--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/opto/phaseX.cpp Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,1758 @@
+/*
+ * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_phaseX.cpp.incl"
+
+//=============================================================================
+#define NODE_HASH_MINIMUM_SIZE 255
+//------------------------------NodeHash---------------------------------------
+NodeHash::NodeHash(uint est_max_size) :
+ _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
+ _a(Thread::current()->resource_area()),
+ _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ), // (Node**)_a->Amalloc(_max * sizeof(Node*)) ),
+ _inserts(0), _insert_limit( insert_limit() ),
+ _look_probes(0), _lookup_hits(0), _lookup_misses(0),
+ _total_insert_probes(0), _total_inserts(0),
+ _insert_probes(0), _grows(0) {
+ // _sentinel must be in the current node space
+ _sentinel = new (Compile::current(), 1) ProjNode(NULL, TypeFunc::Control);
+ memset(_table,0,sizeof(Node*)*_max);
+}
+
+//------------------------------NodeHash---------------------------------------
+NodeHash::NodeHash(Arena *arena, uint est_max_size) :
+ _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
+ _a(arena),
+ _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ),
+ _inserts(0), _insert_limit( insert_limit() ),
+ _look_probes(0), _lookup_hits(0), _lookup_misses(0),
+ _delete_probes(0), _delete_hits(0), _delete_misses(0),
+ _total_insert_probes(0), _total_inserts(0),
+ _insert_probes(0), _grows(0) {
+ // _sentinel must be in the current node space
+ _sentinel = new (Compile::current(), 1) ProjNode(NULL, TypeFunc::Control);
+ memset(_table,0,sizeof(Node*)*_max);
+}
+
+//------------------------------NodeHash---------------------------------------
+NodeHash::NodeHash(NodeHash *nh) {
+ debug_only(_table = (Node**)badAddress); // interact correctly w/ operator=
+ // just copy in all the fields
+ *this = *nh;
+ // nh->_sentinel must be in the current node space
+}
+
+//------------------------------hash_find--------------------------------------
+// Find in hash table
+Node *NodeHash::hash_find( const Node *n ) {
+ // ((Node*)n)->set_hash( n->hash() );
+ uint hash = n->hash();
+ if (hash == Node::NO_HASH) {
+ debug_only( _lookup_misses++ );
+ return NULL;
+ }
+ uint key = hash & (_max-1);
+ uint stride = key | 0x01;
+ debug_only( _look_probes++ );
+ Node *k = _table[key]; // Get hashed value
+ if( !k ) { // ?Miss?
+ debug_only( _lookup_misses++ );
+ return NULL; // Miss!
+ }
+
+ int op = n->Opcode();
+ uint req = n->req();
+ while( 1 ) { // While probing hash table
+ if( k->req() == req && // Same count of inputs
+ k->Opcode() == op ) { // Same Opcode
+ for( uint i=0; i<req; i++ )
+ if( n->in(i)!=k->in(i)) // Different inputs?
+ goto collision; // "goto" is a speed hack...
+ if( n->cmp(*k) ) { // Check for any special bits
+ debug_only( _lookup_hits++ );
+ return k; // Hit!
+ }
+ }
+ collision:
+ debug_only( _look_probes++ );
+ key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime
+ k = _table[key]; // Get hashed value
+ if( !k ) { // ?Miss?
+ debug_only( _lookup_misses++ );
+ return NULL; // Miss!
+ }
+ }
+ ShouldNotReachHere();
+ return NULL;
+}
+
+//------------------------------hash_find_insert-------------------------------
+// Find in hash table, insert if not already present
+// Used to preserve unique entries in hash table
+Node *NodeHash::hash_find_insert( Node *n ) {
+ // n->set_hash( );
+ uint hash = n->hash();
+ if (hash == Node::NO_HASH) {
+ debug_only( _lookup_misses++ );
+ return NULL;
+ }
+ uint key = hash & (_max-1);
+ uint stride = key | 0x01; // stride must be relatively prime to table siz
+ uint first_sentinel = 0; // replace a sentinel if seen.
+ debug_only( _look_probes++ );
+ Node *k = _table[key]; // Get hashed value
+ if( !k ) { // ?Miss?
+ debug_only( _lookup_misses++ );
+ _table[key] = n; // Insert into table!
+ debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
+ check_grow(); // Grow table if insert hit limit
+ return NULL; // Miss!
+ }
+ else if( k == _sentinel ) {
+ first_sentinel = key; // Can insert here
+ }
+
+ int op = n->Opcode();
+ uint req = n->req();
+ while( 1 ) { // While probing hash table
+ if( k->req() == req && // Same count of inputs
+ k->Opcode() == op ) { // Same Opcode
+ for( uint i=0; i<req; i++ )
+ if( n->in(i)!=k->in(i)) // Different inputs?
+ goto collision; // "goto" is a speed hack...
+ if( n->cmp(*k) ) { // Check for any special bits
+ debug_only( _lookup_hits++ );
+ return k; // Hit!
+ }
+ }
+ collision:
+ debug_only( _look_probes++ );
+ key = (key + stride) & (_max-1); // Stride through table w/ relative prime
+ k = _table[key]; // Get hashed value
+ if( !k ) { // ?Miss?
+ debug_only( _lookup_misses++ );
+ key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel?
+ _table[key] = n; // Insert into table!
+ debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
+ check_grow(); // Grow table if insert hit limit
+ return NULL; // Miss!
+ }
+ else if( first_sentinel == 0 && k == _sentinel ) {
+ first_sentinel = key; // Can insert here
+ }
+
+ }
+ ShouldNotReachHere();
+ return NULL;
+}
+
+//------------------------------hash_insert------------------------------------
+// Insert into hash table
+void NodeHash::hash_insert( Node *n ) {
+ // // "conflict" comments -- print nodes that conflict
+ // bool conflict = false;
+ // n->set_hash();
+ uint hash = n->hash();
+ if (hash == Node::NO_HASH) {
+ return;
+ }
+ check_grow();
+ uint key = hash & (_max-1);
+ uint stride = key | 0x01;
+
+ while( 1 ) { // While probing hash table
+ debug_only( _insert_probes++ );
+ Node *k = _table[key]; // Get hashed value
+ if( !k || (k == _sentinel) ) break; // Found a slot
+ assert( k != n, "already inserted" );
+ // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print(" conflict: "); k->dump(); conflict = true; }
+ key = (key + stride) & (_max-1); // Stride through table w/ relative prime
+ }
+ _table[key] = n; // Insert into table!
+ debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
+ // if( conflict ) { n->dump(); }
+}
+
+//------------------------------hash_delete------------------------------------
+// Replace in hash table with sentinal
+bool NodeHash::hash_delete( const Node *n ) {
+ Node *k;
+ uint hash = n->hash();
+ if (hash == Node::NO_HASH) {
+ debug_only( _delete_misses++ );
+ return false;
+ }
+ uint key = hash & (_max-1);
+ uint stride = key | 0x01;
+ debug_only( uint counter = 0; );
+ for( ; /* (k != NULL) && (k != _sentinal) */; ) {
+ debug_only( counter++ );
+ debug_only( _delete_probes++ );
+ k = _table[key]; // Get hashed value
+ if( !k ) { // Miss?
+ debug_only( _delete_misses++ );
+#ifdef ASSERT
+ if( VerifyOpto ) {
+ for( uint i=0; i < _max; i++ )
+ assert( _table[i] != n, "changed edges with rehashing" );
+ }
+#endif
+ return false; // Miss! Not in chain
+ }
+ else if( n == k ) {
+ debug_only( _delete_hits++ );
+ _table[key] = _sentinel; // Hit! Label as deleted entry
+ debug_only(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table.
