hotspot/src/share/vm/runtime/vframeArray.cpp
changeset 1 489c9b5090e2
child 3171 aa289b22b577
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/runtime/vframeArray.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,585 @@
+/*
+ * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+# include "incls/_precompiled.incl"
+# include "incls/_vframeArray.cpp.incl"
+
+
+int vframeArrayElement:: bci(void) const { return (_bci == SynchronizationEntryBCI ? 0 : _bci); }
+
+void vframeArrayElement::free_monitors(JavaThread* jt) {
+  if (_monitors != NULL) {
+     MonitorChunk* chunk = _monitors;
+     _monitors = NULL;
+     jt->remove_monitor_chunk(chunk);
+     delete chunk;
+  }
+}
+
+void vframeArrayElement::fill_in(compiledVFrame* vf) {
+
+// Copy the information from the compiled vframe to the
+// interpreter frame we will be creating to replace vf
+
+  _method = vf->method();
+  _bci    = vf->raw_bci();
+
+  int index;
+
+  // Get the monitors off-stack
+
+  GrowableArray<MonitorInfo*>* list = vf->monitors();
+  if (list->is_empty()) {
+    _monitors = NULL;
+  } else {
+
+    // Allocate monitor chunk
+    _monitors = new MonitorChunk(list->length());
+    vf->thread()->add_monitor_chunk(_monitors);
+
+    // Migrate the BasicLocks from the stack to the monitor chunk
+    for (index = 0; index < list->length(); index++) {
+      MonitorInfo* monitor = list->at(index);
+      assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased");
+      BasicObjectLock* dest = _monitors->at(index);
+      dest->set_obj(monitor->owner());
+      monitor->lock()->move_to(monitor->owner(), dest->lock());
+    }
+  }
+
+  // Convert the vframe locals and expressions to off stack
+  // values. Because we will not gc all oops can be converted to
+  // intptr_t (i.e. a stack slot) and we are fine. This is
+  // good since we are inside a HandleMark and the oops in our
+  // collection would go away between packing them here and
+  // unpacking them in unpack_on_stack.
+
+  // First the locals go off-stack
+
+  // FIXME this seems silly it creates a StackValueCollection
+  // in order to get the size to then copy them and
+  // convert the types to intptr_t size slots. Seems like it
+  // could do it in place... Still uses less memory than the
+  // old way though
+
+  StackValueCollection *locs = vf->locals();
+  _locals = new StackValueCollection(locs->size());
+  for(index = 0; index < locs->size(); index++) {
+    StackValue* value = locs->at(index);
+    switch(value->type()) {
+      case T_OBJECT:
+        // preserve object type
+        _locals->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT ));
+        break;
+      case T_CONFLICT:
+        // A dead local.  Will be initialized to null/zero.
+        _locals->add( new StackValue());
+        break;
+      case T_INT:
+        _locals->add( new StackValue(value->get_int()));
+        break;
+      default:
+        ShouldNotReachHere();
+    }
+  }
+
+  // Now the expressions off-stack
+  // Same silliness as above
+
+  StackValueCollection *exprs = vf->expressions();
+  _expressions = new StackValueCollection(exprs->size());
+  for(index = 0; index < exprs->size(); index++) {
+    StackValue* value = exprs->at(index);
+    switch(value->type()) {
+      case T_OBJECT:
+        // preserve object type
+        _expressions->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT ));
+        break;
+      case T_CONFLICT:
+        // A dead stack element.  Will be initialized to null/zero.
+        // This can occur when the compiler emits a state in which stack
+        // elements are known to be dead (because of an imminent exception).
