--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/opto/node.hpp Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,1492 @@
+/*
+ * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+// Portions of code courtesy of Clifford Click
+
+// Optimization - Graph Style
+
+
+class AbstractLockNode;
+class AddNode;
+class AddPNode;
+class AliasInfo;
+class AllocateArrayNode;
+class AllocateNode;
+class Block;
+class Block_Array;
+class BoolNode;
+class BoxLockNode;
+class CMoveNode;
+class CallDynamicJavaNode;
+class CallJavaNode;
+class CallLeafNode;
+class CallNode;
+class CallRuntimeNode;
+class CallStaticJavaNode;
+class CatchNode;
+class CatchProjNode;
+class CheckCastPPNode;
+class CmpNode;
+class CodeBuffer;
+class ConstraintCastNode;
+class ConNode;
+class CountedLoopNode;
+class CountedLoopEndNode;
+class FastLockNode;
+class FastUnlockNode;
+class IfNode;
+class InitializeNode;
+class JVMState;
+class JumpNode;
+class JumpProjNode;
+class LoadNode;
+class LoadStoreNode;
+class LockNode;
+class LoopNode;
+class MachCallDynamicJavaNode;
+class MachCallJavaNode;
+class MachCallLeafNode;
+class MachCallNode;
+class MachCallRuntimeNode;
+class MachCallStaticJavaNode;
+class MachIfNode;
+class MachNode;
+class MachNullCheckNode;
+class MachReturnNode;
+class MachSafePointNode;
+class MachSpillCopyNode;
+class MachTempNode;
+class Matcher;
+class MemBarNode;
+class MemNode;
+class MergeMemNode;
+class MulNode;
+class MultiNode;
+class MultiBranchNode;
+class NeverBranchNode;
+class Node;
+class Node_Array;
+class Node_List;
+class Node_Stack;
+class NullCheckNode;
+class OopMap;
+class PCTableNode;
+class PhaseCCP;
+class PhaseGVN;
+class PhaseIterGVN;
+class PhaseRegAlloc;
+class PhaseTransform;
+class PhaseValues;
+class PhiNode;
+class Pipeline;
+class ProjNode;
+class RegMask;
+class RegionNode;
+class RootNode;
+class SafePointNode;
+class StartNode;
+class State;
+class StoreNode;
+class SubNode;
+class Type;
+class TypeNode;
+class UnlockNode;
+class VectorSet;
+class IfTrueNode;
+class IfFalseNode;
+typedef void (*NFunc)(Node&,void*);
+extern "C" {
+ typedef int (*C_sort_func_t)(const void *, const void *);
+}
+
+// The type of all node counts and indexes.
+// It must hold at least 16 bits, but must also be fast to load and store.
+// This type, if less than 32 bits, could limit the number of possible nodes.
+// (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
+typedef unsigned int node_idx_t;
+
+
+#ifndef OPTO_DU_ITERATOR_ASSERT
+#ifdef ASSERT
+#define OPTO_DU_ITERATOR_ASSERT 1
+#else
+#define OPTO_DU_ITERATOR_ASSERT 0
+#endif
+#endif //OPTO_DU_ITERATOR_ASSERT
+
+#if OPTO_DU_ITERATOR_ASSERT
+class DUIterator;
+class DUIterator_Fast;
+class DUIterator_Last;
+#else
+typedef uint DUIterator;
+typedef Node** DUIterator_Fast;
+typedef Node** DUIterator_Last;
+#endif
+
+// Node Sentinel
+#define NodeSentinel (Node*)-1
+
+// Unknown count frequency
+#define COUNT_UNKNOWN (-1.0f)
+
+//------------------------------Node-------------------------------------------
+// Nodes define actions in the program. They create values, which have types.
+// They are both vertices in a directed graph and program primitives. Nodes
+// are labeled; the label is the "opcode", the primitive function in the lambda
+// calculus sense that gives meaning to the Node. Node inputs are ordered (so
+// that "a-b" is different from "b-a"). The inputs to a Node are the inputs to
+// the Node's function. These inputs also define a Type equation for the Node.
+// Solving these Type equations amounts to doing dataflow analysis.
+// Control and data are uniformly represented in the graph. Finally, Nodes
+// have a unique dense integer index which is used to index into side arrays
+// whenever I have phase-specific information.
+
+class Node {
+ // Lots of restrictions on cloning Nodes
+ Node(const Node&); // not defined; linker error to use these
+ Node &operator=(const Node &rhs);
+
+public:
+ friend class Compile;
+ #if OPTO_DU_ITERATOR_ASSERT
+ friend class DUIterator_Common;
+ friend class DUIterator;
+ friend class DUIterator_Fast;
+ friend class DUIterator_Last;
+ #endif
+
+ // Because Nodes come and go, I define an Arena of Node structures to pull
+ // from. This should allow fast access to node creation & deletion. This
+ // field is a local cache of a value defined in some "program fragment" for
+ // which these Nodes are just a part of.
+
+ // New Operator that takes a Compile pointer, this will eventually
+ // be the "new" New operator.
+ inline void* operator new( size_t x, Compile* C) {
+ Node* n = (Node*)C->node_arena()->Amalloc_D(x);
+#ifdef ASSERT
+ n->_in = (Node**)n; // magic cookie for assertion check
+#endif
+ n->_out = (Node**)C;
+ return (void*)n;
+ }
+
+ // New Operator that takes a Compile pointer, this will eventually
+ // be the "new" New operator.
+ inline void* operator new( size_t x, Compile* C, int y) {
+ Node* n = (Node*)C->node_arena()->Amalloc_D(x + y*sizeof(void*));
+ n->_in = (Node**)(((char*)n) + x);
+#ifdef ASSERT
+ n->_in[y-1] = n; // magic cookie for assertion check
+#endif
+ n->_out = (Node**)C;
+ return (void*)n;
+ }
+
+ // Delete is a NOP
+ void operator delete( void *ptr ) {}
+ // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
+ void destruct();
+
+ // Create a new Node. Required is the number is of inputs required for
+ // semantic correctness.
+ Node( uint required );
+
+ // Create a new Node with given input edges.
+ // This version requires use of the "edge-count" new.
+ // E.g. new (C,3) FooNode( C, NULL, left, right );
+ Node( Node *n0 );
+ Node( Node *n0, Node *n1 );
+ Node( Node *n0, Node *n1, Node *n2 );
+ Node( Node *n0, Node *n1, Node *n2, Node *n3 );
+ Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
+ Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
+ Node( Node *n0, Node *n1, Node *n2, Node *n3,
+ Node *n4, Node *n5, Node *n6 );
+
+ // Clone an inherited Node given only the base Node type.
+ Node* clone() const;
+
+ // Clone a Node, immediately supplying one or two new edges.
+ // The first and second arguments, if non-null, replace in(1) and in(2),
+ // respectively.
+ Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
+ Node* nn = clone();
+ if (in1 != NULL) nn->set_req(1, in1);
+ if (in2 != NULL) nn->set_req(2, in2);
+ return nn;
+ }
+
+private:
+ // Shared setup for the above constructors.
+ // Handles all interactions with Compile::current.
+ // Puts initial values in all Node fields except _idx.
+ // Returns the initial value for _idx, which cannot
+ // be initialized by assignment.
+ inline int Init(int req, Compile* C);
+
+//----------------- input edge handling
+protected:
+ friend class PhaseCFG; // Access to address of _in array elements
+ Node **_in; // Array of use-def references to Nodes
+ Node **_out; // Array of def-use references to Nodes
+
+ // Input edges are split into two catagories. Required edges are required
+ // for semantic correctness; order is important and NULLs are allowed.
+ // Precedence edges are used to help determine execution order and are
+ // added, e.g., for scheduling purposes. They are unordered and not
+ // duplicated; they have no embedded NULLs. Edges from 0 to _cnt-1
+ // are required, from _cnt to _max-1 are precedence edges.
+ node_idx_t _cnt; // Total number of required Node inputs.
+
+ node_idx_t _max; // Actual length of input array.
+
+ // Output edges are an unordered list of def-use edges which exactly
+ // correspond to required input edges which point from other nodes
+ // to this one. Thus the count of the output edges is the number of
+ // users of this node.
+ node_idx_t _outcnt; // Total number of Node outputs.
+
+ node_idx_t _outmax; // Actual length of output array.
+
+ // Grow the actual input array to the next larger power-of-2 bigger than len.
+ void grow( uint len );
+ // Grow the output array to the next larger power-of-2 bigger than len.
+ void out_grow( uint len );
+
+ public:
+ // Each Node is assigned a unique small/dense number. This number is used
+ // to index into auxiliary arrays of data and bitvectors.
+ // It is declared const to defend against inadvertant assignment,
+ // since it is used by clients as a naked field.
+ const node_idx_t _idx;
+
+ // Get the (read-only) number of input edges
+ uint req() const { return _cnt; }
+ uint len() const { return _max; }
+ // Get the (read-only) number of output edges
+ uint outcnt() const { return _outcnt; }
+
+#if OPTO_DU_ITERATOR_ASSERT
+ // Iterate over the out-edges of this node. Deletions are illegal.
+ inline DUIterator outs() const;
+ // Use this when the out array might have changed to suppress asserts.
+ inline DUIterator& refresh_out_pos(DUIterator& i) const;
+ // Does the node have an out at this position? (Used for iteration.)
+ inline bool has_out(DUIterator& i) const;
+ inline Node* out(DUIterator& i) const;
+ // Iterate over the out-edges of this node. All changes are illegal.
+ inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
+ inline Node* fast_out(DUIterator_Fast& i) const;
+ // Iterate over the out-edges of this node, deleting one at a time.
+ inline DUIterator_Last last_outs(DUIterator_Last& min) const;
+ inline Node* last_out(DUIterator_Last& i) const;
+ // The inline bodies of all these methods are after the iterator definitions.
+#else
+ // Iterate over the out-edges of this node. Deletions are illegal.
+ // This iteration uses integral indexes, to decouple from array reallocations.
+ DUIterator outs() const { return 0; }
+ // Use this when the out array might have changed to suppress asserts.
+ DUIterator refresh_out_pos(DUIterator i) const { return i; }
+
+ // Reference to the i'th output Node. Error if out of bounds.
+ Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
+ // Does the node have an out at this position? (Used for iteration.)
+ bool has_out(DUIterator i) const { return i < _outcnt; }
+
+ // Iterate over the out-edges of this node. All changes are illegal.
+ // This iteration uses a pointer internal to the out array.
+ DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
+ Node** out = _out;
+ // Assign a limit pointer to the reference argument:
+ max = out + (ptrdiff_t)_outcnt;
+ // Return the base pointer:
+ return out;
+ }
+ Node* fast_out(DUIterator_Fast i) const { return *i; }
+ // Iterate over the out-edges of this node, deleting one at a time.
+ // This iteration uses a pointer internal to the out array.
+ DUIterator_Last last_outs(DUIterator_Last& min) const {
+ Node** out = _out;
+ // Assign a limit pointer to the reference argument:
+ min = out;
+ // Return the pointer to the start of the iteration:
+ return out + (ptrdiff_t)_outcnt - 1;
+ }
+ Node* last_out(DUIterator_Last i) const { return *i; }
+#endif
+
+ // Reference to the i'th input Node. Error if out of bounds.
+ Node* in(uint i) const { assert(i < _max,"oob"); return _in[i]; }
+ // Reference to the i'th output Node. Error if out of bounds.
+ // Use this accessor sparingly. We are going trying to use iterators instead.
+ Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
+ // Return the unique out edge.
+ Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
+ // Delete out edge at position 'i' by moving last out edge to position 'i'
+ void raw_del_out(uint i) {
+ assert(i < _outcnt,"oob");
+ assert(_outcnt > 0,"oob");
+ #if OPTO_DU_ITERATOR_ASSERT
+ // Record that a change happened here.
+ debug_only(_last_del = _out[i]; ++_del_tick);
+ #endif
+ _out[i] = _out[--_outcnt];
+ // Smash the old edge so it can't be used accidentally.
+ debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
+ }
+
+#ifdef ASSERT
+ bool is_dead() const;
+#define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
+#endif
+
+ // Set a required input edge, also updates corresponding output edge
+ void add_req( Node *n ); // Append a NEW required input
+ void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
+ void del_req( uint idx ); // Delete required edge & compact
+ void ins_req( uint i, Node *n ); // Insert a NEW required input
+ void set_req( uint i, Node *n ) {
+ assert( is_not_dead(n), "can not use dead node");
+ assert( i < _cnt, "oob");
+ assert( !VerifyHashTableKeys || _hash_lock == 0,
+ "remove node from hash table before modifying it");
+ Node** p = &_in[i]; // cache this._in, across the del_out call
+ if (*p != NULL) (*p)->del_out((Node *)this);
+ (*p) = n;
+ if (n != NULL) n->add_out((Node *)this);
+ }
+ // Light version of set_req() to init inputs after node creation.
+ void init_req( uint i, Node *n ) {
+ assert( i == 0 && this == n ||
+ is_not_dead(n), "can not use dead node");
+ assert( i < _cnt, "oob");
+ assert( !VerifyHashTableKeys || _hash_lock == 0,
+ "remove node from hash table before modifying it");
+ assert( _in[i] == NULL, "sanity");
+ _in[i] = n;
+ if (n != NULL) n->add_out((Node *)this);
+ }
+ // Find first occurrence of n among my edges:
+ int find_edge(Node* n);
+ int replace_edge(Node* old, Node* neww);
+ // NULL out all inputs to eliminate incoming Def-Use edges.
+ // Return the number of edges between 'n' and 'this'
+ int disconnect_inputs(Node *n);
+
+ // Quickly, return true if and only if I am Compile::current()->top().
