hotspot/src/share/vm/opto/macroArrayCopy.cpp
changeset 26166 4b49fd58bbd9
child 26180 2fbed11af70e
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/opto/macroArrayCopy.cpp	Mon Aug 11 14:12:51 2014 +0200
@@ -0,0 +1,1245 @@
+/*
+ * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "oops/objArrayKlass.hpp"
+#include "opto/convertnode.hpp"
+#include "opto/graphKit.hpp"
+#include "opto/macro.hpp"
+#include "opto/runtime.hpp"
+
+
+void PhaseMacroExpand::insert_mem_bar(Node** ctrl, Node** mem, int opcode, Node* precedent) {
+  MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
+  mb->init_req(TypeFunc::Control, *ctrl);
+  mb->init_req(TypeFunc::Memory, *mem);
+  transform_later(mb);
+  *ctrl = new ProjNode(mb,TypeFunc::Control);
+  transform_later(*ctrl);
+  Node* mem_proj = new ProjNode(mb,TypeFunc::Memory);
+  transform_later(mem_proj);
+  *mem = mem_proj;
+}
+
+Node* PhaseMacroExpand::array_element_address(Node* ary, Node* idx, BasicType elembt) {
+  uint shift  = exact_log2(type2aelembytes(elembt));
+  uint header = arrayOopDesc::base_offset_in_bytes(elembt);
+  Node* base =  basic_plus_adr(ary, header);
+#ifdef _LP64
+  // see comment in GraphKit::array_element_address
+  int index_max = max_jint - 1;  // array size is max_jint, index is one less
+  const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
+  idx = transform_later( new ConvI2LNode(idx, lidxtype) );
+#endif
+  Node* scale = new LShiftXNode(idx, intcon(shift));
+  transform_later(scale);
+  return basic_plus_adr(ary, base, scale);
+}
+
+Node* PhaseMacroExpand::ConvI2L(Node* offset) {
+  return transform_later(new ConvI2LNode(offset));
+}
+
+Node* PhaseMacroExpand::make_leaf_call(Node* ctrl, Node* mem,
+                                       const TypeFunc* call_type, address call_addr,
+                                       const char* call_name,
+                                       const TypePtr* adr_type,
+                                       Node* parm0, Node* parm1,
+                                       Node* parm2, Node* parm3,
+                                       Node* parm4, Node* parm5,
+                                       Node* parm6, Node* parm7) {
+  int size = call_type->domain()->cnt();
+  Node* call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
+  call->init_req(TypeFunc::Control, ctrl);
+  call->init_req(TypeFunc::I_O    , top());
+  call->init_req(TypeFunc::Memory , mem);
+  call->init_req(TypeFunc::ReturnAdr, top());
+  call->init_req(TypeFunc::FramePtr, top());
+
+  // Hook each parm in order.  Stop looking at the first NULL.
+  if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
+  if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
+  if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
+  if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
+  if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
+  if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
+  if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
+  if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
+    /* close each nested if ===> */  } } } } } } } }
+  assert(call->in(call->req()-1) != NULL, "must initialize all parms");
+
+  return call;
+}
+
+
+//------------------------------generate_guard---------------------------
+// Helper function for generating guarded fast-slow graph structures.
+// The given 'test', if true, guards a slow path.  If the test fails
+// then a fast path can be taken.  (We generally hope it fails.)
+// In all cases, GraphKit::control() is updated to the fast path.
+// The returned value represents the control for the slow path.
+// The return value is never 'top'; it is either a valid control
+// or NULL if it is obvious that the slow path can never be taken.
+// Also, if region and the slow control are not NULL, the slow edge
+// is appended to the region.
+Node* PhaseMacroExpand::generate_guard(Node** ctrl, Node* test, RegionNode* region, float true_prob) {
+  if ((*ctrl)->is_top()) {
+    // Already short circuited.
+    return NULL;
+  }
+  // Build an if node and its projections.
+  // If test is true we take the slow path, which we assume is uncommon.
+  if (_igvn.type(test) == TypeInt::ZERO) {
+    // The slow branch is never taken.  No need to build this guard.
+    return NULL;
+  }
+
+  IfNode* iff = new IfNode(*ctrl, test, true_prob, COUNT_UNKNOWN);
+  transform_later(iff);
+
+  Node* if_slow = new IfTrueNode(iff);
+  transform_later(if_slow);
+
+  if (region != NULL) {
+    region->add_req(if_slow);
+  }
+
+  Node* if_fast = new IfFalseNode(iff);
+  transform_later(if_fast);
+
+  *ctrl = if_fast;
+
+  return if_slow;
+}
+
+inline Node* PhaseMacroExpand::generate_slow_guard(Node** ctrl, Node* test, RegionNode* region) {
+  return generate_guard(ctrl, test, region, PROB_UNLIKELY_MAG(3));
+}
+
+void PhaseMacroExpand::generate_negative_guard(Node** ctrl, Node* index, RegionNode* region) {
+  if ((*ctrl)->is_top())
+    return;                // already stopped
+  if (_igvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
+    return;                // index is already adequately typed
+  Node* cmp_lt = new CmpINode(index, intcon(0));
+  transform_later(cmp_lt);
+  Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt);
+  transform_later(bol_lt);
+  generate_guard(ctrl, bol_lt, region, PROB_MIN);
+}
+
+void PhaseMacroExpand::generate_limit_guard(Node** ctrl, Node* offset, Node* subseq_length, Node* array_length, RegionNode* region) {
+  if ((*ctrl)->is_top())
+    return;                // already stopped
+  bool zero_offset = _igvn.type(offset) == TypeInt::ZERO;
+  if (zero_offset && subseq_length->eqv_uncast(array_length))
+    return;                // common case of whole-array copy
+  Node* last = subseq_length;
+  if (!zero_offset) {            // last += offset
+    last = new AddINode(last, offset);
+    transform_later(last);
+  }
+  Node* cmp_lt = new CmpUNode(array_length, last);
+  transform_later(cmp_lt);
+  Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt);
+  transform_later(bol_lt);
+  generate_guard(ctrl, bol_lt, region, PROB_MIN);
+}
+
+Node* PhaseMacroExpand::generate_nonpositive_guard(Node** ctrl, Node* index, bool never_negative) {
+  if ((*ctrl)->is_top())  return NULL;
+
+  if (_igvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
+    return NULL;                // index is already adequately typed
+  Node* cmp_le = new CmpINode(index, intcon(0));
+  transform_later(cmp_le);
+  BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
+  Node* bol_le = new BoolNode(cmp_le, le_or_eq);
+  transform_later(bol_le);
+  Node* is_notp = generate_guard(ctrl, bol_le, NULL, PROB_MIN);
+
+  return is_notp;
+}
+
+void PhaseMacroExpand::finish_arraycopy_call(Node* call, Node** ctrl, MergeMemNode** mem, const TypePtr* adr_type) {
+  transform_later(call);
+
+  *ctrl = new ProjNode(call,TypeFunc::Control);
+  transform_later(*ctrl);
+  Node* newmem = new ProjNode(call, TypeFunc::Memory);
+  transform_later(newmem);
+
+  uint alias_idx = C->get_alias_index(adr_type);
+  if (alias_idx != Compile::AliasIdxBot) {
+    *mem = MergeMemNode::make(*mem);
+    (*mem)->set_memory_at(alias_idx, newmem);
+  } else {
+    *mem = MergeMemNode::make(newmem);
+  }
+  transform_later(*mem);
+}
+
+address PhaseMacroExpand::basictype2arraycopy(BasicType t,
+                                              Node* src_offset,
+                                              Node* dest_offset,
+                                              bool disjoint_bases,
+                                              const char* &name,
+                                              bool dest_uninitialized) {
+  const TypeInt* src_offset_inttype  = _igvn.find_int_type(src_offset);;
+  const TypeInt* dest_offset_inttype = _igvn.find_int_type(dest_offset);;
+
+  bool aligned = false;
+  bool disjoint = disjoint_bases;
+
+  // if the offsets are the same, we can treat the memory regions as
+  // disjoint, because either the memory regions are in different arrays,
+  // or they are identical (which we can treat as disjoint.)  We can also
+  // treat a copy with a destination index  less that the source index
+  // as disjoint since a low->high copy will work correctly in this case.