+        _expressions->add( new StackValue());
+        break;
+      case T_INT:
+        _expressions->add( new StackValue(value->get_int()));
+        break;
+      default:
+        ShouldNotReachHere();
+    }
+  }
+}
+
+int unpack_counter = 0;
+
+void vframeArrayElement::unpack_on_stack(int callee_parameters,
+                                         int callee_locals,
+                                         frame* caller,
+                                         bool is_top_frame,
+                                         int exec_mode) {
+  JavaThread* thread = (JavaThread*) Thread::current();
+
+  // Look at bci and decide on bcp and continuation pc
+  address bcp;
+  // C++ interpreter doesn't need a pc since it will figure out what to do when it
+  // begins execution
+  address pc;
+  bool use_next_mdp; // true if we should use the mdp associated with the next bci
+                     // rather than the one associated with bcp
+  if (raw_bci() == SynchronizationEntryBCI) {
+    // We are deoptimizing while hanging in prologue code for synchronized method
+    bcp = method()->bcp_from(0); // first byte code
+    pc  = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode
+    use_next_mdp = false;
+  } else {
+    bcp = method()->bcp_from(bci());
+    pc  = Interpreter::continuation_for(method(), bcp, callee_parameters, is_top_frame, use_next_mdp);
+  }
+  assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode");
+
+  // Monitorenter and pending exceptions:
+  //
+  // For Compiler2, there should be no pending exception when deoptimizing at monitorenter
+  // because there is no safepoint at the null pointer check (it is either handled explicitly
+  // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the
+  // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER).  If an asynchronous
+  // exception was processed, the bytecode pointer would have to be extended one bytecode beyond
+  // the monitorenter to place it in the proper exception range.
+  //
+  // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter,
+  // in which case bcp should point to the monitorenter since it is within the exception's range.
+
+  assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame");
+  // TIERED Must know the compiler of the deoptee QQQ
+  COMPILER2_PRESENT(guarantee(*bcp != Bytecodes::_monitorenter || exec_mode != Deoptimization::Unpack_exception,
+                              "shouldn't get exception during monitorenter");)
+
+  int popframe_preserved_args_size_in_bytes = 0;
+  int popframe_preserved_args_size_in_words = 0;
+  if (is_top_frame) {
+  JvmtiThreadState *state = thread->jvmti_thread_state();
+    if (JvmtiExport::can_pop_frame() &&
+        (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) {
+      if (thread->has_pending_popframe()) {
+        // Pop top frame after deoptimization
+#ifndef CC_INTERP
+        pc = Interpreter::remove_activation_preserving_args_entry();
+#else
+        // Do an uncommon trap type entry. c++ interpreter will know
+        // to pop frame and preserve the args
+        pc = Interpreter::deopt_entry(vtos, 0);
+        use_next_mdp = false;
+#endif
+      } else {
+        // Reexecute invoke in top frame
+        pc = Interpreter::deopt_entry(vtos, 0);
+        use_next_mdp = false;
+        popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size());
+        // Note: the PopFrame-related extension of the expression stack size is done in
+        // Deoptimization::fetch_unroll_info_helper
+        popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words());
+      }
+    } else if (JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
+      // Force early return from top frame after deoptimization
+#ifndef CC_INTERP
+      pc = Interpreter::remove_activation_early_entry(state->earlyret_tos());
+#else
+     // TBD: Need to implement ForceEarlyReturn for CC_INTERP (ia64)
+#endif
+    } else {
+      // Possibly override the previous pc computation of the top (youngest) frame
+      switch (exec_mode) {
+      case Deoptimization::Unpack_deopt:
+        // use what we've got
+        break;
+      case Deoptimization::Unpack_exception:
+        // exception is pending
+        pc = SharedRuntime::raw_exception_handler_for_return_address(pc);
+        // [phh] We're going to end up in some handler or other, so it doesn't
+        // matter what mdp we point to.  See exception_handler_for_exception()
+        // in interpreterRuntime.cpp.
+        break;
+      case Deoptimization::Unpack_uncommon_trap:
+      case Deoptimization::Unpack_reexecute:
+        // redo last byte code
+        pc  = Interpreter::deopt_entry(vtos, 0);
+        use_next_mdp = false;
+        break;
+      default:
+        ShouldNotReachHere();
+      }
+    }
+  }
+
+  // Setup the interpreter frame
+
+  assert(method() != NULL, "method must exist");
+  int temps = expressions()->size();
+
+  int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
+
+  Interpreter::layout_activation(method(),
+                                 temps + callee_parameters,
+                                 popframe_preserved_args_size_in_words,
+                                 locks,
+                                 callee_parameters,
+                                 callee_locals,
+                                 caller,
+                                 iframe(),
+                                 is_top_frame);
+
+  // Update the pc in the frame object and overwrite the temporary pc
+  // we placed in the skeletal frame now that we finally know the
+  // exact interpreter address we should use.