+ bool is_top() const {
+ assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
+ return (_out == NULL);
+ }
+ // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.)
+ void setup_is_top();
+
+ // Strip away casting. (It is depth-limited.)
+ Node* uncast() const;
+
+private:
+ static Node* uncast_helper(const Node* n);
+
+ // Add an output edge to the end of the list
+ void add_out( Node *n ) {
+ if (is_top()) return;
+ if( _outcnt == _outmax ) out_grow(_outcnt);
+ _out[_outcnt++] = n;
+ }
+ // Delete an output edge
+ void del_out( Node *n ) {
+ if (is_top()) return;
+ Node** outp = &_out[_outcnt];
+ // Find and remove n
+ do {
+ assert(outp > _out, "Missing Def-Use edge");
+ } while (*--outp != n);
+ *outp = _out[--_outcnt];
+ // Smash the old edge so it can't be used accidentally.
+ debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
+ // Record that a change happened here.
+ #if OPTO_DU_ITERATOR_ASSERT
+ debug_only(_last_del = n; ++_del_tick);
+ #endif
+ }
+
+public:
+ // Globally replace this node by a given new node, updating all uses.
+ void replace_by(Node* new_node);
+ void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
+ // Find the one non-null required input. RegionNode only
+ Node *nonnull_req() const;
+ // Add or remove precedence edges
+ void add_prec( Node *n );
+ void rm_prec( uint i );
+ void set_prec( uint i, Node *n ) {
+ assert( is_not_dead(n), "can not use dead node");
+ assert( i >= _cnt, "not a precedence edge");
+ if (_in[i] != NULL) _in[i]->del_out((Node *)this);
+ _in[i] = n;
+ if (n != NULL) n->add_out((Node *)this);
+ }
+ // Set this node's index, used by cisc_version to replace current node
+ void set_idx(uint new_idx) {
+ const node_idx_t* ref = &_idx;
+ *(node_idx_t*)ref = new_idx;
+ }
+ // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.)
+ void swap_edges(uint i1, uint i2) {
+ debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
+ // Def-Use info is unchanged
+ Node* n1 = in(i1);
+ Node* n2 = in(i2);
+ _in[i1] = n2;
+ _in[i2] = n1;
+ // If this node is in the hash table, make sure it doesn't need a rehash.
+ assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
+ }
+
+ // Iterators over input Nodes for a Node X are written as:
+ // for( i = 0; i < X.req(); i++ ) ... X[i] ...
+ // NOTE: Required edges can contain embedded NULL pointers.
+
+//----------------- Other Node Properties
+
+ // Generate class id for some ideal nodes to avoid virtual query
+ // methods is_<Node>().
+ // Class id is the set of bits corresponded to the node class and all its
+ // super classes so that queries for super classes are also valid.
+ // Subclasses of the same super class have different assigned bit
+ // (the third parameter in the macro DEFINE_CLASS_ID).
+ // Classes with deeper hierarchy are declared first.
+ // Classes with the same hierarchy depth are sorted by usage frequency.
+ //
+ // The query method masks the bits to cut off bits of subclasses
+ // and then compare the result with the class id
+ // (see the macro DEFINE_CLASS_QUERY below).
+ //
+ // Class_MachCall=30, ClassMask_MachCall=31
+ // 12 8 4 0
+ // 0 0 0 0 0 0 0 0 1 1 1 1 0
+ // | | | |
+ // | | | Bit_Mach=2
+ // | | Bit_MachReturn=4
+ // | Bit_MachSafePoint=8
+ // Bit_MachCall=16
+ //
+ // Class_CountedLoop=56, ClassMask_CountedLoop=63
+ // 12 8 4 0
+ // 0 0 0 0 0 0 0 1 1 1 0 0 0
+ // | | |
+ // | | Bit_Region=8
+ // | Bit_Loop=16
+ // Bit_CountedLoop=32
+
+ #define DEFINE_CLASS_ID(cl, supcl, subn) \
+ Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
+ Class_##cl = Class_##supcl + Bit_##cl , \
+ ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
+
+ // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
+ // so that it's values fits into 16 bits.
+ enum NodeClasses {
+ Bit_Node = 0x0000,
+ Class_Node = 0x0000,
+ ClassMask_Node = 0xFFFF,
+
+ DEFINE_CLASS_ID(Multi, Node, 0)
+ DEFINE_CLASS_ID(SafePoint, Multi, 0)
+ DEFINE_CLASS_ID(Call, SafePoint, 0)
+ DEFINE_CLASS_ID(CallJava, Call, 0)
+ DEFINE_CLASS_ID(CallStaticJava, CallJava, 0)
+ DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1)
+ DEFINE_CLASS_ID(CallRuntime, Call, 1)
+ DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0)
+ DEFINE_CLASS_ID(Allocate, Call, 2)
+ DEFINE_CLASS_ID(AllocateArray, Allocate, 0)
+ DEFINE_CLASS_ID(AbstractLock, Call, 3)
+ DEFINE_CLASS_ID(Lock, AbstractLock, 0)
+ DEFINE_CLASS_ID(Unlock, AbstractLock, 1)
+ DEFINE_CLASS_ID(MultiBranch, Multi, 1)
+ DEFINE_CLASS_ID(PCTable, MultiBranch, 0)
+ DEFINE_CLASS_ID(Catch, PCTable, 0)
+ DEFINE_CLASS_ID(Jump, PCTable, 1)
+ DEFINE_CLASS_ID(If, MultiBranch, 1)
+ DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
+ DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
+ DEFINE_CLASS_ID(Start, Multi, 2)
+ DEFINE_CLASS_ID(MemBar, Multi, 3)
+ DEFINE_CLASS_ID(Initialize, MemBar, 0)
+
+ DEFINE_CLASS_ID(Mach, Node, 1)
+ DEFINE_CLASS_ID(MachReturn, Mach, 0)
+ DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
+ DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
+ DEFINE_CLASS_ID(MachCallJava, MachCall, 0)
+ DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0)
+ DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1)
+ DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1)
+ DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0)
+ DEFINE_CLASS_ID(MachSpillCopy, Mach, 1)
+ DEFINE_CLASS_ID(MachNullCheck, Mach, 2)
+ DEFINE_CLASS_ID(MachIf, Mach, 3)
+ DEFINE_CLASS_ID(MachTemp, Mach, 4)
+
+ DEFINE_CLASS_ID(Proj, Node, 2)
+ DEFINE_CLASS_ID(CatchProj, Proj, 0)
+ DEFINE_CLASS_ID(JumpProj, Proj, 1)
+ DEFINE_CLASS_ID(IfTrue, Proj, 2)
+ DEFINE_CLASS_ID(IfFalse, Proj, 3)
+
+ DEFINE_CLASS_ID(Region, Node, 3)
+ DEFINE_CLASS_ID(Loop, Region, 0)
+ DEFINE_CLASS_ID(Root, Loop, 0)
+ DEFINE_CLASS_ID(CountedLoop, Loop, 1)
+
+ DEFINE_CLASS_ID(Sub, Node, 4)
+ DEFINE_CLASS_ID(Cmp, Sub, 0)
+ DEFINE_CLASS_ID(FastLock, Cmp, 0)
+ DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
+
+ DEFINE_CLASS_ID(Type, Node, 5)
+ DEFINE_CLASS_ID(Phi, Type, 0)
+ DEFINE_CLASS_ID(ConstraintCast, Type, 1)
+ DEFINE_CLASS_ID(CheckCastPP, Type, 2)
+ DEFINE_CLASS_ID(CMove, Type, 3)
+
+ DEFINE_CLASS_ID(Mem, Node, 6)
+ DEFINE_CLASS_ID(Load, Mem, 0)
+ DEFINE_CLASS_ID(Store, Mem, 1)
+ DEFINE_CLASS_ID(LoadStore, Mem, 2)
+
+ DEFINE_CLASS_ID(MergeMem, Node, 7)
+ DEFINE_CLASS_ID(Bool, Node, 8)
+ DEFINE_CLASS_ID(AddP, Node, 9)
+ DEFINE_CLASS_ID(BoxLock, Node, 10)
+ DEFINE_CLASS_ID(Add, Node, 11)
+ DEFINE_CLASS_ID(Mul, Node, 12)
+
+ _max_classes = ClassMask_Mul
+ };
+ #undef DEFINE_CLASS_ID
+
+ // Flags are sorted by usage frequency.
