hotspot/src/share/vm/opto/postaloc.cpp
changeset 1 489c9b5090e2
child 243 79b67a7a584a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/opto/postaloc.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,584 @@
+/*
+ * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_postaloc.cpp.incl"
+
+// see if this register kind does not requires two registers
+static bool is_single_register(uint x) {
+#ifdef _LP64
+  return (x != Op_RegD && x != Op_RegL && x != Op_RegP);
+#else
+  return (x != Op_RegD && x != Op_RegL);
+#endif
+}
+
+//------------------------------may_be_copy_of_callee-----------------------------
+// Check to see if we can possibly be a copy of a callee-save value.
+bool PhaseChaitin::may_be_copy_of_callee( Node *def ) const {
+  // Short circuit if there are no callee save registers
+  if (_matcher.number_of_saved_registers() == 0) return false;
+
+  // Expect only a spill-down and reload on exit for callee-save spills.
+  // Chains of copies cannot be deep.
+  // 5008997 - This is wishful thinking. Register allocator seems to
+  // be splitting live ranges for callee save registers to such
+  // an extent that in large methods the chains can be very long
+  // (50+). The conservative answer is to return true if we don't
+  // know as this prevents optimizations from occuring.
+
+  const int limit = 60;
+  int i;
+  for( i=0; i < limit; i++ ) {
+    if( def->is_Proj() && def->in(0)->is_Start() &&
+        _matcher.is_save_on_entry(lrgs(n2lidx(def)).reg()) )
+      return true;              // Direct use of callee-save proj
+    if( def->is_Copy() )        // Copies carry value through
+      def = def->in(def->is_Copy());
+    else if( def->is_Phi() )    // Phis can merge it from any direction
+      def = def->in(1);
+    else
+      break;
+    guarantee(def != NULL, "must not resurrect dead copy");
+  }
+  // If we reached the end and didn't find a callee save proj
+  // then this may be a callee save proj so we return true
+  // as the conservative answer. If we didn't reach then end
+  // we must have discovered that it was not a callee save
+  // else we would have returned.
+  return i == limit;
+}
+
+
+
+//------------------------------yank_if_dead-----------------------------------
+// Removed an edge from 'old'.  Yank if dead.  Return adjustment counts to
+// iterators in the current block.
+int PhaseChaitin::yank_if_dead( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
+  int blk_adjust=0;
+  while (old->outcnt() == 0 && old != C->top()) {
+    Block *oldb = _cfg._bbs[old->_idx];
+    oldb->find_remove(old);
+    // Count 1 if deleting an instruction from the current block
+    if( oldb == current_block ) blk_adjust++;
+    _cfg._bbs.map(old->_idx,NULL);
+    OptoReg::Name old_reg = lrgs(n2lidx(old)).reg();
+    if( regnd && (*regnd)[old_reg]==old ) { // Instruction is currently available?
+      value->map(old_reg,NULL);  // Yank from value/regnd maps
+      regnd->map(old_reg,NULL);  // This register's value is now unknown
+    }
+    Node *tmp = old->req() > 1 ? old->in(1) : NULL;
+    old->disconnect_inputs(NULL);
+    if( !tmp ) break;
+    old = tmp;
+  }
+  return blk_adjust;
+}
+
+//------------------------------use_prior_register-----------------------------
+// Use the prior value instead of the current value, in an effort to make
+// the current value go dead.  Return block iterator adjustment, in case
+// we yank some instructions from this block.
+int PhaseChaitin::use_prior_register( Node *n, uint idx, Node *def, Block *current_block, Node_List &value, Node_List &regnd ) {
+  // No effect?
+  if( def == n->in(idx) ) return 0;
+  // Def is currently dead and can be removed?  Do not resurrect
+  if( def->outcnt() == 0 ) return 0;
+
+  // Not every pair of physical registers are assignment compatible,
+  // e.g. on sparc floating point registers are not assignable to integer
+  // registers.
+  const LRG &def_lrg = lrgs(n2lidx(def));
+  OptoReg::Name def_reg = def_lrg.reg();
+  const RegMask &use_mask = n->in_RegMask(idx);
+  bool can_use = ( RegMask::can_represent(def_reg) ? (use_mask.Member(def_reg) != 0)
+                                                   : (use_mask.is_AllStack() != 0));
+  // Check for a copy to or from a misaligned pair.