+  if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
+      dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
+    // both indices are constants
+    int s_offs = src_offset_inttype->get_con();
+    int d_offs = dest_offset_inttype->get_con();
+    int element_size = type2aelembytes(t);
+    aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
+              ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
+    if (s_offs >= d_offs)  disjoint = true;
+  } else if (src_offset == dest_offset && src_offset != NULL) {
+    // This can occur if the offsets are identical non-constants.
+    disjoint = true;
+  }
+
+  return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
+}
+
+#define COMMA ,
+#define XTOP LP64_ONLY(COMMA top())
+
+// Generate an optimized call to arraycopy.
+// Caller must guard against non-arrays.
+// Caller must determine a common array basic-type for both arrays.
+// Caller must validate offsets against array bounds.
+// The slow_region has already collected guard failure paths
+// (such as out of bounds length or non-conformable array types).
+// The generated code has this shape, in general:
+//
+//     if (length == 0)  return   // via zero_path
+//     slowval = -1
+//     if (types unknown) {
+//       slowval = call generic copy loop
+//       if (slowval == 0)  return  // via checked_path
+//     } else if (indexes in bounds) {
+//       if ((is object array) && !(array type check)) {
+//         slowval = call checked copy loop
+//         if (slowval == 0)  return  // via checked_path
+//       } else {
+//         call bulk copy loop
+//         return  // via fast_path
+//       }
+//     }
+//     // adjust params for remaining work:
+//     if (slowval != -1) {
+//       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
+//     }
+//   slow_region:
+//     call slow arraycopy(src, src_offset, dest, dest_offset, length)
+//     return  // via slow_call_path
+//
+// This routine is used from several intrinsics:  System.arraycopy,
+// Object.clone (the array subcase), and Arrays.copyOf[Range].
+//
+Node* PhaseMacroExpand::generate_arraycopy(ArrayCopyNode *ac, AllocateArrayNode* alloc,
+                                           Node** ctrl, MergeMemNode* mem, Node** io,
+                                           const TypePtr* adr_type,
+                                           BasicType basic_elem_type,
+                                           Node* src,  Node* src_offset,
+                                           Node* dest, Node* dest_offset,
+                                           Node* copy_length,
+                                           bool disjoint_bases,
+                                           bool length_never_negative,
+                                           RegionNode* slow_region) {
+  if (slow_region == NULL) {
+    slow_region = new RegionNode(1);
+    transform_later(slow_region);
+  }
+
+  Node* original_dest      = dest;
+  bool  dest_uninitialized = false;
+
+  // See if this is the initialization of a newly-allocated array.
+  // If so, we will take responsibility here for initializing it to zero.
+  // (Note:  Because tightly_coupled_allocation performs checks on the
+  // out-edges of the dest, we need to avoid making derived pointers
+  // from it until we have checked its uses.)
+  if (ReduceBulkZeroing
+      && !ZeroTLAB              // pointless if already zeroed
+      && basic_elem_type != T_CONFLICT // avoid corner case
+      && !src->eqv_uncast(dest)
+      && alloc != NULL
+      && _igvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
+      && alloc->maybe_set_complete(&_igvn)) {
+    // "You break it, you buy it."
+    InitializeNode* init = alloc->initialization();
+    assert(init->is_complete(), "we just did this");
+    init->set_complete_with_arraycopy();
+    assert(dest->is_CheckCastPP(), "sanity");
+    assert(dest->in(0)->in(0) == init, "dest pinned");
+    adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
+    // From this point on, every exit path is responsible for
+    // initializing any non-copied parts of the object to zero.
+    // Also, if this flag is set we make sure that arraycopy interacts properly
+    // with G1, eliding pre-barriers. See CR 6627983.
+    dest_uninitialized = true;
+  } else {
+    // No zeroing elimination here.
+    alloc             = NULL;
+    //original_dest   = dest;
+    //dest_uninitialized = false;
+  }
+
+  uint alias_idx = C->get_alias_index(adr_type);
+
+  // Results are placed here:
+  enum { fast_path        = 1,  // normal void-returning assembly stub
+         checked_path     = 2,  // special assembly stub with cleanup
+         slow_call_path   = 3,  // something went wrong; call the VM
+         zero_path        = 4,  // bypass when length of copy is zero
+         bcopy_path       = 5,  // copy primitive array by 64-bit blocks
+         PATH_LIMIT       = 6
+  };
+  RegionNode* result_region = new RegionNode(PATH_LIMIT);
+  PhiNode*    result_i_o    = new PhiNode(result_region, Type::ABIO);
+  PhiNode*    result_memory = new PhiNode(result_region, Type::MEMORY, adr_type);
+  assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
+  transform_later(result_region);
+  transform_later(result_i_o);
+  transform_later(result_memory);
+
+  // The slow_control path:
+  Node* slow_control;
+  Node* slow_i_o = *io;
+  Node* slow_mem = mem->memory_at(alias_idx);
+  DEBUG_ONLY(slow_control = (Node*) badAddress);
+
+  // Checked control path:
+  Node* checked_control = top();
+  Node* checked_mem     = NULL;
+  Node* checked_i_o     = NULL;
+  Node* checked_value   = NULL;
+
+  if (basic_elem_type == T_CONFLICT) {
+    assert(!dest_uninitialized, "");
+    Node* cv = generate_generic_arraycopy(ctrl, &mem,
+                                          adr_type,
+                                          src, src_offset, dest, dest_offset,
+                                          copy_length, dest_uninitialized);
+    if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
+    checked_control = *ctrl;
+    checked_i_o     = *io;
+    checked_mem     = mem->memory_at(alias_idx);
+    checked_value   = cv;
+    *ctrl = top();
+  }
+
+  Node* not_pos = generate_nonpositive_guard(ctrl, copy_length, length_never_negative);
+  if (not_pos != NULL) {
+    Node* local_ctrl = not_pos, *local_io = *io;
+    MergeMemNode* local_mem = MergeMemNode::make(mem);
+    transform_later(local_mem);
+
+    // (6) length must not be negative.