+ enum NodeFlags {
+ Flag_is_Copy = 0x01, // should be first bit to avoid shift
+ Flag_is_Call = Flag_is_Copy << 1,
+ Flag_rematerialize = Flag_is_Call << 1,
+ Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
+ Flag_is_macro = Flag_needs_anti_dependence_check << 1,
+ Flag_is_Con = Flag_is_macro << 1,
+ Flag_is_cisc_alternate = Flag_is_Con << 1,
+ Flag_is_Branch = Flag_is_cisc_alternate << 1,
+ Flag_is_block_start = Flag_is_Branch << 1,
+ Flag_is_Goto = Flag_is_block_start << 1,
+ Flag_is_dead_loop_safe = Flag_is_Goto << 1,
+ Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
+ Flag_is_safepoint_node = Flag_may_be_short_branch << 1,
+ Flag_is_pc_relative = Flag_is_safepoint_node << 1,
+ Flag_is_Vector = Flag_is_pc_relative << 1,
+ _max_flags = (Flag_is_Vector << 1) - 1 // allow flags combination
+ };
+
+private:
+ jushort _class_id;
+ jushort _flags;
+
+protected:
+ // These methods should be called from constructors only.
+ void init_class_id(jushort c) {
+ assert(c <= _max_classes, "invalid node class");
+ _class_id = c; // cast out const
+ }
+ void init_flags(jushort fl) {
+ assert(fl <= _max_flags, "invalid node flag");
+ _flags |= fl;
+ }
+ void clear_flag(jushort fl) {
+ assert(fl <= _max_flags, "invalid node flag");
+ _flags &= ~fl;
+ }
+
+public:
+ const jushort class_id() const { return _class_id; }
+
+ const jushort flags() const { return _flags; }
+
+ // Return a dense integer opcode number
+ virtual int Opcode() const;
+
+ // Virtual inherited Node size
+ virtual uint size_of() const;
+
+ // Other interesting Node properties
+
+ // Special case: is_Call() returns true for both CallNode and MachCallNode.
+ bool is_Call() const {
+ return (_flags & Flag_is_Call) != 0;
+ }
+
+ CallNode *as_Call() const { // Only for CallNode (not for MachCallNode)
+ assert((_class_id & ClassMask_Call) == Class_Call, "invalid node class");
+ return (CallNode*)this;
+ }
+
+ #define DEFINE_CLASS_QUERY(type) \
+ bool is_##type() const { \
+ return ((_class_id & ClassMask_##type) == Class_##type); \
+ } \
+ type##Node *as_##type() const { \
+ assert(is_##type(), "invalid node class"); \
+ return (type##Node*)this; \
+ }
+
+ DEFINE_CLASS_QUERY(AbstractLock)
+ DEFINE_CLASS_QUERY(Add)
+ DEFINE_CLASS_QUERY(AddP)
+ DEFINE_CLASS_QUERY(Allocate)
+ DEFINE_CLASS_QUERY(AllocateArray)
+ DEFINE_CLASS_QUERY(Bool)
+ DEFINE_CLASS_QUERY(BoxLock)
+ DEFINE_CLASS_QUERY(CallDynamicJava)
+ DEFINE_CLASS_QUERY(CallJava)
+ DEFINE_CLASS_QUERY(CallLeaf)
+ DEFINE_CLASS_QUERY(CallRuntime)
+ DEFINE_CLASS_QUERY(CallStaticJava)
+ DEFINE_CLASS_QUERY(Catch)
+ DEFINE_CLASS_QUERY(CatchProj)
+ DEFINE_CLASS_QUERY(CheckCastPP)
+ DEFINE_CLASS_QUERY(ConstraintCast)
+ DEFINE_CLASS_QUERY(CMove)
+ DEFINE_CLASS_QUERY(Cmp)
+ DEFINE_CLASS_QUERY(CountedLoop)
+ DEFINE_CLASS_QUERY(CountedLoopEnd)
+ DEFINE_CLASS_QUERY(FastLock)
+ DEFINE_CLASS_QUERY(FastUnlock)
+ DEFINE_CLASS_QUERY(If)
+ DEFINE_CLASS_QUERY(IfFalse)
+ DEFINE_CLASS_QUERY(IfTrue)
+ DEFINE_CLASS_QUERY(Initialize)
+ DEFINE_CLASS_QUERY(Jump)
+ DEFINE_CLASS_QUERY(JumpProj)
+ DEFINE_CLASS_QUERY(Load)
+ DEFINE_CLASS_QUERY(LoadStore)
+ DEFINE_CLASS_QUERY(Lock)
+ DEFINE_CLASS_QUERY(Loop)
+ DEFINE_CLASS_QUERY(Mach)
+ DEFINE_CLASS_QUERY(MachCall)
+ DEFINE_CLASS_QUERY(MachCallDynamicJava)
+ DEFINE_CLASS_QUERY(MachCallJava)
+ DEFINE_CLASS_QUERY(MachCallLeaf)
+ DEFINE_CLASS_QUERY(MachCallRuntime)
+ DEFINE_CLASS_QUERY(MachCallStaticJava)
+ DEFINE_CLASS_QUERY(MachIf)
+ DEFINE_CLASS_QUERY(MachNullCheck)
+ DEFINE_CLASS_QUERY(MachReturn)
+ DEFINE_CLASS_QUERY(MachSafePoint)
+ DEFINE_CLASS_QUERY(MachSpillCopy)
+ DEFINE_CLASS_QUERY(MachTemp)
+ DEFINE_CLASS_QUERY(Mem)
+ DEFINE_CLASS_QUERY(MemBar)
+ DEFINE_CLASS_QUERY(MergeMem)
+ DEFINE_CLASS_QUERY(Mul)
+ DEFINE_CLASS_QUERY(Multi)
+ DEFINE_CLASS_QUERY(MultiBranch)
+ DEFINE_CLASS_QUERY(PCTable)
+ DEFINE_CLASS_QUERY(Phi)
+ DEFINE_CLASS_QUERY(Proj)
+ DEFINE_CLASS_QUERY(Region)
+ DEFINE_CLASS_QUERY(Root)
+ DEFINE_CLASS_QUERY(SafePoint)
+ DEFINE_CLASS_QUERY(Start)
+ DEFINE_CLASS_QUERY(Store)
+ DEFINE_CLASS_QUERY(Sub)
+ DEFINE_CLASS_QUERY(Type)
+ DEFINE_CLASS_QUERY(Unlock)
+
+ #undef DEFINE_CLASS_QUERY
+
+ // duplicate of is_MachSpillCopy()
+ bool is_SpillCopy () const {
+ return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
+ }
+
+ bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
+ bool is_Goto() const { return (_flags & Flag_is_Goto) != 0; }
+ // The data node which is safe to leave in dead loop during IGVN optimization.
