hotspot/src/share/vm/runtime/sharedRuntime.cpp
changeset 1 489c9b5090e2
child 226 e4a3ef4b2665
child 189 4248c8e21063
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/runtime/sharedRuntime.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,2181 @@
+/*
+ * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_sharedRuntime.cpp.incl"
+#include <math.h>
+
+HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
+HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
+                      char*, int, char*, int, char*, int);
+HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
+                      char*, int, char*, int, char*, int);
+
+// Implementation of SharedRuntime
+
+#ifndef PRODUCT
+// For statistics
+int SharedRuntime::_ic_miss_ctr = 0;
+int SharedRuntime::_wrong_method_ctr = 0;
+int SharedRuntime::_resolve_static_ctr = 0;
+int SharedRuntime::_resolve_virtual_ctr = 0;
+int SharedRuntime::_resolve_opt_virtual_ctr = 0;
+int SharedRuntime::_implicit_null_throws = 0;
+int SharedRuntime::_implicit_div0_throws = 0;
+int SharedRuntime::_throw_null_ctr = 0;
+
+int SharedRuntime::_nof_normal_calls = 0;
+int SharedRuntime::_nof_optimized_calls = 0;
+int SharedRuntime::_nof_inlined_calls = 0;
+int SharedRuntime::_nof_megamorphic_calls = 0;
+int SharedRuntime::_nof_static_calls = 0;
+int SharedRuntime::_nof_inlined_static_calls = 0;
+int SharedRuntime::_nof_interface_calls = 0;
+int SharedRuntime::_nof_optimized_interface_calls = 0;
+int SharedRuntime::_nof_inlined_interface_calls = 0;
+int SharedRuntime::_nof_megamorphic_interface_calls = 0;
+int SharedRuntime::_nof_removable_exceptions = 0;
+
+int SharedRuntime::_new_instance_ctr=0;
+int SharedRuntime::_new_array_ctr=0;
+int SharedRuntime::_multi1_ctr=0;
+int SharedRuntime::_multi2_ctr=0;
+int SharedRuntime::_multi3_ctr=0;
+int SharedRuntime::_multi4_ctr=0;
+int SharedRuntime::_multi5_ctr=0;
+int SharedRuntime::_mon_enter_stub_ctr=0;
+int SharedRuntime::_mon_exit_stub_ctr=0;
+int SharedRuntime::_mon_enter_ctr=0;
+int SharedRuntime::_mon_exit_ctr=0;
+int SharedRuntime::_partial_subtype_ctr=0;
+int SharedRuntime::_jbyte_array_copy_ctr=0;
+int SharedRuntime::_jshort_array_copy_ctr=0;
+int SharedRuntime::_jint_array_copy_ctr=0;
+int SharedRuntime::_jlong_array_copy_ctr=0;
+int SharedRuntime::_oop_array_copy_ctr=0;
+int SharedRuntime::_checkcast_array_copy_ctr=0;
+int SharedRuntime::_unsafe_array_copy_ctr=0;
+int SharedRuntime::_generic_array_copy_ctr=0;
+int SharedRuntime::_slow_array_copy_ctr=0;
+int SharedRuntime::_find_handler_ctr=0;
+int SharedRuntime::_rethrow_ctr=0;
+
+int     SharedRuntime::_ICmiss_index                    = 0;
+int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
+address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
+
+void SharedRuntime::trace_ic_miss(address at) {
+  for (int i = 0; i < _ICmiss_index; i++) {
+    if (_ICmiss_at[i] == at) {
+      _ICmiss_count[i]++;
+      return;
+    }
+  }
+  int index = _ICmiss_index++;
+  if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
+  _ICmiss_at[index] = at;
+  _ICmiss_count[index] = 1;
+}
+
+void SharedRuntime::print_ic_miss_histogram() {
+  if (ICMissHistogram) {
+    tty->print_cr ("IC Miss Histogram:");
+    int tot_misses = 0;
+    for (int i = 0; i < _ICmiss_index; i++) {
+      tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
+      tot_misses += _ICmiss_count[i];
+    }
+    tty->print_cr ("Total IC misses: %7d", tot_misses);
+  }
+}
+#endif // PRODUCT
+
+
+JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
+  return x * y;
+JRT_END
+
+
+JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
+  if (x == min_jlong && y == CONST64(-1)) {
+    return x;
+  } else {
+    return x / y;
+  }
+JRT_END
+
+
+JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
+  if (x == min_jlong && y == CONST64(-1)) {
+    return 0;
+  } else {
+    return x % y;
+  }
+JRT_END
+
+
+const juint  float_sign_mask  = 0x7FFFFFFF;
+const juint  float_infinity   = 0x7F800000;
+const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
+const julong double_infinity  = CONST64(0x7FF0000000000000);
+
+JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
+#ifdef _WIN64
+  // 64-bit Windows on amd64 returns the wrong values for
+  // infinity operands.
+  union { jfloat f; juint i; } xbits, ybits;
+  xbits.f = x;
+  ybits.f = y;
+  // x Mod Infinity == x unless x is infinity
+  if ( ((xbits.i & float_sign_mask) != float_infinity) &&
+       ((ybits.i & float_sign_mask) == float_infinity) ) {
+    return x;
+  }
+#endif
+  return ((jfloat)fmod((double)x,(double)y));
+JRT_END
+
+
+JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
+#ifdef _WIN64
+  union { jdouble d; julong l; } xbits, ybits;
+  xbits.d = x;
+  ybits.d = y;
+  // x Mod Infinity == x unless x is infinity
+  if ( ((xbits.l & double_sign_mask) != double_infinity) &&
+       ((ybits.l & double_sign_mask) == double_infinity) ) {
+    return x;
+  }
+#endif
+  return ((jdouble)fmod((double)x,(double)y));
+JRT_END
+
+
+JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
+  if (g_isnan(x)) {return 0;}
+  jlong lltmp = (jlong)x;
+  jint ltmp   = (jint)lltmp;
+  if (ltmp == lltmp) {
+    return ltmp;
+  } else {
+    if (x < 0) {
+      return min_jint;
+    } else {
+      return max_jint;
+    }
+  }
+JRT_END
+
+
+JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
+  if (g_isnan(x)) {return 0;}
+  jlong lltmp = (jlong)x;
+  if (lltmp != min_jlong) {
+    return lltmp;
+  } else {
+    if (x < 0) {
+      return min_jlong;
+    } else {
+      return max_jlong;
+    }
+  }
+JRT_END
+
+
+JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
+  if (g_isnan(x)) {return 0;}
+  jlong lltmp = (jlong)x;
+  jint ltmp   = (jint)lltmp;
+  if (ltmp == lltmp) {
+    return ltmp;
+  } else {
+    if (x < 0) {
+      return min_jint;
+    } else {
+      return max_jint;
+    }
+  }
+JRT_END
+
+
+JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
+  if (g_isnan(x)) {return 0;}
+  jlong lltmp = (jlong)x;
+  if (lltmp != min_jlong) {
+    return lltmp;
+  } else {
+    if (x < 0) {
+      return min_jlong;
+    } else {
+      return max_jlong;
+    }
+  }
+JRT_END
+
+
+JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
+  return (jfloat)x;
+JRT_END
+
+
+JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
+  return (jfloat)x;
+JRT_END
+
+
+JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
+  return (jdouble)x;
+JRT_END
+
+// Exception handling accross interpreter/compiler boundaries
+//
+// exception_handler_for_return_address(...) returns the continuation address.
+// The continuation address is the entry point of the exception handler of the
+// previous frame depending on the return address.
