hotspot/src/share/vm/opto/memnode.cpp
changeset 1 489c9b5090e2
child 190 e9a0a9dcd4f6
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/opto/memnode.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,3222 @@
+/*
+ * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+// Portions of code courtesy of Clifford Click
+
+// Optimization - Graph Style
+
+#include "incls/_precompiled.incl"
+#include "incls/_memnode.cpp.incl"
+
+//=============================================================================
+uint MemNode::size_of() const { return sizeof(*this); }
+
+const TypePtr *MemNode::adr_type() const {
+  Node* adr = in(Address);
+  const TypePtr* cross_check = NULL;
+  DEBUG_ONLY(cross_check = _adr_type);
+  return calculate_adr_type(adr->bottom_type(), cross_check);
+}
+
+#ifndef PRODUCT
+void MemNode::dump_spec(outputStream *st) const {
+  if (in(Address) == NULL)  return; // node is dead
+#ifndef ASSERT
+  // fake the missing field
+  const TypePtr* _adr_type = NULL;
+  if (in(Address) != NULL)
+    _adr_type = in(Address)->bottom_type()->isa_ptr();
+#endif
+  dump_adr_type(this, _adr_type, st);
+
+  Compile* C = Compile::current();
+  if( C->alias_type(_adr_type)->is_volatile() )
+    st->print(" Volatile!");
+}
+
+void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
+  st->print(" @");
+  if (adr_type == NULL) {
+    st->print("NULL");
+  } else {
+    adr_type->dump_on(st);
+    Compile* C = Compile::current();
+    Compile::AliasType* atp = NULL;
+    if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
+    if (atp == NULL)
+      st->print(", idx=?\?;");
+    else if (atp->index() == Compile::AliasIdxBot)
+      st->print(", idx=Bot;");
+    else if (atp->index() == Compile::AliasIdxTop)
+      st->print(", idx=Top;");
+    else if (atp->index() == Compile::AliasIdxRaw)
+      st->print(", idx=Raw;");
+    else {
+      ciField* field = atp->field();
+      if (field) {
+        st->print(", name=");
+        field->print_name_on(st);
+      }
+      st->print(", idx=%d;", atp->index());
+    }
+  }
+}
+
+extern void print_alias_types();
+
+#endif
+
+//--------------------------Ideal_common---------------------------------------
+// Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
+// Unhook non-raw memories from complete (macro-expanded) initializations.
+Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
+  // If our control input is a dead region, kill all below the region
+  Node *ctl = in(MemNode::Control);
+  if (ctl && remove_dead_region(phase, can_reshape))
+    return this;
+
+  // Ignore if memory is dead, or self-loop
+  Node *mem = in(MemNode::Memory);
+  if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
+  assert( mem != this, "dead loop in MemNode::Ideal" );
+
+  Node *address = in(MemNode::Address);
+  const Type *t_adr = phase->type( address );
+  if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
+
+  // Avoid independent memory operations
+  Node* old_mem = mem;
+
+  if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
+    InitializeNode* init = mem->in(0)->as_Initialize();
+    if (init->is_complete()) {  // i.e., after macro expansion
+      const TypePtr* tp = t_adr->is_ptr();
+      uint alias_idx = phase->C->get_alias_index(tp);
+      // Free this slice from the init.  It was hooked, temporarily,
+      // by GraphKit::set_output_for_allocation.
+      if (alias_idx > Compile::AliasIdxRaw) {
+        mem = init->memory(alias_idx);
+        // ...but not with the raw-pointer slice.
+      }
+    }
+  }
+
+  if (mem->is_MergeMem()) {
+    MergeMemNode* mmem = mem->as_MergeMem();
+    const TypePtr *tp = t_adr->is_ptr();
+    uint alias_idx = phase->C->get_alias_index(tp);
+#ifdef ASSERT
+    {
+      // Check that current type is consistent with the alias index used during graph construction
+      assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
+      const TypePtr *adr_t =  adr_type();
+      bool consistent =  adr_t == NULL || adr_t->empty() || phase->C->must_alias(adr_t, alias_idx );
+      // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
+      if( !consistent && adr_t != NULL && !adr_t->empty() &&
+             tp->isa_aryptr() &&    tp->offset() == Type::OffsetBot &&
+          adr_t->isa_aryptr() && adr_t->offset() != Type::OffsetBot &&
+          ( adr_t->offset() == arrayOopDesc::length_offset_in_bytes() ||
+            adr_t->offset() == oopDesc::klass_offset_in_bytes() ||
+            adr_t->offset() == oopDesc::mark_offset_in_bytes() ) ) {
+        // don't assert if it is dead code.
+        consistent = true;
+      }
+      if( !consistent ) {
+        tty->print("alias_idx==%d, adr_type()==", alias_idx); if( adr_t == NULL ) { tty->print("NULL"); } else { adr_t->dump(); }
+        tty->cr();
+        print_alias_types();
+        assert(consistent, "adr_type must match alias idx");
+      }
+    }
+#endif
+    // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
+    // means an array I have not precisely typed yet.  Do not do any
+    // alias stuff with it any time soon.
+    const TypeInstPtr *tinst = tp->isa_instptr();
+    if( tp->base() != Type::AnyPtr &&
+        !(tinst &&
+          tinst->klass()->is_java_lang_Object() &&
+          tinst->offset() == Type::OffsetBot) ) {
+      // compress paths and change unreachable cycles to TOP
+      // If not, we can update the input infinitely along a MergeMem cycle
+      // Equivalent code in PhiNode::Ideal
+      Node* m  = phase->transform(mmem);
+      // If tranformed to a MergeMem, get the desired slice
+      // Otherwise the returned node represents memory for every slice
+      mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
+      // Update input if it is progress over what we have now
+    }
+  }
+
+  if (mem != old_mem) {
+    set_req(MemNode::Memory, mem);
+    return this;
+  }
+
+  // let the subclass continue analyzing...
+  return NULL;
+}
+
+// Helper function for proving some simple control dominations.
+// Attempt to prove that control input 'dom' dominates (or equals) 'sub'.
+// Already assumes that 'dom' is available at 'sub', and that 'sub'
+// is not a constant (dominated by the method's StartNode).
+// Used by MemNode::find_previous_store to prove that the
+// control input of a memory operation predates (dominates)
+// an allocation it wants to look past.
+bool MemNode::detect_dominating_control(Node* dom, Node* sub) {
+  if (dom == NULL)      return false;
+  if (dom->is_Proj())   dom = dom->in(0);
+  if (dom->is_Start())  return true; // anything inside the method
+  if (dom->is_Root())   return true; // dom 'controls' a constant
+  int cnt = 20;                      // detect cycle or too much effort
+  while (sub != NULL) {              // walk 'sub' up the chain to 'dom'
+    if (--cnt < 0)   return false;   // in a cycle or too complex
+    if (sub == dom)  return true;
+    if (sub->is_Start())  return false;
+    if (sub->is_Root())   return false;
+    Node* up = sub->in(0);
+    if (sub == up && sub->is_Region()) {
+      for (uint i = 1; i < sub->req(); i++) {
+        Node* in = sub->in(i);
+        if (in != NULL && !in->is_top() && in != sub) {
+          up = in; break;            // take any path on the way up to 'dom'
+        }
+      }
+    }
+    if (sub == up)  return false;    // some kind of tight cycle
+    sub = up;
+  }
+  return false;
+}
+
+//---------------------detect_ptr_independence---------------------------------
+// Used by MemNode::find_previous_store to prove that two base
+// pointers are never equal.
+// The pointers are accompanied by their associated allocations,
+// if any, which have been previously discovered by the caller.
+bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
+                                      Node* p2, AllocateNode* a2,
+                                      PhaseTransform* phase) {
+  // Attempt to prove that these two pointers cannot be aliased.
+  // They may both manifestly be allocations, and they should differ.
+  // Or, if they are not both allocations, they can be distinct constants.
+  // Otherwise, one is an allocation and the other a pre-existing value.
+  if (a1 == NULL && a2 == NULL) {           // neither an allocation
+    return (p1 != p2) && p1->is_Con() && p2->is_Con();
+  } else if (a1 != NULL && a2 != NULL) {    // both allocations
+    return (a1 != a2);
+  } else if (a1 != NULL) {                  // one allocation a1
+    // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
+    return detect_dominating_control(p2->in(0), a1->in(0));
+  } else { //(a2 != NULL)                   // one allocation a2
+    return detect_dominating_control(p1->in(0), a2->in(0));
+  }
+  return false;
+}
+
+
+// The logic for reordering loads and stores uses four steps:
+// (a) Walk carefully past stores and initializations which we
+//     can prove are independent of this load.
+// (b) Observe that the next memory state makes an exact match
+//     with self (load or store), and locate the relevant store.
+// (c) Ensure that, if we were to wire self directly to the store,
+//     the optimizer would fold it up somehow.
+// (d) Do the rewiring, and return, depending on some other part of
+//     the optimizer to fold up the load.
+// This routine handles steps (a) and (b).  Steps (c) and (d) are
+// specific to loads and stores, so they are handled by the callers.
+// (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
+//
+Node* MemNode::find_previous_store(PhaseTransform* phase) {
+  Node*         ctrl   = in(MemNode::Control);
+  Node*         adr    = in(MemNode::Address);
+  intptr_t      offset = 0;
+  Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
+  AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
+
+  if (offset == Type::OffsetBot)
+    return NULL;            // cannot unalias unless there are precise offsets
+
+  intptr_t size_in_bytes = memory_size();
+
+  Node* mem = in(MemNode::Memory);   // start searching here...
+
+  int cnt = 50;             // Cycle limiter
+  for (;;) {                // While we can dance past unrelated stores...
+    if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
+
+    if (mem->is_Store()) {
+      Node* st_adr = mem->in(MemNode::Address);
+      intptr_t st_offset = 0;
+      Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
+      if (st_base == NULL)
+        break;              // inscrutable pointer
+      if (st_offset != offset && st_offset != Type::OffsetBot) {
+        const int MAX_STORE = BytesPerLong;
+        if (st_offset >= offset + size_in_bytes ||
+            st_offset <= offset - MAX_STORE ||
+            st_offset <= offset - mem->as_Store()->memory_size()) {
+          // Success:  The offsets are provably independent.
+          // (You may ask, why not just test st_offset != offset and be done?
+          // The answer is that stores of different sizes can co-exist
+          // in the same sequence of RawMem effects.  We sometimes initialize
+          // a whole 'tile' of array elements with a single jint or jlong.)
+          mem = mem->in(MemNode::Memory);
+          continue;           // (a) advance through independent store memory
+        }
+      }
+      if (st_base != base &&
+          detect_ptr_independence(base, alloc,
+                                  st_base,
+                                  AllocateNode::Ideal_allocation(st_base, phase),
+                                  phase)) {
+        // Success:  The bases are provably independent.
+        mem = mem->in(MemNode::Memory);
+        continue;           // (a) advance through independent store memory
+      }
+
+      // (b) At this point, if the bases or offsets do not agree, we lose,
+      // since we have not managed to prove 'this' and 'mem' independent.
+      if (st_base == base && st_offset == offset) {
+        return mem;         // let caller handle steps (c), (d)
+      }
+
+    } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
+      InitializeNode* st_init = mem->in(0)->as_Initialize();
+      AllocateNode*  st_alloc = st_init->allocation();
+      if (st_alloc == NULL)
+        break;              // something degenerated
+      bool known_identical = false;
+      bool known_independent = false;
+      if (alloc == st_alloc)
+        known_identical = true;
+      else if (alloc != NULL)
+        known_independent = true;
+      else if (ctrl != NULL &&
+               detect_dominating_control(ctrl, st_alloc->in(0)))
+        known_independent = true;
+
+      if (known_independent) {
+        // The bases are provably independent: Either they are
+        // manifestly distinct allocations, or else the control
+        // of this load dominates the store's allocation.
+        int alias_idx = phase->C->get_alias_index(adr_type());
+        if (alias_idx == Compile::AliasIdxRaw) {
+          mem = st_alloc->in(TypeFunc::Memory);
+        } else {
+          mem = st_init->memory(alias_idx);
+        }
+        continue;           // (a) advance through independent store memory
+      }
+
+      // (b) at this point, if we are not looking at a store initializing
+      // the same allocation we are loading from, we lose.
+      if (known_identical) {
+        // From caller, can_see_stored_value will consult find_captured_store.
+        return mem;         // let caller handle steps (c), (d)
+      }
+
+    }
+
+    // Unless there is an explicit 'continue', we must bail out here,
+    // because 'mem' is an inscrutable memory state (e.g., a call).
+    break;
+  }
+
+  return NULL;              // bail out
+}
+
+//----------------------calculate_adr_type-------------------------------------
+// Helper function.  Notices when the given type of address hits top or bottom.
+// Also, asserts a cross-check of the type against the expected address type.
+const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
+  if (t == Type::TOP)  return NULL; // does not touch memory any more?
+  #ifdef PRODUCT
+  cross_check = NULL;
+  #else
+  if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
+  #endif
+  const TypePtr* tp = t->isa_ptr();
+  if (tp == NULL) {
+    assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
+    return TypePtr::BOTTOM;           // touches lots of memory
+  } else {
+    #ifdef ASSERT
+    // %%%% [phh] We don't check the alias index if cross_check is
+    //            TypeRawPtr::BOTTOM.  Needs to be investigated.
+    if (cross_check != NULL &&
+        cross_check != TypePtr::BOTTOM &&
+        cross_check != TypeRawPtr::BOTTOM) {
+      // Recheck the alias index, to see if it has changed (due to a bug).
+      Compile* C = Compile::current();
+      assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
+             "must stay in the original alias category");
+      // The type of the address must be contained in the adr_type,
+      // disregarding "null"-ness.
+      // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
+      const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
+      assert(cross_check->meet(tp_notnull) == cross_check,
+             "real address must not escape from expected memory type");
+    }
+    #endif
+    return tp;
+  }
+}
+
+//------------------------adr_phi_is_loop_invariant----------------------------
+// A helper function for Ideal_DU_postCCP to check if a Phi in a counted
+// loop is loop invariant. Make a quick traversal of Phi and associated
+// CastPP nodes, looking to see if they are a closed group within the loop.
+bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
+  // The idea is that the phi-nest must boil down to only CastPP nodes
+  // with the same data. This implies that any path into the loop already
+  // includes such a CastPP, and so the original cast, whatever its input,
+  // must be covered by an equivalent cast, with an earlier control input.
+  ResourceMark rm;
+
+  // The loop entry input of the phi should be the unique dominating
+  // node for every Phi/CastPP in the loop.
+  Unique_Node_List closure;
+  closure.push(adr_phi->in(LoopNode::EntryControl));
+
+  // Add the phi node and the cast to the worklist.
+  Unique_Node_List worklist;
+  worklist.push(adr_phi);
+  if( cast != NULL ){
+    if( !cast->is_ConstraintCast() ) return false;
+    worklist.push(cast);
+  }
+
+  // Begin recursive walk of phi nodes.
+  while( worklist.size() ){
+    // Take a node off the worklist
+    Node *n = worklist.pop();
+    if( !closure.member(n) ){
+      // Add it to the closure.
+      closure.push(n);
+      // Make a sanity check to ensure we don't waste too much time here.
+      if( closure.size() > 20) return false;
+      // This node is OK if:
+      //  - it is a cast of an identical value
+      //  - or it is a phi node (then we add its inputs to the worklist)
+      // Otherwise, the node is not OK, and we presume the cast is not invariant
+      if( n->is_ConstraintCast() ){
+        worklist.push(n->in(1));
+      } else if( n->is_Phi() ) {
+        for( uint i = 1; i < n->req(); i++ ) {
+          worklist.push(n->in(i));
+        }
+      } else {
+        return false;
+      }
+    }
+  }
+
+  // Quit when the worklist is empty, and we've found no offending nodes.
+  return true;
+}
+
+//------------------------------Ideal_DU_postCCP-------------------------------
+// Find any cast-away of null-ness and keep its control.  Null cast-aways are
+// going away in this pass and we need to make this memory op depend on the
+// gating null check.
+
+// I tried to leave the CastPP's in.  This makes the graph more accurate in
+// some sense; we get to keep around the knowledge that an oop is not-null
+// after some test.  Alas, the CastPP's interfere with GVN (some values are
+// the regular oop, some are the CastPP of the oop, all merge at Phi's which
+// cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
+// some of the more trivial cases in the optimizer.  Removing more useless
+// Phi's started allowing Loads to illegally float above null checks.  I gave
+// up on this approach.  CNC 10/20/2000
+Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
+  Node *ctr = in(MemNode::Control);
+  Node *mem = in(MemNode::Memory);
+  Node *adr = in(MemNode::Address);
+  Node *skipped_cast = NULL;
+  // Need a null check?  Regular static accesses do not because they are
+  // from constant addresses.  Array ops are gated by the range check (which
+  // always includes a NULL check).  Just check field ops.
+  if( !ctr ) {
+    // Scan upwards for the highest location we can place this memory op.
+    while( true ) {
+      switch( adr->Opcode() ) {
+
+      case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
+        adr = adr->in(AddPNode::Base);
+        continue;
+
+      case Op_CastPP:
+        // If the CastPP is useless, just peek on through it.
+        if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
+          // Remember the cast that we've peeked though. If we peek
+          // through more than one, then we end up remembering the highest
+          // one, that is, if in a loop, the one closest to the top.
+          skipped_cast = adr;
+          adr = adr->in(1);
+          continue;
+        }
+        // CastPP is going away in this pass!  We need this memory op to be
+        // control-dependent on the test that is guarding the CastPP.
+        ccp->hash_delete(this);
+        set_req(MemNode::Control, adr->in(0));
+        ccp->hash_insert(this);
+        return this;
+
+      case Op_Phi:
+        // Attempt to float above a Phi to some dominating point.
+        if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
+          // If we've already peeked through a Cast (which could have set the
+          // control), we can't float above a Phi, because the skipped Cast
+          // may not be loop invariant.
+          if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
+            adr = adr->in(1);
+            continue;
+          }
+        }
+
+        // Intentional fallthrough!
+
+        // No obvious dominating point.  The mem op is pinned below the Phi
+        // by the Phi itself.  If the Phi goes away (no true value is merged)
+        // then the mem op can float, but not indefinitely.  It must be pinned
+        // behind the controls leading to the Phi.
+      case Op_CheckCastPP:
+        // These usually stick around to change address type, however a
+        // useless one can be elided and we still need to pick up a control edge
+        if (adr->in(0) == NULL) {
+          // This CheckCastPP node has NO control and is likely useless. But we
+          // need check further up the ancestor chain for a control input to keep
+          // the node in place. 4959717.
+          skipped_cast = adr;
+          adr = adr->in(1);
+          continue;
+        }
+        ccp->hash_delete(this);
+        set_req(MemNode::Control, adr->in(0));
+        ccp->hash_insert(this);
+        return this;
+
+        // List of "safe" opcodes; those that implicitly block the memory
+        // op below any null check.
+      case Op_CastX2P:          // no null checks on native pointers
+      case Op_Parm:             // 'this' pointer is not null
+      case Op_LoadP:            // Loading from within a klass
+      case Op_LoadKlass:        // Loading from within a klass
+      case Op_ConP:             // Loading from a klass
+      case Op_CreateEx:         // Sucking up the guts of an exception oop
+      case Op_Con:              // Reading from TLS
+      case Op_CMoveP:           // CMoveP is pinned
+        break;                  // No progress
+
+      case Op_Proj:             // Direct call to an allocation routine
+      case Op_SCMemProj:        // Memory state from store conditional ops
+#ifdef ASSERT
+        {
+          assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
+          const Node* call = adr->in(0);
+          if (call->is_CallStaticJava()) {
+            const CallStaticJavaNode* call_java = call->as_CallStaticJava();
+            assert(call_java && call_java->method() == NULL, "must be runtime call");
+            // We further presume that this is one of
+            // new_instance_Java, new_array_Java, or
+            // the like, but do not assert for this.
+          } else if (call->is_Allocate()) {
+            // similar case to new_instance_Java, etc.
+          } else if (!call->is_CallLeaf()) {
+            // Projections from fetch_oop (OSR) are allowed as well.
+            ShouldNotReachHere();
+          }
+        }
+#endif
+        break;
+      default:
+        ShouldNotReachHere();
+      }
+      break;
+    }
+  }
+
+  return  NULL;               // No progress
+}
+
+
+//=============================================================================
+uint LoadNode::size_of() const { return sizeof(*this); }
+uint LoadNode::cmp( const Node &n ) const
+{ return !Type::cmp( _type, ((LoadNode&)n)._type ); }
+const Type *LoadNode::bottom_type() const { return _type; }
+uint LoadNode::ideal_reg() const {
+  return Matcher::base2reg[_type->base()];
+}
+
+#ifndef PRODUCT
+void LoadNode::dump_spec(outputStream *st) const {
+  MemNode::dump_spec(st);
+  if( !Verbose && !WizardMode ) {
+    // standard dump does this in Verbose and WizardMode
+    st->print(" #"); _type->dump_on(st);
+  }
+}
+#endif
+
+
+//----------------------------LoadNode::make-----------------------------------
+// Polymorphic factory method:
+LoadNode *LoadNode::make( Compile *C, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
+  // sanity check the alias category against the created node type
+  assert(!(adr_type->isa_oopptr() &&
+           adr_type->offset() == oopDesc::klass_offset_in_bytes()),
+         "use LoadKlassNode instead");
+  assert(!(adr_type->isa_aryptr() &&
+           adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
+         "use LoadRangeNode instead");
+  switch (bt) {
+  case T_BOOLEAN:
+  case T_BYTE:    return new (C, 3) LoadBNode(ctl, mem, adr, adr_type, rt->is_int()    );
+  case T_INT:     return new (C, 3) LoadINode(ctl, mem, adr, adr_type, rt->is_int()    );
+  case T_CHAR:    return new (C, 3) LoadCNode(ctl, mem, adr, adr_type, rt->is_int()    );
+  case T_SHORT:   return new (C, 3) LoadSNode(ctl, mem, adr, adr_type, rt->is_int()    );
+  case T_LONG:    return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long()   );
+  case T_FLOAT:   return new (C, 3) LoadFNode(ctl, mem, adr, adr_type, rt              );
+  case T_DOUBLE:  return new (C, 3) LoadDNode(ctl, mem, adr, adr_type, rt              );
+  case T_ADDRESS: return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr()    );
+  case T_OBJECT:  return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
+  }
+  ShouldNotReachHere();
+  return (LoadNode*)NULL;
+}
+
+LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
+  bool require_atomic = true;
+  return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
+}
+
+
+
+
+//------------------------------hash-------------------------------------------
+uint LoadNode::hash() const {
+  // unroll addition of interesting fields
+  return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
+}
+
+//---------------------------can_see_stored_value------------------------------
+// This routine exists to make sure this set of tests is done the same
+// everywhere.  We need to make a coordinated change: first LoadNode::Ideal
+// will change the graph shape in a way which makes memory alive twice at the
+// same time (uses the Oracle model of aliasing), then some
+// LoadXNode::Identity will fold things back to the equivalence-class model
+// of aliasing.
+Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
+  Node* ld_adr = in(MemNode::Address);
+
+  // Loop around twice in the case Load -> Initialize -> Store.
+  // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
+  for (int trip = 0; trip <= 1; trip++) {
+
+    if (st->is_Store()) {
+      Node* st_adr = st->in(MemNode::Address);
+      if (!phase->eqv(st_adr, ld_adr)) {
+        // Try harder before giving up...  Match raw and non-raw pointers.
+        intptr_t st_off = 0;
+        AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
+        if (alloc == NULL)       return NULL;
+        intptr_t ld_off = 0;
+        AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
+        if (alloc != allo2)      return NULL;
+        if (ld_off != st_off)    return NULL;
+        // At this point we have proven something like this setup:
+        //  A = Allocate(...)
+        //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
+        //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
+        // (Actually, we haven't yet proven the Q's are the same.)
+        // In other words, we are loading from a casted version of
+        // the same pointer-and-offset that we stored to.
+        // Thus, we are able to replace L by V.
+      }
+      // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
+      if (store_Opcode() != st->Opcode())
+        return NULL;
+      return st->in(MemNode::ValueIn);
+    }
+
+    intptr_t offset = 0;  // scratch
+
+    // A load from a freshly-created object always returns zero.
+    // (This can happen after LoadNode::Ideal resets the load's memory input
+    // to find_captured_store, which returned InitializeNode::zero_memory.)
+    if (st->is_Proj() && st->in(0)->is_Allocate() &&
+        st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
+        offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
+      // return a zero value for the load's basic type
+      // (This is one of the few places where a generic PhaseTransform
+      // can create new nodes.  Think of it as lazily manifesting
+      // virtually pre-existing constants.)
+      return phase->zerocon(memory_type());
+    }
+
+    // A load from an initialization barrier can match a captured store.
+    if (st->is_Proj() && st->in(0)->is_Initialize()) {
+      InitializeNode* init = st->in(0)->as_Initialize();
+      AllocateNode* alloc = init->allocation();
+      if (alloc != NULL &&
+          alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
+        // examine a captured store value
+        st = init->find_captured_store(offset, memory_size(), phase);
+        if (st != NULL)
+          continue;             // take one more trip around
+      }
+    }
+
+    break;
+  }
+
+  return NULL;
+}
+
+//------------------------------Identity---------------------------------------
+// Loads are identity if previous store is to same address
+Node *LoadNode::Identity( PhaseTransform *phase ) {
+  // If the previous store-maker is the right kind of Store, and the store is
+  // to the same address, then we are equal to the value stored.
+  Node* mem = in(MemNode::Memory);
+  Node* value = can_see_stored_value(mem, phase);
+  if( value ) {
+    // byte, short & char stores truncate naturally.
+    // A load has to load the truncated value which requires
+    // some sort of masking operation and that requires an
+    // Ideal call instead of an Identity call.
+    if (memory_size() < BytesPerInt) {
+      // If the input to the store does not fit with the load's result type,
+      // it must be truncated via an Ideal call.
+      if (!phase->type(value)->higher_equal(phase->type(this)))
+        return this;
+    }
+    // (This works even when value is a Con, but LoadNode::Value
+    // usually runs first, producing the singleton type of the Con.)
+    return value;
+  }
+  return this;
+}
+
+//------------------------------Ideal------------------------------------------
+// If the load is from Field memory and the pointer is non-null, we can
+// zero out the control input.
+// If the offset is constant and the base is an object allocation,
+// try to hook me up to the exact initializing store.
+Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+  Node* p = MemNode::Ideal_common(phase, can_reshape);
+  if (p)  return (p == NodeSentinel) ? NULL : p;
+
+  Node* ctrl    = in(MemNode::Control);
+  Node* address = in(MemNode::Address);
+
+  // Skip up past a SafePoint control.  Cannot do this for Stores because
+  // pointer stores & cardmarks must stay on the same side of a SafePoint.
+  if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
+      phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
+    ctrl = ctrl->in(0);
+    set_req(MemNode::Control,ctrl);
+  }
+
+  // Check for useless control edge in some common special cases
+  if (in(MemNode::Control) != NULL) {
+    intptr_t ignore = 0;
+    Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
+    if (base != NULL
+        && phase->type(base)->higher_equal(TypePtr::NOTNULL)
+        && detect_dominating_control(base->in(0), phase->C->start())) {
+      // A method-invariant, non-null address (constant or 'this' argument).
+      set_req(MemNode::Control, NULL);
+    }
+  }
+
+  // Check for prior store with a different base or offset; make Load
+  // independent.  Skip through any number of them.  Bail out if the stores
+  // are in an endless dead cycle and report no progress.  This is a key
+  // transform for Reflection.  However, if after skipping through the Stores
+  // we can't then fold up against a prior store do NOT do the transform as
+  // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
+  // array memory alive twice: once for the hoisted Load and again after the
+  // bypassed Store.  This situation only works if EVERYBODY who does
+  // anti-dependence work knows how to bypass.  I.e. we need all
+  // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
+  // the alias index stuff.  So instead, peek through Stores and IFF we can
+  // fold up, do so.
+  Node* prev_mem = find_previous_store(phase);
+  // Steps (a), (b):  Walk past independent stores to find an exact match.
+  if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
+    // (c) See if we can fold up on the spot, but don't fold up here.
+    // Fold-up might require truncation (for LoadB/LoadS/LoadC) or
+    // just return a prior value, which is done by Identity calls.