+  can_use = can_use && !use_mask.is_misaligned_Pair() && !def_lrg.mask().is_misaligned_Pair();
+
+  if (!can_use)
+    return 0;
+
+  // Capture the old def in case it goes dead...
+  Node *old = n->in(idx);
+
+  // Save-on-call copies can only be elided if the entire copy chain can go
+  // away, lest we get the same callee-save value alive in 2 locations at
+  // once.  We check for the obvious trivial case here.  Although it can
+  // sometimes be elided with cooperation outside our scope, here we will just
+  // miss the opportunity.  :-(
+  if( may_be_copy_of_callee(def) ) {
+    if( old->outcnt() > 1 ) return 0; // We're the not last user
+    int idx = old->is_Copy();
+    assert( idx, "chain of copies being removed" );
+    Node *old2 = old->in(idx);  // Chain of copies
+    if( old2->outcnt() > 1 ) return 0; // old is not the last user
+    int idx2 = old2->is_Copy();
+    if( !idx2 ) return 0;       // Not a chain of 2 copies
+    if( def != old2->in(idx2) ) return 0; // Chain of exactly 2 copies
+  }
+
+  // Use the new def
+  n->set_req(idx,def);
+  _post_alloc++;
+
+  // Is old def now dead?  We successfully yanked a copy?
+  return yank_if_dead(old,current_block,&value,&regnd);
+}
+
+
+//------------------------------skip_copies------------------------------------
+// Skip through any number of copies (that don't mod oop-i-ness)
+Node *PhaseChaitin::skip_copies( Node *c ) {
+  int idx = c->is_Copy();
+  uint is_oop = lrgs(n2lidx(c))._is_oop;
+  while (idx != 0) {
+    guarantee(c->in(idx) != NULL, "must not resurrect dead copy");
+    if (lrgs(n2lidx(c->in(idx)))._is_oop != is_oop)
+      break;  // casting copy, not the same value
+    c = c->in(idx);
+    idx = c->is_Copy();
+  }
+  return c;
+}
+
+//------------------------------elide_copy-------------------------------------
+// Remove (bypass) copies along Node n, edge k.
+int PhaseChaitin::elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List &regnd, bool can_change_regs ) {
+  int blk_adjust = 0;
+
+  uint nk_idx = n2lidx(n->in(k));
+  OptoReg::Name nk_reg = lrgs(nk_idx ).reg();
+
+  // Remove obvious same-register copies
+  Node *x = n->in(k);
+  int idx;
+  while( (idx=x->is_Copy()) != 0 ) {
+    Node *copy = x->in(idx);
+    guarantee(copy != NULL, "must not resurrect dead copy");
+    if( lrgs(n2lidx(copy)).reg() != nk_reg ) break;
+    blk_adjust += use_prior_register(n,k,copy,current_block,value,regnd);
+    if( n->in(k) != copy ) break; // Failed for some cutout?
+    x = copy;                   // Progress, try again
+  }
+
+  // Phis and 2-address instructions cannot change registers so easily - their
+  // outputs must match their input.
+  if( !can_change_regs )
+    return blk_adjust;          // Only check stupid copies!
+
+  // Loop backedges won't have a value-mapping yet
+  if( &value == NULL ) return blk_adjust;
+
+  // Skip through all copies to the _value_ being used.  Do not change from
+  // int to pointer.  This attempts to jump through a chain of copies, where
+  // intermediate copies might be illegal, i.e., value is stored down to stack
+  // then reloaded BUT survives in a register the whole way.
+  Node *val = skip_copies(n->in(k));
+
+  if( val == x ) return blk_adjust; // No progress?
+
+  bool single = is_single_register(val->ideal_reg());
+  uint val_idx = n2lidx(val);
+  OptoReg::Name val_reg = lrgs(val_idx).reg();
+
+  // See if it happens to already be in the correct register!