+
+address SharedRuntime::raw_exception_handler_for_return_address(address return_address) {
+  assert(frame::verify_return_pc(return_address), "must be a return pc");
+
+  // the fastest case first
+  CodeBlob* blob = CodeCache::find_blob(return_address);
+  if (blob != NULL && blob->is_nmethod()) {
+    nmethod* code = (nmethod*)blob;
+    assert(code != NULL, "nmethod must be present");
+    // native nmethods don't have exception handlers
+    assert(!code->is_native_method(), "no exception handler");
+    assert(code->header_begin() != code->exception_begin(), "no exception handler");
+    if (code->is_deopt_pc(return_address)) {
+      return SharedRuntime::deopt_blob()->unpack_with_exception();
+    } else {
+      return code->exception_begin();
+    }
+  }
+
+  // Entry code
+  if (StubRoutines::returns_to_call_stub(return_address)) {
+    return StubRoutines::catch_exception_entry();
+  }
+  // Interpreted code
+  if (Interpreter::contains(return_address)) {
+    return Interpreter::rethrow_exception_entry();
+  }
+
+  // Compiled code
+  if (CodeCache::contains(return_address)) {
+    CodeBlob* blob = CodeCache::find_blob(return_address);
+    if (blob->is_nmethod()) {
+      nmethod* code = (nmethod*)blob;
+      assert(code != NULL, "nmethod must be present");
+      assert(code->header_begin() != code->exception_begin(), "no exception handler");
+      return code->exception_begin();
+    }
+    if (blob->is_runtime_stub()) {
+      ShouldNotReachHere();   // callers are responsible for skipping runtime stub frames
+    }
+  }
+  guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
+#ifndef PRODUCT
+  { ResourceMark rm;
+    tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
+    tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
+    tty->print_cr("b) other problem");
+  }
+#endif // PRODUCT
+  ShouldNotReachHere();
+  return NULL;
+}
+
+
+JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(address return_address))
+  return raw_exception_handler_for_return_address(return_address);
+JRT_END
+
+address SharedRuntime::get_poll_stub(address pc) {
+  address stub;
+  // Look up the code blob
+  CodeBlob *cb = CodeCache::find_blob(pc);
+
+  // Should be an nmethod
+  assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
+
+  // Look up the relocation information
+  assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
+    "safepoint polling: type must be poll" );
+
+  assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
+    "Only polling locations are used for safepoint");
+
+  bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
+  if (at_poll_return) {
+    assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
+           "polling page return stub not created yet");
+    stub = SharedRuntime::polling_page_return_handler_blob()->instructions_begin();
+  } else {
+    assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
+           "polling page safepoint stub not created yet");
+    stub = SharedRuntime::polling_page_safepoint_handler_blob()->instructions_begin();
+  }
+#ifndef PRODUCT
+  if( TraceSafepoint ) {
+    char buf[256];
+    jio_snprintf(buf, sizeof(buf),
+                 "... found polling page %s exception at pc = "
+                 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
+                 at_poll_return ? "return" : "loop",
+                 (intptr_t)pc, (intptr_t)stub);
+    tty->print_raw_cr(buf);
+  }
+#endif // PRODUCT
+  return stub;
+}
+
+
+oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
+  assert(caller.is_interpreted_frame(), "");
+  int args_size = ArgumentSizeComputer(sig).size() + 1;
+  assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
+  oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
+  assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
+  return result;
+}
+
+
+void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
+  if (JvmtiExport::can_post_exceptions()) {
+    vframeStream vfst(thread, true);
+    methodHandle method = methodHandle(thread, vfst.method());
+    address bcp = method()->bcp_from(vfst.bci());
+    JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
+  }
+  Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
+}
+
+void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
+  Handle h_exception = Exceptions::new_exception(thread, name, message);
+  throw_and_post_jvmti_exception(thread, h_exception);
+}
+
+// ret_pc points into caller; we are returning caller's exception handler
+// for given exception
+address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
+                                                    bool force_unwind, bool top_frame_only) {
+  assert(nm != NULL, "must exist");
+  ResourceMark rm;
+
+  ScopeDesc* sd = nm->scope_desc_at(ret_pc);
+  // determine handler bci, if any
+  EXCEPTION_MARK;
+
+  int handler_bci = -1;
+  int scope_depth = 0;
+  if (!force_unwind) {
+    int bci = sd->bci();
+    do {
+      bool skip_scope_increment = false;
+      // exception handler lookup
+      KlassHandle ek (THREAD, exception->klass());
+      handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
+      if (HAS_PENDING_EXCEPTION) {
+        // We threw an exception while trying to find the exception handler.
+        // Transfer the new exception to the exception handle which will
+        // be set into thread local storage, and do another lookup for an
+        // exception handler for this exception, this time starting at the
+        // BCI of the exception handler which caused the exception to be
+        // thrown (bugs 4307310 and 4546590). Set "exception" reference
+        // argument to ensure that the correct exception is thrown (4870175).
+        exception = Handle(THREAD, PENDING_EXCEPTION);
+        CLEAR_PENDING_EXCEPTION;
+        if (handler_bci >= 0) {
+          bci = handler_bci;
+          handler_bci = -1;
+          skip_scope_increment = true;
+        }
+      }
+      if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
+        sd = sd->sender();
+        if (sd != NULL) {
+          bci = sd->bci();
+        }
+        ++scope_depth;
+      }
+    } while (!top_frame_only && handler_bci < 0 && sd != NULL);
+  }
+
+  // found handling method => lookup exception handler
+  int catch_pco = ret_pc - nm->instructions_begin();
+
+  ExceptionHandlerTable table(nm);
+  HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
+  if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
+    // Allow abbreviated catch tables.  The idea is to allow a method
+    // to materialize its exceptions without committing to the exact
+    // routing of exceptions.  In particular this is needed for adding
+    // a synthethic handler to unlock monitors when inlining
+    // synchonized methods since the unlock path isn't represented in
+    // the bytecodes.
+    t = table.entry_for(catch_pco, -1, 0);
+  }
+
+#ifdef COMPILER1
+  if (nm->is_compiled_by_c1() && t == NULL && handler_bci == -1) {
+    // Exception is not handled by this frame so unwind.  Note that
+    // this is not the same as how C2 does this.  C2 emits a table
+    // entry that dispatches to the unwind code in the nmethod.
+    return NULL;
+  }
+#endif /* COMPILER1 */
+
+
+  if (t == NULL) {
+    tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
+    tty->print_cr("   Exception:");
+    exception->print();
+    tty->cr();
+    tty->print_cr(" Compiled exception table :");
+    table.print();
+    nm->print_code();
+    guarantee(false, "missing exception handler");
+    return NULL;
+  }
+
+  return nm->instructions_begin() + t->pco();
+}
+
+JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
+  // These errors occur only at call sites
+  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
+JRT_END
+
+JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
+  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
+JRT_END
+
+JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
+  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
+JRT_END
+
+JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
+  // This entry point is effectively only used for NullPointerExceptions which occur at inline
+  // cache sites (when the callee activation is not yet set up) so we are at a call site
+  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
+JRT_END
+
+JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
+  // We avoid using the normal exception construction in this case because
+  // it performs an upcall to Java, and we're already out of stack space.
+  klassOop k = SystemDictionary::StackOverflowError_klass();
+  oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
+  Handle exception (thread, exception_oop);
+  if (StackTraceInThrowable) {
+    java_lang_Throwable::fill_in_stack_trace(exception);
+  }
+  throw_and_post_jvmti_exception(thread, exception);
+JRT_END
+
+address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
+                                                           address pc,
+                                                           SharedRuntime::ImplicitExceptionKind exception_kind)
+{
+  address target_pc = NULL;
+
+  if (Interpreter::contains(pc)) {
+#ifdef CC_INTERP
+    // C++ interpreter doesn't throw implicit exceptions
+    ShouldNotReachHere();
+#else
+    switch (exception_kind) {
+      case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
+      case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
+      case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
+      default:                      ShouldNotReachHere();
+    }
+#endif // !CC_INTERP
+  } else {
+    switch (exception_kind) {
+      case STACK_OVERFLOW: {
+        // Stack overflow only occurs upon frame setup; the callee is
+        // going to be unwound. Dispatch to a shared runtime stub
+        // which will cause the StackOverflowError to be fabricated
+        // and processed.
+        // For stack overflow in deoptimization blob, cleanup thread.
+        if (thread->deopt_mark() != NULL) {
+          Deoptimization::cleanup_deopt_info(thread, NULL);
+        }
+        return StubRoutines::throw_StackOverflowError_entry();
+      }
+
+      case IMPLICIT_NULL: {
+        if (VtableStubs::contains(pc)) {
+          // We haven't yet entered the callee frame. Fabricate an
+          // exception and begin dispatching it in the caller. Since
+          // the caller was at a call site, it's safe to destroy all
+          // caller-saved registers, as these entry points do.
+          VtableStub* vt_stub = VtableStubs::stub_containing(pc);
+          guarantee(vt_stub != NULL, "unable to find SEGVing vtable stub");
+          if (vt_stub->is_abstract_method_error(pc)) {
+            assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
+            return StubRoutines::throw_AbstractMethodError_entry();
+          } else {
+            return StubRoutines::throw_NullPointerException_at_call_entry();
+          }
+        } else {
+          CodeBlob* cb = CodeCache::find_blob(pc);
+          guarantee(cb != NULL, "exception happened outside interpreter, nmethods and vtable stubs (1)");
+
+          // Exception happened in CodeCache. Must be either:
+          // 1. Inline-cache check in C2I handler blob,
+          // 2. Inline-cache check in nmethod, or
+          // 3. Implict null exception in nmethod
+
+          if (!cb->is_nmethod()) {
+            guarantee(cb->is_adapter_blob(),
+                      "exception happened outside interpreter, nmethods and vtable stubs (2)");
+            // There is no handler here, so we will simply unwind.
+            return StubRoutines::throw_NullPointerException_at_call_entry();
+          }
+
+          // Otherwise, it's an nmethod.  Consult its exception handlers.