+    if (can_see_stored_value(prev_mem, phase)) {
+      // Make ready for step (d):
+      set_req(MemNode::Memory, prev_mem);
+      return this;
+    }
+  }
+
+  return NULL;                  // No further progress
+}
+
+// Helper to recognize certain Klass fields which are invariant across
+// some group of array types (e.g., int[] or all T[] where T < Object).
+const Type*
+LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
+                                 ciKlass* klass) const {
+  if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
+    // The field is Klass::_modifier_flags.  Return its (constant) value.
+    // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
+    assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
+    return TypeInt::make(klass->modifier_flags());
+  }
+  if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
+    // The field is Klass::_access_flags.  Return its (constant) value.
+    // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
+    assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
+    return TypeInt::make(klass->access_flags());
+  }
+  if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
+    // The field is Klass::_layout_helper.  Return its constant value if known.
+    assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
+    return TypeInt::make(klass->layout_helper());
+  }
+
+  // No match.
+  return NULL;
+}
+
+//------------------------------Value-----------------------------------------
+const Type *LoadNode::Value( PhaseTransform *phase ) const {
+  // Either input is TOP ==> the result is TOP
+  Node* mem = in(MemNode::Memory);
+  const Type *t1 = phase->type(mem);
+  if (t1 == Type::TOP)  return Type::TOP;
+  Node* adr = in(MemNode::Address);
+  const TypePtr* tp = phase->type(adr)->isa_ptr();
+  if (tp == NULL || tp->empty())  return Type::TOP;
+  int off = tp->offset();
+  assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
+
+  // Try to guess loaded type from pointer type
+  if (tp->base() == Type::AryPtr) {
+    const Type *t = tp->is_aryptr()->elem();
+    // Don't do this for integer types. There is only potential profit if
+    // the element type t is lower than _type; that is, for int types, if _type is
+    // more restrictive than t.  This only happens here if one is short and the other
+    // char (both 16 bits), and in those cases we've made an intentional decision
+    // to use one kind of load over the other. See AndINode::Ideal and 4965907.
+    // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
+    //
+    // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
+    // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
+    // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
+    // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
+    // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
+    // In fact, that could have been the original type of p1, and p1 could have
+    // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
+    // expression (LShiftL quux 3) independently optimized to the constant 8.
+    if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
+        && Opcode() != Op_LoadKlass) {
+      // t might actually be lower than _type, if _type is a unique
+      // concrete subclass of abstract class t.
+      // Make sure the reference is not into the header, by comparing
+      // the offset against the offset of the start of the array's data.
+      // Different array types begin at slightly different offsets (12 vs. 16).
+      // We choose T_BYTE as an example base type that is least restrictive
+      // as to alignment, which will therefore produce the smallest
+      // possible base offset.
+      const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
+      if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
+        const Type* jt = t->join(_type);
+        // In any case, do not allow the join, per se, to empty out the type.
+        if (jt->empty() && !t->empty()) {
+          // This can happen if a interface-typed array narrows to a class type.
+          jt = _type;
+        }
+        return jt;
+      }
+    }
+  } else if (tp->base() == Type::InstPtr) {
+    assert( off != Type::OffsetBot ||
+            // arrays can be cast to Objects
+            tp->is_oopptr()->klass()->is_java_lang_Object() ||
+            // unsafe field access may not have a constant offset
+            phase->C->has_unsafe_access(),
+            "Field accesses must be precise" );
+    // For oop loads, we expect the _type to be precise
+  } else if (tp->base() == Type::KlassPtr) {
+    assert( off != Type::OffsetBot ||
+            // arrays can be cast to Objects
+            tp->is_klassptr()->klass()->is_java_lang_Object() ||
+            // also allow array-loading from the primary supertype
+            // array during subtype checks
+            Opcode() == Op_LoadKlass,
+            "Field accesses must be precise" );
+    // For klass/static loads, we expect the _type to be precise
+  }
+
+  const TypeKlassPtr *tkls = tp->isa_klassptr();
+  if (tkls != NULL && !StressReflectiveCode) {
+    ciKlass* klass = tkls->klass();
+    if (klass->is_loaded() && tkls->klass_is_exact()) {
+      // We are loading a field from a Klass metaobject whose identity
+      // is known at compile time (the type is "exact" or "precise").
+      // Check for fields we know are maintained as constants by the VM.
+      if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
+        // The field is Klass::_super_check_offset.  Return its (constant) value.
+        // (Folds up type checking code.)
+        assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
+        return TypeInt::make(klass->super_check_offset());
+      }
+      // Compute index into primary_supers array
+      juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
+      // Check for overflowing; use unsigned compare to handle the negative case.
+      if( depth < ciKlass::primary_super_limit() ) {
+        // The field is an element of Klass::_primary_supers.  Return its (constant) value.
+        // (Folds up type checking code.)
+        assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
+        ciKlass *ss = klass->super_of_depth(depth);
+        return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
+      }
+      const Type* aift = load_array_final_field(tkls, klass);
+      if (aift != NULL)  return aift;
+      if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
+          && klass->is_array_klass()) {
+        // The field is arrayKlass::_component_mirror.  Return its (constant) value.
+        // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
+        assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
+        return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
+      }
+      if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
+        // The field is Klass::_java_mirror.  Return its (constant) value.
+        // (Folds up the 2nd indirection in anObjConstant.getClass().)
+        assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
+        return TypeInstPtr::make(klass->java_mirror());
+      }
+    }
+
+    // We can still check if we are loading from the primary_supers array at a
+    // shallow enough depth.  Even though the klass is not exact, entries less
+    // than or equal to its super depth are correct.
+    if (klass->is_loaded() ) {
+      ciType *inner = klass->klass();
+      while( inner->is_obj_array_klass() )
+        inner = inner->as_obj_array_klass()->base_element_type();
+      if( inner->is_instance_klass() &&
+          !inner->as_instance_klass()->flags().is_interface() ) {
+        // Compute index into primary_supers array
+        juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
+        // Check for overflowing; use unsigned compare to handle the negative case.
+        if( depth < ciKlass::primary_super_limit() &&
+            depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
+          // The field is an element of Klass::_primary_supers.  Return its (constant) value.
+          // (Folds up type checking code.)
+          assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
+          ciKlass *ss = klass->super_of_depth(depth);
+          return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
+        }
+      }
+    }
+
+    // If the type is enough to determine that the thing is not an array,
+    // we can give the layout_helper a positive interval type.
+    // This will help short-circuit some reflective code.
+    if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
+        && !klass->is_array_klass() // not directly typed as an array
+        && !klass->is_interface()  // specifically not Serializable & Cloneable
+        && !klass->is_java_lang_Object()   // not the supertype of all T[]
+        ) {
+      // Note:  When interfaces are reliable, we can narrow the interface
+      // test to (klass != Serializable && klass != Cloneable).
+      assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
+      jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
+      // The key property of this type is that it folds up tests
+      // for array-ness, since it proves that the layout_helper is positive.
+      // Thus, a generic value like the basic object layout helper works fine.
+      return TypeInt::make(min_size, max_jint, Type::WidenMin);
+    }
+  }
+
+  // If we are loading from a freshly-allocated object, produce a zero,
+  // if the load is provably beyond the header of the object.
+  // (Also allow a variable load from a fresh array to produce zero.)
+  if (ReduceFieldZeroing) {
+    Node* value = can_see_stored_value(mem,phase);
+    if (value != NULL && value->is_Con())
+      return value->bottom_type();
+  }
+
+  return _type;
+}
+
+//------------------------------match_edge-------------------------------------
+// Do we Match on this edge index or not?  Match only the address.
+uint LoadNode::match_edge(uint idx) const {
+  return idx == MemNode::Address;
+}
+
+//--------------------------LoadBNode::Ideal--------------------------------------
+//
+//  If the previous store is to the same address as this load,
+//  and the value stored was larger than a byte, replace this load
+//  with the value stored truncated to a byte.  If no truncation is
+//  needed, the replacement is done in LoadNode::Identity().
+//
+Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+  Node* mem = in(MemNode::Memory);
+  Node* value = can_see_stored_value(mem,phase);
+  if( value && !phase->type(value)->higher_equal( _type ) ) {
+    Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
+    return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
+  }
+  // Identity call will handle the case where truncation is not needed.
+  return LoadNode::Ideal(phase, can_reshape);
+}
+
+//--------------------------LoadCNode::Ideal--------------------------------------
+//
+//  If the previous store is to the same address as this load,
+//  and the value stored was larger than a char, replace this load
+//  with the value stored truncated to a char.  If no truncation is
+//  needed, the replacement is done in LoadNode::Identity().
+//
+Node *LoadCNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+  Node* mem = in(MemNode::Memory);
+  Node* value = can_see_stored_value(mem,phase);
+  if( value && !phase->type(value)->higher_equal( _type ) )
+    return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
+  // Identity call will handle the case where truncation is not needed.
+  return LoadNode::Ideal(phase, can_reshape);
+}
+
+//--------------------------LoadSNode::Ideal--------------------------------------
+//
+//  If the previous store is to the same address as this load,
+//  and the value stored was larger than a short, replace this load
+//  with the value stored truncated to a short.  If no truncation is
+//  needed, the replacement is done in LoadNode::Identity().
+//
+Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+  Node* mem = in(MemNode::Memory);
+  Node* value = can_see_stored_value(mem,phase);
+  if( value && !phase->type(value)->higher_equal( _type ) ) {
+    Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
+    return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
+  }
+  // Identity call will handle the case where truncation is not needed.
+  return LoadNode::Ideal(phase, can_reshape);
+}
+
+//=============================================================================
+//------------------------------Value------------------------------------------
+const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
+  // Either input is TOP ==> the result is TOP
+  const Type *t1 = phase->type( in(MemNode::Memory) );
+  if (t1 == Type::TOP)  return Type::TOP;
+  Node *adr = in(MemNode::Address);
+  const Type *t2 = phase->type( adr );
+  if (t2 == Type::TOP)  return Type::TOP;
+  const TypePtr *tp = t2->is_ptr();
+  if (TypePtr::above_centerline(tp->ptr()) ||
+      tp->ptr() == TypePtr::Null)  return Type::TOP;
+
+  // Return a more precise klass, if possible
+  const TypeInstPtr *tinst = tp->isa_instptr();
+  if (tinst != NULL) {
+    ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
+    int offset = tinst->offset();
+    if (ik == phase->C->env()->Class_klass()
+        && (offset == java_lang_Class::klass_offset_in_bytes() ||
+            offset == java_lang_Class::array_klass_offset_in_bytes())) {
+      // We are loading a special hidden field from a Class mirror object,
+      // the field which points to the VM's Klass metaobject.
+      ciType* t = tinst->java_mirror_type();
+      // java_mirror_type returns non-null for compile-time Class constants.
+      if (t != NULL) {
+        // constant oop => constant klass
+        if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
+          return TypeKlassPtr::make(ciArrayKlass::make(t));
+        }
+        if (!t->is_klass()) {
+          // a primitive Class (e.g., int.class) has NULL for a klass field
+          return TypePtr::NULL_PTR;
+        }
+        // (Folds up the 1st indirection in aClassConstant.getModifiers().)
+        return TypeKlassPtr::make(t->as_klass());
+      }
+      // non-constant mirror, so we can't tell what's going on
+    }
+    if( !ik->is_loaded() )
+      return _type;             // Bail out if not loaded
+    if (offset == oopDesc::klass_offset_in_bytes()) {
+      if (tinst->klass_is_exact()) {
+        return TypeKlassPtr::make(ik);
+      }
+      // See if we can become precise: no subklasses and no interface
+      // (Note:  We need to support verified interfaces.)
+      if (!ik->is_interface() && !ik->has_subklass()) {
+        //assert(!UseExactTypes, "this code should be useless with exact types");
+        // Add a dependence; if any subclass added we need to recompile
+        if (!ik->is_final()) {
+          // %%% should use stronger assert_unique_concrete_subtype instead
+          phase->C->dependencies()->assert_leaf_type(ik);
+        }
+        // Return precise klass
+        return TypeKlassPtr::make(ik);
+      }
+
+      // Return root of possible klass
+      return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
+    }
+  }
+
+  // Check for loading klass from an array
+  const TypeAryPtr *tary = tp->isa_aryptr();
+  if( tary != NULL ) {
+    ciKlass *tary_klass = tary->klass();
+    if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
+        && tary->offset() == oopDesc::klass_offset_in_bytes()) {
+      if (tary->klass_is_exact()) {
+        return TypeKlassPtr::make(tary_klass);
+      }
+      ciArrayKlass *ak = tary->klass()->as_array_klass();
+      // If the klass is an object array, we defer the question to the
+      // array component klass.
+      if( ak->is_obj_array_klass() ) {
+        assert( ak->is_loaded(), "" );
+        ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
+        if( base_k->is_loaded() && base_k->is_instance_klass() ) {
+          ciInstanceKlass* ik = base_k->as_instance_klass();
+          // See if we can become precise: no subklasses and no interface
+          if (!ik->is_interface() && !ik->has_subklass()) {
+            //assert(!UseExactTypes, "this code should be useless with exact types");
+            // Add a dependence; if any subclass added we need to recompile
+            if (!ik->is_final()) {
+              phase->C->dependencies()->assert_leaf_type(ik);
+            }
+            // Return precise array klass
+            return TypeKlassPtr::make(ak);
+          }
+        }
+        return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
+      } else {                  // Found a type-array?
+        //assert(!UseExactTypes, "this code should be useless with exact types");
+        assert( ak->is_type_array_klass(), "" );
+        return TypeKlassPtr::make(ak); // These are always precise
+      }
+    }
+  }
+
+  // Check for loading klass from an array klass
+  const TypeKlassPtr *tkls = tp->isa_klassptr();
+  if (tkls != NULL && !StressReflectiveCode) {
+    ciKlass* klass = tkls->klass();
+    if( !klass->is_loaded() )
+      return _type;             // Bail out if not loaded
+    if( klass->is_obj_array_klass() &&
+        (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
+      ciKlass* elem = klass->as_obj_array_klass()->element_klass();
+      // // Always returning precise element type is incorrect,
+      // // e.g., element type could be object and array may contain strings
+      // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
+
+      // The array's TypeKlassPtr was declared 'precise' or 'not precise'
+      // according to the element type's subclassing.