+    if (!length_never_negative) {
+      generate_negative_guard(&local_ctrl, copy_length, slow_region);
+    }
+
+    // copy_length is 0.
+    if (dest_uninitialized) {
+      assert(!local_ctrl->is_top(), "no ctrl?");
+      Node* dest_length = alloc->in(AllocateNode::ALength);
+      if (copy_length->eqv_uncast(dest_length)
+          || _igvn.find_int_con(dest_length, 1) <= 0) {
+        // There is no zeroing to do. No need for a secondary raw memory barrier.
+      } else {
+        // Clear the whole thing since there are no source elements to copy.
+        generate_clear_array(local_ctrl, local_mem,
+                             adr_type, dest, basic_elem_type,
+                             intcon(0), NULL,
+                             alloc->in(AllocateNode::AllocSize));
+        // Use a secondary InitializeNode as raw memory barrier.
+        // Currently it is needed only on this path since other
+        // paths have stub or runtime calls as raw memory barriers.
+        MemBarNode* mb = MemBarNode::make(C, Op_Initialize,
+                                          Compile::AliasIdxRaw,
+                                          top());
+        transform_later(mb);
+        mb->set_req(TypeFunc::Control,local_ctrl);
+        mb->set_req(TypeFunc::Memory, local_mem->memory_at(Compile::AliasIdxRaw));
+        local_ctrl = transform_later(new ProjNode(mb, TypeFunc::Control));
+        local_mem->set_memory_at(Compile::AliasIdxRaw, transform_later(new ProjNode(mb, TypeFunc::Memory)));
+
+        InitializeNode* init = mb->as_Initialize();
+        init->set_complete(&_igvn);  // (there is no corresponding AllocateNode)
+      }
+    }
+
+    // Present the results of the fast call.
+    result_region->init_req(zero_path, local_ctrl);
+    result_i_o   ->init_req(zero_path, local_io);
+    result_memory->init_req(zero_path, local_mem->memory_at(alias_idx));
+  }
+
+  if (!(*ctrl)->is_top() && dest_uninitialized) {
+    // We have to initialize the *uncopied* part of the array to zero.
+    // The copy destination is the slice dest[off..off+len].  The other slices
+    // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
+    Node* dest_size   = alloc->in(AllocateNode::AllocSize);
+    Node* dest_length = alloc->in(AllocateNode::ALength);
+    Node* dest_tail   = transform_later( new AddINode(dest_offset, copy_length));
+
+    // If there is a head section that needs zeroing, do it now.
+    if (_igvn.find_int_con(dest_offset, -1) != 0) {
+      generate_clear_array(*ctrl, mem,
+                           adr_type, dest, basic_elem_type,
+                           intcon(0), dest_offset,
+                           NULL);
+    }
+
+    // Next, perform a dynamic check on the tail length.
+    // It is often zero, and we can win big if we prove this.
+    // There are two wins:  Avoid generating the ClearArray
+    // with its attendant messy index arithmetic, and upgrade
+    // the copy to a more hardware-friendly word size of 64 bits.
+    Node* tail_ctl = NULL;
+    if (!(*ctrl)->is_top() && !dest_tail->eqv_uncast(dest_length)) {
+      Node* cmp_lt   = transform_later( new CmpINode(dest_tail, dest_length) );
+      Node* bol_lt   = transform_later( new BoolNode(cmp_lt, BoolTest::lt) );
+      tail_ctl = generate_slow_guard(ctrl, bol_lt, NULL);
+      assert(tail_ctl != NULL || !(*ctrl)->is_top(), "must be an outcome");
+    }
+
+    // At this point, let's assume there is no tail.
+    if (!(*ctrl)->is_top() && alloc != NULL && basic_elem_type != T_OBJECT) {
+      // There is no tail.  Try an upgrade to a 64-bit copy.
+      bool didit = false;
+      {
+        Node* local_ctrl = *ctrl, *local_io = *io;
+        MergeMemNode* local_mem = MergeMemNode::make(mem);
+        transform_later(local_mem);
+
+        didit = generate_block_arraycopy(&local_ctrl, &local_mem, local_io,
+                                         adr_type, basic_elem_type, alloc,
+                                         src, src_offset, dest, dest_offset,
+                                         dest_size, dest_uninitialized);
+        if (didit) {
+          // Present the results of the block-copying fast call.
+          result_region->init_req(bcopy_path, local_ctrl);
+          result_i_o   ->init_req(bcopy_path, local_io);
+          result_memory->init_req(bcopy_path, local_mem->memory_at(alias_idx));
+        }
+      }
+      if (didit) {
+        *ctrl = top();     // no regular fast path
+      }
+    }
+
+    // Clear the tail, if any.
+    if (tail_ctl != NULL) {
+      Node* notail_ctl = (*ctrl)->is_top() ? NULL : *ctrl;
+      *ctrl = tail_ctl;
+      if (notail_ctl == NULL) {
+        generate_clear_array(*ctrl, mem,
+                             adr_type, dest, basic_elem_type,
+                             dest_tail, NULL,
+                             dest_size);
+      } else {
+        // Make a local merge.
+        Node* done_ctl = transform_later(new RegionNode(3));
+        Node* done_mem = transform_later(new PhiNode(done_ctl, Type::MEMORY, adr_type));
+        done_ctl->init_req(1, notail_ctl);
+        done_mem->init_req(1, mem->memory_at(alias_idx));
+        generate_clear_array(*ctrl, mem,
+                             adr_type, dest, basic_elem_type,
+                             dest_tail, NULL,
+                             dest_size);
+        done_ctl->init_req(2, *ctrl);
+        done_mem->init_req(2, mem->memory_at(alias_idx));
+        *ctrl = done_ctl;
+        mem->set_memory_at(alias_idx, done_mem);
+      }
+    }
+  }
+
+  BasicType copy_type = basic_elem_type;
+  assert(basic_elem_type != T_ARRAY, "caller must fix this");
+  if (!(*ctrl)->is_top() && copy_type == T_OBJECT) {
+    // If src and dest have compatible element types, we can copy bits.
