hotspot/src/share/vm/opto/escape.cpp
changeset 1 489c9b5090e2
child 211 e2b60448c234
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/opto/escape.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,1346 @@
+/*
+ * Copyright 2005-2006 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_escape.cpp.incl"
+
+uint PointsToNode::edge_target(uint e) const {
+  assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index");
+  return (_edges->at(e) >> EdgeShift);
+}
+
+PointsToNode::EdgeType PointsToNode::edge_type(uint e) const {
+  assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index");
+  return (EdgeType) (_edges->at(e) & EdgeMask);
+}
+
+void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
+  uint v = (targIdx << EdgeShift) + ((uint) et);
+  if (_edges == NULL) {
+     Arena *a = Compile::current()->comp_arena();
+    _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
+  }
+  _edges->append_if_missing(v);
+}
+
+void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
+  uint v = (targIdx << EdgeShift) + ((uint) et);
+
+  _edges->remove(v);
+}
+
+#ifndef PRODUCT
+static char *node_type_names[] = {
+  "UnknownType",
+  "JavaObject",
+  "LocalVar",
+  "Field"
+};
+
+static char *esc_names[] = {
+  "UnknownEscape",
+  "NoEscape     ",
+  "ArgEscape    ",
+  "GlobalEscape "
+};
+
+static char *edge_type_suffix[] = {
+ "?", // UnknownEdge
+ "P", // PointsToEdge
+ "D", // DeferredEdge
+ "F"  // FieldEdge
+};
+
+void PointsToNode::dump() const {
+  NodeType nt = node_type();
+  EscapeState es = escape_state();
+  tty->print("%s  %s  [[", node_type_names[(int) nt], esc_names[(int) es]);
+  for (uint i = 0; i < edge_count(); i++) {
+    tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
+  }
+  tty->print("]]  ");
+  if (_node == NULL)
+    tty->print_cr("<null>");
+  else
+    _node->dump();
+}
+#endif
+
+ConnectionGraph::ConnectionGraph(Compile * C) : _processed(C->comp_arena()), _node_map(C->comp_arena()) {
+  _collecting = true;
+  this->_compile = C;
+  const PointsToNode &dummy = PointsToNode();
+  _nodes = new(C->comp_arena()) GrowableArray<PointsToNode>(C->comp_arena(), (int) INITIAL_NODE_COUNT, 0, dummy);
+  _phantom_object = C->top()->_idx;
+  PointsToNode *phn = ptnode_adr(_phantom_object);
+  phn->set_node_type(PointsToNode::JavaObject);
+  phn->set_escape_state(PointsToNode::GlobalEscape);
+}
+
+void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
+  PointsToNode *f = ptnode_adr(from_i);
+  PointsToNode *t = ptnode_adr(to_i);
+
+  assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
+  assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
+  assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
+  f->add_edge(to_i, PointsToNode::PointsToEdge);
+}
+
+void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
+  PointsToNode *f = ptnode_adr(from_i);
+  PointsToNode *t = ptnode_adr(to_i);
+
+  assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
+  assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
+  assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
+  // don't add a self-referential edge, this can occur during removal of
+  // deferred edges
+  if (from_i != to_i)
+    f->add_edge(to_i, PointsToNode::DeferredEdge);
+}
+
+int ConnectionGraph::type_to_offset(const Type *t) {
+  const TypePtr *t_ptr = t->isa_ptr();
+  assert(t_ptr != NULL, "must be a pointer type");
+  return t_ptr->offset();
+}
+
+void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
+  PointsToNode *f = ptnode_adr(from_i);
+  PointsToNode *t = ptnode_adr(to_i);
+
+  assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
+  assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
+  assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
+  assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
+  t->set_offset(offset);
+
+  f->add_edge(to_i, PointsToNode::FieldEdge);
+}
+
+void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
+  PointsToNode *npt = ptnode_adr(ni);
+  PointsToNode::EscapeState old_es = npt->escape_state();
+  if (es > old_es)
+    npt->set_escape_state(es);
+}
+
+PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
+  uint idx = n->_idx;
+  PointsToNode::EscapeState es;
+
+  // If we are still collecting we don't know the answer yet
+  if (_collecting)
+    return PointsToNode::UnknownEscape;
+
+  // if the node was created after the escape computation, return
+  // UnknownEscape
+  if (idx >= (uint)_nodes->length())
+    return PointsToNode::UnknownEscape;
+
+  es = _nodes->at_grow(idx).escape_state();
+
+  // if we have already computed a value, return it
+  if (es != PointsToNode::UnknownEscape)
+    return es;
+
+  // compute max escape state of anything this node could point to
+  VectorSet ptset(Thread::current()->resource_area());
+  PointsTo(ptset, n, phase);