+ bool is_dead_loop_safe() const {
+ return is_Phi() || is_Proj() ||
+ (_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0;
+ }
+
+ // is_Copy() returns copied edge index (0 or 1)
+ uint is_Copy() const { return (_flags & Flag_is_Copy); }
+
+ virtual bool is_CFG() const { return false; }
+
+ // If this node is control-dependent on a test, can it be
+ // rerouted to a dominating equivalent test? This is usually
+ // true of non-CFG nodes, but can be false for operations which
+ // depend for their correct sequencing on more than one test.
+ // (In that case, hoisting to a dominating test may silently
+ // skip some other important test.)
+ virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
+
+ // defined for MachNodes that match 'If' | 'Goto' | 'CountedLoopEnd'
+ bool is_Branch() const { return (_flags & Flag_is_Branch) != 0; }
+
+ // When building basic blocks, I need to have a notion of block beginning
+ // Nodes, next block selector Nodes (block enders), and next block
+ // projections. These calls need to work on their machine equivalents. The
+ // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
+ bool is_block_start() const {
+ if ( is_Region() )
+ return this == (const Node*)in(0);
+ else
+ return (_flags & Flag_is_block_start) != 0;
+ }
+
+ // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
+ // Goto and Return. This call also returns the block ending Node.
+ virtual const Node *is_block_proj() const;
+
+ // The node is a "macro" node which needs to be expanded before matching
+ bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
+
+ // Value is a vector of primitive values
+ bool is_Vector() const { return (_flags & Flag_is_Vector) != 0; }
+
+//----------------- Optimization
+
+ // Get the worst-case Type output for this Node.
+ virtual const class Type *bottom_type() const;
+
+ // If we find a better type for a node, try to record it permanently.
+ // Return true if this node actually changed.
+ // Be sure to do the hash_delete game in the "rehash" variant.
+ void raise_bottom_type(const Type* new_type);
+
+ // Get the address type with which this node uses and/or defs memory,
+ // or NULL if none. The address type is conservatively wide.
+ // Returns non-null for calls, membars, loads, stores, etc.
+ // Returns TypePtr::BOTTOM if the node touches memory "broadly".
+ virtual const class TypePtr *adr_type() const { return NULL; }
+
+ // Return an existing node which computes the same function as this node.
+ // The optimistic combined algorithm requires this to return a Node which
+ // is a small number of steps away (e.g., one of my inputs).
+ virtual Node *Identity( PhaseTransform *phase );
+
+ // Return the set of values this Node can take on at runtime.
+ virtual const Type *Value( PhaseTransform *phase ) const;
+
+ // Return a node which is more "ideal" than the current node.
+ // The invariants on this call are subtle. If in doubt, read the
+ // treatise in node.cpp above the default implemention AND TEST WITH
+ // +VerifyIterativeGVN!
+ virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+
+ // Some nodes have specific Ideal subgraph transformations only if they are
+ // unique users of specific nodes. Such nodes should be put on IGVN worklist
+ // for the transformations to happen.
+ bool has_special_unique_user() const;
+
+protected:
+ bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
+public:
+
+ // Idealize graph, using DU info. Done after constant propagation
+ virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
+
+ // See if there is valid pipeline info
+ static const Pipeline *pipeline_class();
+ virtual const Pipeline *pipeline() const;
+
+ // Compute the latency from the def to this instruction of the ith input node
+ uint latency(uint i);
+
+ // Hash & compare functions, for pessimistic value numbering
+
+ // If the hash function returns the special sentinel value NO_HASH,
+ // the node is guaranteed never to compare equal to any other node.
+ // If we accidently generate a hash with value NO_HASH the node
+ // won't go into the table and we'll lose a little optimization.
+ enum { NO_HASH = 0 };
+ virtual uint hash() const;
+ virtual uint cmp( const Node &n ) const;
+
+ // Operation appears to be iteratively computed (such as an induction variable)
+ // It is possible for this operation to return false for a loop-varying
+ // value, if it appears (by local graph inspection) to be computed by a simple conditional.
+ bool is_iteratively_computed();
+
+ // Determine if a node is Counted loop induction variable.
+ // The method is defined in loopnode.cpp.
+ const Node* is_loop_iv() const;
+
+ // Return a node with opcode "opc" and same inputs as "this" if one can
+ // be found; Otherwise return NULL;
+ Node* find_similar(int opc);
+
+ // Return the unique control out if only one. Null if none or more than one.
+ Node* unique_ctrl_out();
+
+//----------------- Code Generation
+
+ // Ideal register class for Matching. Zero means unmatched instruction
+ // (these are cloned instead of converted to machine nodes).
+ virtual uint ideal_reg() const;
+
+ static const uint NotAMachineReg; // must be > max. machine register
+
+ // Do we Match on this edge index or not? Generally false for Control
+ // and true for everything else. Weird for calls & returns.
+ virtual uint match_edge(uint idx) const;
+
+ // Register class output is returned in
+ virtual const RegMask &out_RegMask() const;
+ // Register class input is expected in
+ virtual const RegMask &in_RegMask(uint) const;
+ // Should we clone rather than spill this instruction?
+ bool rematerialize() const;
+
+ // Return JVM State Object if this Node carries debug info, or NULL otherwise
+ virtual JVMState* jvms() const;
+
+ // Print as assembly
+ virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
+ // Emit bytes starting at parameter 'ptr'
+ // Bump 'ptr' by the number of output bytes
+ virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
+ // Size of instruction in bytes
+ virtual uint size(PhaseRegAlloc *ra_) const;
+
+ // Convenience function to extract an integer constant from a node.