+          nmethod* nm = (nmethod*)cb;
+          if (nm->inlinecache_check_contains(pc)) {
+            // exception happened inside inline-cache check code
+            // => the nmethod is not yet active (i.e., the frame
+            // is not set up yet) => use return address pushed by
+            // caller => don't push another return address
+            return StubRoutines::throw_NullPointerException_at_call_entry();
+          }
+
+#ifndef PRODUCT
+          _implicit_null_throws++;
+#endif
+          target_pc = nm->continuation_for_implicit_exception(pc);
+          guarantee(target_pc != 0, "must have a continuation point");
+        }
+
+        break; // fall through
+      }
+
+
+      case IMPLICIT_DIVIDE_BY_ZERO: {
+        nmethod* nm = CodeCache::find_nmethod(pc);
+        guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
+#ifndef PRODUCT
+        _implicit_div0_throws++;
+#endif
+        target_pc = nm->continuation_for_implicit_exception(pc);
+        guarantee(target_pc != 0, "must have a continuation point");
+        break; // fall through
+      }
+
+      default: ShouldNotReachHere();
+    }
+
+    guarantee(target_pc != NULL, "must have computed destination PC for implicit exception");
+    assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
+
+    // for AbortVMOnException flag
+    NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
+    if (exception_kind == IMPLICIT_NULL) {
+      Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
+    } else {
+      Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
+    }
+    return target_pc;
+  }
+
+  ShouldNotReachHere();
+  return NULL;
+}
+
+
+JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
+{
+  THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
+}
+JNI_END
+
+
+address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
+  return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
+}
+
+
+#ifndef PRODUCT
+JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
+  const frame f = thread->last_frame();
+  assert(f.is_interpreted_frame(), "must be an interpreted frame");
+#ifndef PRODUCT
+  methodHandle mh(THREAD, f.interpreter_frame_method());
+  BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
+#endif // !PRODUCT
+  return preserve_this_value;
+JRT_END
+#endif // !PRODUCT
+
+
+JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
+  os::yield_all(attempts);
+JRT_END
+
+
+// ---------------------------------------------------------------------------------------------------------
+// Non-product code
+#ifndef PRODUCT
+
+void SharedRuntime::verify_caller_frame(frame caller_frame, methodHandle callee_method) {
+  ResourceMark rm;
+  assert (caller_frame.is_interpreted_frame(), "sanity check");
+  assert (callee_method->has_compiled_code(), "callee must be compiled");
+  methodHandle caller_method (Thread::current(), caller_frame.interpreter_frame_method());
+  jint bci = caller_frame.interpreter_frame_bci();
+  methodHandle method = find_callee_method_inside_interpreter(caller_frame, caller_method, bci);
+  assert (callee_method == method, "incorrect method");
+}
+
+methodHandle SharedRuntime::find_callee_method_inside_interpreter(frame caller_frame, methodHandle caller_method, int bci) {
+  EXCEPTION_MARK;
+  Bytecode_invoke* bytecode = Bytecode_invoke_at(caller_method, bci);
+  methodHandle staticCallee = bytecode->static_target(CATCH); // Non-product code
+
+  bytecode = Bytecode_invoke_at(caller_method, bci);
+  int bytecode_index = bytecode->index();
+  Bytecodes::Code bc = bytecode->adjusted_invoke_code();
+
+  Handle receiver;
+  if (bc == Bytecodes::_invokeinterface ||
+      bc == Bytecodes::_invokevirtual ||
+      bc == Bytecodes::_invokespecial) {
+    symbolHandle signature (THREAD, staticCallee->signature());
+    receiver = Handle(THREAD, retrieve_receiver(signature, caller_frame));
+  } else {
+    receiver = Handle();
+  }
+  CallInfo result;
+  constantPoolHandle constants (THREAD, caller_method->constants());
+  LinkResolver::resolve_invoke(result, receiver, constants, bytecode_index, bc, CATCH); // Non-product code
+  methodHandle calleeMethod = result.selected_method();
+  return calleeMethod;
+}
+
+#endif  // PRODUCT
+
+
+JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
+  assert(obj->is_oop(), "must be a valid oop");
+  assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
+  instanceKlass::register_finalizer(instanceOop(obj), CHECK);
+JRT_END
+
+
+jlong SharedRuntime::get_java_tid(Thread* thread) {
+  if (thread != NULL) {
+    if (thread->is_Java_thread()) {
+      oop obj = ((JavaThread*)thread)->threadObj();
+      return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
+    }
+  }
+  return 0;
+}
+
+/**
+ * This function ought to be a void function, but cannot be because
+ * it gets turned into a tail-call on sparc, which runs into dtrace bug
+ * 6254741.  Once that is fixed we can remove the dummy return value.
+ */
+int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
+  return dtrace_object_alloc_base(Thread::current(), o);
+}
+
+int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
+  assert(DTraceAllocProbes, "wrong call");
+  Klass* klass = o->blueprint();
+  int size = o->size();
+  symbolOop name = klass->name();
+  HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
+                   name->bytes(), name->utf8_length(), size * HeapWordSize);
+  return 0;
+}
+
+JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
+    JavaThread* thread, methodOopDesc* method))
+  assert(DTraceMethodProbes, "wrong call");
+  symbolOop kname = method->klass_name();
+  symbolOop name = method->name();
+  symbolOop sig = method->signature();
+  HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
+      kname->bytes(), kname->utf8_length(),
+      name->bytes(), name->utf8_length(),
+      sig->bytes(), sig->utf8_length());
+  return 0;
+JRT_END
+
+JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
+    JavaThread* thread, methodOopDesc* method))
+  assert(DTraceMethodProbes, "wrong call");
+  symbolOop kname = method->klass_name();
+  symbolOop name = method->name();
+  symbolOop sig = method->signature();
+  HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
+      kname->bytes(), kname->utf8_length(),
+      name->bytes(), name->utf8_length(),
+      sig->bytes(), sig->utf8_length());
+  return 0;
+JRT_END
+
+
+// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
+// for a call current in progress, i.e., arguments has been pushed on stack
+// put callee has not been invoked yet.  Used by: resolve virtual/static,
+// vtable updates, etc.  Caller frame must be compiled.
+Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
+  ResourceMark rm(THREAD);
+
+  // last java frame on stack (which includes native call frames)
+  vframeStream vfst(thread, true);  // Do not skip and javaCalls
+
+  return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
+}
+
+
+// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
+// for a call current in progress, i.e., arguments has been pushed on stack
+// but callee has not been invoked yet.  Caller frame must be compiled.
+Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
+                                              vframeStream& vfst,
+                                              Bytecodes::Code& bc,
+                                              CallInfo& callinfo, TRAPS) {
+  Handle receiver;
+  Handle nullHandle;  //create a handy null handle for exception returns
+
+  assert(!vfst.at_end(), "Java frame must exist");
+
+  // Find caller and bci from vframe
+  methodHandle caller (THREAD, vfst.method());
+  int          bci    = vfst.bci();
+
+  // Find bytecode
+  Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
+  bc = bytecode->adjusted_invoke_code();
+  int bytecode_index = bytecode->index();
+
+  // Find receiver for non-static call
+  if (bc != Bytecodes::_invokestatic) {
+    // This register map must be update since we need to find the receiver for
+    // compiled frames. The receiver might be in a register.
+    RegisterMap reg_map2(thread);
+    frame stubFrame   = thread->last_frame();
+    // Caller-frame is a compiled frame
+    frame callerFrame = stubFrame.sender(&reg_map2);
+
+    methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
+    if (callee.is_null()) {
+      THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
+    }
+    // Retrieve from a compiled argument list
+    receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
+
+    if (receiver.is_null()) {
+      THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
+    }
+  }
+
+  // Resolve method. This is parameterized by bytecode.
+  constantPoolHandle constants (THREAD, caller->constants());
+  assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
+  LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
+
+#ifdef ASSERT
+  // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
+  if (bc != Bytecodes::_invokestatic) {
+    assert(receiver.not_null(), "should have thrown exception");
+    KlassHandle receiver_klass (THREAD, receiver->klass());
+    klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
+                            // klass is already loaded
+    KlassHandle static_receiver_klass (THREAD, rk);
+    assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
+    if (receiver_klass->oop_is_instance()) {
+      if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
+        tty->print_cr("ERROR: Klass not yet initialized!!");
+        receiver_klass.print();
+      }
+      assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
+    }
+  }
+#endif
+
+  return receiver;
+}
+
+methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
+  ResourceMark rm(THREAD);
+  // We need first to check if any Java activations (compiled, interpreted)
+  // exist on the stack since last JavaCall.  If not, we need
+  // to get the target method from the JavaCall wrapper.
+  vframeStream vfst(thread, true);  // Do not skip any javaCalls
+  methodHandle callee_method;
+  if (vfst.at_end()) {
+    // No Java frames were found on stack since we did the JavaCall.
+    // Hence the stack can only contain an entry_frame.  We need to
+    // find the target method from the stub frame.
+    RegisterMap reg_map(thread, false);
+    frame fr = thread->last_frame();
+    assert(fr.is_runtime_frame(), "must be a runtimeStub");
+    fr = fr.sender(&reg_map);
+    assert(fr.is_entry_frame(), "must be");
+    // fr is now pointing to the entry frame.