+  for( VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i ) {
+    uint pt = i.elem;
+    PointsToNode::EscapeState pes = _nodes->at(pt).escape_state();
+    if (pes > es)
+      es = pes;
+  }
+  // cache the computed escape state
+  assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
+  _nodes->adr_at(idx)->set_escape_state(es);
+  return es;
+}
+
+void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
+  VectorSet visited(Thread::current()->resource_area());
+  GrowableArray<uint>  worklist;
+
+  n = skip_casts(n);
+  PointsToNode  npt = _nodes->at_grow(n->_idx);
+
+  // If we have a JavaObject, return just that object
+  if (npt.node_type() == PointsToNode::JavaObject) {
+    ptset.set(n->_idx);
+    return;
+  }
+  // we may have a Phi which has not been processed
+  if (npt._node == NULL) {
+    assert(n->is_Phi(), "unprocessed node must be a Phi");
+    record_for_escape_analysis(n);
+    npt = _nodes->at(n->_idx);
+  }
+  worklist.push(n->_idx);
+  while(worklist.length() > 0) {
+    int ni = worklist.pop();
+    PointsToNode pn = _nodes->at_grow(ni);
+    if (!visited.test(ni)) {
+      visited.set(ni);
+
+      // ensure that all inputs of a Phi have been processed
+      if (_collecting && pn._node->is_Phi()) {
+        PhiNode *phi = pn._node->as_Phi();
+        process_phi_escape(phi, phase);
+      }
+
+      int edges_processed = 0;
+      for (uint e = 0; e < pn.edge_count(); e++) {
+        PointsToNode::EdgeType et = pn.edge_type(e);
+        if (et == PointsToNode::PointsToEdge) {
+          ptset.set(pn.edge_target(e));
+          edges_processed++;
+        } else if (et == PointsToNode::DeferredEdge) {
+          worklist.push(pn.edge_target(e));
+          edges_processed++;
+        }
+      }
+      if (edges_processed == 0) {
+        // no deferred or pointsto edges found.  Assume the value was set outside
+        // this method.  Add the phantom object to the pointsto set.
+        ptset.set(_phantom_object);
+      }
+    }
+  }
+}
+
+void ConnectionGraph::remove_deferred(uint ni) {
+  VectorSet visited(Thread::current()->resource_area());
+
+  uint i = 0;
+  PointsToNode *ptn = ptnode_adr(ni);
+
+  while(i < ptn->edge_count()) {
+    if (ptn->edge_type(i) != PointsToNode::DeferredEdge) {
+      i++;
+    } else {
+      uint t = ptn->edge_target(i);
+      PointsToNode *ptt = ptnode_adr(t);
+      ptn->remove_edge(t, PointsToNode::DeferredEdge);
+      if(!visited.test(t)) {
+        visited.set(t);
+        for (uint j = 0; j < ptt->edge_count(); j++) {
+          uint n1 = ptt->edge_target(j);
+          PointsToNode *pt1 = ptnode_adr(n1);
+          switch(ptt->edge_type(j)) {
+            case PointsToNode::PointsToEdge:
+               add_pointsto_edge(ni, n1);
+              break;
+            case PointsToNode::DeferredEdge:
+              add_deferred_edge(ni, n1);
+              break;
+            case PointsToNode::FieldEdge:
+              assert(false, "invalid connection graph");
+              break;
+          }
+        }
+      }
+    }
+  }
+}
+
+
+//  Add an edge to node given by "to_i" from any field of adr_i whose offset
+//  matches "offset"  A deferred edge is added if to_i is a LocalVar, and
+//  a pointsto edge is added if it is a JavaObject
+
+void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
+  PointsToNode an = _nodes->at_grow(adr_i);
+  PointsToNode to = _nodes->at_grow(to_i);
+  bool deferred = (to.node_type() == PointsToNode::LocalVar);
+
+  for (uint fe = 0; fe < an.edge_count(); fe++) {
+    assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
+    int fi = an.edge_target(fe);
+    PointsToNode pf = _nodes->at_grow(fi);
+    int po = pf.offset();
+    if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
+      if (deferred)
+        add_deferred_edge(fi, to_i);
+      else
+        add_pointsto_edge(fi, to_i);
+    }
+  }
+}
+
+//  Add a deferred  edge from node given by "from_i" to any field of adr_i whose offset
+//  matches "offset"
+void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
+  PointsToNode an = _nodes->at_grow(adr_i);
+  for (uint fe = 0; fe < an.edge_count(); fe++) {
+    assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
+    int fi = an.edge_target(fe);
+    PointsToNode pf = _nodes->at_grow(fi);
+    int po = pf.offset();
+    if (pf.edge_count() == 0) {
+      // we have not seen any stores to this field, assume it was set outside this method
+      add_pointsto_edge(fi, _phantom_object);
+    }
+    if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
+      add_deferred_edge(from_i, fi);
+    }
+  }
+}
+
+//
+// Search memory chain of "mem" to find a MemNode whose address
+// is the specified alias index.  Returns the MemNode found or the
+// first non-MemNode encountered.