+      return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
+    }
+    if( klass->is_instance_klass() && tkls->klass_is_exact() &&
+        (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
+      ciKlass* sup = klass->as_instance_klass()->super();
+      // The field is Klass::_super.  Return its (constant) value.
+      // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
+      return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
+    }
+  }
+
+  // Bailout case
+  return LoadNode::Value(phase);
+}
+
+//------------------------------Identity---------------------------------------
+// To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
+// Also feed through the klass in Allocate(...klass...)._klass.
+Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
+  Node* x = LoadNode::Identity(phase);
+  if (x != this)  return x;
+
+  // Take apart the address into an oop and and offset.
+  // Return 'this' if we cannot.
+  Node*    adr    = in(MemNode::Address);
+  intptr_t offset = 0;
+  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
+  if (base == NULL)     return this;
+  const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
+  if (toop == NULL)     return this;
+
+  // We can fetch the klass directly through an AllocateNode.
+  // This works even if the klass is not constant (clone or newArray).
+  if (offset == oopDesc::klass_offset_in_bytes()) {
+    Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
+    if (allocated_klass != NULL) {
+      return allocated_klass;
+    }
+  }
+
+  // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
+  // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
+  // See inline_native_Class_query for occurrences of these patterns.
+  // Java Example:  x.getClass().isAssignableFrom(y)
+  // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
+  //
+  // This improves reflective code, often making the Class
+  // mirror go completely dead.  (Current exception:  Class
+  // mirrors may appear in debug info, but we could clean them out by
+  // introducing a new debug info operator for klassOop.java_mirror).
+  if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
+      && (offset == java_lang_Class::klass_offset_in_bytes() ||
+          offset == java_lang_Class::array_klass_offset_in_bytes())) {
+    // We are loading a special hidden field from a Class mirror,
+    // the field which points to its Klass or arrayKlass metaobject.
+    if (base->is_Load()) {
+      Node* adr2 = base->in(MemNode::Address);
+      const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
+      if (tkls != NULL && !tkls->empty()
+          && (tkls->klass()->is_instance_klass() ||
+              tkls->klass()->is_array_klass())
+          && adr2->is_AddP()
+          ) {
+        int mirror_field = Klass::java_mirror_offset_in_bytes();
+        if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
+          mirror_field = in_bytes(arrayKlass::component_mirror_offset());
+        }
+        if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
+          return adr2->in(AddPNode::Base);
+        }
+      }
+    }
+  }
+
+  return this;
+}
+
+//------------------------------Value-----------------------------------------
+const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
+  // Either input is TOP ==> the result is TOP
+  const Type *t1 = phase->type( in(MemNode::Memory) );
+  if( t1 == Type::TOP ) return Type::TOP;
+  Node *adr = in(MemNode::Address);
+  const Type *t2 = phase->type( adr );
+  if( t2 == Type::TOP ) return Type::TOP;
+  const TypePtr *tp = t2->is_ptr();
+  if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
+  const TypeAryPtr *tap = tp->isa_aryptr();
+  if( !tap ) return _type;
+  return tap->size();
+}
+
+//------------------------------Identity---------------------------------------
+// Feed through the length in AllocateArray(...length...)._length.
+Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
+  Node* x = LoadINode::Identity(phase);
+  if (x != this)  return x;
+
+  // Take apart the address into an oop and and offset.
+  // Return 'this' if we cannot.
+  Node*    adr    = in(MemNode::Address);
+  intptr_t offset = 0;
+  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
+  if (base == NULL)     return this;
+  const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
+  if (tary == NULL)     return this;
+
+  // We can fetch the length directly through an AllocateArrayNode.
+  // This works even if the length is not constant (clone or newArray).
+  if (offset == arrayOopDesc::length_offset_in_bytes()) {
+    Node* allocated_length = AllocateArrayNode::Ideal_length(base, phase);
+    if (allocated_length != NULL) {
+      return allocated_length;
+    }
+  }
+
+  return this;
+
+}
+//=============================================================================
+//---------------------------StoreNode::make-----------------------------------
+// Polymorphic factory method:
+StoreNode* StoreNode::make( Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
+  switch (bt) {
+  case T_BOOLEAN:
+  case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
+  case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
+  case T_CHAR:
+  case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
+  case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
+  case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
+  case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
+  case T_ADDRESS:
+  case T_OBJECT:  return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
+  }
+  ShouldNotReachHere();
+  return (StoreNode*)NULL;
+}
+
+StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
+  bool require_atomic = true;
+  return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
+}
+
+
+//--------------------------bottom_type----------------------------------------
+const Type *StoreNode::bottom_type() const {
+  return Type::MEMORY;
+}
+
+//------------------------------hash-------------------------------------------
+uint StoreNode::hash() const {
+  // unroll addition of interesting fields
+  //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
+
+  // Since they are not commoned, do not hash them:
+  return NO_HASH;
+}
+
+//------------------------------Ideal------------------------------------------
+// Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
+// When a store immediately follows a relevant allocation/initialization,
+// try to capture it into the initialization, or hoist it above.
+Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+  Node* p = MemNode::Ideal_common(phase, can_reshape);
+  if (p)  return (p == NodeSentinel) ? NULL : p;
+
+  Node* mem     = in(MemNode::Memory);
+  Node* address = in(MemNode::Address);
+
+  // Back-to-back stores to same address?  Fold em up.
+  // Generally unsafe if I have intervening uses...
+  if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
+    // Looking at a dead closed cycle of memory?
+    assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
+
+    assert(Opcode() == mem->Opcode() ||
+           phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
+           "no mismatched stores, except on raw memory");
+
+    if (mem->outcnt() == 1 &&           // check for intervening uses
+        mem->as_Store()->memory_size() <= this->memory_size()) {
+      // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
+      // For example, 'mem' might be the final state at a conditional return.
+      // Or, 'mem' might be used by some node which is live at the same time
+      // 'this' is live, which might be unschedulable.  So, require exactly
+      // ONE user, the 'this' store, until such time as we clone 'mem' for
+      // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
+      if (can_reshape) {  // (%%% is this an anachronism?)
+        set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
+                  phase->is_IterGVN());
+      } else {
+        // It's OK to do this in the parser, since DU info is always accurate,
+        // and the parser always refers to nodes via SafePointNode maps.
+        set_req(MemNode::Memory, mem->in(MemNode::Memory));
+      }
+      return this;
+    }
+  }
+
+  // Capture an unaliased, unconditional, simple store into an initializer.
+  // Or, if it is independent of the allocation, hoist it above the allocation.
+  if (ReduceFieldZeroing && /*can_reshape &&*/
+      mem->is_Proj() && mem->in(0)->is_Initialize()) {
+    InitializeNode* init = mem->in(0)->as_Initialize();
+    intptr_t offset = init->can_capture_store(this, phase);
+    if (offset > 0) {
+      Node* moved = init->capture_store(this, offset, phase);
+      // If the InitializeNode captured me, it made a raw copy of me,
+      // and I need to disappear.
+      if (moved != NULL) {
+        // %%% hack to ensure that Ideal returns a new node:
+        mem = MergeMemNode::make(phase->C, mem);
+        return mem;             // fold me away
+      }
+    }
+  }
+
+  return NULL;                  // No further progress
+}
+
+//------------------------------Value-----------------------------------------
+const Type *StoreNode::Value( PhaseTransform *phase ) const {
+  // Either input is TOP ==> the result is TOP
+  const Type *t1 = phase->type( in(MemNode::Memory) );
+  if( t1 == Type::TOP ) return Type::TOP;
+  const Type *t2 = phase->type( in(MemNode::Address) );
+  if( t2 == Type::TOP ) return Type::TOP;
+  const Type *t3 = phase->type( in(MemNode::ValueIn) );
+  if( t3 == Type::TOP ) return Type::TOP;
+  return Type::MEMORY;
+}
+
+//------------------------------Identity---------------------------------------
+// Remove redundant stores:
+//   Store(m, p, Load(m, p)) changes to m.
+//   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
+Node *StoreNode::Identity( PhaseTransform *phase ) {
+  Node* mem = in(MemNode::Memory);
+  Node* adr = in(MemNode::Address);
+  Node* val = in(MemNode::ValueIn);
+
+  // Load then Store?  Then the Store is useless
+  if (val->is_Load() &&
+      phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
+      phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
+      val->as_Load()->store_Opcode() == Opcode()) {
+    return mem;
+  }
+
+  // Two stores in a row of the same value?
+  if (mem->is_Store() &&
+      phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
+      phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
+      mem->Opcode() == Opcode()) {
+    return mem;
+  }
+
+  // Store of zero anywhere into a freshly-allocated object?
+  // Then the store is useless.
+  // (It must already have been captured by the InitializeNode.)
+  if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
+    // a newly allocated object is already all-zeroes everywhere
+    if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
+      return mem;
+    }
+
+    // the store may also apply to zero-bits in an earlier object
+    Node* prev_mem = find_previous_store(phase);
+    // Steps (a), (b):  Walk past independent stores to find an exact match.
+    if (prev_mem != NULL) {
+      Node* prev_val = can_see_stored_value(prev_mem, phase);
+      if (prev_val != NULL && phase->eqv(prev_val, val)) {
+        // prev_val and val might differ by a cast; it would be good
+        // to keep the more informative of the two.
+        return mem;
+      }
+    }
+  }
+
+  return this;
+}
+
+//------------------------------match_edge-------------------------------------
+// Do we Match on this edge index or not?  Match only memory & value
+uint StoreNode::match_edge(uint idx) const {
+  return idx == MemNode::Address || idx == MemNode::ValueIn;
+}
+
+//------------------------------cmp--------------------------------------------
+// Do not common stores up together.  They generally have to be split
+// back up anyways, so do not bother.
+uint StoreNode::cmp( const Node &n ) const {
+  return (&n == this);          // Always fail except on self
+}
+
+//------------------------------Ideal_masked_input-----------------------------
+// Check for a useless mask before a partial-word store
+// (StoreB ... (AndI valIn conIa) )
+// If (conIa & mask == mask) this simplifies to
+// (StoreB ... (valIn) )
+Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
+  Node *val = in(MemNode::ValueIn);
+  if( val->Opcode() == Op_AndI ) {
+    const TypeInt *t = phase->type( val->in(2) )->isa_int();
+    if( t && t->is_con() && (t->get_con() & mask) == mask ) {
+      set_req(MemNode::ValueIn, val->in(1));
+      return this;
+    }
+  }
+  return NULL;
+}
+
+
+//------------------------------Ideal_sign_extended_input----------------------
+// Check for useless sign-extension before a partial-word store
+// (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
+// If (conIL == conIR && conIR <= num_bits)  this simplifies to
+// (StoreB ... (valIn) )
+Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
+  Node *val = in(MemNode::ValueIn);
+  if( val->Opcode() == Op_RShiftI ) {
+    const TypeInt *t = phase->type( val->in(2) )->isa_int();
+    if( t && t->is_con() && (t->get_con() <= num_bits) ) {
+      Node *shl = val->in(1);
+      if( shl->Opcode() == Op_LShiftI ) {
+        const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
+        if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
+          set_req(MemNode::ValueIn, shl->in(1));
+          return this;
+        }
+      }
+    }
+  }
+  return NULL;
+}
+
+//------------------------------value_never_loaded-----------------------------------
+// Determine whether there are any possible loads of the value stored.
+// For simplicity, we actually check if there are any loads from the
+// address stored to, not just for loads of the value stored by this node.
+//
+bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
+  Node *adr = in(Address);
+  const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
+  if (adr_oop == NULL)
+    return false;
+  if (!adr_oop->is_instance())
+    return false; // if not a distinct instance, there may be aliases of the address
+  for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
+    Node *use = adr->fast_out(i);
+    int opc = use->Opcode();
+    if (use->is_Load() || use->is_LoadStore()) {
+      return false;
+    }
+  }
+  return true;
+}
+
+//=============================================================================
+//------------------------------Ideal------------------------------------------
+// If the store is from an AND mask that leaves the low bits untouched, then
+// we can skip the AND operation.  If the store is from a sign-extension
+// (a left shift, then right shift) we can skip both.
+Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
+  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
+  if( progress != NULL ) return progress;
+
+  progress = StoreNode::Ideal_sign_extended_input(phase, 24);
+  if( progress != NULL ) return progress;
+
+  // Finally check the default case
+  return StoreNode::Ideal(phase, can_reshape);
+}
+
+//=============================================================================
+//------------------------------Ideal------------------------------------------
+// If the store is from an AND mask that leaves the low bits untouched, then
+// we can skip the AND operation
+Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
+  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
+  if( progress != NULL ) return progress;
+
+  progress = StoreNode::Ideal_sign_extended_input(phase, 16);
+  if( progress != NULL ) return progress;
+
+  // Finally check the default case
+  return StoreNode::Ideal(phase, can_reshape);
+}
+
+//=============================================================================
+//------------------------------Identity---------------------------------------
+Node *StoreCMNode::Identity( PhaseTransform *phase ) {
+  // No need to card mark when storing a null ptr
+  Node* my_store = in(MemNode::OopStore);
+  if (my_store->is_Store()) {
+    const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
+    if( t1 == TypePtr::NULL_PTR ) {
+      return in(MemNode::Memory);
+    }
+  }
+  return this;
+}
+
+//------------------------------Value-----------------------------------------
+const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
+  // If extra input is TOP ==> the result is TOP
+  const Type *t1 = phase->type( in(MemNode::OopStore) );
+  if( t1 == Type::TOP ) return Type::TOP;
+
+  return StoreNode::Value( phase );
+}
+
+
+//=============================================================================
+//----------------------------------SCMemProjNode------------------------------
+const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
+{
+  return bottom_type();
+}
+
+//=============================================================================
+LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
+  init_req(MemNode::Control, c  );
+  init_req(MemNode::Memory , mem);
+  init_req(MemNode::Address, adr);
+  init_req(MemNode::ValueIn, val);
+  init_req(         ExpectedIn, ex );
+  init_class_id(Class_LoadStore);
+
+}
+
+//=============================================================================
+//-------------------------------adr_type--------------------------------------
+// Do we Match on this edge index or not?  Do not match memory
+const TypePtr* ClearArrayNode::adr_type() const {
+  Node *adr = in(3);
+  return MemNode::calculate_adr_type(adr->bottom_type());
+}
+
+//------------------------------match_edge-------------------------------------
+// Do we Match on this edge index or not?  Do not match memory
+uint ClearArrayNode::match_edge(uint idx) const {
+  return idx > 1;
+}
+
+//------------------------------Identity---------------------------------------
+// Clearing a zero length array does nothing
+Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
+  return phase->type(in(2))->higher_equal(TypeInt::ZERO)  ? in(1) : this;
+}
+
+//------------------------------Idealize---------------------------------------
+// Clearing a short array is faster with stores
+Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
+  const int unit = BytesPerLong;
+  const TypeX* t = phase->type(in(2))->isa_intptr_t();
+  if (!t)  return NULL;
+  if (!t->is_con())  return NULL;
+  intptr_t raw_count = t->get_con();
+  intptr_t size = raw_count;
+  if (!Matcher::init_array_count_is_in_bytes) size *= unit;
+  // Clearing nothing uses the Identity call.