+  // (either Phi's direct register, or the common case of the name
+  // never-clobbered original-def register)
+  if( value[val_reg] == val &&
+      // Doubles check both halves
+      ( single || value[val_reg-1] == val ) ) {
+    blk_adjust += use_prior_register(n,k,regnd[val_reg],current_block,value,regnd);
+    if( n->in(k) == regnd[val_reg] ) // Success!  Quit trying
+      return blk_adjust;
+  }
+
+  // See if we can skip the copy by changing registers.  Don't change from
+  // using a register to using the stack unless we know we can remove a
+  // copy-load.  Otherwise we might end up making a pile of Intel cisc-spill
+  // ops reading from memory instead of just loading once and using the
+  // register.
+
+  // Also handle duplicate copies here.
+  const Type *t = val->is_Con() ? val->bottom_type() : NULL;
+
+  // Scan all registers to see if this value is around already
+  for( uint reg = 0; reg < (uint)_max_reg; reg++ ) {
+    Node *vv = value[reg];
+    if( !single ) {             // Doubles check for aligned-adjacent pair
+      if( (reg&1)==0 ) continue;  // Wrong half of a pair
+      if( vv != value[reg-1] ) continue; // Not a complete pair
+    }
+    if( vv == val ||            // Got a direct hit?
+        (t && vv && vv->bottom_type() == t && vv->is_Mach() &&
+         vv->as_Mach()->rule() == val->as_Mach()->rule()) ) { // Or same constant?
+      assert( !n->is_Phi(), "cannot change registers at a Phi so easily" );
+      if( OptoReg::is_stack(nk_reg) || // CISC-loading from stack OR
+          OptoReg::is_reg(reg) || // turning into a register use OR
+          regnd[reg]->outcnt()==1 ) { // last use of a spill-load turns into a CISC use
+        blk_adjust += use_prior_register(n,k,regnd[reg],current_block,value,regnd);
+        if( n->in(k) == regnd[reg] ) // Success!  Quit trying
+          return blk_adjust;
+      } // End of if not degrading to a stack
+    } // End of if found value in another register
+  } // End of scan all machine registers
+  return blk_adjust;
+}
+
+
+//
+// Check if nreg already contains the constant value val.  Normal copy
+// elimination doesn't doesn't work on constants because multiple
+// nodes can represent the same constant so the type and rule of the
+// MachNode must be checked to ensure equivalence.
+//
+bool PhaseChaitin::eliminate_copy_of_constant(Node* val, Block *current_block,
+                                              Node_List& value, Node_List& regnd,
+                                              OptoReg::Name nreg, OptoReg::Name nreg2) {
+  if (value[nreg] != val && val->is_Con() &&
+      value[nreg] != NULL && value[nreg]->is_Con() &&
+      (nreg2 == OptoReg::Bad || value[nreg] == value[nreg2]) &&
+      value[nreg]->bottom_type() == val->bottom_type() &&
+      value[nreg]->as_Mach()->rule() == val->as_Mach()->rule()) {
+    // This code assumes that two MachNodes representing constants
+    // which have the same rule and the same bottom type will produce
+    // identical effects into a register.  This seems like it must be
+    // objectively true unless there are hidden inputs to the nodes
+    // but if that were to change this code would need to updated.
+    // Since they are equivalent the second one if redundant and can
+    // be removed.
+    //
+    // val will be replaced with the old value but val might have
+    // kills projections associated with it so remove them now so that
+    // yank_if_dead will be able to elminate the copy once the uses
+    // have been transferred to the old[value].
+    for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) {
+      Node* use = val->fast_out(i);
+      if (use->is_Proj() && use->outcnt() == 0) {
+        // Kill projections have no users and one input
+        use->set_req(0, C->top());
+        yank_if_dead(use, current_block, &value, &regnd);
+        --i; --imax;
+      }
+    }
+    _post_alloc++;
+    return true;
+  }
+  return false;
+}
+
+
+//------------------------------post_allocate_copy_removal---------------------
+// Post-Allocation peephole copy removal.  We do this in 1 pass over the
+// basic blocks.  We maintain a mapping of registers to Nodes (an  array of
+// Nodes indexed by machine register or stack slot number).  NULL means that a
+// register is not mapped to any Node.  We can (want to have!) have several
+// registers map to the same Node.  We walk forward over the instructions
+// updating the mapping as we go.  At merge points we force a NULL if we have
+// to merge 2 different Nodes into the same register.  Phi functions will give
+// us a new Node if there is a proper value merging.  Since the blocks are
+// arranged in some RPO, we will visit all parent blocks before visiting any
+// successor blocks (except at loops).