+//
+Node *ConnectionGraph::find_mem(Node *mem, int alias_idx, PhaseGVN  *igvn) {
+  if (mem == NULL)
+    return mem;
+  while (mem->is_Mem()) {
+    const Type *at = igvn->type(mem->in(MemNode::Address));
+    if (at != Type::TOP) {
+      assert (at->isa_ptr() != NULL, "pointer type required.");
+      int idx = _compile->get_alias_index(at->is_ptr());
+      if (idx == alias_idx)
+        break;
+    }
+    mem = mem->in(MemNode::Memory);
+  }
+  return mem;
+}
+
+//
+// Adjust the type and inputs of an AddP which computes the
+// address of a field of an instance
+//
+void ConnectionGraph::split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn) {
+  const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
+  const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
+  assert(t != NULL,  "expecting oopptr");
+  assert(base_t != NULL && base_t->is_instance(), "expecting instance oopptr");
+  uint inst_id =  base_t->instance_id();
+  assert(!t->is_instance() || t->instance_id() == inst_id,
+                             "old type must be non-instance or match new type");
+  const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
+  // ensure an alias index is allocated for the instance type
+  int alias_idx = _compile->get_alias_index(tinst);
+  igvn->set_type(addp, tinst);
+  // record the allocation in the node map
+  set_map(addp->_idx, get_map(base->_idx));
+  // if the Address input is not the appropriate instance type (due to intervening
+  // casts,) insert a cast
+  Node *adr = addp->in(AddPNode::Address);
+  const TypeOopPtr  *atype = igvn->type(adr)->isa_oopptr();
+  if (atype->instance_id() != inst_id) {
+    assert(!atype->is_instance(), "no conflicting instances");
+    const TypeOopPtr *new_atype = base_t->add_offset(atype->offset())->isa_oopptr();
+    Node *acast = new (_compile, 2) CastPPNode(adr, new_atype);
+    acast->set_req(0, adr->in(0));
+    igvn->set_type(acast, new_atype);
+    record_for_optimizer(acast);
+    Node *bcast = acast;
+    Node *abase = addp->in(AddPNode::Base);
+    if (abase != adr) {
+      bcast = new (_compile, 2) CastPPNode(abase, base_t);
+      bcast->set_req(0, abase->in(0));
+      igvn->set_type(bcast, base_t);
+      record_for_optimizer(bcast);
+    }
+    igvn->hash_delete(addp);
+    addp->set_req(AddPNode::Base, bcast);
+    addp->set_req(AddPNode::Address, acast);
+    igvn->hash_insert(addp);
+    record_for_optimizer(addp);
+  }
+}
+
+//
+// Create a new version of orig_phi if necessary. Returns either the newly
+// created phi or an existing phi.  Sets create_new to indicate wheter  a new
+// phi was created.  Cache the last newly created phi in the node map.
+//
+PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created) {
+  Compile *C = _compile;
+  new_created = false;
+  int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
+  // nothing to do if orig_phi is bottom memory or matches alias_idx
+  if (phi_alias_idx == Compile::AliasIdxBot || phi_alias_idx == alias_idx) {
+    return orig_phi;
+  }
+  // have we already created a Phi for this alias index?
+  PhiNode *result = get_map_phi(orig_phi->_idx);
+  const TypePtr *atype = C->get_adr_type(alias_idx);
+  if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
+    return result;
+  }
+
+  orig_phi_worklist.append_if_missing(orig_phi);
+  result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
+  set_map_phi(orig_phi->_idx, result);
+  igvn->set_type(result, result->bottom_type());
+  record_for_optimizer(result);
+  new_created = true;
+  return result;
+}
+
+//
+// Return a new version  of Memory Phi "orig_phi" with the inputs having the
+// specified alias index.
+//
+PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn) {
+
+  assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
+  Compile *C = _compile;
+  bool new_phi_created;
+  PhiNode *result =  create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
+  if (!new_phi_created) {
+    return result;
+  }
+
+  GrowableArray<PhiNode *>  phi_list;
+  GrowableArray<uint>  cur_input;
+
+  PhiNode *phi = orig_phi;
+  uint idx = 1;
+  bool finished = false;
+  while(!finished) {
+    while (idx < phi->req()) {
+      Node *mem = find_mem(phi->in(idx), alias_idx, igvn);
+      if (mem != NULL && mem->is_Phi()) {
+        PhiNode *nphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
+        if (new_phi_created) {
+          // found an phi for which we created a new split, push current one on worklist and begin
+          // processing new one
+          phi_list.push(phi);
+          cur_input.push(idx);
+          phi = mem->as_Phi();
+          result = nphi;
+          idx = 1;
+          continue;
+        } else {
+          mem = nphi;
+        }
+      }
+      result->set_req(idx++, mem);
+    }
+#ifdef ASSERT
+    // verify that the new Phi has an input for each input of the original
+    assert( phi->req() == result->req(), "must have same number of inputs.");
+    assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
+    for (uint i = 1; i < phi->req(); i++) {
+      assert((phi->in(i) == NULL) == (result->in(i) == NULL), "inputs must correspond.");
+    }
+#endif
+    // we have finished processing a Phi, see if there are any more to do
+    finished = (phi_list.length() == 0 );
+    if (!finished) {
+      phi = phi_list.pop();
+      idx = cur_input.pop();
+      PhiNode *prev_phi = get_map_phi(phi->_idx);
+      prev_phi->set_req(idx++, result);
+      result = prev_phi;
+    }
+  }
+  return result;
+}
+
+//
+//  Convert the types of unescaped object to instance types where possible,
+//  propagate the new type information through the graph, and update memory
+//  edges and MergeMem inputs to reflect the new type.
+//
+//  We start with allocations (and calls which may be allocations)  on alloc_worklist.