+    // Types S[] and D[] are compatible if D is a supertype of S.
+    //
+    // If they are not, we will use checked_oop_disjoint_arraycopy,
+    // which performs a fast optimistic per-oop check, and backs off
+    // further to JVM_ArrayCopy on the first per-oop check that fails.
+    // (Actually, we don't move raw bits only; the GC requires card marks.)
+
+    // Get the klass* for both src and dest
+    Node* k_adr =  new AddPNode(src, src, MakeConX(oopDesc::klass_offset_in_bytes()));
+    transform_later(k_adr);
+    Node* src_klass  = LoadKlassNode::make(_igvn, C->immutable_memory(), k_adr, TypeInstPtr::KLASS);
+    transform_later(src_klass);
+    k_adr =  new AddPNode(dest, dest, MakeConX(oopDesc::klass_offset_in_bytes()));
+    transform_later(k_adr);
+    Node* dest_klass  = LoadKlassNode::make(_igvn, C->immutable_memory(), k_adr, TypeInstPtr::KLASS);
+    transform_later(dest_klass);
+
+    // Generate the subtype check.
+    // This might fold up statically, or then again it might not.
+    //
+    // Non-static example:  Copying List<String>.elements to a new String[].
+    // The backing store for a List<String> is always an Object[],
+    // but its elements are always type String, if the generic types
+    // are correct at the source level.
+    //
+    // Test S[] against D[], not S against D, because (probably)
+    // the secondary supertype cache is less busy for S[] than S.
+    // This usually only matters when D is an interface.
+    Node* not_subtype_ctrl = ac->is_arraycopy_notest() ? top() : Phase::gen_subtype_check(src_klass, dest_klass, ctrl, mem, &_igvn);
+    // Plug failing path into checked_oop_disjoint_arraycopy
+    if (not_subtype_ctrl != top()) {
+      Node* local_ctrl = not_subtype_ctrl;
+      MergeMemNode* local_mem = MergeMemNode::make(mem);
+      transform_later(local_mem);
+
+      // (At this point we can assume disjoint_bases, since types differ.)
+      int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
+      Node* p1 = basic_plus_adr(dest_klass, ek_offset);
+      Node* n1 = LoadKlassNode::make(_igvn, C->immutable_memory(), p1, TypeRawPtr::BOTTOM);
+      Node* dest_elem_klass = transform_later(n1);
+      Node* cv = generate_checkcast_arraycopy(&local_ctrl, &local_mem,
+                                              adr_type,
+                                              dest_elem_klass,
+                                              src, src_offset, dest, dest_offset,
+                                              ConvI2X(copy_length), dest_uninitialized);
+      if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
+      checked_control = local_ctrl;
+      checked_i_o     = *io;
+      checked_mem     = local_mem->memory_at(alias_idx);
+      checked_value   = cv;
+    }
+    // At this point we know we do not need type checks on oop stores.
+
+    // Let's see if we need card marks:
+    if (alloc != NULL && GraphKit::use_ReduceInitialCardMarks()) {
+      // If we do not need card marks, copy using the jint or jlong stub.
+      copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
+      assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
+             "sizes agree");
+    }
+  }
+
+  if (!(*ctrl)->is_top()) {
+    // Generate the fast path, if possible.
+    Node* local_ctrl = *ctrl;
+    MergeMemNode* local_mem = MergeMemNode::make(mem);
+    transform_later(local_mem);
+
+    generate_unchecked_arraycopy(&local_ctrl, &local_mem,
+                                 adr_type, copy_type, disjoint_bases,
+                                 src, src_offset, dest, dest_offset,
+                                 ConvI2X(copy_length), dest_uninitialized);
+
+    // Present the results of the fast call.
+    result_region->init_req(fast_path, local_ctrl);
+    result_i_o   ->init_req(fast_path, *io);
+    result_memory->init_req(fast_path, local_mem->memory_at(alias_idx));
+  }
+
+  // Here are all the slow paths up to this point, in one bundle:
+  assert(slow_region != NULL, "allocated on entry");
+  slow_control = slow_region;
+  DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
+
+  *ctrl = checked_control;
+  if (!(*ctrl)->is_top()) {
+    // Clean up after the checked call.
+    // The returned value is either 0 or -1^K,
+    // where K = number of partially transferred array elements.
+    Node* cmp = new CmpINode(checked_value, intcon(0));
+    transform_later(cmp);
+    Node* bol = new BoolNode(cmp, BoolTest::eq);
+    transform_later(bol);
+    IfNode* iff = new IfNode(*ctrl, bol, PROB_MAX, COUNT_UNKNOWN);
+    transform_later(iff);
+
+    // If it is 0, we are done, so transfer to the end.
+    Node* checks_done = new IfTrueNode(iff);
+    transform_later(checks_done);
+    result_region->init_req(checked_path, checks_done);
+    result_i_o   ->init_req(checked_path, checked_i_o);
+    result_memory->init_req(checked_path, checked_mem);
+
+    // If it is not zero, merge into the slow call.
+    *ctrl = new IfFalseNode(iff);
+    transform_later(*ctrl);
+    RegionNode* slow_reg2 = new RegionNode(3);
+    PhiNode*    slow_i_o2 = new PhiNode(slow_reg2, Type::ABIO);
+    PhiNode*    slow_mem2 = new PhiNode(slow_reg2, Type::MEMORY, adr_type);
+    transform_later(slow_reg2);
+    transform_later(slow_i_o2);
+    transform_later(slow_mem2);
+    slow_reg2  ->init_req(1, slow_control);
+    slow_i_o2  ->init_req(1, slow_i_o);
+    slow_mem2  ->init_req(1, slow_mem);
+    slow_reg2  ->init_req(2, *ctrl);
+    slow_i_o2  ->init_req(2, checked_i_o);
+    slow_mem2  ->init_req(2, checked_mem);
+
+    slow_control = slow_reg2;
+    slow_i_o     = slow_i_o2;
+    slow_mem     = slow_mem2;
+
+    if (alloc != NULL) {
+      // We'll restart from the very beginning, after zeroing the whole thing.
+      // This can cause double writes, but that's OK since dest is brand new.
+      // So we ignore the low 31 bits of the value returned from the stub.
+    } else {
+      // We must continue the copy exactly where it failed, or else
+      // another thread might see the wrong number of writes to dest.