+//
+// If we find a Copy we look to see if the Copy's source register is a stack
+// slot and that value has already been loaded into some machine register; if
+// so we use machine register directly.  This turns a Load into a reg-reg
+// Move.  We also look for reloads of identical constants.
+//
+// When we see a use from a reg-reg Copy, we will attempt to use the copy's
+// source directly and make the copy go dead.
+void PhaseChaitin::post_allocate_copy_removal() {
+  NOT_PRODUCT( Compile::TracePhase t3("postAllocCopyRemoval", &_t_postAllocCopyRemoval, TimeCompiler); )
+  ResourceMark rm;
+
+  // Need a mapping from basic block Node_Lists.  We need a Node_List to
+  // map from register number to value-producing Node.
+  Node_List **blk2value = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
+  memset( blk2value, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
+  // Need a mapping from basic block Node_Lists.  We need a Node_List to
+  // map from register number to register-defining Node.
+  Node_List **blk2regnd = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
+  memset( blk2regnd, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
+
+  // We keep unused Node_Lists on a free_list to avoid wasting
+  // memory.
+  GrowableArray<Node_List*> free_list = GrowableArray<Node_List*>(16);
+
+  // For all blocks
+  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
+    uint j;
+    Block *b = _cfg._blocks[i];
+
+    // Count of Phis in block
+    uint phi_dex;
+    for( phi_dex = 1; phi_dex < b->_nodes.size(); phi_dex++ ) {
+      Node *phi = b->_nodes[phi_dex];
+      if( !phi->is_Phi() )
+        break;
+    }
+
+    // If any predecessor has not been visited, we do not know the state
+    // of registers at the start.  Check for this, while updating copies
+    // along Phi input edges
+    bool missing_some_inputs = false;
+    Block *freed = NULL;
+    for( j = 1; j < b->num_preds(); j++ ) {
+      Block *pb = _cfg._bbs[b->pred(j)->_idx];
+      // Remove copies along phi edges
+      for( uint k=1; k<phi_dex; k++ )
+        elide_copy( b->_nodes[k], j, b, *blk2value[pb->_pre_order], *blk2regnd[pb->_pre_order], false );
+      if( blk2value[pb->_pre_order] ) { // Have a mapping on this edge?
+        // See if this predecessor's mappings have been used by everybody
+        // who wants them.  If so, free 'em.
+        uint k;
+        for( k=0; k<pb->_num_succs; k++ ) {
+          Block *pbsucc = pb->_succs[k];
+          if( !blk2value[pbsucc->_pre_order] && pbsucc != b )
+            break;              // Found a future user
+        }
+        if( k >= pb->_num_succs ) { // No more uses, free!
+          freed = pb;           // Record last block freed
+          free_list.push(blk2value[pb->_pre_order]);
+          free_list.push(blk2regnd[pb->_pre_order]);
+        }
+      } else {                  // This block has unvisited (loopback) inputs
+        missing_some_inputs = true;
+      }
+    }
+
+
+    // Extract Node_List mappings.  If 'freed' is non-zero, we just popped
+    // 'freed's blocks off the list
+    Node_List &regnd = *(free_list.is_empty() ? new Node_List() : free_list.pop());
+    Node_List &value = *(free_list.is_empty() ? new Node_List() : free_list.pop());
+    assert( !freed || blk2value[freed->_pre_order] == &value, "" );
+    value.map(_max_reg,NULL);
+    regnd.map(_max_reg,NULL);
+    // Set mappings as OUR mappings
+    blk2value[b->_pre_order] = &value;
+    blk2regnd[b->_pre_order] = &regnd;
+
+    // Initialize value & regnd for this block
+    if( missing_some_inputs ) {
+      // Some predecessor has not yet been visited; zap map to empty
+      for( uint k = 0; k < (uint)_max_reg; k++ ) {
+        value.map(k,NULL);
+        regnd.map(k,NULL);
+      }
+    } else {
+      if( !freed ) {            // Didn't get a freebie prior block
+        // Must clone some data
+        freed = _cfg._bbs[b->pred(1)->_idx];
+        Node_List &f_value = *blk2value[freed->_pre_order];
+        Node_List &f_regnd = *blk2regnd[freed->_pre_order];
+        for( uint k = 0; k < (uint)_max_reg; k++ ) {
+          value.map(k,f_value[k]);
+          regnd.map(k,f_regnd[k]);
+        }
+      }
+      // Merge all inputs together, setting to NULL any conflicts.