+ return true;
+ }
+ else {
+ // collision: move through table with prime offset
+ key = (key + stride/*7*/) & (_max-1);
+ assert( counter <= _insert_limit, "Cycle in hash-table");
+ }
+ }
+ ShouldNotReachHere();
+ return false;
+}
+
+//------------------------------round_up---------------------------------------
+// Round up to nearest power of 2
+uint NodeHash::round_up( uint x ) {
+ x += (x>>2); // Add 25% slop
+ if( x <16 ) return 16; // Small stuff
+ uint i=16;
+ while( i < x ) i <<= 1; // Double to fit
+ return i; // Return hash table size
+}
+
+//------------------------------grow-------------------------------------------
+// Grow _table to next power of 2 and insert old entries
+void NodeHash::grow() {
+ // Record old state
+ uint old_max = _max;
+ Node **old_table = _table;
+ // Construct new table with twice the space
+ _grows++;
+ _total_inserts += _inserts;
+ _total_insert_probes += _insert_probes;
+ _inserts = 0;
+ _insert_probes = 0;
+ _max = _max << 1;
+ _table = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) );
+ memset(_table,0,sizeof(Node*)*_max);
+ _insert_limit = insert_limit();
+ // Insert old entries into the new table
+ for( uint i = 0; i < old_max; i++ ) {
+ Node *m = *old_table++;
+ if( !m || m == _sentinel ) continue;
+ debug_only(m->exit_hash_lock()); // Unlock the node upon removal from old table.
+ hash_insert(m);
+ }
+}
+
+//------------------------------clear------------------------------------------
+// Clear all entries in _table to NULL but keep storage
+void NodeHash::clear() {
+#ifdef ASSERT
+ // Unlock all nodes upon removal from table.
+ for (uint i = 0; i < _max; i++) {
+ Node* n = _table[i];
+ if (!n || n == _sentinel) continue;
+ n->exit_hash_lock();
+ }
+#endif
+
+ memset( _table, 0, _max * sizeof(Node*) );
+}
+
+//-----------------------remove_useless_nodes----------------------------------
+// Remove useless nodes from value table,
+// implementation does not depend on hash function
+void NodeHash::remove_useless_nodes(VectorSet &useful) {
+
+ // Dead nodes in the hash table inherited from GVN should not replace
+ // existing nodes, remove dead nodes.
+ uint max = size();
+ Node *sentinel_node = sentinel();
+ for( uint i = 0; i < max; ++i ) {
+ Node *n = at(i);
+ if(n != NULL && n != sentinel_node && !useful.test(n->_idx)) {
+ debug_only(n->exit_hash_lock()); // Unlock the node when removed
+ _table[i] = sentinel_node; // Replace with placeholder
+ }
+ }
+}
+
+#ifndef PRODUCT
+//------------------------------dump-------------------------------------------
+// Dump statistics for the hash table
+void NodeHash::dump() {
+ _total_inserts += _inserts;
+ _total_insert_probes += _insert_probes;
+ if( PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0) ) { // PrintOptoGVN
+ if( PrintCompilation2 ) {
+ for( uint i=0; i<_max; i++ )
+ if( _table[i] )
+ tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx);
+ }
+ tty->print("\nGVN Hash stats: %d grows to %d max_size\n", _grows, _max);
+ tty->print(" %d/%d (%8.1f%% full)\n", _inserts, _max, (double)_inserts/_max*100.0);
+ tty->print(" %dp/(%dh+%dm) (%8.2f probes/lookup)\n", _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses));
+ tty->print(" %dp/%di (%8.2f probes/insert)\n", _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts);
+ // sentinels increase lookup cost, but not insert cost
+ assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function");
+ assert( _inserts+(_inserts>>3) < _max, "table too full" );
+ assert( _inserts*3+100 >= _insert_probes, "bad hash function" );
+ }
+}
+
+Node *NodeHash::find_index(uint idx) { // For debugging
+ // Find an entry by its index value
+ for( uint i = 0; i < _max; i++ ) {
+ Node *m = _table[i];
+ if( !m || m == _sentinel ) continue;
+ if( m->_idx == (uint)idx ) return m;
+ }
+ return NULL;
+}
+#endif
+
+#ifdef ASSERT
+NodeHash::~NodeHash() {
+ // Unlock all nodes upon destruction of table.
+ if (_table != (Node**)badAddress) clear();
+}
+
+void NodeHash::operator=(const NodeHash& nh) {
+ // Unlock all nodes upon replacement of table.
+ if (&nh == this) return;
+ if (_table != (Node**)badAddress) clear();
+ memcpy(this, &nh, sizeof(*this));
+ // Do not increment hash_lock counts again.
+ // Instead, be sure we never again use the source table.
+ ((NodeHash*)&nh)->_table = (Node**)badAddress;
+}
+
+
+#endif
+
+
+//=============================================================================
+//------------------------------PhaseRemoveUseless-----------------------------
+// 1) Use a breadthfirst walk to collect useful nodes reachable from root.
+PhaseRemoveUseless::PhaseRemoveUseless( PhaseGVN *gvn, Unique_Node_List *worklist ) : Phase(Remove_Useless),
+ _useful(Thread::current()->resource_area()) {
+
+ // Implementation requires 'UseLoopSafepoints == true' and an edge from root
+ // to each SafePointNode at a backward branch. Inserted in add_safepoint().
+ if( !UseLoopSafepoints || !OptoRemoveUseless ) return;
+
+ // Identify nodes that are reachable from below, useful.
+ C->identify_useful_nodes(_useful);
+
+ // Remove all useless nodes from PhaseValues' recorded types
+ // Must be done before disconnecting nodes to preserve hash-table-invariant
+ gvn->remove_useless_nodes(_useful.member_set());
+
+ // Remove all useless nodes from future worklist
+ worklist->remove_useless_nodes(_useful.member_set());
+
+ // Disconnect 'useless' nodes that are adjacent to useful nodes
+ C->remove_useless_nodes(_useful);
+
+ // Remove edges from "root" to each SafePoint at a backward branch.
+ // They were inserted during parsing (see add_safepoint()) to make infinite
+ // loops without calls or exceptions visible to root, i.e., useful.
+ Node *root = C->root();
+ if( root != NULL ) {
+ for( uint i = root->req(); i < root->len(); ++i ) {
+ Node *n = root->in(i);
+ if( n != NULL && n->is_SafePoint() ) {
+ root->rm_prec(i);
+ --i;
+ }
+ }
+ }
+}
+
+
+//=============================================================================
+//------------------------------PhaseTransform---------------------------------
+PhaseTransform::PhaseTransform( PhaseNumber pnum ) : Phase(pnum),
+ _arena(Thread::current()->resource_area()),
+ _nodes(_arena),
+ _types(_arena)
+{
+ init_con_caches();
+#ifndef PRODUCT
+ clear_progress();
+ clear_transforms();
+ set_allow_progress(true);
+#endif
+ // Force allocation for currently existing nodes
+ _types.map(C->unique(), NULL);
+}
+
+//------------------------------PhaseTransform---------------------------------
+PhaseTransform::PhaseTransform( Arena *arena, PhaseNumber pnum ) : Phase(pnum),
+ _arena(arena),
+ _nodes(arena),
+ _types(arena)
+{
+ init_con_caches();
+#ifndef PRODUCT
+ clear_progress();
+ clear_transforms();
+ set_allow_progress(true);
+#endif
+ // Force allocation for currently existing nodes
+ _types.map(C->unique(), NULL);
+}
+
+//------------------------------PhaseTransform---------------------------------
+// Initialize with previously generated type information
+PhaseTransform::PhaseTransform( PhaseTransform *pt, PhaseNumber pnum ) : Phase(pnum),
+ _arena(pt->_arena),
+ _nodes(pt->_nodes),
+ _types(pt->_types)
+{
+ init_con_caches();
+#ifndef PRODUCT
+ clear_progress();
+ clear_transforms();
+ set_allow_progress(true);
+#endif
+}
+
+void PhaseTransform::init_con_caches() {
+ memset(_icons,0,sizeof(_icons));
+ memset(_lcons,0,sizeof(_lcons));
+ memset(_zcons,0,sizeof(_zcons));
+}
+
+
+//--------------------------------find_int_type--------------------------------
+const TypeInt* PhaseTransform::find_int_type(Node* n) {
+ if (n == NULL) return NULL;
+ // Call type_or_null(n) to determine node's type since we might be in
+ // parse phase and call n->Value() may return wrong type.