+      Node* checked_offset = new XorINode(checked_value, intcon(-1));
+      Node* slow_offset    = new PhiNode(slow_reg2, TypeInt::INT);
+      transform_later(checked_offset);
+      transform_later(slow_offset);
+      slow_offset->init_req(1, intcon(0));
+      slow_offset->init_req(2, checked_offset);
+
+      // Adjust the arguments by the conditionally incoming offset.
+      Node* src_off_plus  = new AddINode(src_offset,  slow_offset);
+      transform_later(src_off_plus);
+      Node* dest_off_plus = new AddINode(dest_offset, slow_offset);
+      transform_later(dest_off_plus);
+      Node* length_minus  = new SubINode(copy_length, slow_offset);
+      transform_later(length_minus);
+
+      // Tweak the node variables to adjust the code produced below:
+      src_offset  = src_off_plus;
+      dest_offset = dest_off_plus;
+      copy_length = length_minus;
+    }
+  }
+  *ctrl = slow_control;
+  if (!(*ctrl)->is_top()) {
+    Node* local_ctrl = *ctrl, *local_io = slow_i_o;
+    MergeMemNode* local_mem = MergeMemNode::make(mem);
+    transform_later(local_mem);
+
+    // Generate the slow path, if needed.
+    local_mem->set_memory_at(alias_idx, slow_mem);
+
+    if (dest_uninitialized) {
+      generate_clear_array(local_ctrl, local_mem,
+                           adr_type, dest, basic_elem_type,
+                           intcon(0), NULL,
+                           alloc->in(AllocateNode::AllocSize));
+    }
+
+    local_mem = generate_slow_arraycopy(ac,
+                                        &local_ctrl, local_mem, &local_io,
+                                        adr_type,
+                                        src, src_offset, dest, dest_offset,
+                                        copy_length, /*dest_uninitialized*/false);
+
+    result_region->init_req(slow_call_path, local_ctrl);
+    result_i_o   ->init_req(slow_call_path, local_io);
+    result_memory->init_req(slow_call_path, local_mem->memory_at(alias_idx));
+  } else {
+    ShouldNotReachHere(); // no call to generate_slow_arraycopy:
+                          // projections were not extracted
+  }
+
+  // Remove unused edges.
+  for (uint i = 1; i < result_region->req(); i++) {
+    if (result_region->in(i) == NULL) {
+      result_region->init_req(i, top());
+    }
+  }
+
+  // Finished; return the combined state.
+  *ctrl = result_region;
+  *io = result_i_o;
+  mem->set_memory_at(alias_idx, result_memory);
+
+  // mem no longer guaranteed to stay a MergeMemNode
+  Node* out_mem = mem;
+  DEBUG_ONLY(mem = NULL);
+
+  // The memory edges above are precise in order to model effects around
+  // array copies accurately to allow value numbering of field loads around
+  // arraycopy.  Such field loads, both before and after, are common in Java
+  // collections and similar classes involving header/array data structures.
+  //
+  // But with low number of register or when some registers are used or killed
+  // by arraycopy calls it causes registers spilling on stack. See 6544710.
+  // The next memory barrier is added to avoid it. If the arraycopy can be
+  // optimized away (which it can, sometimes) then we can manually remove
+  // the membar also.
+  //
+  // Do not let reads from the cloned object float above the arraycopy.
+  if (alloc != NULL && !alloc->initialization()->does_not_escape()) {
+    // Do not let stores that initialize this object be reordered with
+    // a subsequent store that would make this object accessible by
+    // other threads.
+    insert_mem_bar(ctrl, &out_mem, Op_MemBarStoreStore);
+  } else if (InsertMemBarAfterArraycopy) {
+    insert_mem_bar(ctrl, &out_mem, Op_MemBarCPUOrder);
+  }
+
+  _igvn.replace_node(_memproj_fallthrough, out_mem);
+  _igvn.replace_node(_ioproj_fallthrough, *io);
+  _igvn.replace_node(_fallthroughcatchproj, *ctrl);
+
+  return out_mem;
+}
+
+// Helper for initialization of arrays, creating a ClearArray.
+// It writes zero bits in [start..end), within the body of an array object.
+// The memory effects are all chained onto the 'adr_type' alias category.
+//
+// Since the object is otherwise uninitialized, we are free
+// to put a little "slop" around the edges of the cleared area,
+// as long as it does not go back into the array's header,
+// or beyond the array end within the heap.
+//
+// The lower edge can be rounded down to the nearest jint and the
+// upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
+//
+// Arguments:
+//   adr_type           memory slice where writes are generated
+//   dest               oop of the destination array
+//   basic_elem_type    element type of the destination
+//   slice_idx          array index of first element to store
+//   slice_len          number of elements to store (or NULL)
+//   dest_size          total size in bytes of the array object
+//
+// Exactly one of slice_len or dest_size must be non-NULL.
+// If dest_size is non-NULL, zeroing extends to the end of the object.
+// If slice_len is non-NULL, the slice_idx value must be a constant.
+void PhaseMacroExpand::generate_clear_array(Node* ctrl, MergeMemNode* merge_mem,
+                                            const TypePtr* adr_type,
+                                            Node* dest,
+                                            BasicType basic_elem_type,
+                                            Node* slice_idx,
+                                            Node* slice_len,
+                                            Node* dest_size) {
+  // one or the other but not both of slice_len and dest_size:
+  assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
+  if (slice_len == NULL)  slice_len = top();
+  if (dest_size == NULL)  dest_size = top();
+
+  uint alias_idx = C->get_alias_index(adr_type);
+
+  // operate on this memory slice:
+  Node* mem = merge_mem->memory_at(alias_idx); // memory slice to operate on
+
+  // scaling and rounding of indexes:
+  int scale = exact_log2(type2aelembytes(basic_elem_type));
+  int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
+  int clear_low = (-1 << scale) & (BytesPerInt  - 1);
+  int bump_bit  = (-1 << scale) & BytesPerInt;
+
+  // determine constant starts and ends
+  const intptr_t BIG_NEG = -128;
+  assert(BIG_NEG + 2*abase < 0, "neg enough");
+  intptr_t slice_idx_con = (intptr_t) _igvn.find_int_con(slice_idx, BIG_NEG);
+  intptr_t slice_len_con = (intptr_t) _igvn.find_int_con(slice_len, BIG_NEG);
+  if (slice_len_con == 0) {
+    return;                     // nothing to do here
+  }
+  intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
+  intptr_t end_con   = _igvn.find_intptr_t_con(dest_size, -1);
+  if (slice_idx_con >= 0 && slice_len_con >= 0) {
+    assert(end_con < 0, "not two cons");
+    end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
+                       BytesPerLong);
+  }
+
+  if (start_con >= 0 && end_con >= 0) {
+    // Constant start and end.  Simple.