+  // Negative clears are possible on dead ClearArrays
+  // (see jck test stmt114.stmt11402.val).
+  if (size <= 0 || size % unit != 0)  return NULL;
+  intptr_t count = size / unit;
+  // Length too long; use fast hardware clear
+  if (size > Matcher::init_array_short_size)  return NULL;
+  Node *mem = in(1);
+  if( phase->type(mem)==Type::TOP ) return NULL;
+  Node *adr = in(3);
+  const Type* at = phase->type(adr);
+  if( at==Type::TOP ) return NULL;
+  const TypePtr* atp = at->isa_ptr();
+  // adjust atp to be the correct array element address type
+  if (atp == NULL)  atp = TypePtr::BOTTOM;
+  else              atp = atp->add_offset(Type::OffsetBot);
+  // Get base for derived pointer purposes
+  if( adr->Opcode() != Op_AddP ) Unimplemented();
+  Node *base = adr->in(1);
+
+  Node *zero = phase->makecon(TypeLong::ZERO);
+  Node *off  = phase->MakeConX(BytesPerLong);
+  mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
+  count--;
+  while( count-- ) {
+    mem = phase->transform(mem);
+    adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
+    mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
+  }
+  return mem;
+}
+
+//----------------------------clear_memory-------------------------------------
+// Generate code to initialize object storage to zero.
+Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
+                                   intptr_t start_offset,
+                                   Node* end_offset,
+                                   PhaseGVN* phase) {
+  Compile* C = phase->C;
+  intptr_t offset = start_offset;
+
+  int unit = BytesPerLong;
+  if ((offset % unit) != 0) {
+    Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
+    adr = phase->transform(adr);
+    const TypePtr* atp = TypeRawPtr::BOTTOM;
+    mem = StoreNode::make(C, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
+    mem = phase->transform(mem);
+    offset += BytesPerInt;
+  }
+  assert((offset % unit) == 0, "");
+
+  // Initialize the remaining stuff, if any, with a ClearArray.
+  return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
+}
+
+Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
+                                   Node* start_offset,
+                                   Node* end_offset,
+                                   PhaseGVN* phase) {
+  Compile* C = phase->C;
+  int unit = BytesPerLong;
+  Node* zbase = start_offset;
+  Node* zend  = end_offset;
+
+  // Scale to the unit required by the CPU:
+  if (!Matcher::init_array_count_is_in_bytes) {
+    Node* shift = phase->intcon(exact_log2(unit));
+    zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
+    zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
+  }
+
+  Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
+  Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
+
+  // Bulk clear double-words
+  Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
+  mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
+  return phase->transform(mem);
+}
+
+Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
+                                   intptr_t start_offset,
+                                   intptr_t end_offset,
+                                   PhaseGVN* phase) {
+  Compile* C = phase->C;
+  assert((end_offset % BytesPerInt) == 0, "odd end offset");
+  intptr_t done_offset = end_offset;
+  if ((done_offset % BytesPerLong) != 0) {
+    done_offset -= BytesPerInt;
+  }
+  if (done_offset > start_offset) {
+    mem = clear_memory(ctl, mem, dest,
+                       start_offset, phase->MakeConX(done_offset), phase);
+  }
+  if (done_offset < end_offset) { // emit the final 32-bit store
+    Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
+    adr = phase->transform(adr);
+    const TypePtr* atp = TypeRawPtr::BOTTOM;
+    mem = StoreNode::make(C, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
+    mem = phase->transform(mem);
+    done_offset += BytesPerInt;
+  }
+  assert(done_offset == end_offset, "");
+  return mem;
+}
+
+//=============================================================================
+// Do we match on this edge? No memory edges
+uint StrCompNode::match_edge(uint idx) const {
+  return idx == 5 || idx == 6;
+}
+
+//------------------------------Ideal------------------------------------------
+// Return a node which is more "ideal" than the current node.  Strip out
+// control copies
+Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
+  return remove_dead_region(phase, can_reshape) ? this : NULL;
+}
+
+
+//=============================================================================
+MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
+  : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
+    _adr_type(C->get_adr_type(alias_idx))
+{
+  init_class_id(Class_MemBar);
+  Node* top = C->top();
+  init_req(TypeFunc::I_O,top);
+  init_req(TypeFunc::FramePtr,top);
+  init_req(TypeFunc::ReturnAdr,top);
+  if (precedent != NULL)
+    init_req(TypeFunc::Parms, precedent);
+}
+
+//------------------------------cmp--------------------------------------------
+uint MemBarNode::hash() const { return NO_HASH; }
+uint MemBarNode::cmp( const Node &n ) const {
+  return (&n == this);          // Always fail except on self
+}
+
+//------------------------------make-------------------------------------------
+MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
+  int len = Precedent + (pn == NULL? 0: 1);
+  switch (opcode) {
+  case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
+  case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
+  case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
+  case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
+  case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
+  default:                 ShouldNotReachHere(); return NULL;
+  }
+}
+
+//------------------------------Ideal------------------------------------------
+// Return a node which is more "ideal" than the current node.  Strip out
+// control copies
+Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+  if (remove_dead_region(phase, can_reshape))  return this;
+  return NULL;
+}
+
+//------------------------------Value------------------------------------------
+const Type *MemBarNode::Value( PhaseTransform *phase ) const {
+  if( !in(0) ) return Type::TOP;
+  if( phase->type(in(0)) == Type::TOP )
+    return Type::TOP;
+  return TypeTuple::MEMBAR;
+}
+
+//------------------------------match------------------------------------------
+// Construct projections for memory.
+Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
+  switch (proj->_con) {
+  case TypeFunc::Control:
+  case TypeFunc::Memory:
+    return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
+  }
+  ShouldNotReachHere();
+  return NULL;
+}
+
+//===========================InitializeNode====================================
+// SUMMARY:
+// This node acts as a memory barrier on raw memory, after some raw stores.
+// The 'cooked' oop value feeds from the Initialize, not the Allocation.
+// The Initialize can 'capture' suitably constrained stores as raw inits.
+// It can coalesce related raw stores into larger units (called 'tiles').
+// It can avoid zeroing new storage for memory units which have raw inits.
+// At macro-expansion, it is marked 'complete', and does not optimize further.
+//
+// EXAMPLE:
+// The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
+//   ctl = incoming control; mem* = incoming memory
+// (Note:  A star * on a memory edge denotes I/O and other standard edges.)
+// First allocate uninitialized memory and fill in the header:
+//   alloc = (Allocate ctl mem* 16 #short[].klass ...)
+//   ctl := alloc.Control; mem* := alloc.Memory*
+//   rawmem = alloc.Memory; rawoop = alloc.RawAddress
+// Then initialize to zero the non-header parts of the raw memory block:
+//   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
+//   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
+// After the initialize node executes, the object is ready for service:
+//   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
+// Suppose its body is immediately initialized as {1,2}:
+//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
+//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
+//   mem.SLICE(#short[*]) := store2
+//
+// DETAILS:
+// An InitializeNode collects and isolates object initialization after
+// an AllocateNode and before the next possible safepoint.  As a
+// memory barrier (MemBarNode), it keeps critical stores from drifting
+// down past any safepoint or any publication of the allocation.
+// Before this barrier, a newly-allocated object may have uninitialized bits.
+// After this barrier, it may be treated as a real oop, and GC is allowed.
+//
+// The semantics of the InitializeNode include an implicit zeroing of
+// the new object from object header to the end of the object.
+// (The object header and end are determined by the AllocateNode.)
+//
+// Certain stores may be added as direct inputs to the InitializeNode.
+// These stores must update raw memory, and they must be to addresses
+// derived from the raw address produced by AllocateNode, and with
+// a constant offset.  They must be ordered by increasing offset.
+// The first one is at in(RawStores), the last at in(req()-1).
+// Unlike most memory operations, they are not linked in a chain,
+// but are displayed in parallel as users of the rawmem output of
+// the allocation.
+//
+// (See comments in InitializeNode::capture_store, which continue
+// the example given above.)
+//
+// When the associated Allocate is macro-expanded, the InitializeNode
+// may be rewritten to optimize collected stores.  A ClearArrayNode
+// may also be created at that point to represent any required zeroing.
+// The InitializeNode is then marked 'complete', prohibiting further
+// capturing of nearby memory operations.
+//
+// During macro-expansion, all captured initializations which store
+// constant values of 32 bits or smaller are coalesced (if advantagous)
+// into larger 'tiles' 32 or 64 bits.  This allows an object to be
+// initialized in fewer memory operations.  Memory words which are
+// covered by neither tiles nor non-constant stores are pre-zeroed
+// by explicit stores of zero.  (The code shape happens to do all
+// zeroing first, then all other stores, with both sequences occurring
+// in order of ascending offsets.)
+//
+// Alternatively, code may be inserted between an AllocateNode and its
+// InitializeNode, to perform arbitrary initialization of the new object.
+// E.g., the object copying intrinsics insert complex data transfers here.
+// The initialization must then be marked as 'complete' disable the
+// built-in zeroing semantics and the collection of initializing stores.
+//
+// While an InitializeNode is incomplete, reads from the memory state
+// produced by it are optimizable if they match the control edge and
+// new oop address associated with the allocation/initialization.
+// They return a stored value (if the offset matches) or else zero.
+// A write to the memory state, if it matches control and address,
+// and if it is to a constant offset, may be 'captured' by the
+// InitializeNode.  It is cloned as a raw memory operation and rewired
+// inside the initialization, to the raw oop produced by the allocation.
+// Operations on addresses which are provably distinct (e.g., to
+// other AllocateNodes) are allowed to bypass the initialization.
+//
+// The effect of all this is to consolidate object initialization
+// (both arrays and non-arrays, both piecewise and bulk) into a
+// single location, where it can be optimized as a unit.
+//
+// Only stores with an offset less than TrackedInitializationLimit words
+// will be considered for capture by an InitializeNode.  This puts a
+// reasonable limit on the complexity of optimized initializations.
+
+//---------------------------InitializeNode------------------------------------
+InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
+  : _is_complete(false),
+    MemBarNode(C, adr_type, rawoop)
+{
+  init_class_id(Class_Initialize);
+
+  assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
+  assert(in(RawAddress) == rawoop, "proper init");
+  // Note:  allocation() can be NULL, for secondary initialization barriers
+}
+
+// Since this node is not matched, it will be processed by the
+// register allocator.  Declare that there are no constraints
+// on the allocation of the RawAddress edge.
+const RegMask &InitializeNode::in_RegMask(uint idx) const {
+  // This edge should be set to top, by the set_complete.  But be conservative.
+  if (idx == InitializeNode::RawAddress)
+    return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
+  return RegMask::Empty;
+}
+
+Node* InitializeNode::memory(uint alias_idx) {
+  Node* mem = in(Memory);
+  if (mem->is_MergeMem()) {
+    return mem->as_MergeMem()->memory_at(alias_idx);
+  } else {
+    // incoming raw memory is not split
+    return mem;
+  }
+}
+
+bool InitializeNode::is_non_zero() {
+  if (is_complete())  return false;
+  remove_extra_zeroes();
+  return (req() > RawStores);
+}
+
+void InitializeNode::set_complete(PhaseGVN* phase) {
+  assert(!is_complete(), "caller responsibility");
+  _is_complete = true;
+
+  // After this node is complete, it contains a bunch of
+  // raw-memory initializations.  There is no need for
+  // it to have anything to do with non-raw memory effects.
+  // Therefore, tell all non-raw users to re-optimize themselves,
+  // after skipping the memory effects of this initialization.
+  PhaseIterGVN* igvn = phase->is_IterGVN();
+  if (igvn)  igvn->add_users_to_worklist(this);
+}
+
+// convenience function
+// return false if the init contains any stores already
+bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
+  InitializeNode* init = initialization();
+  if (init == NULL || init->is_complete())  return false;
+  init->remove_extra_zeroes();
+  // for now, if this allocation has already collected any inits, bail:
+  if (init->is_non_zero())  return false;
+  init->set_complete(phase);
+  return true;
+}
+
+void InitializeNode::remove_extra_zeroes() {
+  if (req() == RawStores)  return;
+  Node* zmem = zero_memory();
+  uint fill = RawStores;
+  for (uint i = fill; i < req(); i++) {
+    Node* n = in(i);
+    if (n->is_top() || n == zmem)  continue;  // skip
+    if (fill < i)  set_req(fill, n);          // compact
+    ++fill;
+  }
+  // delete any empty spaces created:
+  while (fill < req()) {
+    del_req(fill);
+  }
+}
+
+// Helper for remembering which stores go with which offsets.
+intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
+  if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
+  intptr_t offset = -1;
+  Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
+                                               phase, offset);
+  if (base == NULL)     return -1;  // something is dead,
+  if (offset < 0)       return -1;  //        dead, dead
+  return offset;
+}
+
+// Helper for proving that an initialization expression is
+// "simple enough" to be folded into an object initialization.
+// Attempts to prove that a store's initial value 'n' can be captured
+// within the initialization without creating a vicious cycle, such as:
+//     { Foo p = new Foo(); p.next = p; }
+// True for constants and parameters and small combinations thereof.
+bool InitializeNode::detect_init_independence(Node* n,
+                                              bool st_is_pinned,
+                                              int& count) {
+  if (n == NULL)      return true;   // (can this really happen?)