+ // (For example, a phi node at the beginning of loop parsing is not ready.)
+ const Type* t = type_or_null(n);
+ if (t == NULL) return NULL;
+ return t->isa_int();
+}
+
+
+//-------------------------------find_long_type--------------------------------
+const TypeLong* PhaseTransform::find_long_type(Node* n) {
+ if (n == NULL) return NULL;
+ // (See comment above on type_or_null.)
+ const Type* t = type_or_null(n);
+ if (t == NULL) return NULL;
+ return t->isa_long();
+}
+
+
+#ifndef PRODUCT
+void PhaseTransform::dump_old2new_map() const {
+ _nodes.dump();
+}
+
+void PhaseTransform::dump_new( uint nidx ) const {
+ for( uint i=0; i<_nodes.Size(); i++ )
+ if( _nodes[i] && _nodes[i]->_idx == nidx ) {
+ _nodes[i]->dump();
+ tty->cr();
+ tty->print_cr("Old index= %d",i);
+ return;
+ }
+ tty->print_cr("Node %d not found in the new indices", nidx);
+}
+
+//------------------------------dump_types-------------------------------------
+void PhaseTransform::dump_types( ) const {
+ _types.dump();
+}
+
+//------------------------------dump_nodes_and_types---------------------------
+void PhaseTransform::dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl) {
+ VectorSet visited(Thread::current()->resource_area());
+ dump_nodes_and_types_recur( root, depth, only_ctrl, visited );
+}
+
+//------------------------------dump_nodes_and_types_recur---------------------
+void PhaseTransform::dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited) {
+ if( !n ) return;
+ if( depth == 0 ) return;
+ if( visited.test_set(n->_idx) ) return;
+ for( uint i=0; i<n->len(); i++ ) {
+ if( only_ctrl && !(n->is_Region()) && i != TypeFunc::Control ) continue;
+ dump_nodes_and_types_recur( n->in(i), depth-1, only_ctrl, visited );
+ }
+ n->dump();
+ if (type_or_null(n) != NULL) {
+ tty->print(" "); type(n)->dump(); tty->cr();
+ }
+}
+
+#endif
+
+
+//=============================================================================
+//------------------------------PhaseValues------------------------------------
+// Set minimum table size to "255"
+PhaseValues::PhaseValues( Arena *arena, uint est_max_size ) : PhaseTransform(arena, GVN), _table(arena, est_max_size) {
+ NOT_PRODUCT( clear_new_values(); )
+}
+
+//------------------------------PhaseValues------------------------------------
+// Set minimum table size to "255"
+PhaseValues::PhaseValues( PhaseValues *ptv ) : PhaseTransform( ptv, GVN ),
+ _table(&ptv->_table) {
+ NOT_PRODUCT( clear_new_values(); )
+}
+
+//------------------------------PhaseValues------------------------------------
+// Used by +VerifyOpto. Clear out hash table but copy _types array.
+PhaseValues::PhaseValues( PhaseValues *ptv, const char *dummy ) : PhaseTransform( ptv, GVN ),
+ _table(ptv->arena(),ptv->_table.size()) {
+ NOT_PRODUCT( clear_new_values(); )
+}
+
+//------------------------------~PhaseValues-----------------------------------
+#ifndef PRODUCT
+PhaseValues::~PhaseValues() {
+ _table.dump();
+
+ // Statistics for value progress and efficiency
+ if( PrintCompilation && Verbose && WizardMode ) {
+ tty->print("\n%sValues: %d nodes ---> %d/%d (%d)",
+ is_IterGVN() ? "Iter" : " ", C->unique(), made_progress(), made_transforms(), made_new_values());
+ if( made_transforms() != 0 ) {
+ tty->print_cr(" ratio %f", made_progress()/(float)made_transforms() );
+ } else {
+ tty->cr();
+ }
+ }
+}
+#endif
+
+//------------------------------makecon----------------------------------------
+ConNode* PhaseTransform::makecon(const Type *t) {
+ assert(t->singleton(), "must be a constant");
+ assert(!t->empty() || t == Type::TOP, "must not be vacuous range");
+ switch (t->base()) { // fast paths
+ case Type::Half:
+ case Type::Top: return (ConNode*) C->top();
+ case Type::Int: return intcon( t->is_int()->get_con() );
+ case Type::Long: return longcon( t->is_long()->get_con() );
+ }
+ if (t->is_zero_type())
+ return zerocon(t->basic_type());
+ return uncached_makecon(t);
+}
+
+//--------------------------uncached_makecon-----------------------------------
+// Make an idealized constant - one of ConINode, ConPNode, etc.
+ConNode* PhaseValues::uncached_makecon(const Type *t) {
+ assert(t->singleton(), "must be a constant");
+ ConNode* x = ConNode::make(C, t);
+ ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering
+ if (k == NULL) {
+ set_type(x, t); // Missed, provide type mapping
+ GrowableArray<Node_Notes*>* nna = C->node_note_array();
+ if (nna != NULL) {
+ Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true);
+ loc->clear(); // do not put debug info on constants
+ }
+ // Collect points-to information for escape analysys
+ ConnectionGraph *cgr = C->congraph();
+ if (cgr != NULL) {
+ cgr->record_escape(x, this);
+ }
+ } else {
+ x->destruct(); // Hit, destroy duplicate constant
+ x = k; // use existing constant
+ }
+ return x;
+}
+
+//------------------------------intcon-----------------------------------------
+// Fast integer constant. Same as "transform(new ConINode(TypeInt::make(i)))"
+ConINode* PhaseTransform::intcon(int i) {
+ // Small integer? Check cache! Check that cached node is not dead
+ if (i >= _icon_min && i <= _icon_max) {
+ ConINode* icon = _icons[i-_icon_min];
+ if (icon != NULL && icon->in(TypeFunc::Control) != NULL)
+ return icon;
+ }
+ ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i));
+ assert(icon->is_Con(), "");
+ if (i >= _icon_min && i <= _icon_max)
+ _icons[i-_icon_min] = icon; // Cache small integers
+ return icon;
+}
+
+//------------------------------longcon----------------------------------------
+// Fast long constant.
+ConLNode* PhaseTransform::longcon(jlong l) {
+ // Small integer? Check cache! Check that cached node is not dead
+ if (l >= _lcon_min && l <= _lcon_max) {
+ ConLNode* lcon = _lcons[l-_lcon_min];
+ if (lcon != NULL && lcon->in(TypeFunc::Control) != NULL)
+ return lcon;
+ }
+ ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l));
+ assert(lcon->is_Con(), "");
+ if (l >= _lcon_min && l <= _lcon_max)
+ _lcons[l-_lcon_min] = lcon; // Cache small integers
+ return lcon;
+}
+
+//------------------------------zerocon-----------------------------------------
+// Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))"
+ConNode* PhaseTransform::zerocon(BasicType bt) {
+ assert((uint)bt <= _zcon_max, "domain check");
+ ConNode* zcon = _zcons[bt];
+ if (zcon != NULL && zcon->in(TypeFunc::Control) != NULL)
+ return zcon;
+ zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt));
+ _zcons[bt] = zcon;
+ return zcon;
+}
+
+
+
+//=============================================================================
+//------------------------------transform--------------------------------------
+// Return a node which computes the same function as this node, but in a
+// faster or cheaper fashion. The Node passed in here must have no other
+// pointers to it, as its storage will be reclaimed if the Node can be
+// optimized away.