+    callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
+    assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
+  } else {
+    Bytecodes::Code bc;
+    CallInfo callinfo;
+    find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
+    callee_method = callinfo.selected_method();
+  }
+  assert(callee_method()->is_method(), "must be");
+  return callee_method;
+}
+
+// Resolves a call.
+methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
+                                           bool is_virtual,
+                                           bool is_optimized, TRAPS) {
+  methodHandle callee_method;
+  callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
+  if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
+    int retry_count = 0;
+    while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
+           callee_method->method_holder() != SystemDictionary::object_klass()) {
+      // If has a pending exception then there is no need to re-try to
+      // resolve this method.
+      // If the method has been redefined, we need to try again.
+      // Hack: we have no way to update the vtables of arrays, so don't
+      // require that java.lang.Object has been updated.
+
+      // It is very unlikely that method is redefined more than 100 times
+      // in the middle of resolve. If it is looping here more than 100 times
+      // means then there could be a bug here.
+      guarantee((retry_count++ < 100),
+                "Could not resolve to latest version of redefined method");
+      // method is redefined in the middle of resolve so re-try.
+      callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
+    }
+  }
+  return callee_method;
+}
+
+// Resolves a call.  The compilers generate code for calls that go here
+// and are patched with the real destination of the call.
+methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
+                                           bool is_virtual,
+                                           bool is_optimized, TRAPS) {
+
+  ResourceMark rm(thread);
+  RegisterMap cbl_map(thread, false);
+  frame caller_frame = thread->last_frame().sender(&cbl_map);
+
+  CodeBlob* cb = caller_frame.cb();
+  guarantee(cb != NULL && cb->is_nmethod(), "must be called from nmethod");
+  // make sure caller is not getting deoptimized
+  // and removed before we are done with it.
+  // CLEANUP - with lazy deopt shouldn't need this lock
+  nmethodLocker caller_lock((nmethod*)cb);
+
+
+  // determine call info & receiver
+  // note: a) receiver is NULL for static calls
+  //       b) an exception is thrown if receiver is NULL for non-static calls
+  CallInfo call_info;
+  Bytecodes::Code invoke_code = Bytecodes::_illegal;
+  Handle receiver = find_callee_info(thread, invoke_code,
+                                     call_info, CHECK_(methodHandle()));
+  methodHandle callee_method = call_info.selected_method();
+
+  assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
+         ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
+
+#ifndef PRODUCT
+  // tracing/debugging/statistics
+  int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
+                (is_virtual) ? (&_resolve_virtual_ctr) :
+                               (&_resolve_static_ctr);
+  Atomic::inc(addr);
+
+  if (TraceCallFixup) {
+    ResourceMark rm(thread);
+    tty->print("resolving %s%s (%s) call to",
+      (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
+      Bytecodes::name(invoke_code));
+    callee_method->print_short_name(tty);
+    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
+  }
+#endif
+
+  // Compute entry points. This might require generation of C2I converter
+  // frames, so we cannot be holding any locks here. Furthermore, the
+  // computation of the entry points is independent of patching the call.  We
+  // always return the entry-point, but we only patch the stub if the call has
+  // not been deoptimized.  Return values: For a virtual call this is an
+  // (cached_oop, destination address) pair. For a static call/optimized
+  // virtual this is just a destination address.
+
+  StaticCallInfo static_call_info;
+  CompiledICInfo virtual_call_info;
+
+
+  // Make sure the callee nmethod does not get deoptimized and removed before
+  // we are done patching the code.
+  nmethod* nm = callee_method->code();
+  nmethodLocker nl_callee(nm);
+#ifdef ASSERT
+  address dest_entry_point = nm == NULL ? 0 : nm->entry_point(); // used below
+#endif
+
+  if (is_virtual) {
+    assert(receiver.not_null(), "sanity check");
+    bool static_bound = call_info.resolved_method()->can_be_statically_bound();
+    KlassHandle h_klass(THREAD, receiver->klass());
+    CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
+                     is_optimized, static_bound, virtual_call_info,
+                     CHECK_(methodHandle()));
+  } else {
+    // static call
+    CompiledStaticCall::compute_entry(callee_method, static_call_info);
+  }
+
+  // grab lock, check for deoptimization and potentially patch caller
+  {
+    MutexLocker ml_patch(CompiledIC_lock);
+
+    // Now that we are ready to patch if the methodOop was redefined then
+    // don't update call site and let the caller retry.
+
+    if (!callee_method->is_old()) {
+#ifdef ASSERT
+      // We must not try to patch to jump to an already unloaded method.
+      if (dest_entry_point != 0) {
+        assert(CodeCache::find_blob(dest_entry_point) != NULL,
+               "should not unload nmethod while locked");
+      }
+#endif
+      if (is_virtual) {
+        CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
+        if (inline_cache->is_clean()) {
+          inline_cache->set_to_monomorphic(virtual_call_info);
+        }
+      } else {
+        CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
+        if (ssc->is_clean()) ssc->set(static_call_info);
+      }
+    }
+
+  } // unlock CompiledIC_lock
+
+  return callee_method;
+}
+
+
+// Inline caches exist only in compiled code
+JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
+#ifdef ASSERT
+  RegisterMap reg_map(thread, false);
+  frame stub_frame = thread->last_frame();
+  assert(stub_frame.is_runtime_frame(), "sanity check");
+  frame caller_frame = stub_frame.sender(&reg_map);
+  assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
+#endif /* ASSERT */
+
+  methodHandle callee_method;
+  JRT_BLOCK
+    callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
+    // Return methodOop through TLS
+    thread->set_vm_result(callee_method());
+  JRT_BLOCK_END
+  // return compiled code entry point after potential safepoints
+  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
+  return callee_method->verified_code_entry();
+JRT_END
+
+
+// Handle call site that has been made non-entrant
+JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
+  // 6243940 We might end up in here if the callee is deoptimized
+  // as we race to call it.  We don't want to take a safepoint if
+  // the caller was interpreted because the caller frame will look
+  // interpreted to the stack walkers and arguments are now
+  // "compiled" so it is much better to make this transition
+  // invisible to the stack walking code. The i2c path will
+  // place the callee method in the callee_target. It is stashed
+  // there because if we try and find the callee by normal means a
+  // safepoint is possible and have trouble gc'ing the compiled args.
+  RegisterMap reg_map(thread, false);
+  frame stub_frame = thread->last_frame();
+  assert(stub_frame.is_runtime_frame(), "sanity check");
+  frame caller_frame = stub_frame.sender(&reg_map);
+  if (caller_frame.is_interpreted_frame() || caller_frame.is_entry_frame() ) {
+    methodOop callee = thread->callee_target();
+    guarantee(callee != NULL && callee->is_method(), "bad handshake");
+    thread->set_vm_result(callee);
+    thread->set_callee_target(NULL);
+    return callee->get_c2i_entry();
+  }
+
+  // Must be compiled to compiled path which is safe to stackwalk
+  methodHandle callee_method;
+  JRT_BLOCK
+    // Force resolving of caller (if we called from compiled frame)
+    callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
+    thread->set_vm_result(callee_method());
+  JRT_BLOCK_END
+  // return compiled code entry point after potential safepoints
+  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
+  return callee_method->verified_code_entry();
+JRT_END
+
+
+// resolve a static call and patch code
+JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
+  methodHandle callee_method;
+  JRT_BLOCK
+    callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
+    thread->set_vm_result(callee_method());
+  JRT_BLOCK_END
+  // return compiled code entry point after potential safepoints
+  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
+  return callee_method->verified_code_entry();
+JRT_END
+
+
+// resolve virtual call and update inline cache to monomorphic
+JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
+  methodHandle callee_method;
+  JRT_BLOCK
+    callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
+    thread->set_vm_result(callee_method());
+  JRT_BLOCK_END
+  // return compiled code entry point after potential safepoints
+  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
+  return callee_method->verified_code_entry();
+JRT_END
+
+
+// Resolve a virtual call that can be statically bound (e.g., always
+// monomorphic, so it has no inline cache).  Patch code to resolved target.
+JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
+  methodHandle callee_method;
+  JRT_BLOCK
+    callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
+    thread->set_vm_result(callee_method());
+  JRT_BLOCK_END
+  // return compiled code entry point after potential safepoints
+  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
+  return callee_method->verified_code_entry();
+JRT_END
+
+
+
+
+
+methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
+  ResourceMark rm(thread);
+  CallInfo call_info;
+  Bytecodes::Code bc;
+
+  // receiver is NULL for static calls. An exception is thrown for NULL
+  // receivers for non-static calls
+  Handle receiver = find_callee_info(thread, bc, call_info,
+                                     CHECK_(methodHandle()));
+  // Compiler1 can produce virtual call sites that can actually be statically bound
+  // If we fell thru to below we would think that the site was going megamorphic
+  // when in fact the site can never miss. Worse because we'd think it was megamorphic
+  // we'd try and do a vtable dispatch however methods that can be statically bound
+  // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
+  // reresolution of the  call site (as if we did a handle_wrong_method and not an
+  // plain ic_miss) and the site will be converted to an optimized virtual call site
+  // never to miss again. I don't believe C2 will produce code like this but if it
+  // did this would still be the correct thing to do for it too, hence no ifdef.