+
+  _frame.patch_pc(thread, pc);
+
+  assert (!method()->is_synchronized() || locks > 0, "synchronized methods must have monitors");
+
+  BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin();
+  for (int index = 0; index < locks; index++) {
+    top = iframe()->previous_monitor_in_interpreter_frame(top);
+    BasicObjectLock* src = _monitors->at(index);
+    top->set_obj(src->obj());
+    src->lock()->move_to(src->obj(), top->lock());
+  }
+  if (ProfileInterpreter) {
+    iframe()->interpreter_frame_set_mdx(0); // clear out the mdp.
+  }
+  iframe()->interpreter_frame_set_bcx((intptr_t)bcp); // cannot use bcp because frame is not initialized yet
+  if (ProfileInterpreter) {
+    methodDataOop mdo = method()->method_data();
+    if (mdo != NULL) {
+      int bci = iframe()->interpreter_frame_bci();
+      if (use_next_mdp) ++bci;
+      address mdp = mdo->bci_to_dp(bci);
+      iframe()->interpreter_frame_set_mdp(mdp);
+    }
+  }
+
+  // Unpack expression stack
+  // If this is an intermediate frame (i.e. not top frame) then this
+  // only unpacks the part of the expression stack not used by callee
+  // as parameters. The callee parameters are unpacked as part of the
+  // callee locals.
+  int i;
+  for(i = 0; i < expressions()->size(); i++) {
+    StackValue *value = expressions()->at(i);
+    intptr_t*   addr  = iframe()->interpreter_frame_expression_stack_at(i);
+    switch(value->type()) {
+      case T_INT:
+        *addr = value->get_int();
+        break;
+      case T_OBJECT:
+        *addr = value->get_int(T_OBJECT);
+        break;
+      case T_CONFLICT:
+        // A dead stack slot.  Initialize to null in case it is an oop.
+        *addr = NULL_WORD;
+        break;
+      default:
+        ShouldNotReachHere();
+    }
+    if (TaggedStackInterpreter) {
+      // Write tag to the stack
+      iframe()->interpreter_frame_set_expression_stack_tag(i,
+                                  frame::tag_for_basic_type(value->type()));
+    }
+  }
+
+
+  // Unpack the locals
+  for(i = 0; i < locals()->size(); i++) {
+    StackValue *value = locals()->at(i);
+    intptr_t* addr  = iframe()->interpreter_frame_local_at(i);
+    switch(value->type()) {
+      case T_INT:
+        *addr = value->get_int();
+        break;
+      case T_OBJECT:
+        *addr = value->get_int(T_OBJECT);
+        break;
+      case T_CONFLICT:
+        // A dead location. If it is an oop then we need a NULL to prevent GC from following it
+        *addr = NULL_WORD;
+        break;
+      default:
+        ShouldNotReachHere();
+    }
+    if (TaggedStackInterpreter) {
+      // Write tag to stack
+      iframe()->interpreter_frame_set_local_tag(i,
+                                  frame::tag_for_basic_type(value->type()));
+    }
+  }
+
+  if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
+    // An interpreted frame was popped but it returns to a deoptimized
+    // frame. The incoming arguments to the interpreted activation
+    // were preserved in thread-local storage by the
+    // remove_activation_preserving_args_entry in the interpreter; now
+    // we put them back into the just-unpacked interpreter frame.
+    // Note that this assumes that the locals arena grows toward lower
+    // addresses.