+Node *PhaseGVN::transform( Node *n ) {
+ NOT_PRODUCT( set_transforms(); )
+
+ // Apply the Ideal call in a loop until it no longer applies
+ Node *k = n;
+ NOT_PRODUCT( uint loop_count = 0; )
+ while( 1 ) {
+ Node *i = k->Ideal(this, /*can_reshape=*/false);
+ if( !i ) break;
+ assert( i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" );
+ // Can never reclaim storage for Ideal calls, because the Ideal call
+ // returns a new Node, bumping the High Water Mark and our old Node
+ // is caught behind the new one.
+ //if( k != i ) {
+ //k->destruct(); // Reclaim storage for recent node
+ k = i;
+ //}
+ assert(loop_count++ < K, "infinite loop in PhaseGVN::transform");
+ }
+ NOT_PRODUCT( if( loop_count != 0 ) { set_progress(); } )
+
+ // If brand new node, make space in type array.
+ ensure_type_or_null(k);
+
+ // Cache result of Value call since it can be expensive
+ // (abstract interpretation of node 'k' using phase->_types[ inputs ])
+ const Type *t = k->Value(this); // Get runtime Value set
+ assert(t != NULL, "value sanity");
+ if (type_or_null(k) != t) {
+#ifndef PRODUCT
+ // Do not record transformation or value construction on first visit
+ if (type_or_null(k) == NULL) {
+ inc_new_values();
+ set_progress();
+ }
+#endif
+ set_type(k, t);
+ // If k is a TypeNode, capture any more-precise type permanently into Node
+ k->raise_bottom_type(t);
+ }
+
+ if( t->singleton() && !k->is_Con() ) {
+ //k->destruct(); // Reclaim storage for recent node
+ NOT_PRODUCT( set_progress(); )
+ return makecon(t); // Turn into a constant
+ }
+
+ // Now check for Identities
+ Node *i = k->Identity(this); // Look for a nearby replacement
+ if( i != k ) { // Found? Return replacement!
+ //k->destruct(); // Reclaim storage for recent node
+ NOT_PRODUCT( set_progress(); )
+ return i;
+ }
+
+ // Try Global Value Numbering
+ i = hash_find_insert(k); // Found older value when i != NULL
+ if( i && i != k ) { // Hit? Return the old guy
+ NOT_PRODUCT( set_progress(); )
+ return i;
+ }
+
+ // Collect points-to information for escape analysys
+ ConnectionGraph *cgr = C->congraph();
+ if (cgr != NULL) {
+ cgr->record_escape(k, this);
+ }
+
+ // Return Idealized original
+ return k;
+}
+
+//------------------------------transform--------------------------------------
+// Return a node which computes the same function as this node, but
+// in a faster or cheaper fashion.
+Node *PhaseGVN::transform_no_reclaim( Node *n ) {
+ NOT_PRODUCT( set_transforms(); )
+
+ // Apply the Ideal call in a loop until it no longer applies
+ Node *k = n;
+ NOT_PRODUCT( uint loop_count = 0; )
+ while( 1 ) {
+ Node *i = k->Ideal(this, /*can_reshape=*/false);
+ if( !i ) break;
+ assert( i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" );
+ k = i;
+ assert(loop_count++ < K, "infinite loop in PhaseGVN::transform");
+ }
+ NOT_PRODUCT( if( loop_count != 0 ) { set_progress(); } )
+
+
+ // If brand new node, make space in type array.
+ ensure_type_or_null(k);
+
+ // Since I just called 'Value' to compute the set of run-time values
+ // for this Node, and 'Value' is non-local (and therefore expensive) I'll
+ // cache Value. Later requests for the local phase->type of this Node can
+ // use the cached Value instead of suffering with 'bottom_type'.
+ const Type *t = k->Value(this); // Get runtime Value set
+ assert(t != NULL, "value sanity");
+ if (type_or_null(k) != t) {
+#ifndef PRODUCT
+ // Do not count initial visit to node as a transformation
+ if (type_or_null(k) == NULL) {
+ inc_new_values();
+ set_progress();
+ }
+#endif
+ set_type(k, t);
+ // If k is a TypeNode, capture any more-precise type permanently into Node
+ k->raise_bottom_type(t);
+ }
+
+ if( t->singleton() && !k->is_Con() ) {
+ NOT_PRODUCT( set_progress(); )
+ return makecon(t); // Turn into a constant
+ }
+
+ // Now check for Identities
+ Node *i = k->Identity(this); // Look for a nearby replacement
+ if( i != k ) { // Found? Return replacement!
+ NOT_PRODUCT( set_progress(); )
+ return i;
+ }
+
+ // Global Value Numbering
+ i = hash_find_insert(k); // Insert if new
+ if( i && (i != k) ) {
+ // Return the pre-existing node
+ NOT_PRODUCT( set_progress(); )
+ return i;
+ }
+
+ // Return Idealized original
+ return k;
+}
+
+#ifdef ASSERT
+//------------------------------dead_loop_check--------------------------------
+// Check for a simple dead loop when a data node references itself direcly
+// or through an other data node excluding cons and phis.
+void PhaseGVN::dead_loop_check( Node *n ) {
+ // Phi may reference itself in a loop
+ if (n != NULL && !n->is_dead_loop_safe() && !n->is_CFG()) {
+ // Do 2 levels check and only data inputs.
+ bool no_dead_loop = true;
+ uint cnt = n->req();
+ for (uint i = 1; i < cnt && no_dead_loop; i++) {
+ Node *in = n->in(i);
+ if (in == n) {
+ no_dead_loop = false;
+ } else if (in != NULL && !in->is_dead_loop_safe()) {
+ uint icnt = in->req();
+ for (uint j = 1; j < icnt && no_dead_loop; j++) {
+ if (in->in(j) == n || in->in(j) == in)
+ no_dead_loop = false;
+ }
+ }
+ }
+ if (!no_dead_loop) n->dump(3);
+ assert(no_dead_loop, "dead loop detected");
+ }
+}
+#endif
+
+//=============================================================================
+//------------------------------PhaseIterGVN-----------------------------------
+// Initialize hash table to fresh and clean for +VerifyOpto
+PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ) : PhaseGVN(igvn,dummy), _worklist( ) {
+}
+
+//------------------------------PhaseIterGVN-----------------------------------
+// Initialize with previous PhaseIterGVN info; used by PhaseCCP
+PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn ) : PhaseGVN(igvn),
+ _worklist( igvn->_worklist )
+{
+}
+
+//------------------------------PhaseIterGVN-----------------------------------
+// Initialize with previous PhaseGVN info from Parser
+PhaseIterGVN::PhaseIterGVN( PhaseGVN *gvn ) : PhaseGVN(gvn),
+ _worklist(*C->for_igvn())
+{
+ uint max;
+
+ // Dead nodes in the hash table inherited from GVN were not treated as
+ // roots during def-use info creation; hence they represent an invisible
+ // use. Clear them out.
+ max = _table.size();
+ for( uint i = 0; i < max; ++i ) {
+ Node *n = _table.at(i);
+ if(n != NULL && n != _table.sentinel() && n->outcnt() == 0) {
+ if( n->is_top() ) continue;
+ assert( false, "Parse::remove_useless_nodes missed this node");
+ hash_delete(n);
+ }
+ }
+
+ // Any Phis or Regions on the worklist probably had uses that could not
+ // make more progress because the uses were made while the Phis and Regions
+ // were in half-built states. Put all uses of Phis and Regions on worklist.