+//  The processing is done in 4 phases:
+//
+//  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
+//            types for the CheckCastPP for allocations where possible.
+//            Propagate the the new types through users as follows:
+//               casts and Phi:  push users on alloc_worklist
+//               AddP:  cast Base and Address inputs to the instance type
+//                      push any AddP users on alloc_worklist and push any memnode
+//                      users onto memnode_worklist.
+//  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
+//            search the Memory chain for a store with the appropriate type
+//            address type.  If a Phi is found, create a new version with
+//            the approriate memory slices from each of the Phi inputs.
+//            For stores, process the users as follows:
+//               MemNode:  push on memnode_worklist
+//               MergeMem: push on mergemem_worklist
+//  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
+//            moving the first node encountered of each  instance type to the
+//            the input corresponding to its alias index.
+//            appropriate memory slice.
+//  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
+//
+// In the following example, the CheckCastPP nodes are the cast of allocation
+// results and the allocation of node 29 is unescaped and eligible to be an
+// instance type.
+//
+// We start with:
+//
+//     7 Parm #memory
+//    10  ConI  "12"
+//    19  CheckCastPP   "Foo"
+//    20  AddP  _ 19 19 10  Foo+12  alias_index=4
+//    29  CheckCastPP   "Foo"
+//    30  AddP  _ 29 29 10  Foo+12  alias_index=4
+//
+//    40  StoreP  25   7  20   ... alias_index=4
+//    50  StoreP  35  40  30   ... alias_index=4
+//    60  StoreP  45  50  20   ... alias_index=4
+//    70  LoadP    _  60  30   ... alias_index=4
+//    80  Phi     75  50  60   Memory alias_index=4
+//    90  LoadP    _  80  30   ... alias_index=4
+//   100  LoadP    _  80  20   ... alias_index=4
+//
+//
+// Phase 1 creates an instance type for node 29 assigning it an instance id of 24
+// and creating a new alias index for node 30.  This gives:
+//
+//     7 Parm #memory
+//    10  ConI  "12"
+//    19  CheckCastPP   "Foo"
+//    20  AddP  _ 19 19 10  Foo+12  alias_index=4
+//    29  CheckCastPP   "Foo"  iid=24
+//    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
+//
+//    40  StoreP  25   7  20   ... alias_index=4
+//    50  StoreP  35  40  30   ... alias_index=6
+//    60  StoreP  45  50  20   ... alias_index=4
+//    70  LoadP    _  60  30   ... alias_index=6
+//    80  Phi     75  50  60   Memory alias_index=4
+//    90  LoadP    _  80  30   ... alias_index=6
+//   100  LoadP    _  80  20   ... alias_index=4
+//
+// In phase 2, new memory inputs are computed for the loads and stores,
+// And a new version of the phi is created.  In phase 4, the inputs to
+// node 80 are updated and then the memory nodes are updated with the
+// values computed in phase 2.  This results in:
+//
+//     7 Parm #memory
+//    10  ConI  "12"
+//    19  CheckCastPP   "Foo"
+//    20  AddP  _ 19 19 10  Foo+12  alias_index=4
+//    29  CheckCastPP   "Foo"  iid=24
+//    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
+//
+//    40  StoreP  25  7   20   ... alias_index=4
+//    50  StoreP  35  7   30   ... alias_index=6
+//    60  StoreP  45  40  20   ... alias_index=4
+//    70  LoadP    _  50  30   ... alias_index=6
+//    80  Phi     75  40  60   Memory alias_index=4
+//   120  Phi     75  50  50   Memory alias_index=6
+//    90  LoadP    _ 120  30   ... alias_index=6
+//   100  LoadP    _  80  20   ... alias_index=4
+//
+void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
+  GrowableArray<Node *>  memnode_worklist;
+  GrowableArray<Node *>  mergemem_worklist;
+  GrowableArray<PhiNode *>  orig_phis;
+  PhaseGVN  *igvn = _compile->initial_gvn();
+  uint new_index_start = (uint) _compile->num_alias_types();
+  VectorSet visited(Thread::current()->resource_area());
+  VectorSet ptset(Thread::current()->resource_area());
+
+  //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
+  //            types for the CheckCastPP for allocations where possible.
+  while (alloc_worklist.length() != 0) {
+    Node *n = alloc_worklist.pop();
+    uint ni = n->_idx;
+    if (n->is_Call()) {
+      CallNode *alloc = n->as_Call();
+      // copy escape information to call node
+      PointsToNode ptn = _nodes->at(alloc->_idx);
+      PointsToNode::EscapeState es = escape_state(alloc, igvn);
+      alloc->_escape_state = es;
+      // find CheckCastPP of call return value
+      n = alloc->proj_out(TypeFunc::Parms);
+      if (n != NULL && n->outcnt() == 1) {
+        n = n->unique_out();
+        if (n->Opcode() != Op_CheckCastPP) {
+          continue;
+        }
+      } else {
+        continue;
+      }
+      // we have an allocation or call which returns a Java object, see if it is unescaped
+      if (es != PointsToNode::NoEscape || !ptn._unique_type) {
+        continue; //  can't make a unique type
+      }
+      set_map(alloc->_idx, n);
+      set_map(n->_idx, alloc);
+      const TypeInstPtr *t = igvn->type(n)->isa_instptr();
+      // Unique types which are arrays are not currently supported.
