "why call this otherwise?");
-
-  // Check for biased locking unlock case, which is a no-op
-  // Note: we do not have to check the thread ID for two reasons.
-  // First, the interpreter checks for IllegalMonitorStateException at
-  // a higher level. Second, if the bias was revoked while we held the
-  // lock, the object could not be rebiased toward another thread, so
-  // the bias bit would be clear.
-  movl(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
-  andl(temp_reg, markOopDesc::biased_lock_mask_in_place);
-  cmpl(temp_reg, markOopDesc::biased_lock_pattern);
-  jcc(Assembler::equal, done);
-}
-
-
-Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
-  switch (cond) {
-    // Note some conditions are synonyms for others
-    case Assembler::zero:         return Assembler::notZero;
-    case Assembler::notZero:      return Assembler::zero;
-    case Assembler::less:         return Assembler::greaterEqual;
-    case Assembler::lessEqual:    return Assembler::greater;
-    case Assembler::greater:      return Assembler::lessEqual;
-    case Assembler::greaterEqual: return Assembler::less;
-    case Assembler::below:        return Assembler::aboveEqual;
-    case Assembler::belowEqual:   return Assembler::above;
-    case Assembler::above:        return Assembler::belowEqual;
-    case Assembler::aboveEqual:   return Assembler::below;
-    case Assembler::overflow:     return Assembler::noOverflow;
-    case Assembler::noOverflow:   return Assembler::overflow;
-    case Assembler::negative:     return Assembler::positive;
-    case Assembler::positive:     return Assembler::negative;
-    case Assembler::parity:       return Assembler::noParity;
-    case Assembler::noParity:     return Assembler::parity;
-  }
-  ShouldNotReachHere(); return Assembler::overflow;
-}
-
-
-void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
-  Condition negated_cond = negate_condition(cond);
-  Label L;
-  jcc(negated_cond, L);
-  atomic_incl(counter_addr);
-  bind(L);
-}
-
-void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
-  pushfd();
-  if (os::is_MP())
-    lock();
-  increment(counter_addr);
-  popfd();
-}
-
-SkipIfEqual::SkipIfEqual(
-    MacroAssembler* masm, const bool* flag_addr, bool value) {
-  _masm = masm;
-  _masm->cmp8(ExternalAddress((address)flag_addr), value);
-  _masm->jcc(Assembler::equal, _label);
-}
-
-SkipIfEqual::~SkipIfEqual() {
-  _masm->bind(_label);
-}
-
-
-// Writes to stack successive pages until offset reached to check for
-// stack overflow + shadow pages.  This clobbers tmp.
-void MacroAssembler::bang_stack_size(Register size, Register tmp) {
-  movl(tmp, rsp);
-  // Bang stack for total size given plus shadow page size.
-  // Bang one page at a time because large size can bang beyond yellow and
-  // red zones.
-  Label loop;
-  bind(loop);
-  movl(Address(tmp, (-os::vm_page_size())), size );
-  subl(tmp, os::vm_page_size());
-  subl(size, os::vm_page_size());
-  jcc(Assembler::greater, loop);
-
-  // Bang down shadow pages too.
-  // The -1 because we already subtracted 1 page.
-  for (int i = 0; i< StackShadowPages-1; i++) {
-    movl(Address(tmp, (-i*os::vm_page_size())), size );
-  }
-}