+ max = _worklist.size();
+ for( uint j = 0; j < max; j++ ) {
+ Node *n = _worklist.at(j);
+ uint uop = n->Opcode();
+ if( uop == Op_Phi || uop == Op_Region ||
+ n->is_Type() ||
+ n->is_Mem() )
+ add_users_to_worklist(n);
+ }
+}
+
+
+#ifndef PRODUCT
+void PhaseIterGVN::verify_step(Node* n) {
+ _verify_window[_verify_counter % _verify_window_size] = n;
+ ++_verify_counter;
+ ResourceMark rm;
+ ResourceArea *area = Thread::current()->resource_area();
+ VectorSet old_space(area), new_space(area);
+ if (C->unique() < 1000 ||
+ 0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) {
+ ++_verify_full_passes;
+ Node::verify_recur(C->root(), -1, old_space, new_space);
+ }
+ const int verify_depth = 4;
+ for ( int i = 0; i < _verify_window_size; i++ ) {
+ Node* n = _verify_window[i];
+ if ( n == NULL ) continue;
+ if( n->in(0) == NodeSentinel ) { // xform_idom
+ _verify_window[i] = n->in(1);
+ --i; continue;
+ }
+ // Typical fanout is 1-2, so this call visits about 6 nodes.
+ Node::verify_recur(n, verify_depth, old_space, new_space);
+ }
+}
+#endif
+
+
+//------------------------------init_worklist----------------------------------
+// Initialize worklist for each node.
+void PhaseIterGVN::init_worklist( Node *n ) {
+ if( _worklist.member(n) ) return;
+ _worklist.push(n);
+ uint cnt = n->req();
+ for( uint i =0 ; i < cnt; i++ ) {
+ Node *m = n->in(i);
+ if( m ) init_worklist(m);
+ }
+}
+
+//------------------------------optimize---------------------------------------
+void PhaseIterGVN::optimize() {
+ debug_only(uint num_processed = 0;);
+#ifndef PRODUCT
+ {
+ _verify_counter = 0;
+ _verify_full_passes = 0;
+ for ( int i = 0; i < _verify_window_size; i++ ) {
+ _verify_window[i] = NULL;
+ }
+ }
+#endif
+
+ // Pull from worklist; transform node;
+ // If node has changed: update edge info and put uses on worklist.
+ while( _worklist.size() ) {
+ Node *n = _worklist.pop();
+ if (TraceIterativeGVN && Verbose) {
+ tty->print(" Pop ");
+ NOT_PRODUCT( n->dump(); )
+ debug_only(if( (num_processed++ % 100) == 0 ) _worklist.print_set();)
+ }
+
+ if (n->outcnt() != 0) {
+
+#ifndef PRODUCT
+ uint wlsize = _worklist.size();
+ const Type* oldtype = type_or_null(n);
+#endif //PRODUCT
+
+ Node *nn = transform_old(n);
+
+#ifndef PRODUCT
+ if (TraceIterativeGVN) {
+ const Type* newtype = type_or_null(n);
+ if (nn != n) {
+ // print old node
+ tty->print("< ");
+ if (oldtype != newtype && oldtype != NULL) {
+ oldtype->dump();
+ }
+ do { tty->print("\t"); } while (tty->position() < 16);
+ tty->print("<");
+ n->dump();
+ }
+ if (oldtype != newtype || nn != n) {
+ // print new node and/or new type
+ if (oldtype == NULL) {
+ tty->print("* ");
+ } else if (nn != n) {
+ tty->print("> ");
+ } else {
+ tty->print("= ");
+ }
+ if (newtype == NULL) {
+ tty->print("null");
+ } else {
+ newtype->dump();
+ }
+ do { tty->print("\t"); } while (tty->position() < 16);
+ nn->dump();
+ }
+ if (Verbose && wlsize < _worklist.size()) {
+ tty->print(" Push {");
+ while (wlsize != _worklist.size()) {
+ Node* pushed = _worklist.at(wlsize++);
+ tty->print(" %d", pushed->_idx);
+ }
+ tty->print_cr(" }");
+ }
+ }
+ if( VerifyIterativeGVN && nn != n ) {
+ verify_step((Node*) NULL); // ignore n, it might be subsumed
+ }
+#endif
+ } else if (!n->is_top()) {
+ remove_dead_node(n);
+ }
+ }
+
+#ifndef PRODUCT
+ C->verify_graph_edges();
+ if( VerifyOpto && allow_progress() ) {
+ // Must turn off allow_progress to enable assert and break recursion
+ C->root()->verify();
+ { // Check if any progress was missed using IterGVN
+ // Def-Use info enables transformations not attempted in wash-pass
+ // e.g. Region/Phi cleanup, ...
+ // Null-check elision -- may not have reached fixpoint
+ // do not propagate to dominated nodes
+ ResourceMark rm;
+ PhaseIterGVN igvn2(this,"Verify"); // Fresh and clean!
+ // Fill worklist completely
+ igvn2.init_worklist(C->root());
+
+ igvn2.set_allow_progress(false);
+ igvn2.optimize();
+ igvn2.set_allow_progress(true);
+ }
+ }
+ if ( VerifyIterativeGVN && PrintOpto ) {
+ if ( _verify_counter == _verify_full_passes )
+ tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes",
+ _verify_full_passes);
+ else
+ tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes",
+ _verify_counter, _verify_full_passes);
+ }
+#endif
+}
+
+
+//------------------register_new_node_with_optimizer---------------------------
+// Register a new node with the optimizer. Update the types array, the def-use
+// info. Put on worklist.
+Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) {
+ set_type_bottom(n);
+ _worklist.push(n);
+ if (orig != NULL) C->copy_node_notes_to(n, orig);
+ return n;
+}
+
+//------------------------------transform--------------------------------------
+// Non-recursive: idealize Node 'n' with respect to its inputs and its value
+Node *PhaseIterGVN::transform( Node *n ) {
+ // If brand new node, make space in type array, and give it a type.
+ ensure_type_or_null(n);
+ if (type_or_null(n) == NULL) {
+ set_type_bottom(n);
+ }
+
+ return transform_old(n);
+}
+
+//------------------------------transform_old----------------------------------
+Node *PhaseIterGVN::transform_old( Node *n ) {
+#ifndef PRODUCT
+ debug_only(uint loop_count = 0;);
+ set_transforms();
+#endif
+ // Remove 'n' from hash table in case it gets modified
+ _table.hash_delete(n);
+ if( VerifyIterativeGVN ) {
+ assert( !_table.find_index(n->_idx), "found duplicate entry in table");
+ }
+
+ // Apply the Ideal call in a loop until it no longer applies
+ Node *k = n;
+ DEBUG_ONLY(dead_loop_check(k);)
+ Node *i = k->Ideal(this, /*can_reshape=*/true);
+#ifndef PRODUCT
+ if( VerifyIterativeGVN )
+ verify_step(k);
+ if( i && VerifyOpto ) {
+ if( !allow_progress() ) {
+ if (i->is_Add() && i->outcnt() == 1) {
+ // Switched input to left side because this is the only use
+ } else if( i->is_If() && (i->in(0) == NULL) ) {
+ // This IF is dead because it is dominated by an equivalent IF When
+ // dominating if changed, info is not propagated sparsely to 'this'
+ // Propagating this info further will spuriously identify other
+ // progress.
+ return i;
+ } else
+ set_progress();
+ } else
+ set_progress();
+ }
+#endif
+
+ while( i ) {
+#ifndef PRODUCT
+ debug_only( if( loop_count >= K ) i->dump(4); )
+ assert(loop_count < K, "infinite loop in PhaseIterGVN::transform");
+ debug_only( loop_count++; )
+#endif
+ assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes");
+ // Made a change; put users of original Node on worklist
+ add_users_to_worklist( k );
+ // Replacing root of transform tree?
+ if( k != i ) {
+ // Make users of old Node now use new.
+ subsume_node( k, i );
+ k = i;
+ }
+ DEBUG_ONLY(dead_loop_check(k);)
+ // Try idealizing again
+ i = k->Ideal(this, /*can_reshape=*/true);
+#ifndef PRODUCT
+ if( VerifyIterativeGVN )
+ verify_step(k);
+ if( i && VerifyOpto ) set_progress();
+#endif
+ }
+
+ // If brand new node, make space in type array.