+ // If it is not an integer constant (either Con, CastII, or Mach),
+ // return value_if_unknown.
+ jint find_int_con(jint value_if_unknown) const {
+ const TypeInt* t = find_int_type();
+ return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
+ }
+ // Return the constant, knowing it is an integer constant already
+ jint get_int() const {
+ const TypeInt* t = find_int_type();
+ guarantee(t != NULL, "must be con");
+ return t->get_con();
+ }
+ // Here's where the work is done. Can produce non-constant int types too.
+ const TypeInt* find_int_type() const;
+
+ // Same thing for long (and intptr_t, via type.hpp):
+ jlong get_long() const {
+ const TypeLong* t = find_long_type();
+ guarantee(t != NULL, "must be con");
+ return t->get_con();
+ }
+ jlong find_long_con(jint value_if_unknown) const {
+ const TypeLong* t = find_long_type();
+ return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
+ }
+ const TypeLong* find_long_type() const;
+
+ // These guys are called by code generated by ADLC:
+ intptr_t get_ptr() const;
+ jdouble getd() const;
+ jfloat getf() const;
+
+ // Nodes which are pinned into basic blocks
+ virtual bool pinned() const { return false; }
+
+ // Nodes which use memory without consuming it, hence need antidependences
+ // More specifically, needs_anti_dependence_check returns true iff the node
+ // (a) does a load, and (b) does not perform a store (except perhaps to a
+ // stack slot or some other unaliased location).
+ bool needs_anti_dependence_check() const;
+
+ // Return which operand this instruction may cisc-spill. In other words,
+ // return operand position that can convert from reg to memory access
+ virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
+ bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
+
+//----------------- Graph walking
+public:
+ // Walk and apply member functions recursively.
+ // Supplied (this) pointer is root.
+ void walk(NFunc pre, NFunc post, void *env);
+ static void nop(Node &, void*); // Dummy empty function
+ static void packregion( Node &n, void* );
+private:
+ void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
+
+//----------------- Printing, etc
+public:
+#ifndef PRODUCT
+ Node* find(int idx) const; // Search the graph for the given idx.
+ Node* find_ctrl(int idx) const; // Search control ancestors for the given idx.
+ void dump() const; // Print this node,
+ void dump(int depth) const; // Print this node, recursively to depth d
+ void dump_ctrl(int depth) const; // Print control nodes, to depth d
+ virtual void dump_req() const; // Print required-edge info
+ virtual void dump_prec() const; // Print precedence-edge info
+ virtual void dump_out() const; // Print the output edge info
+ virtual void dump_spec(outputStream *st) const {}; // Print per-node info
+ void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
+ void verify() const; // Check Def-Use info for my subgraph
+ static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
+
+ // This call defines a class-unique string used to identify class instances
+ virtual const char *Name() const;
+
+ void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
+ // RegMask Print Functions
+ void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
+ void dump_out_regmask() { out_RegMask().dump(); }
+ static int _in_dump_cnt;
+ static bool in_dump() { return _in_dump_cnt > 0; }
+ void fast_dump() const {
+ tty->print("%4d: %-17s", _idx, Name());
+ for (uint i = 0; i < len(); i++)
+ if (in(i))
+ tty->print(" %4d", in(i)->_idx);
+ else
+ tty->print(" NULL");
+ tty->print("\n");
+ }
+#endif
+#ifdef ASSERT
+ void verify_construction();
+ bool verify_jvms(const JVMState* jvms) const;
+ int _debug_idx; // Unique value assigned to every node.
+ int debug_idx() const { return _debug_idx; }
+ void set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
+
+ Node* _debug_orig; // Original version of this, if any.
+ Node* debug_orig() const { return _debug_orig; }
+ void set_debug_orig(Node* orig); // _debug_orig = orig
+
+ int _hash_lock; // Barrier to modifications of nodes in the hash table
+ void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
+ void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
+
+ static void init_NodeProperty();
+
+ #if OPTO_DU_ITERATOR_ASSERT
+ const Node* _last_del; // The last deleted node.
+ uint _del_tick; // Bumped when a deletion happens..
+ #endif
+#endif
+};
+
+//-----------------------------------------------------------------------------
+// Iterators over DU info, and associated Node functions.
+
+#if OPTO_DU_ITERATOR_ASSERT
+
+// Common code for assertion checking on DU iterators.
+class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
+#ifdef ASSERT
+ protected:
+ bool _vdui; // cached value of VerifyDUIterators
+ const Node* _node; // the node containing the _out array
+ uint _outcnt; // cached node->_outcnt
+ uint _del_tick; // cached node->_del_tick
+ Node* _last; // last value produced by the iterator
+
+ void sample(const Node* node); // used by c'tor to set up for verifies
+ void verify(const Node* node, bool at_end_ok = false);
+ void verify_resync();
+ void reset(const DUIterator_Common& that);
+
+// The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
+ #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
+#else
+ #define I_VDUI_ONLY(i,x) { }
+#endif //ASSERT
+};
+
+#define VDUI_ONLY(x) I_VDUI_ONLY(*this, x)
+
+// Default DU iterator. Allows appends onto the out array.
+// Allows deletion from the out array only at the current point.
+// Usage:
+// for (DUIterator i = x->outs(); x->has_out(i); i++) {
+// Node* y = x->out(i);
+// ...
+// }
+// Compiles in product mode to a unsigned integer index, which indexes
+// onto a repeatedly reloaded base pointer of x->_out. The loop predicate
+// also reloads x->_outcnt. If you delete, you must perform "--i" just
+// before continuing the loop. You must delete only the last-produced
+// edge. You must delete only a single copy of the last-produced edge,
+// or else you must delete all copies at once (the first time the edge
+// is produced by the iterator).
+class DUIterator : public DUIterator_Common {
+ friend class Node;
+
+ // This is the index which provides the product-mode behavior.
+ // Whatever the product-mode version of the system does to the
+ // DUI index is done to this index. All other fields in
+ // this class are used only for assertion checking.
+ uint _idx;
+
+ #ifdef ASSERT
+ uint _refresh_tick; // Records the refresh activity.
+
+ void sample(const Node* node); // Initialize _refresh_tick etc.
+ void verify(const Node* node, bool at_end_ok = false);
+ void verify_increment(); // Verify an increment operation.
+ void verify_resync(); // Verify that we can back up over a deletion.
+ void verify_finish(); // Verify that the loop terminated properly.
+ void refresh(); // Resample verification info.
+ void reset(const DUIterator& that); // Resample after assignment.