+  if (n->is_Proj())   n = n->in(0);
+  if (n == this)      return false;  // found a cycle
+  if (n->is_Con())    return true;
+  if (n->is_Start())  return true;   // params, etc., are OK
+  if (n->is_Root())   return true;   // even better
+
+  Node* ctl = n->in(0);
+  if (ctl != NULL && !ctl->is_top()) {
+    if (ctl->is_Proj())  ctl = ctl->in(0);
+    if (ctl == this)  return false;
+
+    // If we already know that the enclosing memory op is pinned right after
+    // the init, then any control flow that the store has picked up
+    // must have preceded the init, or else be equal to the init.
+    // Even after loop optimizations (which might change control edges)
+    // a store is never pinned *before* the availability of its inputs.
+    if (!MemNode::detect_dominating_control(ctl, this->in(0)))
+      return false;                  // failed to prove a good control
+
+  }
+
+  // Check data edges for possible dependencies on 'this'.
+  if ((count += 1) > 20)  return false;  // complexity limit
+  for (uint i = 1; i < n->req(); i++) {
+    Node* m = n->in(i);
+    if (m == NULL || m == n || m->is_top())  continue;
+    uint first_i = n->find_edge(m);
+    if (i != first_i)  continue;  // process duplicate edge just once
+    if (!detect_init_independence(m, st_is_pinned, count)) {
+      return false;
+    }
+  }
+
+  return true;
+}
+
+// Here are all the checks a Store must pass before it can be moved into
+// an initialization.  Returns zero if a check fails.
+// On success, returns the (constant) offset to which the store applies,
+// within the initialized memory.
+intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
+  const int FAIL = 0;
+  if (st->req() != MemNode::ValueIn + 1)
+    return FAIL;                // an inscrutable StoreNode (card mark?)
+  Node* ctl = st->in(MemNode::Control);
+  if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
+    return FAIL;                // must be unconditional after the initialization
+  Node* mem = st->in(MemNode::Memory);
+  if (!(mem->is_Proj() && mem->in(0) == this))
+    return FAIL;                // must not be preceded by other stores
+  Node* adr = st->in(MemNode::Address);
+  intptr_t offset;
+  AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
+  if (alloc == NULL)
+    return FAIL;                // inscrutable address
+  if (alloc != allocation())
+    return FAIL;                // wrong allocation!  (store needs to float up)
+  Node* val = st->in(MemNode::ValueIn);
+  int complexity_count = 0;
+  if (!detect_init_independence(val, true, complexity_count))
+    return FAIL;                // stored value must be 'simple enough'
+
+  return offset;                // success
+}
+
+// Find the captured store in(i) which corresponds to the range
+// [start..start+size) in the initialized object.
+// If there is one, return its index i.  If there isn't, return the
+// negative of the index where it should be inserted.
+// Return 0 if the queried range overlaps an initialization boundary
+// or if dead code is encountered.
+// If size_in_bytes is zero, do not bother with overlap checks.
+int InitializeNode::captured_store_insertion_point(intptr_t start,
+                                                   int size_in_bytes,
+                                                   PhaseTransform* phase) {
+  const int FAIL = 0, MAX_STORE = BytesPerLong;
+
+  if (is_complete())
+    return FAIL;                // arraycopy got here first; punt
+
+  assert(allocation() != NULL, "must be present");
+
+  // no negatives, no header fields:
+  if (start < (intptr_t) sizeof(oopDesc))  return FAIL;
+  if (start < (intptr_t) sizeof(arrayOopDesc) &&
+      start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
+
+  // after a certain size, we bail out on tracking all the stores:
+  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
+  if (start >= ti_limit)  return FAIL;
+
+  for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
+    if (i >= limit)  return -(int)i; // not found; here is where to put it
+
+    Node*    st     = in(i);
+    intptr_t st_off = get_store_offset(st, phase);
+    if (st_off < 0) {
+      if (st != zero_memory()) {
+        return FAIL;            // bail out if there is dead garbage
+      }
+    } else if (st_off > start) {
+      // ...we are done, since stores are ordered
+      if (st_off < start + size_in_bytes) {
+        return FAIL;            // the next store overlaps
+      }
+      return -(int)i;           // not found; here is where to put it
+    } else if (st_off < start) {
+      if (size_in_bytes != 0 &&
+          start < st_off + MAX_STORE &&
+          start < st_off + st->as_Store()->memory_size()) {
+        return FAIL;            // the previous store overlaps
+      }
+    } else {
+      if (size_in_bytes != 0 &&
+          st->as_Store()->memory_size() != size_in_bytes) {
+        return FAIL;            // mismatched store size
+      }
+      return i;
+    }
+
+    ++i;
+  }
+}
+
+// Look for a captured store which initializes at the offset 'start'
+// with the given size.  If there is no such store, and no other
+// initialization interferes, then return zero_memory (the memory
+// projection of the AllocateNode).
+Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
+                                          PhaseTransform* phase) {
+  assert(stores_are_sane(phase), "");
+  int i = captured_store_insertion_point(start, size_in_bytes, phase);
+  if (i == 0) {
+    return NULL;                // something is dead
+  } else if (i < 0) {
+    return zero_memory();       // just primordial zero bits here
+  } else {
+    Node* st = in(i);           // here is the store at this position
+    assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
+    return st;
+  }
+}
+
+// Create, as a raw pointer, an address within my new object at 'offset'.
+Node* InitializeNode::make_raw_address(intptr_t offset,
+                                       PhaseTransform* phase) {
+  Node* addr = in(RawAddress);
+  if (offset != 0) {
+    Compile* C = phase->C;
+    addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
+                                                 phase->MakeConX(offset)) );
+  }
+  return addr;
+}
+
+// Clone the given store, converting it into a raw store
+// initializing a field or element of my new object.
+// Caller is responsible for retiring the original store,
+// with subsume_node or the like.
+//
+// From the example above InitializeNode::InitializeNode,
+// here are the old stores to be captured:
+//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
+//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
+//
+// Here is the changed code; note the extra edges on init:
+//   alloc = (Allocate ...)
+//   rawoop = alloc.RawAddress
+//   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
+//   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
+//   init = (Initialize alloc.Control alloc.Memory rawoop
+//                      rawstore1 rawstore2)
+//
+Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
+                                    PhaseTransform* phase) {
+  assert(stores_are_sane(phase), "");
+
+  if (start < 0)  return NULL;
+  assert(can_capture_store(st, phase) == start, "sanity");
+
+  Compile* C = phase->C;
+  int size_in_bytes = st->memory_size();
+  int i = captured_store_insertion_point(start, size_in_bytes, phase);
+  if (i == 0)  return NULL;     // bail out
+  Node* prev_mem = NULL;        // raw memory for the captured store
+  if (i > 0) {
+    prev_mem = in(i);           // there is a pre-existing store under this one
+    set_req(i, C->top());       // temporarily disconnect it
+    // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
+  } else {
+    i = -i;                     // no pre-existing store
+    prev_mem = zero_memory();   // a slice of the newly allocated object
+    if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
+      set_req(--i, C->top());   // reuse this edge; it has been folded away
+    else
+      ins_req(i, C->top());     // build a new edge
+  }
+  Node* new_st = st->clone();
+  new_st->set_req(MemNode::Control, in(Control));
+  new_st->set_req(MemNode::Memory,  prev_mem);
+  new_st->set_req(MemNode::Address, make_raw_address(start, phase));
+  new_st = phase->transform(new_st);
+
+  // At this point, new_st might have swallowed a pre-existing store
+  // at the same offset, or perhaps new_st might have disappeared,
+  // if it redundantly stored the same value (or zero to fresh memory).
+
+  // In any case, wire it in:
+  set_req(i, new_st);
+
+  // The caller may now kill the old guy.
+  DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
+  assert(check_st == new_st || check_st == NULL, "must be findable");
+  assert(!is_complete(), "");
+  return new_st;
+}
+
+static bool store_constant(jlong* tiles, int num_tiles,
+                           intptr_t st_off, int st_size,
+                           jlong con) {
+  if ((st_off & (st_size-1)) != 0)
+    return false;               // strange store offset (assume size==2**N)
+  address addr = (address)tiles + st_off;
+  assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
+  switch (st_size) {
+  case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
+  case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
+  case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
+  case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
+  default: return false;        // strange store size (detect size!=2**N here)
+  }
+  return true;                  // return success to caller
+}
+
+// Coalesce subword constants into int constants and possibly
+// into long constants.  The goal, if the CPU permits,
+// is to initialize the object with a small number of 64-bit tiles.
+// Also, convert floating-point constants to bit patterns.
+// Non-constants are not relevant to this pass.
+//
+// In terms of the running example on InitializeNode::InitializeNode
+// and InitializeNode::capture_store, here is the transformation
+// of rawstore1 and rawstore2 into rawstore12:
+//   alloc = (Allocate ...)
+//   rawoop = alloc.RawAddress
+//   tile12 = 0x00010002
+//   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
+//   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
+//
+void
+InitializeNode::coalesce_subword_stores(intptr_t header_size,
+                                        Node* size_in_bytes,
+                                        PhaseGVN* phase) {
+  Compile* C = phase->C;
+
+  assert(stores_are_sane(phase), "");
+  // Note:  After this pass, they are not completely sane,
+  // since there may be some overlaps.
+
+  int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
+
+  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
+  intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
+  size_limit = MIN2(size_limit, ti_limit);
+  size_limit = align_size_up(size_limit, BytesPerLong);
+  int num_tiles = size_limit / BytesPerLong;
+
+  // allocate space for the tile map:
+  const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
+  jlong  tiles_buf[small_len];
+  Node*  nodes_buf[small_len];
+  jlong  inits_buf[small_len];
+  jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
+                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
+  Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
+                  : NEW_RESOURCE_ARRAY(Node*, num_tiles));
+  jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
+                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
+  // tiles: exact bitwise model of all primitive constants
+  // nodes: last constant-storing node subsumed into the tiles model
+  // inits: which bytes (in each tile) are touched by any initializations
+
+  //// Pass A: Fill in the tile model with any relevant stores.
+
+  Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
+  Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
+  Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
+  Node* zmem = zero_memory(); // initially zero memory state
+  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
+    Node* st = in(i);
+    intptr_t st_off = get_store_offset(st, phase);
+
+    // Figure out the store's offset and constant value:
+    if (st_off < header_size)             continue; //skip (ignore header)
+    if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
+    int st_size = st->as_Store()->memory_size();
+    if (st_off + st_size > size_limit)    break;
+
+    // Record which bytes are touched, whether by constant or not.
+    if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
+      continue;                 // skip (strange store size)
+
+    const Type* val = phase->type(st->in(MemNode::ValueIn));
+    if (!val->singleton())                continue; //skip (non-con store)
+    BasicType type = val->basic_type();
+
+    jlong con = 0;
+    switch (type) {
+    case T_INT:    con = val->is_int()->get_con();  break;
+    case T_LONG:   con = val->is_long()->get_con(); break;
+    case T_FLOAT:  con = jint_cast(val->getf());    break;
+    case T_DOUBLE: con = jlong_cast(val->getd());   break;
+    default:                              continue; //skip (odd store type)
+    }
+
+    if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
+        st->Opcode() == Op_StoreL) {
+      continue;                 // This StoreL is already optimal.
+    }
+
+    // Store down the constant.
+    store_constant(tiles, num_tiles, st_off, st_size, con);
+
+    intptr_t j = st_off >> LogBytesPerLong;
+
+    if (type == T_INT && st_size == BytesPerInt
+        && (st_off & BytesPerInt) == BytesPerInt) {
+      jlong lcon = tiles[j];
+      if (!Matcher::isSimpleConstant64(lcon) &&
+          st->Opcode() == Op_StoreI) {
+        // This StoreI is already optimal by itself.
+        jint* intcon = (jint*) &tiles[j];
+        intcon[1] = 0;  // undo the store_constant()
+
+        // If the previous store is also optimal by itself, back up and
+        // undo the action of the previous loop iteration... if we can.
+        // But if we can't, just let the previous half take care of itself.
+        st = nodes[j];
+        st_off -= BytesPerInt;
+        con = intcon[0];
+        if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
+          assert(st_off >= header_size, "still ignoring header");
+          assert(get_store_offset(st, phase) == st_off, "must be");
+          assert(in(i-1) == zmem, "must be");
+          DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
+          assert(con == tcon->is_int()->get_con(), "must be");
+          // Undo the effects of the previous loop trip, which swallowed st:
+          intcon[0] = 0;        // undo store_constant()
+          set_req(i-1, st);     // undo set_req(i, zmem)
+          nodes[j] = NULL;      // undo nodes[j] = st
+          --old_subword;        // undo ++old_subword
+        }
+        continue;               // This StoreI is already optimal.
+      }
+    }
+
+    // This store is not needed.
+    set_req(i, zmem);
+    nodes[j] = st;              // record for the moment
+    if (st_size < BytesPerLong) // something has changed
+          ++old_subword;        // includes int/float, but who's counting...
+    else  ++old_long;
+  }
+
+  if ((old_subword + old_long) == 0)
+    return;                     // nothing more to do
+
+  //// Pass B: Convert any non-zero tiles into optimal constant stores.
+  // Be sure to insert them before overlapping non-constant stores.
+  // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
+  for (int j = 0; j < num_tiles; j++) {
+    jlong con  = tiles[j];
+    jlong init = inits[j];
+    if (con == 0)  continue;
+    jint con0,  con1;           // split the constant, address-wise
+    jint init0, init1;          // split the init map, address-wise
+    { union { jlong con; jint intcon[2]; } u;
+      u.con = con;
+      con0  = u.intcon[0];
+      con1  = u.intcon[1];
+      u.con = init;
+      init0 = u.intcon[0];
+      init1 = u.intcon[1];
+    }
+
+    Node* old = nodes[j];
+    assert(old != NULL, "need the prior store");
+    intptr_t offset = (j * BytesPerLong);
+
+    bool split = !Matcher::isSimpleConstant64(con);
+
+    if (offset < header_size) {
+      assert(offset + BytesPerInt >= header_size, "second int counts");
+      assert(*(jint*)&tiles[j] == 0, "junk in header");
+      split = true;             // only the second word counts
+      // Example:  int a[] = { 42 ... }
+    } else if (con0 == 0 && init0 == -1) {
+      split = true;             // first word is covered by full inits
+      // Example:  int a[] = { ... foo(), 42 ... }
+    } else if (con1 == 0 && init1 == -1) {
+      split = true;             // second word is covered by full inits
+      // Example:  int a[] = { ... 42, foo() ... }
+    }
+
+    // Here's a case where init0 is neither 0 nor -1:
+    //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
+    // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
+    // In this case the tile is not split; it is (jlong)42.