+ ensure_type_or_null(k);
+
+ // See what kind of values 'k' takes on at runtime
+ const Type *t = k->Value(this);
+ assert(t != NULL, "value sanity");
+
+ // Since I just called 'Value' to compute the set of run-time values
+ // for this Node, and 'Value' is non-local (and therefore expensive) I'll
+ // cache Value. Later requests for the local phase->type of this Node can
+ // use the cached Value instead of suffering with 'bottom_type'.
+ if (t != type_or_null(k)) {
+ NOT_PRODUCT( set_progress(); )
+ NOT_PRODUCT( inc_new_values();)
+ set_type(k, t);
+ // If k is a TypeNode, capture any more-precise type permanently into Node
+ k->raise_bottom_type(t);
+ // Move users of node to worklist
+ add_users_to_worklist( k );
+ }
+
+ // If 'k' computes a constant, replace it with a constant
+ if( t->singleton() && !k->is_Con() ) {
+ NOT_PRODUCT( set_progress(); )
+ Node *con = makecon(t); // Make a constant
+ add_users_to_worklist( k );
+ subsume_node( k, con ); // Everybody using k now uses con
+ return con;
+ }
+
+ // Now check for Identities
+ i = k->Identity(this); // Look for a nearby replacement
+ if( i != k ) { // Found? Return replacement!
+ NOT_PRODUCT( set_progress(); )
+ add_users_to_worklist( k );
+ subsume_node( k, i ); // Everybody using k now uses i
+ return i;
+ }
+
+ // Global Value Numbering
+ i = hash_find_insert(k); // Check for pre-existing node
+ if( i && (i != k) ) {
+ // Return the pre-existing node if it isn't dead
+ NOT_PRODUCT( set_progress(); )
+ add_users_to_worklist( k );
+ subsume_node( k, i ); // Everybody using k now uses i
+ return i;
+ }
+
+ // Return Idealized original
+ return k;
+}
+
+//---------------------------------saturate------------------------------------
+const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type,
+ const Type* limit_type) const {
+ return new_type->narrow(old_type);
+}
+
+//------------------------------remove_globally_dead_node----------------------
+// Kill a globally dead Node. All uses are also globally dead and are
+// aggressively trimmed.
+void PhaseIterGVN::remove_globally_dead_node( Node *dead ) {
+ assert(dead != C->root(), "killing root, eh?");
+ if (dead->is_top()) return;
+ NOT_PRODUCT( set_progress(); )
+ // Remove from iterative worklist
+ _worklist.remove(dead);
+ if (!dead->is_Con()) { // Don't kill cons but uses
+ // Remove from hash table
+ _table.hash_delete( dead );
+ // Smash all inputs to 'dead', isolating him completely
+ for( uint i = 0; i < dead->req(); i++ ) {
+ Node *in = dead->in(i);
+ if( in ) { // Points to something?
+ dead->set_req(i,NULL); // Kill the edge
+ if (in->outcnt() == 0 && in != C->top()) {// Made input go dead?
+ remove_dead_node(in); // Recursively remove
+ } else if (in->outcnt() == 1 &&
+ in->has_special_unique_user()) {
+ _worklist.push(in->unique_out());
+ } else if (in->outcnt() <= 2 && dead->is_Phi()) {
+ if( in->Opcode() == Op_Region )
+ _worklist.push(in);
+ else if( in->is_Store() ) {
+ DUIterator_Fast imax, i = in->fast_outs(imax);
+ _worklist.push(in->fast_out(i));
+ i++;
+ if(in->outcnt() == 2) {
+ _worklist.push(in->fast_out(i));
+ i++;
+ }
+ assert(!(i < imax), "sanity");
+ }
+ }
+ }
+ }
+
+ if (dead->is_macro()) {
+ C->remove_macro_node(dead);
+ }
+ }
+ // Aggressively kill globally dead uses
+ // (Cannot use DUIterator_Last because of the indefinite number
+ // of edge deletions per loop trip.)
+ while (dead->outcnt() > 0) {
+ remove_globally_dead_node(dead->raw_out(0));
+ }
+}
+
+//------------------------------subsume_node-----------------------------------
+// Remove users from node 'old' and add them to node 'nn'.
+void PhaseIterGVN::subsume_node( Node *old, Node *nn ) {
+ assert( old != hash_find(old), "should already been removed" );
+ assert( old != C->top(), "cannot subsume top node");
+ // Copy debug or profile information to the new version:
+ C->copy_node_notes_to(nn, old);
+ // Move users of node 'old' to node 'nn'
+ for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) {
+ Node* use = old->last_out(i); // for each use...
+ // use might need re-hashing (but it won't if it's a new node)
+ bool is_in_table = _table.hash_delete( use );
+ // Update use-def info as well
+ // We remove all occurrences of old within use->in,
+ // so as to avoid rehashing any node more than once.
+ // The hash table probe swamps any outer loop overhead.
+ uint num_edges = 0;
+ for (uint jmax = use->len(), j = 0; j < jmax; j++) {
+ if (use->in(j) == old) {
+ use->set_req(j, nn);
+ ++num_edges;
+ }
+ }
+ // Insert into GVN hash table if unique
+ // If a duplicate, 'use' will be cleaned up when pulled off worklist
+ if( is_in_table ) {
+ hash_find_insert(use);
+ }
+ i -= num_edges; // we deleted 1 or more copies of this edge
+ }
+
+ // Smash all inputs to 'old', isolating him completely
+ Node *temp = new (C, 1) Node(1);
+ temp->init_req(0,nn); // Add a use to nn to prevent him from dying
+ remove_dead_node( old );
+ temp->del_req(0); // Yank bogus edge
+#ifndef PRODUCT
+ if( VerifyIterativeGVN ) {
+ for ( int i = 0; i < _verify_window_size; i++ ) {
+ if ( _verify_window[i] == old )
+ _verify_window[i] = nn;
+ }
+ }
+#endif
+ _worklist.remove(temp); // this can be necessary
+ temp->destruct(); // reuse the _idx of this little guy
+}
+
+//------------------------------add_users_to_worklist--------------------------
+void PhaseIterGVN::add_users_to_worklist0( Node *n ) {
+ for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
+ _worklist.push(n->fast_out(i)); // Push on worklist
+ }
+}
+
+void PhaseIterGVN::add_users_to_worklist( Node *n ) {
+ add_users_to_worklist0(n);
+
+ // Move users of node to worklist
+ for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
+ Node* use = n->fast_out(i); // Get use
+
+ if( use->is_Multi() || // Multi-definer? Push projs on worklist
+ use->is_Store() ) // Enable store/load same address
+ add_users_to_worklist0(use);
+
+ // If we changed the receiver type to a call, we need to revisit
+ // the Catch following the call. It's looking for a non-NULL
+ // receiver to know when to enable the regular fall-through path
+ // in addition to the NullPtrException path.