+ #endif
+
+ DUIterator(const Node* node, int dummy_to_avoid_conversion)
+ { _idx = 0; debug_only(sample(node)); }
+
+ public:
+ // initialize to garbage; clear _vdui to disable asserts
+ DUIterator()
+ { /*initialize to garbage*/ debug_only(_vdui = false); }
+
+ void operator++(int dummy_to_specify_postfix_op)
+ { _idx++; VDUI_ONLY(verify_increment()); }
+
+ void operator--()
+ { VDUI_ONLY(verify_resync()); --_idx; }
+
+ ~DUIterator()
+ { VDUI_ONLY(verify_finish()); }
+
+ void operator=(const DUIterator& that)
+ { _idx = that._idx; debug_only(reset(that)); }
+};
+
+DUIterator Node::outs() const
+ { return DUIterator(this, 0); }
+DUIterator& Node::refresh_out_pos(DUIterator& i) const
+ { I_VDUI_ONLY(i, i.refresh()); return i; }
+bool Node::has_out(DUIterator& i) const
+ { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
+Node* Node::out(DUIterator& i) const
+ { I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) _out[i._idx]; }
+
+
+// Faster DU iterator. Disallows insertions into the out array.
+// Allows deletion from the out array only at the current point.
+// Usage:
+// for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
+// Node* y = x->fast_out(i);
+// ...
+// }
+// Compiles in product mode to raw Node** pointer arithmetic, with
+// no reloading of pointers from the original node x. If you delete,
+// you must perform "--i; --imax" just before continuing the loop.
+// If you delete multiple copies of the same edge, you must decrement
+// imax, but not i, multiple times: "--i, imax -= num_edges".
+class DUIterator_Fast : public DUIterator_Common {
+ friend class Node;
+ friend class DUIterator_Last;
+
+ // This is the pointer which provides the product-mode behavior.
+ // Whatever the product-mode version of the system does to the
+ // DUI pointer is done to this pointer. All other fields in
+ // this class are used only for assertion checking.
+ Node** _outp;
+
+ #ifdef ASSERT
+ void verify(const Node* node, bool at_end_ok = false);
+ void verify_limit();
+ void verify_resync();
+ void verify_relimit(uint n);
+ void reset(const DUIterator_Fast& that);
+ #endif
+
+ // Note: offset must be signed, since -1 is sometimes passed
+ DUIterator_Fast(const Node* node, ptrdiff_t offset)
+ { _outp = node->_out + offset; debug_only(sample(node)); }
+
+ public:
+ // initialize to garbage; clear _vdui to disable asserts
+ DUIterator_Fast()
+ { /*initialize to garbage*/ debug_only(_vdui = false); }
+
+ void operator++(int dummy_to_specify_postfix_op)
+ { _outp++; VDUI_ONLY(verify(_node, true)); }
+
+ void operator--()
+ { VDUI_ONLY(verify_resync()); --_outp; }
+
+ void operator-=(uint n) // applied to the limit only
+ { _outp -= n; VDUI_ONLY(verify_relimit(n)); }
+
+ bool operator<(DUIterator_Fast& limit) {
+ I_VDUI_ONLY(*this, this->verify(_node, true));
+ I_VDUI_ONLY(limit, limit.verify_limit());
+ return _outp < limit._outp;
+ }
+
+ void operator=(const DUIterator_Fast& that)
+ { _outp = that._outp; debug_only(reset(that)); }
+};
+
+DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
+ // Assign a limit pointer to the reference argument:
+ imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
+ // Return the base pointer:
+ return DUIterator_Fast(this, 0);
+}
+Node* Node::fast_out(DUIterator_Fast& i) const {
+ I_VDUI_ONLY(i, i.verify(this));
+ return debug_only(i._last=) *i._outp;
+}
+
+
+// Faster DU iterator. Requires each successive edge to be removed.
+// Does not allow insertion of any edges.
+// Usage:
+// for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
+// Node* y = x->last_out(i);
+// ...
+// }
+// Compiles in product mode to raw Node** pointer arithmetic, with
+// no reloading of pointers from the original node x.
+class DUIterator_Last : private DUIterator_Fast {
+ friend class Node;
+
+ #ifdef ASSERT
+ void verify(const Node* node, bool at_end_ok = false);
+ void verify_limit();
+ void verify_step(uint num_edges);
+ #endif
+
+ // Note: offset must be signed, since -1 is sometimes passed
+ DUIterator_Last(const Node* node, ptrdiff_t offset)
+ : DUIterator_Fast(node, offset) { }
+
+ void operator++(int dummy_to_specify_postfix_op) {} // do not use
+ void operator<(int) {} // do not use
+
+ public:
+ DUIterator_Last() { }
+ // initialize to garbage
+
+ void operator--()
+ { _outp--; VDUI_ONLY(verify_step(1)); }
+
+ void operator-=(uint n)
+ { _outp -= n; VDUI_ONLY(verify_step(n)); }
+
+ bool operator>=(DUIterator_Last& limit) {
+ I_VDUI_ONLY(*this, this->verify(_node, true));
+ I_VDUI_ONLY(limit, limit.verify_limit());
+ return _outp >= limit._outp;
+ }
+
+ void operator=(const DUIterator_Last& that)
+ { DUIterator_Fast::operator=(that); }
+};
+
+DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
+ // Assign a limit pointer to the reference argument:
+ imin = DUIterator_Last(this, 0);
+ // Return the initial pointer:
+ return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
+}
+Node* Node::last_out(DUIterator_Last& i) const {
+ I_VDUI_ONLY(i, i.verify(this));
+ return debug_only(i._last=) *i._outp;
+}
+
+#endif //OPTO_DU_ITERATOR_ASSERT
+
+#undef I_VDUI_ONLY
+#undef VDUI_ONLY
+
+
+//-----------------------------------------------------------------------------
+// Map dense integer indices to Nodes. Uses classic doubling-array trick.
+// Abstractly provides an infinite array of Node*'s, initialized to NULL.
+// Note that the constructor just zeros things, and since I use Arena
+// allocation I do not need a destructor to reclaim storage.
+class Node_Array : public ResourceObj {
+protected:
+ Arena *_a; // Arena to allocate in
+ uint _max;
+ Node **_nodes;
+ void grow( uint i ); // Grow array node to fit
+public:
+ Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
+ _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
+ for( int i = 0; i < OptoNodeListSize; i++ ) {
+ _nodes[i] = NULL;
+ }
+ }
+
+ Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
+ Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
+ { return (i<_max) ? _nodes[i] : (Node*)NULL; }
+ Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
+ Node **adr() { return _nodes; }
+ // Extend the mapping: index i maps to Node *n.