+      for( j = 1; j < b->num_preds(); j++ ) {
+        Block *pb = _cfg._bbs[b->pred(j)->_idx];
+        if( pb == freed ) continue; // Did self already via freelist
+        Node_List &p_regnd = *blk2regnd[pb->_pre_order];
+        for( uint k = 0; k < (uint)_max_reg; k++ ) {
+          if( regnd[k] != p_regnd[k] ) { // Conflict on reaching defs?
+            value.map(k,NULL); // Then no value handy
+            regnd.map(k,NULL);
+          }
+        }
+      }
+    }
+
+    // For all Phi's
+    for( j = 1; j < phi_dex; j++ ) {
+      uint k;
+      Node *phi = b->_nodes[j];
+      uint pidx = n2lidx(phi);
+      OptoReg::Name preg = lrgs(n2lidx(phi)).reg();
+
+      // Remove copies remaining on edges.  Check for junk phi.
+      Node *u = NULL;
+      for( k=1; k<phi->req(); k++ ) {
+        Node *x = phi->in(k);
+        if( phi != x && u != x ) // Found a different input
+          u = u ? NodeSentinel : x; // Capture unique input, or NodeSentinel for 2nd input
+      }
+      if( u != NodeSentinel ) {    // Junk Phi.  Remove
+        b->_nodes.remove(j--); phi_dex--;
+        _cfg._bbs.map(phi->_idx,NULL);
+        phi->replace_by(u);
+        phi->disconnect_inputs(NULL);
+        continue;
+      }
+      // Note that if value[pidx] exists, then we merged no new values here
+      // and the phi is useless.  This can happen even with the above phi
+      // removal for complex flows.  I cannot keep the better known value here
+      // because locally the phi appears to define a new merged value.  If I
+      // keep the better value then a copy of the phi, being unable to use the
+      // global flow analysis, can't "peek through" the phi to the original
+      // reaching value and so will act like it's defining a new value.  This
+      // can lead to situations where some uses are from the old and some from
+      // the new values.  Not illegal by itself but throws the over-strong
+      // assert in scheduling.
+      if( pidx ) {
+        value.map(preg,phi);
+        regnd.map(preg,phi);
+        OptoReg::Name preg_lo = OptoReg::add(preg,-1);
+        if( !is_single_register(phi->ideal_reg()) ) {
+          value.map(preg_lo,phi);
+          regnd.map(preg_lo,phi);
+        }
+      }
+    }
+
+    // For all remaining instructions
+    for( j = phi_dex; j < b->_nodes.size(); j++ ) {
+      Node *n = b->_nodes[j];
+
+      if( n->outcnt() == 0 &&   // Dead?
+          n != C->top() &&      // (ignore TOP, it has no du info)
+          !n->is_Proj() ) {     // fat-proj kills
+        j -= yank_if_dead(n,b,&value,&regnd);
+        continue;
+      }
+
+      // Improve reaching-def info.  Occasionally post-alloc's liveness gives
+      // up (at loop backedges, because we aren't doing a full flow pass).
+      // The presence of a live use essentially asserts that the use's def is
+      // alive and well at the use (or else the allocator fubar'd).  Take
+      // advantage of this info to set a reaching def for the use-reg.