+ if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) {
+ Node* p = use->as_CallDynamicJava()->proj_out(TypeFunc::Control);
+ if (p != NULL) {
+ add_users_to_worklist0(p);
+ }
+ }
+
+ if( use->is_Cmp() ) { // Enable CMP/BOOL optimization
+ add_users_to_worklist(use); // Put Bool on worklist
+ // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the
+ // phi merging either 0 or 1 onto the worklist
+ if (use->outcnt() > 0) {
+ Node* bol = use->raw_out(0);
+ if (bol->outcnt() > 0) {
+ Node* iff = bol->raw_out(0);
+ if (iff->outcnt() == 2) {
+ Node* ifproj0 = iff->raw_out(0);
+ Node* ifproj1 = iff->raw_out(1);
+ if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) {
+ Node* region0 = ifproj0->raw_out(0);
+ Node* region1 = ifproj1->raw_out(0);
+ if( region0 == region1 )
+ add_users_to_worklist0(region0);
+ }
+ }
+ }
+ }
+ }
+
+ uint use_op = use->Opcode();
+ // If changed Cast input, check Phi users for simple cycles
+ if( use->is_ConstraintCast() || use->Opcode() == Op_CheckCastPP ) {
+ for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
+ Node* u = use->fast_out(i2);
+ if (u->is_Phi())
+ _worklist.push(u);
+ }
+ }
+ // If changed LShift inputs, check RShift users for useless sign-ext
+ if( use_op == Op_LShiftI ) {
+ for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
+ Node* u = use->fast_out(i2);
+ if (u->Opcode() == Op_RShiftI)
+ _worklist.push(u);
+ }
+ }
+ // If changed AddP inputs, check Stores for loop invariant
+ if( use_op == Op_AddP ) {
+ for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
+ Node* u = use->fast_out(i2);
+ if (u->is_Mem())
+ _worklist.push(u);
+ }
+ }
+ // If changed initialization activity, check dependent Stores
+ if (use_op == Op_Allocate || use_op == Op_AllocateArray) {
+ InitializeNode* init = use->as_Allocate()->initialization();
+ if (init != NULL) {
+ Node* imem = init->proj_out(TypeFunc::Memory);
+ if (imem != NULL) add_users_to_worklist0(imem);
+ }
+ }
+ if (use_op == Op_Initialize) {
+ Node* imem = use->as_Initialize()->proj_out(TypeFunc::Memory);
+ if (imem != NULL) add_users_to_worklist0(imem);
+ }
+ }
+}
+
+//=============================================================================
+#ifndef PRODUCT
+uint PhaseCCP::_total_invokes = 0;
+uint PhaseCCP::_total_constants = 0;
+#endif
+//------------------------------PhaseCCP---------------------------------------
+// Conditional Constant Propagation, ala Wegman & Zadeck
+PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) {
+ NOT_PRODUCT( clear_constants(); )
+ assert( _worklist.size() == 0, "" );
+ // Clear out _nodes from IterGVN. Must be clear to transform call.
+ _nodes.clear(); // Clear out from IterGVN
+ analyze();
+}
+
+#ifndef PRODUCT
+//------------------------------~PhaseCCP--------------------------------------
+PhaseCCP::~PhaseCCP() {
+ inc_invokes();
+ _total_constants += count_constants();
+}
+#endif
+
+
+#ifdef ASSERT
+static bool ccp_type_widens(const Type* t, const Type* t0) {
+ assert(t->meet(t0) == t, "Not monotonic");
+ switch (t->base() == t0->base() ? t->base() : Type::Top) {
+ case Type::Int:
+ assert(t0->isa_int()->_widen <= t->isa_int()->_widen, "widen increases");
+ break;
+ case Type::Long:
+ assert(t0->isa_long()->_widen <= t->isa_long()->_widen, "widen increases");
+ break;
+ }
+ return true;
+}
+#endif //ASSERT
+
+//------------------------------analyze----------------------------------------
+void PhaseCCP::analyze() {
+ // Initialize all types to TOP, optimistic analysis
+ for (int i = C->unique() - 1; i >= 0; i--) {
+ _types.map(i,Type::TOP);
+ }
+
+ // Push root onto worklist
+ Unique_Node_List worklist;
+ worklist.push(C->root());
+
+ // Pull from worklist; compute new value; push changes out.
+ // This loop is the meat of CCP.
+ while( worklist.size() ) {
+ Node *n = worklist.pop();
+ const Type *t = n->Value(this);
+ if (t != type(n)) {
+ assert(ccp_type_widens(t, type(n)), "ccp type must widen");
+#ifndef PRODUCT
+ if( TracePhaseCCP ) {
+ t->dump();
+ do { tty->print("\t"); } while (tty->position() < 16);
+ n->dump();
+ }
+#endif
+ set_type(n, t);
+ for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
+ Node* m = n->fast_out(i); // Get user
+ if( m->is_Region() ) { // New path to Region? Must recheck Phis too
+ for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
+ Node* p = m->fast_out(i2); // Propagate changes to uses
+ if( p->bottom_type() != type(p) ) // If not already bottomed out
+ worklist.push(p); // Propagate change to user
+ }
+ }
+ // If we changed the reciever type to a call, we need to revisit
+ // the Catch following the call. It's looking for a non-NULL
+ // receiver to know when to enable the regular fall-through path
+ // in addition to the NullPtrException path
+ if (m->is_Call()) {
+ for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
+ Node* p = m->fast_out(i2); // Propagate changes to uses
+ if (p->is_Proj() && p->as_Proj()->_con == TypeFunc::Control && p->outcnt() == 1)
+ worklist.push(p->unique_out());
+ }
+ }
+ if( m->bottom_type() != type(m) ) // If not already bottomed out
+ worklist.push(m); // Propagate change to user
+ }
+ }
+ }
+}
+
+//------------------------------do_transform-----------------------------------
+// Top level driver for the recursive transformer
+void PhaseCCP::do_transform() {
+ // Correct leaves of new-space Nodes; they point to old-space.
+ C->set_root( transform(C->root())->as_Root() );
+ assert( C->top(), "missing TOP node" );
+ assert( C->root(), "missing root" );
+}
+
+//------------------------------transform--------------------------------------
+// Given a Node in old-space, clone him into new-space.
+// Convert any of his old-space children into new-space children.
+Node *PhaseCCP::transform( Node *n ) {
+ Node *new_node = _nodes[n->_idx]; // Check for transformed node
+ if( new_node != NULL )
+ return new_node; // Been there, done that, return old answer
+ new_node = transform_once(n); // Check for constant
+ _nodes.map( n->_idx, new_node ); // Flag as having been cloned
+
+ // Allocate stack of size _nodes.Size()/2 to avoid frequent realloc
+ GrowableArray <Node *> trstack(C->unique() >> 1);
+
+ trstack.push(new_node); // Process children of cloned node
+ while ( trstack.is_nonempty() ) {
+ Node *clone = trstack.pop();
+ uint cnt = clone->req();
+ for( uint i = 0; i < cnt; i++ ) { // For all inputs do
+ Node *input = clone->in(i);
+ if( input != NULL ) { // Ignore NULLs
+ Node *new_input = _nodes[input->_idx]; // Check for cloned input node
+ if( new_input == NULL ) {
+ new_input = transform_once(input); // Check for constant
+ _nodes.map( input->_idx, new_input );// Flag as having been cloned
+ trstack.push(new_input);
+ }
+ assert( new_input == clone->in(i), "insanity check");
+ }
+ }
+ }
+ return new_node;
+}
+
+
+//------------------------------transform_once---------------------------------
+// For PhaseCCP, transformation is IDENTITY unless Node computed a constant.
+Node *PhaseCCP::transform_once( Node *n ) {
+ const Type *t = type(n);
+ // Constant? Use constant Node instead
+ if( t->singleton() ) {
+ Node *nn = n; // Default is to return the original constant
+ if( t == Type::TOP ) {
+ // cache my top node on the Compile instance
+ if( C->cached_top_node() == NULL || C->cached_top_node()->in(0) == NULL ) {
+ C->set_cached_top_node( ConNode::make(C, Type::TOP) );
+ set_type(C->top(), Type::TOP);
+ }
+ nn = C->top();
+ }
+ if( !n->is_Con() ) {
+ if( t != Type::TOP ) {
+ nn = makecon(t); // ConNode::make(t);
+ NOT_PRODUCT( inc_constants(); )
+ } else if( n->is_Region() ) { // Unreachable region
+ // Note: nn == C->top()
+ n->set_req(0, NULL); // Cut selfreference
+ // Eagerly remove dead phis to avoid phis copies creation.
+ for (DUIterator i = n->outs(); n->has_out(i); i++) {
+ Node* m = n->out(i);
+ if( m->is_Phi() ) {
+ assert(type(m) == Type::TOP, "Unreachable region should not have live phis.");
+ add_users_to_worklist(m);
+ hash_delete(m); // Yank from hash before hacking edges
+ subsume_node(m, nn);
+ --i; // deleted this phi; rescan starting with next position
+ }
+ }
+ }
+ add_users_to_worklist(n); // Users of about-to-be-constant 'n'
+ hash_delete(n); // Removed 'n' from table before subsuming it
+ subsume_node(n,nn); // Update DefUse edges for new constant
+ }
+ return nn;
+ }
+
+ // If x is a TypeNode, capture any more-precise type permanently into Node
+ if (t != n->bottom_type()) {
+ hash_delete(n); // changing bottom type may force a rehash
+ n->raise_bottom_type(t);
+ _worklist.push(n); // n re-enters the hash table via the worklist
+ }
+
+ // Idealize graph using DU info. Must clone() into new-space.