+      // The check for AllocateArray is needed in case an array
+      // allocation is immediately cast to Object
+      if (t == NULL || alloc->is_AllocateArray())
+        continue;  // not a TypeInstPtr
+      const TypeOopPtr *tinst = t->cast_to_instance(ni);
+      igvn->hash_delete(n);
+      igvn->set_type(n,  tinst);
+      n->raise_bottom_type(tinst);
+      igvn->hash_insert(n);
+    } else if (n->is_AddP()) {
+      ptset.Clear();
+      PointsTo(ptset, n->in(AddPNode::Address), igvn);
+      assert(ptset.Size() == 1, "AddP address is unique");
+      Node *base = get_map(ptset.getelem());
+      split_AddP(n, base, igvn);
+    } else if (n->is_Phi() || n->Opcode() == Op_CastPP || n->Opcode() == Op_CheckCastPP) {
+      if (visited.test_set(n->_idx)) {
+        assert(n->is_Phi(), "loops only through Phi's");
+        continue;  // already processed
+      }
+      ptset.Clear();
+      PointsTo(ptset, n, igvn);
+      if (ptset.Size() == 1) {
+        TypeNode *tn = n->as_Type();
+        Node *val = get_map(ptset.getelem());
+        const TypeInstPtr *val_t = igvn->type(val)->isa_instptr();;
+        assert(val_t != NULL && val_t->is_instance(), "instance type expected.");
+        const TypeInstPtr *tn_t = igvn->type(tn)->isa_instptr();;
+
+        if (tn_t != NULL && val_t->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE)->higher_equal(tn_t)) {
+          igvn->hash_delete(tn);
+          igvn->set_type(tn, val_t);
+          tn->set_type(val_t);
+          igvn->hash_insert(tn);
+        }
+      }
+    } else {
+      continue;
+    }
+    // push users on appropriate worklist
+    for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
+      Node *use = n->fast_out(i);
+      if(use->is_Mem() && use->in(MemNode::Address) == n) {
+        memnode_worklist.push(use);
+      } else if (use->is_AddP() || use->is_Phi() || use->Opcode() == Op_CastPP || use->Opcode() == Op_CheckCastPP) {
+        alloc_worklist.push(use);
+      }
+    }
+
+  }
+  uint new_index_end = (uint) _compile->num_alias_types();
+
+  //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
+  //            compute new values for Memory inputs  (the Memory inputs are not
+  //            actually updated until phase 4.)
+  if (memnode_worklist.length() == 0)
+    return;  // nothing to do
+
+
+  while (memnode_worklist.length() != 0) {
+    Node *n = memnode_worklist.pop();
+    if (n->is_Phi()) {
+      assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required");
+      // we don't need to do anything, but the users must be pushed if we haven't processed
+      // this Phi before
+      if (visited.test_set(n->_idx))
+        continue;
+    } else {
+      assert(n->is_Mem(), "memory node required.");
+      Node *addr = n->in(MemNode::Address);
+      const Type *addr_t = igvn->type(addr);
+      if (addr_t == Type::TOP)
+        continue;
+      assert (addr_t->isa_ptr() != NULL, "pointer type required.");
+      int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
+      Node *mem = find_mem(n->in(MemNode::Memory), alias_idx, igvn);
+      if (mem->is_Phi()) {
+        mem = split_memory_phi(mem->as_Phi(), alias_idx, orig_phis, igvn);
+      }
+      if (mem != n->in(MemNode::Memory))
+        set_map(n->_idx, mem);
+      if (n->is_Load()) {
+        continue;  // don't push users
+      } else if (n->is_LoadStore()) {
+        // get the memory projection
+        for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
+          Node *use = n->fast_out(i);
+          if (use->Opcode() == Op_SCMemProj) {
+            n = use;
+            break;
+          }
+        }
+        assert(n->Opcode() == Op_SCMemProj, "memory projection required");
+      }
+    }
+    // push user on appropriate worklist
+    for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
+      Node *use = n->fast_out(i);
+      if (use->is_Phi()) {
+        memnode_worklist.push(use);
+      } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
+        memnode_worklist.push(use);
+      } else if (use->is_MergeMem()) {
+        mergemem_worklist.push(use);
+      }
+    }
+  }
+
+  //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
+  //            moving the first node encountered of each  instance type to the
+  //            the input corresponding to its alias index.