+    mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
+                                       start_con, end_con, &_igvn);
+  } else if (start_con >= 0 && dest_size != top()) {
+    // Constant start, pre-rounded end after the tail of the array.
+    Node* end = dest_size;
+    mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
+                                       start_con, end, &_igvn);
+  } else if (start_con >= 0 && slice_len != top()) {
+    // Constant start, non-constant end.  End needs rounding up.
+    // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
+    intptr_t end_base  = abase + (slice_idx_con << scale);
+    int      end_round = (-1 << scale) & (BytesPerLong  - 1);
+    Node*    end       = ConvI2X(slice_len);
+    if (scale != 0)
+      end = transform_later(new LShiftXNode(end, intcon(scale) ));
+    end_base += end_round;
+    end = transform_later(new AddXNode(end, MakeConX(end_base)) );
+    end = transform_later(new AndXNode(end, MakeConX(~end_round)) );
+    mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
+                                       start_con, end, &_igvn);
+  } else if (start_con < 0 && dest_size != top()) {
+    // Non-constant start, pre-rounded end after the tail of the array.
+    // This is almost certainly a "round-to-end" operation.
+    Node* start = slice_idx;
+    start = ConvI2X(start);
+    if (scale != 0)
+      start = transform_later(new LShiftXNode( start, intcon(scale) ));
+    start = transform_later(new AddXNode(start, MakeConX(abase)) );
+    if ((bump_bit | clear_low) != 0) {
+      int to_clear = (bump_bit | clear_low);
+      // Align up mod 8, then store a jint zero unconditionally
+      // just before the mod-8 boundary.
+      if (((abase + bump_bit) & ~to_clear) - bump_bit
+          < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
+        bump_bit = 0;
+        assert((abase & to_clear) == 0, "array base must be long-aligned");
+      } else {
+        // Bump 'start' up to (or past) the next jint boundary:
+        start = transform_later( new AddXNode(start, MakeConX(bump_bit)) );
+        assert((abase & clear_low) == 0, "array base must be int-aligned");
+      }
+      // Round bumped 'start' down to jlong boundary in body of array.
+      start = transform_later(new AndXNode(start, MakeConX(~to_clear)) );
+      if (bump_bit != 0) {
+        // Store a zero to the immediately preceding jint:
+        Node* x1 = transform_later(new AddXNode(start, MakeConX(-bump_bit)) );
+        Node* p1 = basic_plus_adr(dest, x1);
+        mem = StoreNode::make(_igvn, ctrl, mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
+        mem = transform_later(mem);
+      }
+    }
+    Node* end = dest_size; // pre-rounded
+    mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
+                                       start, end, &_igvn);
+  } else {
+    // Non-constant start, unrounded non-constant end.
+    // (Nobody zeroes a random midsection of an array using this routine.)
+    ShouldNotReachHere();       // fix caller
+  }
+
+  // Done.
+  merge_mem->set_memory_at(alias_idx, mem);
+}
+
+bool PhaseMacroExpand::generate_block_arraycopy(Node** ctrl, MergeMemNode** mem, Node* io,
+                                                const TypePtr* adr_type,
+                                                BasicType basic_elem_type,
+                                                AllocateNode* alloc,
+                                                Node* src,  Node* src_offset,
+                                                Node* dest, Node* dest_offset,
+                                                Node* dest_size, bool dest_uninitialized) {
+  // See if there is an advantage from block transfer.
+  int scale = exact_log2(type2aelembytes(basic_elem_type));
+  if (scale >= LogBytesPerLong)
+    return false;               // it is already a block transfer
+
+  // Look at the alignment of the starting offsets.
+  int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
+
+  intptr_t src_off_con  = (intptr_t) _igvn.find_int_con(src_offset, -1);
+  intptr_t dest_off_con = (intptr_t) _igvn.find_int_con(dest_offset, -1);
+  if (src_off_con < 0 || dest_off_con < 0) {
+    // At present, we can only understand constants.
+    return false;
+  }
+
+  intptr_t src_off  = abase + (src_off_con  << scale);
+  intptr_t dest_off = abase + (dest_off_con << scale);
+
+  if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
+    // Non-aligned; too bad.
+    // One more chance:  Pick off an initial 32-bit word.
+    // This is a common case, since abase can be odd mod 8.
+    if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
+        ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
+      Node* sptr = basic_plus_adr(src,  src_off);
+      Node* dptr = basic_plus_adr(dest, dest_off);
+      uint alias_idx = C->get_alias_index(adr_type);
+      Node* sval = transform_later(LoadNode::make(_igvn, *ctrl, (*mem)->memory_at(alias_idx), sptr, adr_type, TypeInt::INT, T_INT, MemNode::unordered));
+      Node* st = transform_later(StoreNode::make(_igvn, *ctrl, (*mem)->memory_at(alias_idx), dptr, adr_type, sval, T_INT, MemNode::unordered));
+      (*mem)->set_memory_at(alias_idx, st);
+      src_off += BytesPerInt;
+      dest_off += BytesPerInt;
+    } else {
+      return false;
+    }
+  }
+  assert(src_off % BytesPerLong == 0, "");
+  assert(dest_off % BytesPerLong == 0, "");
+
+  // Do this copy by giant steps.
+  Node* sptr  = basic_plus_adr(src,  src_off);
+  Node* dptr  = basic_plus_adr(dest, dest_off);
+  Node* countx = dest_size;
+  countx = transform_later(new SubXNode(countx, MakeConX(dest_off)));
+  countx = transform_later(new URShiftXNode(countx, intcon(LogBytesPerLong)));
+
+  bool disjoint_bases = true;   // since alloc != NULL
+  generate_unchecked_arraycopy(ctrl, mem,
+                               adr_type, T_LONG, disjoint_bases,
+                               sptr, NULL, dptr, NULL, countx, dest_uninitialized);
+
+  return true;
+}
+
+// Helper function; generates code for the slow case.
+// We make a call to a runtime method which emulates the native method,
+// but without the native wrapper overhead.