+    // The big tile is stored down, and then the foo() value is inserted.
+    // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
+
+    Node* ctl = old->in(MemNode::Control);
+    Node* adr = make_raw_address(offset, phase);
+    const TypePtr* atp = TypeRawPtr::BOTTOM;
+
+    // One or two coalesced stores to plop down.
+    Node*    st[2];
+    intptr_t off[2];
+    int  nst = 0;
+    if (!split) {
+      ++new_long;
+      off[nst] = offset;
+      st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
+                                  phase->longcon(con), T_LONG);
+    } else {
+      // Omit either if it is a zero.
+      if (con0 != 0) {
+        ++new_int;
+        off[nst]  = offset;
+        st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
+                                    phase->intcon(con0), T_INT);
+      }
+      if (con1 != 0) {
+        ++new_int;
+        offset += BytesPerInt;
+        adr = make_raw_address(offset, phase);
+        off[nst]  = offset;
+        st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
+                                    phase->intcon(con1), T_INT);
+      }
+    }
+
+    // Insert second store first, then the first before the second.
+    // Insert each one just before any overlapping non-constant stores.
+    while (nst > 0) {
+      Node* st1 = st[--nst];
+      C->copy_node_notes_to(st1, old);
+      st1 = phase->transform(st1);
+      offset = off[nst];
+      assert(offset >= header_size, "do not smash header");
+      int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
+      guarantee(ins_idx != 0, "must re-insert constant store");
+      if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
+      if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
+        set_req(--ins_idx, st1);
+      else
+        ins_req(ins_idx, st1);
+    }
+  }
+
+  if (PrintCompilation && WizardMode)
+    tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
+                  old_subword, old_long, new_int, new_long);
+  if (C->log() != NULL)
+    C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
+                   old_subword, old_long, new_int, new_long);
+
+  // Clean up any remaining occurrences of zmem:
+  remove_extra_zeroes();
+}
+
+// Explore forward from in(start) to find the first fully initialized
+// word, and return its offset.  Skip groups of subword stores which
+// together initialize full words.  If in(start) is itself part of a
+// fully initialized word, return the offset of in(start).  If there
+// are no following full-word stores, or if something is fishy, return
+// a negative value.
+intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
+  int       int_map = 0;
+  intptr_t  int_map_off = 0;
+  const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
+
+  for (uint i = start, limit = req(); i < limit; i++) {
+    Node* st = in(i);
+
+    intptr_t st_off = get_store_offset(st, phase);
+    if (st_off < 0)  break;  // return conservative answer
+
+    int st_size = st->as_Store()->memory_size();
+    if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
+      return st_off;            // we found a complete word init
+    }
+
+    // update the map:
+
+    intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
+    if (this_int_off != int_map_off) {
+      // reset the map:
+      int_map = 0;
+      int_map_off = this_int_off;
+    }
+
+    int subword_off = st_off - this_int_off;
+    int_map |= right_n_bits(st_size) << subword_off;
+    if ((int_map & FULL_MAP) == FULL_MAP) {
+      return this_int_off;      // we found a complete word init
+    }
+
+    // Did this store hit or cross the word boundary?
+    intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
+    if (next_int_off == this_int_off + BytesPerInt) {
+      // We passed the current int, without fully initializing it.
+      int_map_off = next_int_off;
+      int_map >>= BytesPerInt;
+    } else if (next_int_off > this_int_off + BytesPerInt) {
+      // We passed the current and next int.
+      return this_int_off + BytesPerInt;
+    }
+  }
+
+  return -1;
+}
+
+
+// Called when the associated AllocateNode is expanded into CFG.
+// At this point, we may perform additional optimizations.
+// Linearize the stores by ascending offset, to make memory
+// activity as coherent as possible.
+Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
+                                      intptr_t header_size,
+                                      Node* size_in_bytes,
+                                      PhaseGVN* phase) {
+  assert(!is_complete(), "not already complete");
+  assert(stores_are_sane(phase), "");
+  assert(allocation() != NULL, "must be present");
+
+  remove_extra_zeroes();
+
+  if (ReduceFieldZeroing || ReduceBulkZeroing)
+    // reduce instruction count for common initialization patterns
+    coalesce_subword_stores(header_size, size_in_bytes, phase);
+
+  Node* zmem = zero_memory();   // initially zero memory state
+  Node* inits = zmem;           // accumulating a linearized chain of inits
+  #ifdef ASSERT
+  intptr_t last_init_off = sizeof(oopDesc);  // previous init offset
+  intptr_t last_init_end = sizeof(oopDesc);  // previous init offset+size
+  intptr_t last_tile_end = sizeof(oopDesc);  // previous tile offset+size
+  #endif
+  intptr_t zeroes_done = header_size;
+
+  bool do_zeroing = true;       // we might give up if inits are very sparse
+  int  big_init_gaps = 0;       // how many large gaps have we seen?
+
+  if (ZeroTLAB)  do_zeroing = false;
+  if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
+
+  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
+    Node* st = in(i);
+    intptr_t st_off = get_store_offset(st, phase);
+    if (st_off < 0)
+      break;                    // unknown junk in the inits
+    if (st->in(MemNode::Memory) != zmem)
+      break;                    // complicated store chains somehow in list
+
+    int st_size = st->as_Store()->memory_size();
+    intptr_t next_init_off = st_off + st_size;
+
+    if (do_zeroing && zeroes_done < next_init_off) {
+      // See if this store needs a zero before it or under it.
+      intptr_t zeroes_needed = st_off;
+
+      if (st_size < BytesPerInt) {
+        // Look for subword stores which only partially initialize words.
+        // If we find some, we must lay down some word-level zeroes first,
+        // underneath the subword stores.
+        //
+        // Examples:
+        //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
+        //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
+        //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
+        //
+        // Note:  coalesce_subword_stores may have already done this,
+        // if it was prompted by constant non-zero subword initializers.
+        // But this case can still arise with non-constant stores.
+
+        intptr_t next_full_store = find_next_fullword_store(i, phase);
+
+        // In the examples above:
+        //   in(i)          p   q   r   s     x   y     z
+        //   st_off        12  13  14  15    12  13    14
+        //   st_size        1   1   1   1     1   1     1
+        //   next_full_s.  12  16  16  16    16  16    16
+        //   z's_done      12  16  16  16    12  16    12
+        //   z's_needed    12  16  16  16    16  16    16
+        //   zsize          0   0   0   0     4   0     4
+        if (next_full_store < 0) {
+          // Conservative tack:  Zero to end of current word.
+          zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
+        } else {
+          // Zero to beginning of next fully initialized word.
+          // Or, don't zero at all, if we are already in that word.
+          assert(next_full_store >= zeroes_needed, "must go forward");
+          assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
+          zeroes_needed = next_full_store;
+        }
+      }
+
+      if (zeroes_needed > zeroes_done) {
+        intptr_t zsize = zeroes_needed - zeroes_done;
+        // Do some incremental zeroing on rawmem, in parallel with inits.
+        zeroes_done = align_size_down(zeroes_done, BytesPerInt);
+        rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
+                                              zeroes_done, zeroes_needed,
+                                              phase);
+        zeroes_done = zeroes_needed;
+        if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
+          do_zeroing = false;   // leave the hole, next time
+      }
+    }
+
+    // Collect the store and move on:
+    st->set_req(MemNode::Memory, inits);
+    inits = st;                 // put it on the linearized chain
+    set_req(i, zmem);           // unhook from previous position
+
+    if (zeroes_done == st_off)
+      zeroes_done = next_init_off;
+
+    assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
+
+    #ifdef ASSERT
+    // Various order invariants.  Weaker than stores_are_sane because
+    // a large constant tile can be filled in by smaller non-constant stores.
+    assert(st_off >= last_init_off, "inits do not reverse");
+    last_init_off = st_off;
+    const Type* val = NULL;
+    if (st_size >= BytesPerInt &&
+        (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
+        (int)val->basic_type() < (int)T_OBJECT) {
+      assert(st_off >= last_tile_end, "tiles do not overlap");
+      assert(st_off >= last_init_end, "tiles do not overwrite inits");
+      last_tile_end = MAX2(last_tile_end, next_init_off);
+    } else {
+      intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
+      assert(st_tile_end >= last_tile_end, "inits stay with tiles");
+      assert(st_off      >= last_init_end, "inits do not overlap");
+      last_init_end = next_init_off;  // it's a non-tile
+    }
+    #endif //ASSERT
+  }
+
+  remove_extra_zeroes();        // clear out all the zmems left over
+  add_req(inits);
+
+  if (!ZeroTLAB) {
+    // If anything remains to be zeroed, zero it all now.
+    zeroes_done = align_size_down(zeroes_done, BytesPerInt);
+    // if it is the last unused 4 bytes of an instance, forget about it
+    intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
+    if (zeroes_done + BytesPerLong >= size_limit) {
+      assert(allocation() != NULL, "");
+      Node* klass_node = allocation()->in(AllocateNode::KlassNode);
+      ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
+      if (zeroes_done == k->layout_helper())
+        zeroes_done = size_limit;
+    }
+    if (zeroes_done < size_limit) {
+      rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
+                                            zeroes_done, size_in_bytes, phase);
+    }
+  }
+
+  set_complete(phase);
+  return rawmem;
+}
+
+
+#ifdef ASSERT
+bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
+  if (is_complete())
+    return true;                // stores could be anything at this point
+  intptr_t last_off = sizeof(oopDesc);
+  for (uint i = InitializeNode::RawStores; i < req(); i++) {
+    Node* st = in(i);
+    intptr_t st_off = get_store_offset(st, phase);
+    if (st_off < 0)  continue;  // ignore dead garbage
+    if (last_off > st_off) {
+      tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
+      this->dump(2);
+      assert(false, "ascending store offsets");
+      return false;
+    }
+    last_off = st_off + st->as_Store()->memory_size();
+  }
+  return true;
+}
+#endif //ASSERT
+
+
+
+
+//============================MergeMemNode=====================================
+//
+// SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
+// contributing store or call operations.  Each contributor provides the memory
+// state for a particular "alias type" (see Compile::alias_type).  For example,
+// if a MergeMem has an input X for alias category #6, then any memory reference
+// to alias category #6 may use X as its memory state input, as an exact equivalent
+// to using the MergeMem as a whole.
+//   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
+//
+// (Here, the <N> notation gives the index of the relevant adr_type.)
+//
+// In one special case (and more cases in the future), alias categories overlap.
+// The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
+// states.  Therefore, if a MergeMem has only one contributing input W for Bot,
+// it is exactly equivalent to that state W:
+//   MergeMem(<Bot>: W) <==> W
+//
+// Usually, the merge has more than one input.  In that case, where inputs
+// overlap (i.e., one is Bot), the narrower alias type determines the memory
+// state for that type, and the wider alias type (Bot) fills in everywhere else:
+//   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
+//   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
+//
+// A merge can take a "wide" memory state as one of its narrow inputs.
+// This simply means that the merge observes out only the relevant parts of
+// the wide input.  That is, wide memory states arriving at narrow merge inputs
+// are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
+//
+// These rules imply that MergeMem nodes may cascade (via their <Bot> links),
+// and that memory slices "leak through":
+//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
+//
+// But, in such a cascade, repeated memory slices can "block the leak":
+//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
+//
+// In the last example, Y is not part of the combined memory state of the
+// outermost MergeMem.  The system must, of course, prevent unschedulable
+// memory states from arising, so you can be sure that the state Y is somehow
+// a precursor to state Y'.
+//
+//
+// REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
+// of each MergeMemNode array are exactly the numerical alias indexes, including
+// but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
+// Compile::alias_type (and kin) produce and manage these indexes.
+//
+// By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
+// (Note that this provides quick access to the top node inside MergeMem methods,
+// without the need to reach out via TLS to Compile::current.)
+//
+// As a consequence of what was just described, a MergeMem that represents a full
+// memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
+// containing all alias categories.
+//
+// MergeMem nodes never (?) have control inputs, so in(0) is NULL.
+//
+// All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
+// a memory state for the alias type <N>, or else the top node, meaning that
+// there is no particular input for that alias type.  Note that the length of
+// a MergeMem is variable, and may be extended at any time to accommodate new
+// memory states at larger alias indexes.  When merges grow, they are of course
+// filled with "top" in the unused in() positions.
+//
+// This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
+// (Top was chosen because it works smoothly with passes like GCM.)
+//
+// For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
+// the type of random VM bits like TLS references.)  Since it is always the
+// first non-Bot memory slice, some low-level loops use it to initialize an
+// index variable:  for (i = AliasIdxRaw; i < req(); i++).
+//
+//
+// ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
+// the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
+// the memory state for alias type <N>, or (if there is no particular slice at <N>,
+// it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
+// or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
+// MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
+//
+// %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
+// really that different from the other memory inputs.  An abbreviation called
+// "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
+//
+//
+// PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
+// partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
+// that "emerges though" the base memory will be marked as excluding the alias types
+// of the other (narrow-memory) copies which "emerged through" the narrow edges:
+//
+//   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
+//     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
+//
+// This strange "subtraction" effect is necessary to ensure IGVN convergence.
+// (It is currently unimplemented.)  As you can see, the resulting merge is
+// actually a disjoint union of memory states, rather than an overlay.
+//
+
+//------------------------------MergeMemNode-----------------------------------
+Node* MergeMemNode::make_empty_memory() {
+  Node* empty_memory = (Node*) Compile::current()->top();
+  assert(empty_memory->is_top(), "correct sentinel identity");
+  return empty_memory;
+}
+
+MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
+  init_class_id(Class_MergeMem);
+  // all inputs are nullified in Node::Node(int)
+  // set_input(0, NULL);  // no control input
+
+  // Initialize the edges uniformly to top, for starters.
+  Node* empty_mem = make_empty_memory();
+  for (uint i = Compile::AliasIdxTop; i < req(); i++) {
+    init_req(i,empty_mem);
+  }
+  assert(empty_memory() == empty_mem, "");
+
+  if( new_base != NULL && new_base->is_MergeMem() ) {
+    MergeMemNode* mdef = new_base->as_MergeMem();
+    assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
+    for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
+      mms.set_memory(mms.memory2());
+    }
+    assert(base_memory() == mdef->base_memory(), "");
+  } else {
+    set_base_memory(new_base);
+  }
+}
+
+// Make a new, untransformed MergeMem with the same base as 'mem'.