+      uint k;
+      for( k = 1; k < n->req(); k++ ) {
+        Node *def = n->in(k);   // n->in(k) is a USE; def is the DEF for this USE
+        guarantee(def != NULL, "no disconnected nodes at this point");
+        uint useidx = n2lidx(def); // useidx is the live range index for this USE
+
+        if( useidx ) {
+          OptoReg::Name ureg = lrgs(useidx).reg();
+          if( !value[ureg] ) {
+            int idx;            // Skip occasional useless copy
+            while( (idx=def->is_Copy()) != 0 &&
+                   def->in(idx) != NULL &&  // NULL should not happen
+                   ureg == lrgs(n2lidx(def->in(idx))).reg() )
+              def = def->in(idx);
+            Node *valdef = skip_copies(def); // tighten up val through non-useless copies
+            value.map(ureg,valdef); // record improved reaching-def info
+            regnd.map(ureg,   def);
+            // Record other half of doubles
+            OptoReg::Name ureg_lo = OptoReg::add(ureg,-1);
+            if( !is_single_register(def->ideal_reg()) &&
+                ( !RegMask::can_represent(ureg_lo) ||
+                  lrgs(useidx).mask().Member(ureg_lo) ) && // Nearly always adjacent
+                !value[ureg_lo] ) {
+              value.map(ureg_lo,valdef); // record improved reaching-def info
+              regnd.map(ureg_lo,   def);
+            }
+          }
+        }
+      }
+
+      const uint two_adr = n->is_Mach() ? n->as_Mach()->two_adr() : 0;
+
+      // Remove copies along input edges
+      for( k = 1; k < n->req(); k++ )
+        j -= elide_copy( n, k, b, value, regnd, two_adr!=k );
+
+      // Unallocated Nodes define no registers
+      uint lidx = n2lidx(n);
+      if( !lidx ) continue;
+
+      // Update the register defined by this instruction
+      OptoReg::Name nreg = lrgs(lidx).reg();
+      // Skip through all copies to the _value_ being defined.
+      // Do not change from int to pointer
+      Node *val = skip_copies(n);
+
+      uint n_ideal_reg = n->ideal_reg();
+      if( is_single_register(n_ideal_reg) ) {
+        // If Node 'n' does not change the value mapped by the register,
+        // then 'n' is a useless copy.  Do not update the register->node
+        // mapping so 'n' will go dead.
+        if( value[nreg] != val ) {
+          if (eliminate_copy_of_constant(val, b, value, regnd, nreg, OptoReg::Bad)) {
+            n->replace_by(regnd[nreg]);
+            j -= yank_if_dead(n,b,&value,&regnd);
+          } else {
+            // Update the mapping: record new Node defined by the register
+            regnd.map(nreg,n);
+            // Update mapping for defined *value*, which is the defined
+            // Node after skipping all copies.
+            value.map(nreg,val);
+          }
+        } else if( !may_be_copy_of_callee(n) && regnd[nreg]->outcnt() != 0 ) {
+          assert( n->is_Copy(), "" );
+          n->replace_by(regnd[nreg]);
+          j -= yank_if_dead(n,b,&value,&regnd);
+        }
+      } else {
+        // If the value occupies a register pair, record same info
+        // in both registers.
+        OptoReg::Name nreg_lo = OptoReg::add(nreg,-1);
+        if( RegMask::can_represent(nreg_lo) &&     // Either a spill slot, or
+            !lrgs(lidx).mask().Member(nreg_lo) ) { // Nearly always adjacent
+          // Sparc occasionally has non-adjacent pairs.
+          // Find the actual other value
+          RegMask tmp = lrgs(lidx).mask();
+          tmp.Remove(nreg);
+          nreg_lo = tmp.find_first_elem();
+        }
+        if( value[nreg] != val || value[nreg_lo] != val ) {
+          if (eliminate_copy_of_constant(n, b, value, regnd, nreg, nreg_lo)) {
+            n->replace_by(regnd[nreg]);
+            j -= yank_if_dead(n,b,&value,&regnd);
+          } else {
+            regnd.map(nreg   , n );
+            regnd.map(nreg_lo, n );
+            value.map(nreg   ,val);
+            value.map(nreg_lo,val);
+          }
+        } else if( !may_be_copy_of_callee(n) && regnd[nreg]->outcnt() != 0 ) {
+          assert( n->is_Copy(), "" );
+          n->replace_by(regnd[nreg]);
+          j -= yank_if_dead(n,b,&value,&regnd);
+        }
+      }
+
+      // Fat projections kill many registers
+      if( n_ideal_reg == MachProjNode::fat_proj ) {
+        RegMask rm = n->out_RegMask();
+        // wow, what an expensive iterator...
+        nreg = rm.find_first_elem();
+        while( OptoReg::is_valid(nreg)) {
+          rm.Remove(nreg);
+          value.map(nreg,n);
+          regnd.map(nreg,n);
+          nreg = rm.find_first_elem();
+        }
+      }
+
+    } // End of for all instructions in the block
+
+  } // End for all blocks
+}