+MergeMemNode* PhaseMacroExpand::generate_slow_arraycopy(ArrayCopyNode *ac,
+                                                        Node** ctrl, Node* mem, Node** io,
+                                                        const TypePtr* adr_type,
+                                                        Node* src,  Node* src_offset,
+                                                        Node* dest, Node* dest_offset,
+                                                        Node* copy_length, bool dest_uninitialized) {
+  assert(!dest_uninitialized, "Invariant");
+
+  const TypeFunc* call_type = OptoRuntime::slow_arraycopy_Type();
+  CallNode* call = new CallStaticJavaNode(call_type, OptoRuntime::slow_arraycopy_Java(),
+                                          "slow_arraycopy",
+                                          ac->jvms()->bci(), TypePtr::BOTTOM);
+
+  call->init_req(TypeFunc::Control, *ctrl);
+  call->init_req(TypeFunc::I_O    , *io);
+  call->init_req(TypeFunc::Memory , mem);
+  call->init_req(TypeFunc::ReturnAdr, top());
+  call->init_req(TypeFunc::FramePtr, top());
+  call->init_req(TypeFunc::Parms+0, src);
+  call->init_req(TypeFunc::Parms+1, src_offset);
+  call->init_req(TypeFunc::Parms+2, dest);
+  call->init_req(TypeFunc::Parms+3, dest_offset);
+  call->init_req(TypeFunc::Parms+4, copy_length);
+  copy_call_debug_info(ac, call);
+
+  call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
+  _igvn.replace_node(ac, call);
+  transform_later(call);
+
+  extract_call_projections(call);
+  *ctrl = _fallthroughcatchproj->clone();
+  transform_later(*ctrl);
+
+  Node* m = _memproj_fallthrough->clone();
+  transform_later(m);
+
+  uint alias_idx = C->get_alias_index(adr_type);
+  MergeMemNode* out_mem;
+  if (alias_idx != Compile::AliasIdxBot) {
+    out_mem = MergeMemNode::make(mem);
+    out_mem->set_memory_at(alias_idx, m);
+  } else {
+    out_mem = MergeMemNode::make(m);
+  }
+  transform_later(out_mem);
+
+  *io = _ioproj_fallthrough->clone();
+  transform_later(*io);
+
+  return out_mem;
+}
+
+// Helper function; generates code for cases requiring runtime checks.
+Node* PhaseMacroExpand::generate_checkcast_arraycopy(Node** ctrl, MergeMemNode** mem,
+                                                     const TypePtr* adr_type,
+                                                     Node* dest_elem_klass,
+                                                     Node* src,  Node* src_offset,
+                                                     Node* dest, Node* dest_offset,
+                                                     Node* copy_length, bool dest_uninitialized) {
+  if ((*ctrl)->is_top())  return NULL;
+
+  address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
+  if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
+    return NULL;
+  }
+
+  // Pick out the parameters required to perform a store-check
+  // for the target array.  This is an optimistic check.  It will
+  // look in each non-null element's class, at the desired klass's
+  // super_check_offset, for the desired klass.
+  int sco_offset = in_bytes(Klass::super_check_offset_offset());
+  Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
+  Node* n3 = new LoadINode(NULL, *mem /*memory(p3)*/, p3, _igvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
+  Node* check_offset = ConvI2X(transform_later(n3));
+  Node* check_value  = dest_elem_klass;
+
+  Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
+  Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
+
+  const TypeFunc* call_type = OptoRuntime::checkcast_arraycopy_Type();
+  Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "checkcast_arraycopy", adr_type,
+                              src_start, dest_start, copy_length XTOP, check_offset XTOP, check_value);
+
+  finish_arraycopy_call(call, ctrl, mem, adr_type);
+
+  Node* proj =  new ProjNode(call, TypeFunc::Parms);
+  transform_later(proj);
+
+  return proj;
+}
+
+// Helper function; generates code for cases requiring runtime checks.
+Node* PhaseMacroExpand::generate_generic_arraycopy(Node** ctrl, MergeMemNode** mem,
+                                                   const TypePtr* adr_type,
+                                                   Node* src,  Node* src_offset,
+                                                   Node* dest, Node* dest_offset,
+                                                   Node* copy_length, bool dest_uninitialized) {
+  if ((*ctrl)->is_top()) return NULL;
+  assert(!dest_uninitialized, "Invariant");
+
+  address copyfunc_addr = StubRoutines::generic_arraycopy();
+  if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
+    return NULL;
+  }
+
+  const TypeFunc* call_type = OptoRuntime::generic_arraycopy_Type();
+  Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "generic_arraycopy", adr_type,
+                              src, src_offset, dest, dest_offset, copy_length);
+
+  finish_arraycopy_call(call, ctrl, mem, adr_type);
+
+  Node* proj =  new ProjNode(call, TypeFunc::Parms);
+  transform_later(proj);
+
+  return proj;
+}
+
+// Helper function; generates the fast out-of-line call to an arraycopy stub.
+void PhaseMacroExpand::generate_unchecked_arraycopy(Node** ctrl, MergeMemNode** mem,
+                                                    const TypePtr* adr_type,
+                                                    BasicType basic_elem_type,
+                                                    bool disjoint_bases,
+                                                    Node* src,  Node* src_offset,
+                                                    Node* dest, Node* dest_offset,
+                                                    Node* copy_length, bool dest_uninitialized) {
+  if ((*ctrl)->is_top()) return;
+
+  Node* src_start  = src;
+  Node* dest_start = dest;
+  if (src_offset != NULL || dest_offset != NULL) {
+    src_start =  array_element_address(src, src_offset, basic_elem_type);
+    dest_start = array_element_address(dest, dest_offset, basic_elem_type);
+  }
+
+  // Figure out which arraycopy runtime method to call.