+// If mem is itself a MergeMem, populate the result with the same edges.
+MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
+  return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
+}
+
+//------------------------------cmp--------------------------------------------
+uint MergeMemNode::hash() const { return NO_HASH; }
+uint MergeMemNode::cmp( const Node &n ) const {
+  return (&n == this);          // Always fail except on self
+}
+
+//------------------------------Identity---------------------------------------
+Node* MergeMemNode::Identity(PhaseTransform *phase) {
+  // Identity if this merge point does not record any interesting memory
+  // disambiguations.
+  Node* base_mem = base_memory();
+  Node* empty_mem = empty_memory();
+  if (base_mem != empty_mem) {  // Memory path is not dead?
+    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
+      Node* mem = in(i);
+      if (mem != empty_mem && mem != base_mem) {
+        return this;            // Many memory splits; no change
+      }
+    }
+  }
+  return base_mem;              // No memory splits; ID on the one true input
+}
+
+//------------------------------Ideal------------------------------------------
+// This method is invoked recursively on chains of MergeMem nodes
+Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+  // Remove chain'd MergeMems
+  //
+  // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
+  // relative to the "in(Bot)".  Since we are patching both at the same time,
+  // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
+  // but rewrite each "in(i)" relative to the new "in(Bot)".
+  Node *progress = NULL;
+
+
+  Node* old_base = base_memory();
+  Node* empty_mem = empty_memory();
+  if (old_base == empty_mem)
+    return NULL; // Dead memory path.
+
+  MergeMemNode* old_mbase;
+  if (old_base != NULL && old_base->is_MergeMem())
+    old_mbase = old_base->as_MergeMem();
+  else
+    old_mbase = NULL;
+  Node* new_base = old_base;
+
+  // simplify stacked MergeMems in base memory
+  if (old_mbase)  new_base = old_mbase->base_memory();
+
+  // the base memory might contribute new slices beyond my req()
+  if (old_mbase)  grow_to_match(old_mbase);
+
+  // Look carefully at the base node if it is a phi.
+  PhiNode* phi_base;
+  if (new_base != NULL && new_base->is_Phi())
+    phi_base = new_base->as_Phi();
+  else
+    phi_base = NULL;
+
+  Node*    phi_reg = NULL;
+  uint     phi_len = (uint)-1;
+  if (phi_base != NULL && !phi_base->is_copy()) {
+    // do not examine phi if degraded to a copy
+    phi_reg = phi_base->region();
+    phi_len = phi_base->req();
+    // see if the phi is unfinished
+    for (uint i = 1; i < phi_len; i++) {
+      if (phi_base->in(i) == NULL) {
+        // incomplete phi; do not look at it yet!
+        phi_reg = NULL;
+        phi_len = (uint)-1;
+        break;
+      }
+    }
+  }
+
+  // Note:  We do not call verify_sparse on entry, because inputs
+  // can normalize to the base_memory via subsume_node or similar
+  // mechanisms.  This method repairs that damage.
+
+  assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
+
+  // Look at each slice.
+  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
+    Node* old_in = in(i);
+    // calculate the old memory value
+    Node* old_mem = old_in;
+    if (old_mem == empty_mem)  old_mem = old_base;
+    assert(old_mem == memory_at(i), "");
+
+    // maybe update (reslice) the old memory value
+
+    // simplify stacked MergeMems
+    Node* new_mem = old_mem;
+    MergeMemNode* old_mmem;
+    if (old_mem != NULL && old_mem->is_MergeMem())
+      old_mmem = old_mem->as_MergeMem();
+    else
+      old_mmem = NULL;
+    if (old_mmem == this) {
+      // This can happen if loops break up and safepoints disappear.
+      // A merge of BotPtr (default) with a RawPtr memory derived from a
+      // safepoint can be rewritten to a merge of the same BotPtr with
+      // the BotPtr phi coming into the loop.  If that phi disappears
+      // also, we can end up with a self-loop of the mergemem.
+      // In general, if loops degenerate and memory effects disappear,
+      // a mergemem can be left looking at itself.  This simply means
+      // that the mergemem's default should be used, since there is
+      // no longer any apparent effect on this slice.
+      // Note: If a memory slice is a MergeMem cycle, it is unreachable
+      //       from start.  Update the input to TOP.
+      new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
+    }
+    else if (old_mmem != NULL) {
+      new_mem = old_mmem->memory_at(i);
+    }
+    // else preceeding memory was not a MergeMem
+
+    // replace equivalent phis (unfortunately, they do not GVN together)
+    if (new_mem != NULL && new_mem != new_base &&
+        new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
+      if (new_mem->is_Phi()) {
+        PhiNode* phi_mem = new_mem->as_Phi();
+        for (uint i = 1; i < phi_len; i++) {
+          if (phi_base->in(i) != phi_mem->in(i)) {
+            phi_mem = NULL;
+            break;
+          }
+        }
+        if (phi_mem != NULL) {
+          // equivalent phi nodes; revert to the def
+          new_mem = new_base;
+        }
+      }
+    }
+
+    // maybe store down a new value
+    Node* new_in = new_mem;
+    if (new_in == new_base)  new_in = empty_mem;
+
+    if (new_in != old_in) {
+      // Warning:  Do not combine this "if" with the previous "if"
+      // A memory slice might have be be rewritten even if it is semantically
+      // unchanged, if the base_memory value has changed.
+      set_req(i, new_in);
+      progress = this;          // Report progress
+    }
+  }
+
+  if (new_base != old_base) {
+    set_req(Compile::AliasIdxBot, new_base);
+    // Don't use set_base_memory(new_base), because we need to update du.
+    assert(base_memory() == new_base, "");
+    progress = this;
+  }
+
+  if( base_memory() == this ) {
+    // a self cycle indicates this memory path is dead
+    set_req(Compile::AliasIdxBot, empty_mem);
+  }
+
+  // Resolve external cycles by calling Ideal on a MergeMem base_memory
+  // Recursion must occur after the self cycle check above
+  if( base_memory()->is_MergeMem() ) {
+    MergeMemNode *new_mbase = base_memory()->as_MergeMem();
+    Node *m = phase->transform(new_mbase);  // Rollup any cycles
+    if( m != NULL && (m->is_top() ||
+        m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
+      // propagate rollup of dead cycle to self
+      set_req(Compile::AliasIdxBot, empty_mem);
+    }
+  }
+
+  if( base_memory() == empty_mem ) {
+    progress = this;
+    // Cut inputs during Parse phase only.
+    // During Optimize phase a dead MergeMem node will be subsumed by Top.
+    if( !can_reshape ) {
+      for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
+        if( in(i) != empty_mem ) { set_req(i, empty_mem); }
+      }
+    }
+  }
+
+  if( !progress && base_memory()->is_Phi() && can_reshape ) {
+    // Check if PhiNode::Ideal's "Split phis through memory merges"
+    // transform should be attempted. Look for this->phi->this cycle.
+    uint merge_width = req();
+    if (merge_width > Compile::AliasIdxRaw) {
+      PhiNode* phi = base_memory()->as_Phi();
+      for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
+        if (phi->in(i) == this) {
+          phase->is_IterGVN()->_worklist.push(phi);
+          break;
+        }
+      }
+    }
+  }
+
+  assert(verify_sparse(), "please, no dups of base");
+  return progress;
+}
+
+//-------------------------set_base_memory-------------------------------------
+void MergeMemNode::set_base_memory(Node *new_base) {
+  Node* empty_mem = empty_memory();
+  set_req(Compile::AliasIdxBot, new_base);
+  assert(memory_at(req()) == new_base, "must set default memory");
+  // Clear out other occurrences of new_base:
+  if (new_base != empty_mem) {
+    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
+      if (in(i) == new_base)  set_req(i, empty_mem);
+    }
+  }
+}
+
+//------------------------------out_RegMask------------------------------------
+const RegMask &MergeMemNode::out_RegMask() const {
+  return RegMask::Empty;
+}
+
+//------------------------------dump_spec--------------------------------------
+#ifndef PRODUCT
+void MergeMemNode::dump_spec(outputStream *st) const {
+  st->print(" {");
+  Node* base_mem = base_memory();
+  for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
+    Node* mem = memory_at(i);
+    if (mem == base_mem) { st->print(" -"); continue; }
+    st->print( " N%d:", mem->_idx );
+    Compile::current()->get_adr_type(i)->dump_on(st);
+  }
+  st->print(" }");
+}
+#endif // !PRODUCT
+
+
+#ifdef ASSERT
+static bool might_be_same(Node* a, Node* b) {
+  if (a == b)  return true;
+  if (!(a->is_Phi() || b->is_Phi()))  return false;
+  // phis shift around during optimization
+  return true;  // pretty stupid...
+}
+
+// verify a narrow slice (either incoming or outgoing)
+static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
+  if (!VerifyAliases)       return;  // don't bother to verify unless requested
+  if (is_error_reported())  return;  // muzzle asserts when debugging an error
+  if (Node::in_dump())      return;  // muzzle asserts when printing
+  assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
+  assert(n != NULL, "");
+  // Elide intervening MergeMem's
+  while (n->is_MergeMem()) {
+    n = n->as_MergeMem()->memory_at(alias_idx);
+  }
+  Compile* C = Compile::current();
+  const TypePtr* n_adr_type = n->adr_type();
+  if (n == m->empty_memory()) {
+    // Implicit copy of base_memory()
+  } else if (n_adr_type != TypePtr::BOTTOM) {
+    assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
+    assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
+  } else {
+    // A few places like make_runtime_call "know" that VM calls are narrow,
+    // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
+    bool expected_wide_mem = false;
+    if (n == m->base_memory()) {
+      expected_wide_mem = true;
+    } else if (alias_idx == Compile::AliasIdxRaw ||
+               n == m->memory_at(Compile::AliasIdxRaw)) {
+      expected_wide_mem = true;
+    } else if (!C->alias_type(alias_idx)->is_rewritable()) {
+      // memory can "leak through" calls on channels that
+      // are write-once.  Allow this also.
+      expected_wide_mem = true;
+    }
+    assert(expected_wide_mem, "expected narrow slice replacement");
+  }
+}
+#else // !ASSERT
+#define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
+#endif
+
+
+//-----------------------------memory_at---------------------------------------
+Node* MergeMemNode::memory_at(uint alias_idx) const {
+  assert(alias_idx >= Compile::AliasIdxRaw ||
+         alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
+         "must avoid base_memory and AliasIdxTop");
+
+  // Otherwise, it is a narrow slice.
+  Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
+  Compile *C = Compile::current();
+  if (is_empty_memory(n)) {
+    // the array is sparse; empty slots are the "top" node
+    n = base_memory();
+    assert(Node::in_dump()
+           || n == NULL || n->bottom_type() == Type::TOP
+           || n->adr_type() == TypePtr::BOTTOM
+           || n->adr_type() == TypeRawPtr::BOTTOM
+           || Compile::current()->AliasLevel() == 0,
+           "must be a wide memory");
+    // AliasLevel == 0 if we are organizing the memory states manually.
+    // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
+  } else {
+    // make sure the stored slice is sane
+    #ifdef ASSERT
+    if (is_error_reported() || Node::in_dump()) {
+    } else if (might_be_same(n, base_memory())) {
+      // Give it a pass:  It is a mostly harmless repetition of the base.
+      // This can arise normally from node subsumption during optimization.
+    } else {
+      verify_memory_slice(this, alias_idx, n);
+    }
+    #endif
+  }
+  return n;
+}
+
+//---------------------------set_memory_at-------------------------------------
+void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
+  verify_memory_slice(this, alias_idx, n);
+  Node* empty_mem = empty_memory();
+  if (n == base_memory())  n = empty_mem;  // collapse default
+  uint need_req = alias_idx+1;
+  if (req() < need_req) {
+    if (n == empty_mem)  return;  // already the default, so do not grow me
+    // grow the sparse array
+    do {
+      add_req(empty_mem);
+    } while (req() < need_req);
+  }
+  set_req( alias_idx, n );
+}
+
+
+
+//--------------------------iteration_setup------------------------------------
+void MergeMemNode::iteration_setup(const MergeMemNode* other) {
+  if (other != NULL) {
+    grow_to_match(other);
+    // invariant:  the finite support of mm2 is within mm->req()
+    #ifdef ASSERT
+    for (uint i = req(); i < other->req(); i++) {
+      assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
+    }
+    #endif
+  }
+  // Replace spurious copies of base_memory by top.
+  Node* base_mem = base_memory();
+  if (base_mem != NULL && !base_mem->is_top()) {
+    for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
+      if (in(i) == base_mem)
+        set_req(i, empty_memory());
+    }
+  }
+}
+
+//---------------------------grow_to_match-------------------------------------
+void MergeMemNode::grow_to_match(const MergeMemNode* other) {
+  Node* empty_mem = empty_memory();
+  assert(other->is_empty_memory(empty_mem), "consistent sentinels");
+  // look for the finite support of the other memory
+  for (uint i = other->req(); --i >= req(); ) {
+    if (other->in(i) != empty_mem) {
+      uint new_len = i+1;
+      while (req() < new_len)  add_req(empty_mem);
+      break;
+    }
+  }
+}
+
+//---------------------------verify_sparse-------------------------------------
+#ifndef PRODUCT
+bool MergeMemNode::verify_sparse() const {
+  assert(is_empty_memory(make_empty_memory()), "sane sentinel");
+  Node* base_mem = base_memory();
+  // The following can happen in degenerate cases, since empty==top.
+  if (is_empty_memory(base_mem))  return true;
+  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
+    assert(in(i) != NULL, "sane slice");
+    if (in(i) == base_mem)  return false;  // should have been the sentinel value!
+  }
+  return true;
+}
+
+bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
+  Node* n;
+  n = mm->in(idx);
+  if (mem == n)  return true;  // might be empty_memory()
+  n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
+  if (mem == n)  return true;
+  while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
+    if (mem == n)  return true;
+    if (n == NULL)  break;
+  }
+  return false;
+}
+#endif // !PRODUCT