+  while (mergemem_worklist.length() != 0) {
+    Node *n = mergemem_worklist.pop();
+    assert(n->is_MergeMem(), "MergeMem node required.");
+    MergeMemNode *nmm = n->as_MergeMem();
+    // Note: we don't want to use MergeMemStream here because we only want to
+    //       scan inputs which exist at the start, not ones we add during processing
+    uint nslices = nmm->req();
+    igvn->hash_delete(nmm);
+    for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
+      Node * mem = nmm->in(i);
+      Node * cur = NULL;
+      if (mem == NULL || mem->is_top())
+        continue;
+      while (mem->is_Mem()) {
+        const Type *at = igvn->type(mem->in(MemNode::Address));
+        if (at != Type::TOP) {
+          assert (at->isa_ptr() != NULL, "pointer type required.");
+          uint idx = (uint)_compile->get_alias_index(at->is_ptr());
+          if (idx == i) {
+            if (cur == NULL)
+              cur = mem;
+          } else {
+            if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
+              nmm->set_memory_at(idx, mem);
+            }
+          }
+        }
+        mem = mem->in(MemNode::Memory);
+      }
+      nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
+      if (mem->is_Phi()) {
+        // We have encountered a Phi, we need to split the Phi for
+        // any  instance of the current type if we haven't encountered
+        //  a value of the instance along the chain.
+        for (uint ni = new_index_start; ni < new_index_end; ni++) {
+          if((uint)_compile->get_general_index(ni) == i) {
+            Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
+            if (nmm->is_empty_memory(m)) {
+              nmm->set_memory_at(ni, split_memory_phi(mem->as_Phi(), ni, orig_phis, igvn));
+            }
+          }
+        }
+      }
+    }
+    igvn->hash_insert(nmm);
+    record_for_optimizer(nmm);
+  }
+
+  //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes
+  //
+  // First update the inputs of any non-instance Phi's from
+  // which we split out an instance Phi.  Note we don't have
+  // to recursively process Phi's encounted on the input memory
+  // chains as is done in split_memory_phi() since they  will
+  // also be processed here.
+  while (orig_phis.length() != 0) {
+    PhiNode *phi = orig_phis.pop();
+    int alias_idx = _compile->get_alias_index(phi->adr_type());
+    igvn->hash_delete(phi);
+    for (uint i = 1; i < phi->req(); i++) {
+      Node *mem = phi->in(i);
+      Node *new_mem = find_mem(mem, alias_idx, igvn);
+      if (mem != new_mem) {
+        phi->set_req(i, new_mem);
+      }
+    }
+    igvn->hash_insert(phi);
+    record_for_optimizer(phi);
+  }
+
+  // Update the memory inputs of MemNodes with the value we computed
+  // in Phase 2.
+  for (int i = 0; i < _nodes->length(); i++) {
+    Node *nmem = get_map(i);
+    if (nmem != NULL) {
+      Node *n = _nodes->at(i)._node;
+      if (n != NULL && n->is_Mem()) {
+        igvn->hash_delete(n);
+        n->set_req(MemNode::Memory, nmem);
+        igvn->hash_insert(n);
+        record_for_optimizer(n);
+      }
+    }
+  }
+}
+
+void ConnectionGraph::compute_escape() {
+  GrowableArray<int>  worklist;
+  GrowableArray<Node *>  alloc_worklist;
+  VectorSet visited(Thread::current()->resource_area());
+  PhaseGVN  *igvn = _compile->initial_gvn();
+
+  // process Phi nodes from the deferred list, they may not have
+  while(_deferred.size() > 0) {
+    Node * n = _deferred.pop();
+    PhiNode * phi = n->as_Phi();
+
+    process_phi_escape(phi, igvn);
+  }
+
+  VectorSet ptset(Thread::current()->resource_area());
+
+  // remove deferred edges from the graph and collect
+  // information we will need for type splitting
+  for (uint ni = 0; ni < (uint)_nodes->length(); ni++) {
+    PointsToNode * ptn = _nodes->adr_at(ni);
+    PointsToNode::NodeType nt = ptn->node_type();
+
+    if (nt == PointsToNode::UnknownType) {
+      continue;  // not a node we are interested in
+    }
+    Node *n = ptn->_node;
+    if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
+      remove_deferred(ni);
+      if (n->is_AddP()) {
+        // if this AddP computes an address which may point to more that one
+        // object, nothing the address points to can be a unique type.