+  //
+  if (call_info.resolved_method()->can_be_statically_bound()) {
+    methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
+    if (TraceCallFixup) {
+      RegisterMap reg_map(thread, false);
+      frame caller_frame = thread->last_frame().sender(&reg_map);
+      ResourceMark rm(thread);
+      tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
+      callee_method->print_short_name(tty);
+      tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
+      tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
+    }
+    return callee_method;
+  }
+
+  methodHandle callee_method = call_info.selected_method();
+
+  bool should_be_mono = false;
+
+#ifndef PRODUCT
+  Atomic::inc(&_ic_miss_ctr);
+
+  // Statistics & Tracing
+  if (TraceCallFixup) {
+    ResourceMark rm(thread);
+    tty->print("IC miss (%s) call to", Bytecodes::name(bc));
+    callee_method->print_short_name(tty);
+    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
+  }
+
+  if (ICMissHistogram) {
+    MutexLocker m(VMStatistic_lock);
+    RegisterMap reg_map(thread, false);
+    frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
+    // produce statistics under the lock
+    trace_ic_miss(f.pc());
+  }
+#endif
+
+  // install an event collector so that when a vtable stub is created the
+  // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
+  // event can't be posted when the stub is created as locks are held
+  // - instead the event will be deferred until the event collector goes
+  // out of scope.
+  JvmtiDynamicCodeEventCollector event_collector;
+
+  // Update inline cache to megamorphic. Skip update if caller has been
+  // made non-entrant or we are called from interpreted.
+  { MutexLocker ml_patch (CompiledIC_lock);
+    RegisterMap reg_map(thread, false);
+    frame caller_frame = thread->last_frame().sender(&reg_map);
+    CodeBlob* cb = caller_frame.cb();
+    if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
+      // Not a non-entrant nmethod, so find inline_cache
+      CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
+      bool should_be_mono = false;
+      if (inline_cache->is_optimized()) {
+        if (TraceCallFixup) {
+          ResourceMark rm(thread);
+          tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
+          callee_method->print_short_name(tty);
+          tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
+        }
+        should_be_mono = true;
+      } else {
+        compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
+        if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
+
+          if (receiver()->klass() == ic_oop->holder_klass()) {
+            // This isn't a real miss. We must have seen that compiled code
+            // is now available and we want the call site converted to a
+            // monomorphic compiled call site.
+            // We can't assert for callee_method->code() != NULL because it
+            // could have been deoptimized in the meantime
+            if (TraceCallFixup) {
+              ResourceMark rm(thread);
+              tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
+              callee_method->print_short_name(tty);
+              tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
+            }
+            should_be_mono = true;
+          }
+        }
+      }
+
+      if (should_be_mono) {
+
+        // We have a path that was monomorphic but was going interpreted
+        // and now we have (or had) a compiled entry. We correct the IC
+        // by using a new icBuffer.
+        CompiledICInfo info;
+        KlassHandle receiver_klass(THREAD, receiver()->klass());
+        inline_cache->compute_monomorphic_entry(callee_method,
+                                                receiver_klass,
+                                                inline_cache->is_optimized(),
+                                                false,
+                                                info, CHECK_(methodHandle()));
+        inline_cache->set_to_monomorphic(info);
+      } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
+        // Change to megamorphic
+        inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
+      } else {
+        // Either clean or megamorphic
+      }
+    }
+  } // Release CompiledIC_lock
+
+  return callee_method;
+}
+
+//
+// Resets a call-site in compiled code so it will get resolved again.
+// This routines handles both virtual call sites, optimized virtual call
+// sites, and static call sites. Typically used to change a call sites
+// destination from compiled to interpreted.
+//
+methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
+  ResourceMark rm(thread);
+  RegisterMap reg_map(thread, false);
+  frame stub_frame = thread->last_frame();
+  assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
+  frame caller = stub_frame.sender(&reg_map);
+
+  // Do nothing if the frame isn't a live compiled frame.
+  // nmethod could be deoptimized by the time we get here
+  // so no update to the caller is needed.
+
+  if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
+
+    address pc = caller.pc();
+    Events::log("update call-site at pc " INTPTR_FORMAT, pc);
+
+    // Default call_addr is the location of the "basic" call.
+    // Determine the address of the call we a reresolving. With
+    // Inline Caches we will always find a recognizable call.
+    // With Inline Caches disabled we may or may not find a
+    // recognizable call. We will always find a call for static
+    // calls and for optimized virtual calls. For vanilla virtual
+    // calls it depends on the state of the UseInlineCaches switch.
+    //
+    // With Inline Caches disabled we can get here for a virtual call
+    // for two reasons:
+    //   1 - calling an abstract method. The vtable for abstract methods
+    //       will run us thru handle_wrong_method and we will eventually
+    //       end up in the interpreter to throw the ame.
+    //   2 - a racing deoptimization. We could be doing a vanilla vtable
+    //       call and between the time we fetch the entry address and
+    //       we jump to it the target gets deoptimized. Similar to 1
+    //       we will wind up in the interprter (thru a c2i with c2).
+    //
+    address call_addr = NULL;
+    {
+      // Get call instruction under lock because another thread may be
+      // busy patching it.
+      MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
+      // Location of call instruction
+      if (NativeCall::is_call_before(pc)) {
+        NativeCall *ncall = nativeCall_before(pc);
+        call_addr = ncall->instruction_address();
+      }
+    }
+
+    // Check for static or virtual call
+    bool is_static_call = false;
+    nmethod* caller_nm = CodeCache::find_nmethod(pc);
+    // Make sure nmethod doesn't get deoptimized and removed until
+    // this is done with it.
+    // CLEANUP - with lazy deopt shouldn't need this lock
+    nmethodLocker nmlock(caller_nm);
+
+    if (call_addr != NULL) {
+      RelocIterator iter(caller_nm, call_addr, call_addr+1);
+      int ret = iter.next(); // Get item
+      if (ret) {
+        assert(iter.addr() == call_addr, "must find call");
+        if (iter.type() == relocInfo::static_call_type) {
+          is_static_call = true;
+        } else {
+          assert(iter.type() == relocInfo::virtual_call_type ||
+                 iter.type() == relocInfo::opt_virtual_call_type
+                , "unexpected relocInfo. type");
+        }
+      } else {
+        assert(!UseInlineCaches, "relocation info. must exist for this address");
+      }
+
+      // Cleaning the inline cache will force a new resolve. This is more robust
+      // than directly setting it to the new destination, since resolving of calls
+      // is always done through the same code path. (experience shows that it
+      // leads to very hard to track down bugs, if an inline cache gets updated
+      // to a wrong method). It should not be performance critical, since the
+      // resolve is only done once.
+
+      MutexLocker ml(CompiledIC_lock);
+      //
+      // We do not patch the call site if the nmethod has been made non-entrant
+      // as it is a waste of time
+      //
+      if (caller_nm->is_in_use()) {
+        if (is_static_call) {
+          CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
+          ssc->set_to_clean();
+        } else {
+          // compiled, dispatched call (which used to call an interpreted method)
+          CompiledIC* inline_cache = CompiledIC_at(call_addr);
+          inline_cache->set_to_clean();
+        }
+      }
+    }
+
+  }
+
+  methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
+
+
+#ifndef PRODUCT
+  Atomic::inc(&_wrong_method_ctr);
+
+  if (TraceCallFixup) {
+    ResourceMark rm(thread);
+    tty->print("handle_wrong_method reresolving call to");
+    callee_method->print_short_name(tty);
+    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
+  }
+#endif
+
+  return callee_method;
+}
+
+// ---------------------------------------------------------------------------
+// We are calling the interpreter via a c2i. Normally this would mean that
+// we were called by a compiled method. However we could have lost a race
+// where we went int -> i2c -> c2i and so the caller could in fact be
+// interpreted. If the caller is compiled we attampt to patch the caller
+// so he no longer calls into the interpreter.
+IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
+  methodOop moop(method);
+
+  address entry_point = moop->from_compiled_entry();
+
+  // It's possible that deoptimization can occur at a call site which hasn't
+  // been resolved yet, in which case this function will be called from
+  // an nmethod that has been patched for deopt and we can ignore the
+  // request for a fixup.
+  // Also it is possible that we lost a race in that from_compiled_entry
+  // is now back to the i2c in that case we don't need to patch and if
+  // we did we'd leap into space because the callsite needs to use
+  // "to interpreter" stub in order to load up the methodOop. Don't
+  // ask me how I know this...
+  //
+
+  CodeBlob* cb = CodeCache::find_blob(caller_pc);
+  if ( !cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
+    return;
+  }
+
+  // There is a benign race here. We could be attempting to patch to a compiled
+  // entry point at the same time the callee is being deoptimized. If that is
+  // the case then entry_point may in fact point to a c2i and we'd patch the
+  // call site with the same old data. clear_code will set code() to NULL
+  // at the end of it. If we happen to see that NULL then we can skip trying
+  // to patch. If we hit the window where the callee has a c2i in the
+  // from_compiled_entry and the NULL isn't present yet then we lose the race
+  // and patch the code with the same old data. Asi es la vida.