+ void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
+ void insert( uint i, Node *n );
+ void remove( uint i ); // Remove, preserving order
+ void sort( C_sort_func_t func);
+ void reset( Arena *new_a ); // Zap mapping to empty; reclaim storage
+ void clear(); // Set all entries to NULL, keep storage
+ uint Size() const { return _max; }
+ void dump() const;
+};
+
+class Node_List : public Node_Array {
+ uint _cnt;
+public:
+ Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
+ Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
+ void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
+ void remove( uint i ) { Node_Array::remove(i); _cnt--; }
+ void push( Node *b ) { map(_cnt++,b); }
+ void yank( Node *n ); // Find and remove
+ Node *pop() { return _nodes[--_cnt]; }
+ Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
+ void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
+ uint size() const { return _cnt; }
+ void dump() const;
+};
+
+//------------------------------Unique_Node_List-------------------------------
+class Unique_Node_List : public Node_List {
+ VectorSet _in_worklist;
+ uint _clock_index; // Index in list where to pop from next
+public:
+ Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
+ Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
+
+ void remove( Node *n );
+ bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
+ VectorSet &member_set(){ return _in_worklist; }
+
+ void push( Node *b ) {
+ if( !_in_worklist.test_set(b->_idx) )
+ Node_List::push(b);
+ }
+ Node *pop() {
+ if( _clock_index >= size() ) _clock_index = 0;
+ Node *b = at(_clock_index);
+ map( _clock_index++, Node_List::pop());
+ _in_worklist >>= b->_idx;
+ return b;
+ }
+ Node *remove( uint i ) {
+ Node *b = Node_List::at(i);
+ _in_worklist >>= b->_idx;
+ map(i,Node_List::pop());
+ return b;
+ }
+ void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
+ void clear() {
+ _in_worklist.Clear(); // Discards storage but grows automatically
+ Node_List::clear();
+ _clock_index = 0;
+ }
+
+ // Used after parsing to remove useless nodes before Iterative GVN
+ void remove_useless_nodes(VectorSet &useful);
+
+#ifndef PRODUCT
+ void print_set() const { _in_worklist.print(); }
+#endif
+};
+
+// Inline definition of Compile::record_for_igvn must be deferred to this point.
+inline void Compile::record_for_igvn(Node* n) {
+ _for_igvn->push(n);
+ record_for_escape_analysis(n);
+}
+
+//------------------------------Node_Stack-------------------------------------
+class Node_Stack {
+protected:
+ struct INode {
+ Node *node; // Processed node
+ uint indx; // Index of next node's child
+ };
+ INode *_inode_top; // tos, stack grows up
+ INode *_inode_max; // End of _inodes == _inodes + _max
+ INode *_inodes; // Array storage for the stack
+ Arena *_a; // Arena to allocate in
+ void grow();
+public:
+ Node_Stack(int size) {
+ size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
+ _a = Thread::current()->resource_area();
+ _inodes = NEW_ARENA_ARRAY( _a, INode, max );
+ _inode_max = _inodes + max;
+ _inode_top = _inodes - 1; // stack is empty
+ }
+
+ Node_Stack(Arena *a, int size) : _a(a) {
+ size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
+ _inodes = NEW_ARENA_ARRAY( _a, INode, max );
+ _inode_max = _inodes + max;
+ _inode_top = _inodes - 1; // stack is empty
+ }
+
+ void pop() {
+ assert(_inode_top >= _inodes, "node stack underflow");
+ --_inode_top;
+ }
+ void push(Node *n, uint i) {
+ ++_inode_top;
+ if (_inode_top >= _inode_max) grow();
+ INode *top = _inode_top; // optimization
+ top->node = n;
+ top->indx = i;
+ }
+ Node *node() const {
+ return _inode_top->node;
+ }
+ Node* node_at(uint i) const {
+ assert(_inodes + i <= _inode_top, "in range");
+ return _inodes[i].node;
+ }
+ uint index() const {
+ return _inode_top->indx;
+ }
+ void set_node(Node *n) {
+ _inode_top->node = n;
+ }
+ void set_index(uint i) {
+ _inode_top->indx = i;
+ }
+ uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size
+ uint size() const { return (uint)pointer_delta(_inode_top, _inodes, sizeof(INode)) + 1; } // Current size
+ bool is_nonempty() const { return (_inode_top >= _inodes); }
+ bool is_empty() const { return (_inode_top < _inodes); }
+ void clear() { _inode_top = _inodes - 1; } // retain storage
+};
+
+
+//-----------------------------Node_Notes--------------------------------------
+// Debugging or profiling annotations loosely and sparsely associated
+// with some nodes. See Compile::node_notes_at for the accessor.
+class Node_Notes VALUE_OBJ_CLASS_SPEC {
+ JVMState* _jvms;
+
+public:
+ Node_Notes(JVMState* jvms = NULL) {
+ _jvms = jvms;
+ }
+
+ JVMState* jvms() { return _jvms; }
+ void set_jvms(JVMState* x) { _jvms = x; }
+
+ // True if there is nothing here.
+ bool is_clear() {
+ return (_jvms == NULL);
+ }
+
+ // Make there be nothing here.
+ void clear() {
+ _jvms = NULL;
+ }
+
+ // Make a new, clean node notes.
+ static Node_Notes* make(Compile* C) {
+ Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
+ nn->clear();
+ return nn;
+ }
+
+ Node_Notes* clone(Compile* C) {
+ Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
+ (*nn) = (*this);
+ return nn;
+ }
+
+ // Absorb any information from source.
+ bool update_from(Node_Notes* source) {
+ bool changed = false;
+ if (source != NULL) {
+ if (source->jvms() != NULL) {
+ set_jvms(source->jvms());
+ changed = true;
+ }
+ }
+ return changed;
+ }
+};
+
+// Inlined accessors for Compile::node_nodes that require the preceding class:
+inline Node_Notes*
+Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
+ int idx, bool can_grow) {
+ assert(idx >= 0, "oob");
+ int block_idx = (idx >> _log2_node_notes_block_size);
+ int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
+ if (grow_by >= 0) {
+ if (!can_grow) return NULL;
+ grow_node_notes(arr, grow_by + 1);
+ }
+ // (Every element of arr is a sub-array of length _node_notes_block_size.)
+ return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
+}
+
+inline bool
+Compile::set_node_notes_at(int idx, Node_Notes* value) {
+ if (value == NULL || value->is_clear())
+ return false; // nothing to write => write nothing
+ Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
+ assert(loc != NULL, "");
+ return loc->update_from(value);
+}
+
+
+//------------------------------TypeNode---------------------------------------
+// Node with a Type constant.
+class TypeNode : public Node {
+protected:
+ virtual uint hash() const; // Check the type
+ virtual uint cmp( const Node &n ) const;
+ virtual uint size_of() const; // Size is bigger
+ const Type* const _type;
+public:
+ void set_type(const Type* t) {
+ assert(t != NULL, "sanity");
+ debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
+ *(const Type**)&_type = t; // cast away const-ness
+ // If this node is in the hash table, make sure it doesn't need a rehash.
+ assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
+ }
+ const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
+ TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
+ init_class_id(Class_Type);
+ }
+ virtual const Type *Value( PhaseTransform *phase ) const;
+ virtual const Type *bottom_type() const;
+ virtual uint ideal_reg() const;
+#ifndef PRODUCT
+ virtual void dump_spec(outputStream *st) const;
+#endif
+};