+    if (popframe_preserved_args_size_in_words != 0) {
+      void* saved_args = thread->popframe_preserved_args();
+      assert(saved_args != NULL, "must have been saved by interpreter");
+#ifdef ASSERT
+      int stack_words = Interpreter::stackElementWords();
+      assert(popframe_preserved_args_size_in_words <=
+             iframe()->interpreter_frame_expression_stack_size()*stack_words,
+             "expression stack size should have been extended");
+#endif // ASSERT
+      int top_element = iframe()->interpreter_frame_expression_stack_size()-1;
+      intptr_t* base;
+      if (frame::interpreter_frame_expression_stack_direction() < 0) {
+        base = iframe()->interpreter_frame_expression_stack_at(top_element);
+      } else {
+        base = iframe()->interpreter_frame_expression_stack();
+      }
+      Copy::conjoint_bytes(saved_args,
+                           base,
+                           popframe_preserved_args_size_in_bytes);
+      thread->popframe_free_preserved_args();
+    }
+  }
+
+#ifndef PRODUCT
+  if (TraceDeoptimization && Verbose) {
+    ttyLocker ttyl;
+    tty->print_cr("[%d Interpreted Frame]", ++unpack_counter);
+    iframe()->print_on(tty);
+    RegisterMap map(thread);
+    vframe* f = vframe::new_vframe(iframe(), &map, thread);
+    f->print();
+    iframe()->interpreter_frame_print_on(tty);
+
+    tty->print_cr("locals size     %d", locals()->size());
+    tty->print_cr("expression size %d", expressions()->size());
+
+    method()->print_value();
+    tty->cr();
+    // method()->print_codes();
+  } else if (TraceDeoptimization) {
+    tty->print("     ");
+    method()->print_value();
+    Bytecodes::Code code = Bytecodes::java_code_at(bcp);
+    int bci = method()->bci_from(bcp);
+    tty->print(" - %s", Bytecodes::name(code));
+    tty->print(" @ bci %d ", bci);
+    tty->print_cr("sp = " PTR_FORMAT, iframe()->sp());
+  }
+#endif // PRODUCT
+
+  // The expression stack and locals are in the resource area don't leave
+  // a dangling pointer in the vframeArray we leave around for debug
+  // purposes
+
+  _locals = _expressions = NULL;
+
+}
+
+int vframeArrayElement::on_stack_size(int callee_parameters,
+                                      int callee_locals,
+                                      bool is_top_frame,
+                                      int popframe_extra_stack_expression_els) const {
+  assert(method()->max_locals() == locals()->size(), "just checking");
+  int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
+  int temps = expressions()->size();
+  return Interpreter::size_activation(method(),
+                                      temps + callee_parameters,
+                                      popframe_extra_stack_expression_els,
+                                      locks,
+                                      callee_parameters,
+                                      callee_locals,
+                                      is_top_frame);
+}
+
+
+
+vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
+                                   RegisterMap *reg_map, frame sender, frame caller, frame self) {
+
+  // Allocate the vframeArray
+  vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part
+                                                     sizeof(vframeArrayElement) * (chunk->length() - 1), // variable part
+                                                     "vframeArray::allocate");
+  result->_frames = chunk->length();
+  result->_owner_thread = thread;
+  result->_sender = sender;
+  result->_caller = caller;
+  result->_original = self;
+  result->set_unroll_block(NULL); // initialize it
+  result->fill_in(thread, frame_size, chunk, reg_map);
+  return result;
+}
+
+void vframeArray::fill_in(JavaThread* thread,
+                          int frame_size,
+                          GrowableArray<compiledVFrame*>* chunk,
+                          const RegisterMap *reg_map) {
+  // Set owner first, it is used when adding monitor chunks
+
+  _frame_size = frame_size;
+  for(int i = 0; i < chunk->length(); i++) {
+    element(i)->fill_in(chunk->at(i));
+  }
+
+  // Copy registers for callee-saved registers
+  if (reg_map != NULL) {
+    for(int i = 0; i < RegisterMap::reg_count; i++) {
+#ifdef AMD64
+      // The register map has one entry for every int (32-bit value), so
+      // 64-bit physical registers have two entries in the map, one for
+      // each half.  Ignore the high halves of 64-bit registers, just like
+      // frame::oopmapreg_to_location does.
+      //
+      // [phh] FIXME: this is a temporary hack!  This code *should* work
+      // correctly w/o this hack, possibly by changing RegisterMap::pd_location
+      // in frame_amd64.cpp and the values of the phantom high half registers
+      // in amd64.ad.