+
+  if (moop->code() == NULL) return;
+
+  if (((nmethod*)cb)->is_in_use()) {
+
+    // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
+    MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
+    if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
+      NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
+      //
+      // bug 6281185. We might get here after resolving a call site to a vanilla
+      // virtual call. Because the resolvee uses the verified entry it may then
+      // see compiled code and attempt to patch the site by calling us. This would
+      // then incorrectly convert the call site to optimized and its downhill from
+      // there. If you're lucky you'll get the assert in the bugid, if not you've
+      // just made a call site that could be megamorphic into a monomorphic site
+      // for the rest of its life! Just another racing bug in the life of
+      // fixup_callers_callsite ...
+      //
+      RelocIterator iter(cb, call->instruction_address(), call->next_instruction_address());
+      iter.next();
+      assert(iter.has_current(), "must have a reloc at java call site");
+      relocInfo::relocType typ = iter.reloc()->type();
+      if ( typ != relocInfo::static_call_type &&
+           typ != relocInfo::opt_virtual_call_type &&
+           typ != relocInfo::static_stub_type) {
+        return;
+      }
+      address destination = call->destination();
+      if (destination != entry_point) {
+        CodeBlob* callee = CodeCache::find_blob(destination);
+        // callee == cb seems weird. It means calling interpreter thru stub.
+        if (callee == cb || callee->is_adapter_blob()) {
+          // static call or optimized virtual
+          if (TraceCallFixup) {
+            tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
+            moop->print_short_name(tty);
+            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
+          }
+          call->set_destination_mt_safe(entry_point);
+        } else {
+          if (TraceCallFixup) {
+            tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
+            moop->print_short_name(tty);
+            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
+          }
+          // assert is too strong could also be resolve destinations.
+          // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
+        }
+      } else {
+          if (TraceCallFixup) {
+            tty->print("already patched  callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
+            moop->print_short_name(tty);
+            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
+          }
+      }
+    }
+  }
+
+IRT_END
+
+
+// same as JVM_Arraycopy, but called directly from compiled code
+JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
+                                                oopDesc* dest, jint dest_pos,
+                                                jint length,
+                                                JavaThread* thread)) {
+#ifndef PRODUCT
+  _slow_array_copy_ctr++;
+#endif
+  // Check if we have null pointers
+  if (src == NULL || dest == NULL) {
+    THROW(vmSymbols::java_lang_NullPointerException());
+  }
+  // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
+  // even though the copy_array API also performs dynamic checks to ensure
+  // that src and dest are truly arrays (and are conformable).
+  // The copy_array mechanism is awkward and could be removed, but
+  // the compilers don't call this function except as a last resort,
+  // so it probably doesn't matter.
+  Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
+                                        (arrayOopDesc*)dest, dest_pos,
+                                        length, thread);
+}
+JRT_END
+
+char* SharedRuntime::generate_class_cast_message(
+    JavaThread* thread, const char* objName) {
+
+  // Get target class name from the checkcast instruction
+  vframeStream vfst(thread, true);
+  assert(!vfst.at_end(), "Java frame must exist");
+  Bytecode_checkcast* cc = Bytecode_checkcast_at(
+    vfst.method()->bcp_from(vfst.bci()));
+  Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
+    cc->index(), thread));
+  return generate_class_cast_message(objName, targetKlass->external_name());
+}
+
+char* SharedRuntime::generate_class_cast_message(
+    const char* objName, const char* targetKlassName) {
+  const char* desc = " cannot be cast to ";
+  size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
+
+  char* message = NEW_C_HEAP_ARRAY(char, msglen);
+  if (NULL == message) {
+    // out of memory - can't use a detailed message.  Since caller is
+    // using a resource mark to free memory, returning this should be
+    // safe (caller won't explicitly delete it).
+    message = const_cast<char*>(objName);
+  } else {
+    jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
+  }
+  return message;
+}
+
+JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
+  (void) JavaThread::current()->reguard_stack();
+JRT_END
+
+
+// Handles the uncommon case in locking, i.e., contention or an inflated lock.
+#ifndef PRODUCT
+int SharedRuntime::_monitor_enter_ctr=0;
+#endif
+JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
+  oop obj(_obj);
+#ifndef PRODUCT
+  _monitor_enter_ctr++;             // monitor enter slow
+#endif
+  if (PrintBiasedLockingStatistics) {
+    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
+  }
+  Handle h_obj(THREAD, obj);
+  if (UseBiasedLocking) {
+    // Retry fast entry if bias is revoked to avoid unnecessary inflation
+    ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
+  } else {
+    ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
+  }
+  assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
+JRT_END
+
+#ifndef PRODUCT
+int SharedRuntime::_monitor_exit_ctr=0;
+#endif
+// Handles the uncommon cases of monitor unlocking in compiled code
+JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
+   oop obj(_obj);
+#ifndef PRODUCT
+  _monitor_exit_ctr++;              // monitor exit slow
+#endif
+  Thread* THREAD = JavaThread::current();
+  // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
+  // testing was unable to ever fire the assert that guarded it so I have removed it.
+  assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
+#undef MIGHT_HAVE_PENDING
+#ifdef MIGHT_HAVE_PENDING
+  // Save and restore any pending_exception around the exception mark.
+  // While the slow_exit must not throw an exception, we could come into
+  // this routine with one set.
+  oop pending_excep = NULL;
+  const char* pending_file;
+  int pending_line;
+  if (HAS_PENDING_EXCEPTION) {
+    pending_excep = PENDING_EXCEPTION;
+    pending_file  = THREAD->exception_file();
+    pending_line  = THREAD->exception_line();
+    CLEAR_PENDING_EXCEPTION;
+  }
+#endif /* MIGHT_HAVE_PENDING */
+
+  {
+    // Exit must be non-blocking, and therefore no exceptions can be thrown.
+    EXCEPTION_MARK;
+    ObjectSynchronizer::slow_exit(obj, lock, THREAD);
+  }
+
+#ifdef MIGHT_HAVE_PENDING
+  if (pending_excep != NULL) {
+    THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
+  }
+#endif /* MIGHT_HAVE_PENDING */
+JRT_END
+
+#ifndef PRODUCT
+
+void SharedRuntime::print_statistics() {
+  ttyLocker ttyl;
+  if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
+
+  if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
+  if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
+  if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
+
+  SharedRuntime::print_ic_miss_histogram();
+
+  if (CountRemovableExceptions) {
+    if (_nof_removable_exceptions > 0) {
+      Unimplemented(); // this counter is not yet incremented
+      tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
+    }
+  }
+
+  // Dump the JRT_ENTRY counters
+  if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
+  if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
+  if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
+  if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
+  if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
+  if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
+  if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
+
+  tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
+  tty->print_cr("%5d wrong method", _wrong_method_ctr );
+  tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
+  tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
+  tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
+
+  if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
+  if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
+  if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
+  if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
+  if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
+  if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
+  if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
+  if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
+  if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
+  if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
+  if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
+  if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
+  if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
+  if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
+  if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
+  if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
+
+  if (xtty != NULL)  xtty->tail("statistics");
+}
+
+inline double percent(int x, int y) {
+  return 100.0 * x / MAX2(y, 1);
+}
+
+class MethodArityHistogram {
+ public:
+  enum { MAX_ARITY = 256 };
+ private:
+  static int _arity_histogram[MAX_ARITY];     // histogram of #args
+  static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
+  static int _max_arity;                      // max. arity seen
+  static int _max_size;                       // max. arg size seen
+
+  static void add_method_to_histogram(nmethod* nm) {
+    methodOop m = nm->method();
+    ArgumentCount args(m->signature());
+    int arity   = args.size() + (m->is_static() ? 0 : 1);
+    int argsize = m->size_of_parameters();
+    arity   = MIN2(arity, MAX_ARITY-1);
+    argsize = MIN2(argsize, MAX_ARITY-1);
+    int count = nm->method()->compiled_invocation_count();
+    _arity_histogram[arity]  += count;
+    _size_histogram[argsize] += count;
+    _max_arity = MAX2(_max_arity, arity);
+    _max_size  = MAX2(_max_size, argsize);
+  }
+
+  void print_histogram_helper(int n, int* histo, const char* name) {
+    const int N = MIN2(5, n);
+    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
+    double sum = 0;
+    double weighted_sum = 0;
+    int i;
+    for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
+    double rest = sum;
+    double percent = sum / 100;
+    for (i = 0; i <= N; i++) {
+      rest -= histo[i];
+      tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
+    }
+    tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
+    tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
+  }
+
+  void print_histogram() {
+    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
+    print_histogram_helper(_max_arity, _arity_histogram, "arity");
+    tty->print_cr("\nSame for parameter size (in words):");
+    print_histogram_helper(_max_size, _size_histogram, "size");
+    tty->cr();
+  }
+
+ public:
+  MethodArityHistogram() {
+    MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
+    _max_arity = _max_size = 0;
+    for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
+    CodeCache::nmethods_do(add_method_to_histogram);
+    print_histogram();
+  }
+};
+
+int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
+int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
+int MethodArityHistogram::_max_arity;
+int MethodArityHistogram::_max_size;
+
+void SharedRuntime::print_call_statistics(int comp_total) {
+  tty->print_cr("Calls from compiled code:");
+  int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
+  int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
+  int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
+  tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
+  tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
+  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
+  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
+  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
+  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
+  tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
+  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
+  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
+  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
+  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
+  tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
+  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
+  tty->cr();
+  tty->print_cr("Note 1: counter updates are not MT-safe.");
+  tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
+  tty->print_cr("        %% in nested categories are relative to their category");
+  tty->print_cr("        (and thus add up to more than 100%% with inlining)");
+  tty->cr();
+
+  MethodArityHistogram h;
+}
+#endif
+
+
+// ---------------------------------------------------------------------------
+// Implementation of AdapterHandlerLibrary
+const char* AdapterHandlerEntry::name = "I2C/C2I adapters";
+GrowableArray<uint64_t>* AdapterHandlerLibrary::_fingerprints = NULL;
+GrowableArray<AdapterHandlerEntry* >* AdapterHandlerLibrary::_handlers = NULL;
+const int AdapterHandlerLibrary_size = 16*K;
+u_char                   AdapterHandlerLibrary::_buffer[AdapterHandlerLibrary_size + 32];
+
+void AdapterHandlerLibrary::initialize() {
+  if (_fingerprints != NULL) return;
+  _fingerprints = new(ResourceObj::C_HEAP)GrowableArray<uint64_t>(32, true);
+  _handlers = new(ResourceObj::C_HEAP)GrowableArray<AdapterHandlerEntry*>(32, true);
+  // Index 0 reserved for the slow path handler
+  _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
+  _handlers->append(NULL);
+
+  // Create a special handler for abstract methods.  Abstract methods
+  // are never compiled so an i2c entry is somewhat meaningless, but
+  // fill it in with something appropriate just in case.  Pass handle
+  // wrong method for the c2i transitions.