+  const char* copyfunc_name = "arraycopy";
+  address     copyfunc_addr =
+      basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
+                          disjoint_bases, copyfunc_name, dest_uninitialized);
+
+  const TypeFunc* call_type = OptoRuntime::fast_arraycopy_Type();
+  Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, copyfunc_name, adr_type,
+                              src_start, dest_start, copy_length XTOP);
+
+  finish_arraycopy_call(call, ctrl, mem, adr_type);
+}
+
+void PhaseMacroExpand::expand_arraycopy_node(ArrayCopyNode *ac) {
+  Node* ctrl = ac->in(TypeFunc::Control);
+  Node* io = ac->in(TypeFunc::I_O);
+  Node* src = ac->in(ArrayCopyNode::Src);
+  Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
+  Node* dest = ac->in(ArrayCopyNode::Dest);
+  Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
+  Node* length = ac->in(ArrayCopyNode::Length);
+  MergeMemNode* merge_mem = NULL;
+
+  if (ac->is_clonebasic()) {
+    assert (src_offset == NULL && dest_offset == NULL, "for clone offsets should be null");
+    Node* mem = ac->in(TypeFunc::Memory);
+    const char* copyfunc_name = "arraycopy";
+    address     copyfunc_addr =
+      basictype2arraycopy(T_LONG, NULL, NULL,
+                          true, copyfunc_name, true);
+
+    const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
+    const TypeFunc* call_type = OptoRuntime::fast_arraycopy_Type();
+
+    Node* call = make_leaf_call(ctrl, mem, call_type, copyfunc_addr, copyfunc_name, raw_adr_type, src, dest, length XTOP);
+    transform_later(call);
+
+    _igvn.replace_node(ac, call);
+    return;
+  } else if (ac->is_copyof() || ac->is_copyofrange() || ac->is_cloneoop()) {
+    Node* mem = ac->in(TypeFunc::Memory);
+    merge_mem = MergeMemNode::make(mem);
+    transform_later(merge_mem);
+
+    RegionNode* slow_region = new RegionNode(1);
+    transform_later(slow_region);
+
+    AllocateArrayNode* alloc = NULL;
+    if (ac->is_alloc_tightly_coupled()) {
+      alloc = AllocateArrayNode::Ideal_array_allocation(dest, &_igvn);
+      assert(alloc != NULL, "expect alloc");
+    }
+
+    generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io,
+                       TypeAryPtr::OOPS, T_OBJECT,
+                       src, src_offset, dest, dest_offset, length,
+                       true, !ac->is_copyofrange());
+
+    return;
+  }
+
+  AllocateArrayNode* alloc = NULL;
+  if (ac->is_alloc_tightly_coupled()) {
+    alloc = AllocateArrayNode::Ideal_array_allocation(dest, &_igvn);
+    assert(alloc != NULL, "expect alloc");
+  }
+
+  assert(ac->is_arraycopy() || ac->is_arraycopy_notest(), "should be an arraycopy");
+
+  // Compile time checks.  If any of these checks cannot be verified at compile time,
+  // we do not make a fast path for this call.  Instead, we let the call remain as it
+  // is.  The checks we choose to mandate at compile time are:
+  //
+  // (1) src and dest are arrays.
+  const Type* src_type = src->Value(&_igvn);
+  const Type* dest_type = dest->Value(&_igvn);
+  const TypeAryPtr* top_src = src_type->isa_aryptr();
+  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
+
+  if (top_src  == NULL || top_src->klass()  == NULL ||
+      top_dest == NULL || top_dest->klass() == NULL) {
+    // Conservatively insert a memory barrier on all memory slices.
+    // Do not let writes into the source float below the arraycopy.
+    {
+      Node* mem = ac->in(TypeFunc::Memory);
+      insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder);
+
+      merge_mem = MergeMemNode::make(mem);
+      transform_later(merge_mem);
+    }
+
+    // Call StubRoutines::generic_arraycopy stub.
+    Node* mem = generate_arraycopy(ac, NULL, &ctrl, merge_mem, &io,
+                                   TypeRawPtr::BOTTOM, T_CONFLICT,
+                                   src, src_offset, dest, dest_offset, length);
+
+    // Do not let reads from the destination float above the arraycopy.
+    // Since we cannot type the arrays, we don't know which slices
+    // might be affected.  We could restrict this barrier only to those
+    // memory slices which pertain to array elements--but don't bother.
+    if (!InsertMemBarAfterArraycopy) {
+      // (If InsertMemBarAfterArraycopy, there is already one in place.)
+      insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder);
+    }
+    return;
+  }
+  // (2) src and dest arrays must have elements of the same BasicType
+  // Figure out the size and type of the elements we will be copying.
+  BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
+  BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
+  if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
+  if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
+
+  if (src_elem != dest_elem || dest_elem == T_VOID) {
+    // The component types are not the same or are not recognized.  Punt.
+    // (But, avoid the native method wrapper to JVM_ArrayCopy.)
+    {
+      Node* mem = ac->in(TypeFunc::Memory);
+      merge_mem = generate_slow_arraycopy(ac, &ctrl, mem, &io, TypePtr::BOTTOM, src, src_offset, dest, dest_offset, length, false);
+    }
+
+    _igvn.replace_node(_memproj_fallthrough, merge_mem);
+    _igvn.replace_node(_ioproj_fallthrough, io);
+    _igvn.replace_node(_fallthroughcatchproj, ctrl);
+    return;
+  }
+
+  //---------------------------------------------------------------------------
+  // We will make a fast path for this call to arraycopy.
+
+  // We have the following tests left to perform:
+  //
+  // (3) src and dest must not be null.
+  // (4) src_offset must not be negative.
+  // (5) dest_offset must not be negative.
+  // (6) length must not be negative.
+  // (7) src_offset + length must not exceed length of src.
+  // (8) dest_offset + length must not exceed length of dest.
+  // (9) each element of an oop array must be assignable
+
+  {
+    Node* mem = ac->in(TypeFunc::Memory);
+    merge_mem = MergeMemNode::make(mem);
+    transform_later(merge_mem);
+  }
+
+  RegionNode* slow_region = new RegionNode(1);
+  transform_later(slow_region);
+
+  if (!ac->is_arraycopy_notest()) {
+    // (3) operands must not be null
+    // We currently perform our null checks with the null_check routine.
+    // This means that the null exceptions will be reported in the caller
+    // rather than (correctly) reported inside of the native arraycopy call.
+    // This should be corrected, given time.  We do our null check with the
+    // stack pointer restored.
+    // null checks done library_call.cpp
+
+    // (4) src_offset must not be negative.
+    generate_negative_guard(&ctrl, src_offset, slow_region);
+
+    // (5) dest_offset must not be negative.
+    generate_negative_guard(&ctrl, dest_offset, slow_region);
+
+    // (6) length must not be negative (moved to generate_arraycopy()).
+    // generate_negative_guard(length, slow_region);
+
+    // (7) src_offset + length must not exceed length of src.
+    Node* r_adr =  new AddPNode(src, src, MakeConX(arrayOopDesc::length_offset_in_bytes()));
+    transform_later(r_adr);
+    Node* alen = new LoadRangeNode(0, C->immutable_memory(), r_adr, TypeInt::POS);
+    transform_later(alen);
+    generate_limit_guard(&ctrl,
+                         src_offset, length,
+                         alen,
+                         slow_region);
+
+    // (8) dest_offset + length must not exceed length of dest.
+    r_adr =  new AddPNode(dest, dest, MakeConX(arrayOopDesc::length_offset_in_bytes()));
+    transform_later(r_adr);
+    alen = new LoadRangeNode(0, C->immutable_memory(), r_adr, TypeInt::POS);
+    transform_later(alen);
+    generate_limit_guard(&ctrl,
+                         dest_offset, length,
+                         alen,
+                         slow_region);
+
+    // (9) each element of an oop array must be assignable
+    // The generate_arraycopy subroutine checks this.
+  }
+  // This is where the memory effects are placed:
+  const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
+  generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io,
+                     adr_type, dest_elem,
+                     src, src_offset, dest, dest_offset, length,
+                     false, false, slow_region);
+}