+      //      if (VMReg::Name(i) < SharedInfo::stack0 && is_even(i)) {
+        intptr_t* src = (intptr_t*) reg_map->location(VMRegImpl::as_VMReg(i));
+        _callee_registers[i] = src != NULL ? *src : NULL_WORD;
+        //      } else {
+        //      jint* src = (jint*) reg_map->location(VMReg::Name(i));
+        //      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
+        //      }
+#else
+      jint* src = (jint*) reg_map->location(VMRegImpl::as_VMReg(i));
+      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
+#endif
+      if (src == NULL) {
+        set_location_valid(i, false);
+      } else {
+        set_location_valid(i, true);
+        jint* dst = (jint*) register_location(i);
+        *dst = *src;
+      }
+    }
+  }
+}
+
+void vframeArray::unpack_to_stack(frame &unpack_frame, int exec_mode) {
+  // stack picture
+  //   unpack_frame
+  //   [new interpreter frames ] (frames are skeletal but walkable)
+  //   caller_frame
+  //
+  //  This routine fills in the missing data for the skeletal interpreter frames
+  //  in the above picture.
+
+  // Find the skeletal interpreter frames to unpack into
+  RegisterMap map(JavaThread::current(), false);
+  // Get the youngest frame we will unpack (last to be unpacked)
+  frame me = unpack_frame.sender(&map);
+  int index;
+  for (index = 0; index < frames(); index++ ) {
+    *element(index)->iframe() = me;
+    // Get the caller frame (possibly skeletal)
+    me = me.sender(&map);
+  }
+
+  frame caller_frame = me;
+
+  // Do the unpacking of interpreter frames; the frame at index 0 represents the top activation, so it has no callee
+
+  // Unpack the frames from the oldest (frames() -1) to the youngest (0)
+
+  for (index = frames() - 1; index >= 0 ; index--) {
+    int callee_parameters = index == 0 ? 0 : element(index-1)->method()->size_of_parameters();
+    int callee_locals     = index == 0 ? 0 : element(index-1)->method()->max_locals();
+    element(index)->unpack_on_stack(callee_parameters,
+                                    callee_locals,
+                                    &caller_frame,
+                                    index == 0,
+                                    exec_mode);
+    if (index == frames() - 1) {
+      Deoptimization::unwind_callee_save_values(element(index)->iframe(), this);
+    }
+    caller_frame = *element(index)->iframe();
+  }
+
+
+  deallocate_monitor_chunks();
+}
+
+void vframeArray::deallocate_monitor_chunks() {
+  JavaThread* jt = JavaThread::current();
+  for (int index = 0; index < frames(); index++ ) {
+     element(index)->free_monitors(jt);
+  }
+}
+
+#ifndef PRODUCT
+
+bool vframeArray::structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk) {
+  if (owner_thread() != thread) return false;
+  int index = 0;
+#if 0 // FIXME can't do this comparison
+
+  // Compare only within vframe array.
+  for (deoptimizedVFrame* vf = deoptimizedVFrame::cast(vframe_at(first_index())); vf; vf = vf->deoptimized_sender_or_null()) {
+    if (index >= chunk->length() || !vf->structural_compare(chunk->at(index))) return false;
+    index++;
+  }
+  if (index != chunk->length()) return false;
+#endif
+
+  return true;
+}
+
+#endif
+
+address vframeArray::register_location(int i) const {
+  assert(0 <= i && i < RegisterMap::reg_count, "index out of bounds");
+  return (address) & _callee_registers[i];
+}
+
+
+#ifndef PRODUCT
+
+// Printing
+
+// Note: we cannot have print_on as const, as we allocate inside the method
+void vframeArray::print_on_2(outputStream* st)  {
+  st->print_cr(" - sp: " INTPTR_FORMAT, sp());
+  st->print(" - thread: ");
+  Thread::current()->print();
+  st->print_cr(" - frame size: %d", frame_size());
+  for (int index = 0; index < frames() ; index++ ) {
+    element(index)->print(st);
+  }
+}
+
+void vframeArrayElement::print(outputStream* st) {
+  st->print_cr(" - interpreter_frame -> sp: ", INTPTR_FORMAT, iframe()->sp());
+}
+
+void vframeArray::print_value_on(outputStream* st) const {
+  st->print_cr("vframeArray [%d] ", frames());
+}
+
+
+#endif