+  address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
+  _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
+  assert(_handlers->length() == AbstractMethodHandler, "in wrong slot");
+  _handlers->append(new AdapterHandlerEntry(StubRoutines::throw_AbstractMethodError_entry(),
+                                            wrong_method, wrong_method));
+}
+
+int AdapterHandlerLibrary::get_create_adapter_index(methodHandle method) {
+  // Use customized signature handler.  Need to lock around updates to the
+  // _fingerprints array (it is not safe for concurrent readers and a single
+  // writer: this can be fixed if it becomes a problem).
+
+  // Shouldn't be here if running -Xint
+  if (Arguments::mode() == Arguments::_int) {
+    ShouldNotReachHere();
+  }
+
+  // Get the address of the ic_miss handlers before we grab the
+  // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
+  // was caused by the initialization of the stubs happening
+  // while we held the lock and then notifying jvmti while
+  // holding it. This just forces the initialization to be a little
+  // earlier.
+  address ic_miss = SharedRuntime::get_ic_miss_stub();
+  assert(ic_miss != NULL, "must have handler");
+
+  int result;
+  BufferBlob *B = NULL;
+  uint64_t fingerprint;
+  {
+    MutexLocker mu(AdapterHandlerLibrary_lock);
+    // make sure data structure is initialized
+    initialize();
+
+    if (method->is_abstract()) {
+      return AbstractMethodHandler;
+    }
+
+    // Lookup method signature's fingerprint
+    fingerprint = Fingerprinter(method).fingerprint();
+    assert( fingerprint != CONST64( 0), "no zero fingerprints allowed" );
+    // Fingerprints are small fixed-size condensed representations of
+    // signatures.  If the signature is too large, it won't fit in a
+    // fingerprint.  Signatures which cannot support a fingerprint get a new i2c
+    // adapter gen'd each time, instead of searching the cache for one.  This -1
+    // game can be avoided if I compared signatures instead of using
+    // fingerprints.  However, -1 fingerprints are very rare.
+    if( fingerprint != UCONST64(-1) ) { // If this is a cache-able fingerprint
+      // Turns out i2c adapters do not care what the return value is.  Mask it
+      // out so signatures that only differ in return type will share the same
+      // adapter.
+      fingerprint &= ~(SignatureIterator::result_feature_mask << SignatureIterator::static_feature_size);
+      // Search for a prior existing i2c/c2i adapter
+      int index = _fingerprints->find(fingerprint);
+      if( index >= 0 ) return index; // Found existing handlers?
+    } else {
+      // Annoyingly, I end up adding -1 fingerprints to the array of handlers,
+      // because I need a unique handler index.  It cannot be scanned for
+      // because all -1's look alike.  Instead, the matching index is passed out
+      // and immediately used to collect the 2 return values (the c2i and i2c
+      // adapters).
+    }
+
+    // Create I2C & C2I handlers
+    ResourceMark rm;
+    // Improve alignment slightly
+    u_char *buf = (u_char*)(((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
+    CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
+    short buffer_locs[20];
+    buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
+                                           sizeof(buffer_locs)/sizeof(relocInfo));
+    MacroAssembler _masm(&buffer);
+
+    // Fill in the signature array, for the calling-convention call.
+    int total_args_passed = method->size_of_parameters(); // All args on stack
+
+    BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
+    VMRegPair  * regs   = NEW_RESOURCE_ARRAY(VMRegPair  ,total_args_passed);
+    int i=0;
+    if( !method->is_static() )  // Pass in receiver first
+      sig_bt[i++] = T_OBJECT;
+    for( SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
+      sig_bt[i++] = ss.type();  // Collect remaining bits of signature
+      if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
+        sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
+    }
+    assert( i==total_args_passed, "" );
+
+    // Now get the re-packed compiled-Java layout.
+    int comp_args_on_stack;
+
+    // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
+    comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
+
+    AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
+                                                                        total_args_passed,
+                                                                        comp_args_on_stack,
+                                                                        sig_bt,
+                                                                        regs);
+
+    B = BufferBlob::create(AdapterHandlerEntry::name, &buffer);
+    if (B == NULL)  return -2;          // Out of CodeCache space
+    entry->relocate(B->instructions_begin());
+#ifndef PRODUCT
+    // debugging suppport
+    if (PrintAdapterHandlers) {
+      tty->cr();
+      tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = 0x%llx, %d bytes generated)",
+                    _handlers->length(), (method->is_static() ? "static" : "receiver"),
+                    method->signature()->as_C_string(), fingerprint, buffer.code_size() );
+      tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
+      Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + buffer.code_size());
+    }
+#endif
+
+    // add handlers to library
+    _fingerprints->append(fingerprint);
+    _handlers->append(entry);
+    // set handler index
+    assert(_fingerprints->length() == _handlers->length(), "sanity check");
+    result = _fingerprints->length() - 1;
+  }
+  // Outside of the lock
+  if (B != NULL) {
+    char blob_id[256];
+    jio_snprintf(blob_id,
+                 sizeof(blob_id),
+                 "%s(" PTR64_FORMAT ")@" PTR_FORMAT,
+                 AdapterHandlerEntry::name,
+                 fingerprint,
+                 B->instructions_begin());
+    VTune::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
+    Forte::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
+
+    if (JvmtiExport::should_post_dynamic_code_generated()) {
+      JvmtiExport::post_dynamic_code_generated(blob_id,
+                                               B->instructions_begin(),
+                                               B->instructions_end());
+    }
+  }
+  return result;
+}
+
+void AdapterHandlerEntry::relocate(address new_base) {
+    ptrdiff_t delta = new_base - _i2c_entry;
+    _i2c_entry += delta;
+    _c2i_entry += delta;
+    _c2i_unverified_entry += delta;
+}
+
+// Create a native wrapper for this native method.  The wrapper converts the
+// java compiled calling convention to the native convention, handlizes
+// arguments, and transitions to native.  On return from the native we transition
+// back to java blocking if a safepoint is in progress.
+nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
+  ResourceMark rm;
+  nmethod* nm = NULL;
+
+  if (PrintCompilation) {
+    ttyLocker ttyl;
+    tty->print("---   n%s ", (method->is_synchronized() ? "s" : " "));
+    method->print_short_name(tty);
+    if (method->is_static()) {
+      tty->print(" (static)");
+    }
+    tty->cr();
+  }
+
+  assert(method->has_native_function(), "must have something valid to call!");
+
+  {
+    // perform the work while holding the lock, but perform any printing outside the lock
+    MutexLocker mu(AdapterHandlerLibrary_lock);
+    // See if somebody beat us to it
+    nm = method->code();
+    if (nm) {
+      return nm;
+    }
+
+    // Improve alignment slightly
+    u_char* buf = (u_char*)(((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
+    CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
+    // Need a few relocation entries
+    double locs_buf[20];
+    buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
+    MacroAssembler _masm(&buffer);
+
+    // Fill in the signature array, for the calling-convention call.