+        Node *base = n->in(AddPNode::Base);
+        ptset.Clear();
+        PointsTo(ptset, base, igvn);
+        if (ptset.Size() > 1) {
+          for( VectorSetI j(&ptset); j.test(); ++j ) {
+            PointsToNode *ptaddr = _nodes->adr_at(j.elem);
+            ptaddr->_unique_type = false;
+          }
+        }
+      }
+    } else if (n->is_Call()) {
+        // initialize _escape_state of calls to GlobalEscape
+        n->as_Call()->_escape_state = PointsToNode::GlobalEscape;
+        // push call on alloc_worlist (alocations are calls)
+        // for processing by split_unique_types()
+        alloc_worklist.push(n);
+    }
+  }
+  // push all GlobalEscape nodes on the worklist
+  for (uint nj = 0; nj < (uint)_nodes->length(); nj++) {
+    if (_nodes->at(nj).escape_state() == PointsToNode::GlobalEscape) {
+      worklist.append(nj);
+    }
+  }
+  // mark all node reachable from GlobalEscape nodes
+  while(worklist.length() > 0) {
+    PointsToNode n = _nodes->at(worklist.pop());
+    for (uint ei = 0; ei < n.edge_count(); ei++) {
+      uint npi = n.edge_target(ei);
+      PointsToNode *np = ptnode_adr(npi);
+      if (np->escape_state() != PointsToNode::GlobalEscape) {
+        np->set_escape_state(PointsToNode::GlobalEscape);
+        worklist.append_if_missing(npi);
+      }
+    }
+  }
+
+  // push all ArgEscape nodes on the worklist
+  for (uint nk = 0; nk < (uint)_nodes->length(); nk++) {
+    if (_nodes->at(nk).escape_state() == PointsToNode::ArgEscape)
+      worklist.push(nk);
+  }
+  // mark all node reachable from ArgEscape nodes
+  while(worklist.length() > 0) {
+    PointsToNode n = _nodes->at(worklist.pop());
+
+    for (uint ei = 0; ei < n.edge_count(); ei++) {
+      uint npi = n.edge_target(ei);
+      PointsToNode *np = ptnode_adr(npi);
+      if (np->escape_state() != PointsToNode::ArgEscape) {
+        np->set_escape_state(PointsToNode::ArgEscape);
+        worklist.append_if_missing(npi);
+      }
+    }
+  }
+  _collecting = false;
+
+  // Now use the escape information to create unique types for
+  // unescaped objects
+  split_unique_types(alloc_worklist);
+}
+
+Node * ConnectionGraph::skip_casts(Node *n) {
+  while(n->Opcode() == Op_CastPP || n->Opcode() == Op_CheckCastPP) {
+    n = n->in(1);
+  }
+  return n;
+}
+
+void ConnectionGraph::process_phi_escape(PhiNode *phi, PhaseTransform *phase) {
+
+  if (phi->type()->isa_oopptr() == NULL)
+    return;  // nothing to do if not an oop
+
+  PointsToNode *ptadr = ptnode_adr(phi->_idx);
+  int incount = phi->req();
+  int non_null_inputs = 0;
+
+  for (int i = 1; i < incount ; i++) {
+    if (phi->in(i) != NULL)
+      non_null_inputs++;
+  }
+  if (non_null_inputs == ptadr->_inputs_processed)
+    return;  // no new inputs since the last time this node was processed,
+             // the current information is valid
+
+  ptadr->_inputs_processed = non_null_inputs;  // prevent recursive processing of this node
+  for (int j = 1; j < incount ; j++) {
+    Node * n = phi->in(j);
+    if (n == NULL)
+      continue;  // ignore NULL
+    n =  skip_casts(n);
+    if (n->is_top() || n == phi)
+      continue;  // ignore top or inputs which go back this node
+    int nopc = n->Opcode();
+    PointsToNode  npt = _nodes->at(n->_idx);
+    if (_nodes->at(n->_idx).node_type() == PointsToNode::JavaObject) {
+      add_pointsto_edge(phi->_idx, n->_idx);
+    } else {
+      add_deferred_edge(phi->_idx, n->_idx);
+    }
+  }
+}
+
+void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
+
+    _processed.set(call->_idx);
+    switch (call->Opcode()) {
+
+    // arguments to allocation and locking don't escape
+    case Op_Allocate:
+    case Op_AllocateArray:
+    case Op_Lock:
+    case Op_Unlock:
+      break;
+
+    case Op_CallStaticJava:
+    // For a static call, we know exactly what method is being called.
+    // Use bytecode estimator to record the call's escape affects
+    {
+      ciMethod *meth = call->as_CallJava()->method();
+      if (meth != NULL) {
+        const TypeTuple * d = call->tf()->domain();
+        BCEscapeAnalyzer call_analyzer(meth);
+        VectorSet ptset(Thread::current()->resource_area());
+        for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
+          const Type* at = d->field_at(i);
+          int k = i - TypeFunc::Parms;
+
+          if (at->isa_oopptr() != NULL) {
+            Node *arg = skip_casts(call->in(i));
+
+            if (!call_analyzer.is_arg_stack(k)) {
+              // The argument global escapes, mark everything it could point to
+              ptset.Clear();
+              PointsTo(ptset, arg, phase);
+              for( VectorSetI j(&ptset); j.test(); ++j ) {
+                uint pt = j.elem;
+
+                set_escape_state(pt, PointsToNode::GlobalEscape);
+              }
+            } else if (!call_analyzer.is_arg_local(k)) {
+              // The argument itself doesn't escape, but any fields might
+              ptset.Clear();
+              PointsTo(ptset, arg, phase);
+              for( VectorSetI j(&ptset); j.test(); ++j ) {
+                uint pt = j.elem;
+                add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
+              }
+            }
+          }
+        }
+        call_analyzer.copy_dependencies(C()->dependencies());
+        break;
+      }
+      // fall-through if not a Java method
+    }
+
+    default:
+    // Some other type of call, assume the worst case: all arguments
+    // globally escape.