+ // DU info is generally used to show profitability, progress or safety
+ // (but generally not needed for correctness).
+ Node *nn = n->Ideal_DU_postCCP(this);
+
+ // TEMPORARY fix to ensure that 2nd GVN pass eliminates NULL checks
+ switch( n->Opcode() ) {
+ case Op_FastLock: // Revisit FastLocks for lock coarsening
+ case Op_If:
+ case Op_CountedLoopEnd:
+ case Op_Region:
+ case Op_Loop:
+ case Op_CountedLoop:
+ case Op_Conv2B:
+ case Op_Opaque1:
+ case Op_Opaque2:
+ _worklist.push(n);
+ break;
+ default:
+ break;
+ }
+ if( nn ) {
+ _worklist.push(n);
+ // Put users of 'n' onto worklist for second igvn transform
+ add_users_to_worklist(n);
+ return nn;
+ }
+
+ return n;
+}
+
+//---------------------------------saturate------------------------------------
+const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type,
+ const Type* limit_type) const {
+ const Type* wide_type = new_type->widen(old_type);
+ if (wide_type != new_type) { // did we widen?
+ // If so, we may have widened beyond the limit type. Clip it back down.
+ new_type = wide_type->filter(limit_type);
+ }
+ return new_type;
+}
+
+//------------------------------print_statistics-------------------------------
+#ifndef PRODUCT
+void PhaseCCP::print_statistics() {
+ tty->print_cr("CCP: %d constants found: %d", _total_invokes, _total_constants);
+}
+#endif
+
+
+//=============================================================================
+#ifndef PRODUCT
+uint PhasePeephole::_total_peepholes = 0;
+#endif
+//------------------------------PhasePeephole----------------------------------
+// Conditional Constant Propagation, ala Wegman & Zadeck
+PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg )
+ : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) {
+ NOT_PRODUCT( clear_peepholes(); )
+}
+
+#ifndef PRODUCT
+//------------------------------~PhasePeephole---------------------------------
+PhasePeephole::~PhasePeephole() {
+ _total_peepholes += count_peepholes();
+}
+#endif
+
+//------------------------------transform--------------------------------------
+Node *PhasePeephole::transform( Node *n ) {
+ ShouldNotCallThis();
+ return NULL;
+}
+
+//------------------------------do_transform-----------------------------------
+void PhasePeephole::do_transform() {
+ bool method_name_not_printed = true;
+
+ // Examine each basic block
+ for( uint block_number = 1; block_number < _cfg._num_blocks; ++block_number ) {
+ Block *block = _cfg._blocks[block_number];
+ bool block_not_printed = true;
+
+ // and each instruction within a block
+ uint end_index = block->_nodes.size();
+ // block->end_idx() not valid after PhaseRegAlloc
+ for( uint instruction_index = 1; instruction_index < end_index; ++instruction_index ) {
+ Node *n = block->_nodes.at(instruction_index);
+ if( n->is_Mach() ) {
+ MachNode *m = n->as_Mach();
+ int deleted_count = 0;
+ // check for peephole opportunities
+ MachNode *m2 = m->peephole( block, instruction_index, _regalloc, deleted_count, C );
+ if( m2 != NULL ) {
+#ifndef PRODUCT
+ if( PrintOptoPeephole ) {
+ // Print method, first time only
+ if( C->method() && method_name_not_printed ) {
+ C->method()->print_short_name(); tty->cr();
+ method_name_not_printed = false;
+ }
+ // Print this block
+ if( Verbose && block_not_printed) {
+ tty->print_cr("in block");
+ block->dump();
+ block_not_printed = false;
+ }
+ // Print instructions being deleted
+ for( int i = (deleted_count - 1); i >= 0; --i ) {
+ block->_nodes.at(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr();
+ }
+ tty->print_cr("replaced with");
+ // Print new instruction
+ m2->format(_regalloc);
+ tty->print("\n\n");
+ }
+#endif
+ // Remove old nodes from basic block and update instruction_index
+ // (old nodes still exist and may have edges pointing to them
+ // as register allocation info is stored in the allocator using
+ // the node index to live range mappings.)
+ uint safe_instruction_index = (instruction_index - deleted_count);
+ for( ; (instruction_index > safe_instruction_index); --instruction_index ) {
+ block->_nodes.remove( instruction_index );
+ }
+ // install new node after safe_instruction_index
+ block->_nodes.insert( safe_instruction_index + 1, m2 );
+ end_index = block->_nodes.size() - 1; // Recompute new block size
+ NOT_PRODUCT( inc_peepholes(); )
+ }
+ }
+ }
+ }
+}
+
+//------------------------------print_statistics-------------------------------
+#ifndef PRODUCT
+void PhasePeephole::print_statistics() {
+ tty->print_cr("Peephole: peephole rules applied: %d", _total_peepholes);
+}
+#endif
+
+
+//=============================================================================
+//------------------------------set_req_X--------------------------------------
+void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) {
+ assert( is_not_dead(n), "can not use dead node");
+ assert( igvn->hash_find(this) != this, "Need to remove from hash before changing edges" );
+ Node *old = in(i);
+ set_req(i, n);
+
+ // old goes dead?
+ if( old ) {
+ switch (old->outcnt()) {
+ case 0: // Kill all his inputs, and recursively kill other dead nodes.
+ if (!old->is_top())
+ igvn->remove_dead_node( old );
+ break;
+ case 1:
+ if( old->is_Store() || old->has_special_unique_user() )
+ igvn->add_users_to_worklist( old );
+ break;
+ case 2:
+ if( old->is_Store() )
+ igvn->add_users_to_worklist( old );
+ if( old->Opcode() == Op_Region )
+ igvn->_worklist.push(old);
+ break;
+ case 3:
+ if( old->Opcode() == Op_Region ) {
+ igvn->_worklist.push(old);
+ igvn->add_users_to_worklist( old );
+ }
+ break;
+ default:
+ break;
+ }
+ }
+
+}
+
+//-------------------------------replace_by-----------------------------------
+// Using def-use info, replace one node for another. Follow the def-use info
+// to all users of the OLD node. Then make all uses point to the NEW node.
+void Node::replace_by(Node *new_node) {
+ assert(!is_top(), "top node has no DU info");
+ for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) {
+ Node* use = last_out(i);
+ uint uses_found = 0;
+ for (uint j = 0; j < use->len(); j++) {
+ if (use->in(j) == this) {
+ if (j < use->req())
+ use->set_req(j, new_node);
+ else use->set_prec(j, new_node);
+ uses_found++;
+ }
+ }
+ i -= uses_found; // we deleted 1 or more copies of this edge
+ }
+}
+
+//=============================================================================
+//-----------------------------------------------------------------------------
+void Type_Array::grow( uint i ) {
+ if( !_max ) {
+ _max = 1;
+ _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) );
+ _types[0] = NULL;
+ }
+ uint old = _max;
+ while( i >= _max ) _max <<= 1; // Double to fit
+ _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*));
+ memset( &_types[old], 0, (_max-old)*sizeof(Type*) );
+}
+
+//------------------------------dump-------------------------------------------
+#ifndef PRODUCT
+void Type_Array::dump() const {
+ uint max = Size();
+ for( uint i = 0; i < max; i++ ) {
+ if( _types[i] != NULL ) {
+ tty->print(" %d\t== ", i); _types[i]->dump(); tty->cr();
+ }
+ }
+}
+#endif