+    int total_args_passed = method->size_of_parameters();
+
+    BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
+    VMRegPair  * regs   = NEW_RESOURCE_ARRAY(VMRegPair  ,total_args_passed);
+    int i=0;
+    if( !method->is_static() )  // Pass in receiver first
+      sig_bt[i++] = T_OBJECT;
+    SignatureStream ss(method->signature());
+    for( ; !ss.at_return_type(); ss.next()) {
+      sig_bt[i++] = ss.type();  // Collect remaining bits of signature
+      if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
+        sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
+    }
+    assert( i==total_args_passed, "" );
+    BasicType ret_type = ss.type();
+
+    // Now get the compiled-Java layout as input arguments
+    int comp_args_on_stack;
+    comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
+
+    // Generate the compiled-to-native wrapper code
+    nm = SharedRuntime::generate_native_wrapper(&_masm,
+                                                method,
+                                                total_args_passed,
+                                                comp_args_on_stack,
+                                                sig_bt,regs,
+                                                ret_type);
+  }
+
+  // Must unlock before calling set_code
+  // Install the generated code.
+  if (nm != NULL) {
+    method->set_code(method, nm);
+    nm->post_compiled_method_load_event();
+  } else {
+    // CodeCache is full, disable compilation
+    // Ought to log this but compile log is only per compile thread
+    // and we're some non descript Java thread.
+    UseInterpreter = true;
+    if (UseCompiler || AlwaysCompileLoopMethods ) {
+#ifndef PRODUCT
+      warning("CodeCache is full. Compiler has been disabled");
+      if (CompileTheWorld || ExitOnFullCodeCache) {
+        before_exit(JavaThread::current());
+        exit_globals(); // will delete tty
+        vm_direct_exit(CompileTheWorld ? 0 : 1);
+      }
+#endif
+      UseCompiler               = false;
+      AlwaysCompileLoopMethods  = false;
+    }
+  }
+  return nm;
+}
+
+// -------------------------------------------------------------------------
+// Java-Java calling convention
+// (what you use when Java calls Java)
+
+//------------------------------name_for_receiver----------------------------------
+// For a given signature, return the VMReg for parameter 0.
+VMReg SharedRuntime::name_for_receiver() {
+  VMRegPair regs;
+  BasicType sig_bt = T_OBJECT;
+  (void) java_calling_convention(&sig_bt, &regs, 1, true);
+  // Return argument 0 register.  In the LP64 build pointers
+  // take 2 registers, but the VM wants only the 'main' name.
+  return regs.first();
+}
+
+VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool is_static, int* arg_size) {
+  // This method is returning a data structure allocating as a
+  // ResourceObject, so do not put any ResourceMarks in here.
+  char *s = sig->as_C_string();
+  int len = (int)strlen(s);
+  *s++; len--;                  // Skip opening paren
+  char *t = s+len;
+  while( *(--t) != ')' ) ;      // Find close paren
+
+  BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
+  VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
+  int cnt = 0;
+  if (!is_static) {
+    sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
+  }
+
+  while( s < t ) {
+    switch( *s++ ) {            // Switch on signature character
+    case 'B': sig_bt[cnt++] = T_BYTE;    break;
+    case 'C': sig_bt[cnt++] = T_CHAR;    break;
+    case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
+    case 'F': sig_bt[cnt++] = T_FLOAT;   break;
+    case 'I': sig_bt[cnt++] = T_INT;     break;
+    case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
+    case 'S': sig_bt[cnt++] = T_SHORT;   break;
+    case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
+    case 'V': sig_bt[cnt++] = T_VOID;    break;
+    case 'L':                   // Oop
+      while( *s++ != ';'  ) ;   // Skip signature
+      sig_bt[cnt++] = T_OBJECT;
+      break;
+    case '[': {                 // Array
+      do {                      // Skip optional size
+        while( *s >= '0' && *s <= '9' ) s++;
+      } while( *s++ == '[' );   // Nested arrays?
+      // Skip element type
+      if( s[-1] == 'L' )
+        while( *s++ != ';'  ) ; // Skip signature
+      sig_bt[cnt++] = T_ARRAY;
+      break;
+    }
+    default : ShouldNotReachHere();
+    }
+  }
+  assert( cnt < 256, "grow table size" );
+
+  int comp_args_on_stack;
+  comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
+
+  // the calling convention doesn't count out_preserve_stack_slots so
+  // we must add that in to get "true" stack offsets.
+
+  if (comp_args_on_stack) {
+    for (int i = 0; i < cnt; i++) {
+      VMReg reg1 = regs[i].first();
+      if( reg1->is_stack()) {
+        // Yuck
+        reg1 = reg1->bias(out_preserve_stack_slots());
+      }
+      VMReg reg2 = regs[i].second();
+      if( reg2->is_stack()) {
+        // Yuck
+        reg2 = reg2->bias(out_preserve_stack_slots());
+      }
+      regs[i].set_pair(reg2, reg1);
+    }
+  }
+
+  // results
+  *arg_size = cnt;
+  return regs;
+}
+
+// OSR Migration Code
+//
+// This code is used convert interpreter frames into compiled frames.  It is
+// called from very start of a compiled OSR nmethod.  A temp array is
+// allocated to hold the interesting bits of the interpreter frame.  All
+// active locks are inflated to allow them to move.  The displaced headers and
+// active interpeter locals are copied into the temp buffer.  Then we return
+// back to the compiled code.  The compiled code then pops the current
+// interpreter frame off the stack and pushes a new compiled frame.  Then it
+// copies the interpreter locals and displaced headers where it wants.
+// Finally it calls back to free the temp buffer.
+//
+// All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
+
+JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
+
+#ifdef IA64
+  ShouldNotReachHere(); // NYI
+#endif /* IA64 */
+
+  //
+  // This code is dependent on the memory layout of the interpreter local
+  // array and the monitors. On all of our platforms the layout is identical
+  // so this code is shared. If some platform lays the their arrays out
+  // differently then this code could move to platform specific code or
+  // the code here could be modified to copy items one at a time using
+  // frame accessor methods and be platform independent.
+
+  frame fr = thread->last_frame();
+  assert( fr.is_interpreted_frame(), "" );
+  assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
+
+  // Figure out how many monitors are active.
+  int active_monitor_count = 0;
+  for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
+       kptr < fr.interpreter_frame_monitor_begin();
+       kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
+    if( kptr->obj() != NULL ) active_monitor_count++;
+  }
+
+  // QQQ we could place number of active monitors in the array so that compiled code
+  // could double check it.
+
+  methodOop moop = fr.interpreter_frame_method();
+  int max_locals = moop->max_locals();
+  // Allocate temp buffer, 1 word per local & 2 per active monitor
+  int buf_size_words = max_locals + active_monitor_count*2;
+  intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
+
+  // Copy the locals.  Order is preserved so that loading of longs works.
+  // Since there's no GC I can copy the oops blindly.
+  assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
+  if (TaggedStackInterpreter) {
+    for (int i = 0; i < max_locals; i++) {
+      // copy only each local separately to the buffer avoiding the tag
+      buf[i] = *fr.interpreter_frame_local_at(max_locals-i-1);
+    }
+  } else {
+    Copy::disjoint_words(
+                       (HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
+                       (HeapWord*)&buf[0],
+                       max_locals);
+  }
+
+  // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
+  int i = max_locals;
+  for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
+       kptr2 < fr.interpreter_frame_monitor_begin();
+       kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
+    if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
+      BasicLock *lock = kptr2->lock();
+      // Inflate so the displaced header becomes position-independent
+      if (lock->displaced_header()->is_unlocked())
+        ObjectSynchronizer::inflate_helper(kptr2->obj());
+      // Now the displaced header is free to move
+      buf[i++] = (intptr_t)lock->displaced_header();
+      buf[i++] = (intptr_t)kptr2->obj();
+    }
+  }
+  assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
+
+  return buf;
+JRT_END
+
+JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
+  FREE_C_HEAP_ARRAY(intptr_t,buf);
+JRT_END
+
+#ifndef PRODUCT
+bool AdapterHandlerLibrary::contains(CodeBlob* b) {
+
+  for (int i = 0 ; i < _handlers->length() ; i++) {
+    AdapterHandlerEntry* a = get_entry(i);
+    if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
+  }
+  return false;
+}
+
+void AdapterHandlerLibrary::print_handler(CodeBlob* b) {
+
+  for (int i = 0 ; i < _handlers->length() ; i++) {
+    AdapterHandlerEntry* a = get_entry(i);
+    if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) {
+      tty->print("Adapter for signature: ");
+      // Fingerprinter::print(_fingerprints->at(i));
+      tty->print("0x%" FORMAT64_MODIFIER "x", _fingerprints->at(i));
+      tty->print_cr(" i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
+                    a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
+
+      return;
+    }
+  }
+  assert(false, "Should have found handler");
+}
+#endif /* PRODUCT */