+    {
+      // adjust escape state for  outgoing arguments
+      const TypeTuple * d = call->tf()->domain();
+      VectorSet ptset(Thread::current()->resource_area());
+      for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
+        const Type* at = d->field_at(i);
+
+        if (at->isa_oopptr() != NULL) {
+          Node *arg = skip_casts(call->in(i));
+          ptset.Clear();
+          PointsTo(ptset, arg, phase);
+          for( VectorSetI j(&ptset); j.test(); ++j ) {
+            uint pt = j.elem;
+
+            set_escape_state(pt, PointsToNode::GlobalEscape);
+          }
+        }
+      }
+    }
+  }
+}
+void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
+  CallNode *call = resproj->in(0)->as_Call();
+
+  PointsToNode *ptadr = ptnode_adr(resproj->_idx);
+
+  ptadr->_node = resproj;
+  ptadr->set_node_type(PointsToNode::LocalVar);
+  set_escape_state(resproj->_idx, PointsToNode::UnknownEscape);
+  _processed.set(resproj->_idx);
+
+  switch (call->Opcode()) {
+    case Op_Allocate:
+    {
+      Node *k = call->in(AllocateNode::KlassNode);
+      const TypeKlassPtr *kt;
+      if (k->Opcode() == Op_LoadKlass) {
+        kt = k->as_Load()->type()->isa_klassptr();
+      } else {
+        kt = k->as_Type()->type()->isa_klassptr();
+      }
+      assert(kt != NULL, "TypeKlassPtr  required.");
+      ciKlass* cik = kt->klass();
+      ciInstanceKlass* ciik = cik->as_instance_klass();
+
+      PointsToNode *ptadr = ptnode_adr(call->_idx);
+      ptadr->set_node_type(PointsToNode::JavaObject);
+      if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
+        set_escape_state(call->_idx, PointsToNode::GlobalEscape);
+        add_pointsto_edge(resproj->_idx, _phantom_object);
+      } else {
+        set_escape_state(call->_idx, PointsToNode::NoEscape);
+        add_pointsto_edge(resproj->_idx, call->_idx);
+      }
+      _processed.set(call->_idx);
+      break;
+    }
+
+    case Op_AllocateArray:
+    {
+      PointsToNode *ptadr = ptnode_adr(call->_idx);
+      ptadr->set_node_type(PointsToNode::JavaObject);
+      set_escape_state(call->_idx, PointsToNode::NoEscape);
+      _processed.set(call->_idx);
+      add_pointsto_edge(resproj->_idx, call->_idx);
+      break;
+    }
+
+    case Op_Lock:
+    case Op_Unlock:
+      break;
+
+    case Op_CallStaticJava:
+    // For a static call, we know exactly what method is being called.
+    // Use bytecode estimator to record whether the call's return value escapes
+    {
+      const TypeTuple *r = call->tf()->range();
+      const Type* ret_type = NULL;
+
+      if (r->cnt() > TypeFunc::Parms)
+        ret_type = r->field_at(TypeFunc::Parms);
+
+      // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
+      //        _multianewarray functions return a TypeRawPtr.
+      if (ret_type == NULL || ret_type->isa_ptr() == NULL)
+        break;  // doesn't return a pointer type
+
+      ciMethod *meth = call->as_CallJava()->method();
+      if (meth == NULL) {
+        // not a Java method, assume global escape
+        set_escape_state(call->_idx, PointsToNode::GlobalEscape);
+        if (resproj != NULL)
+          add_pointsto_edge(resproj->_idx, _phantom_object);
+      } else {
+        BCEscapeAnalyzer call_analyzer(meth);
+        VectorSet ptset(Thread::current()->resource_area());
+
+        if (call_analyzer.is_return_local() && resproj != NULL) {
+          // determine whether any arguments are returned
+          const TypeTuple * d = call->tf()->domain();
+          set_escape_state(call->_idx, PointsToNode::NoEscape);
+          for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
+            const Type* at = d->field_at(i);
+
+            if (at->isa_oopptr() != NULL) {
+              Node *arg = skip_casts(call->in(i));
+
+              if (call_analyzer.is_arg_returned(i - TypeFunc::Parms)) {
+                PointsToNode *arg_esp = _nodes->adr_at(arg->_idx);
+                if (arg_esp->node_type() == PointsToNode::JavaObject)
+                  add_pointsto_edge(resproj->_idx, arg->_idx);
+                else
+                  add_deferred_edge(resproj->_idx, arg->_idx);
+                arg_esp->_hidden_alias = true;
+              }
+            }
+          }
+        } else {
+          set_escape_state(call->_idx, PointsToNode::GlobalEscape);
+          if (resproj != NULL)
+            add_pointsto_edge(resproj->_idx, _phantom_object);
+        }
+        call_analyzer.copy_dependencies(C()->dependencies());
+      }
+      break;
+    }
+
+    default:
+    // Some other type of call, assume the worst case that the
+    // returned value, if any, globally escapes.
+    {
+      const TypeTuple *r = call->tf()->range();
+
+      if (r->cnt() > TypeFunc::Parms) {
+        const Type* ret_type = r->field_at(TypeFunc::Parms);
+
+        // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
+        //        _multianewarray functions return a TypeRawPtr.
+        if (ret_type->isa_ptr() != NULL) {
+          PointsToNode *ptadr = ptnode_adr(call->_idx);
+          ptadr->set_node_type(PointsToNode::JavaObject);
+          set_escape_state(call->_idx, PointsToNode::GlobalEscape);
+          if (resproj != NULL)
+            add_pointsto_edge(resproj->_idx, _phantom_object);
+        }
+      }
+    }
+  }
+}
+
+void ConnectionGraph::record_for_escape_analysis(Node *n) {
+  if (_collecting) {
+    if (n->is_Phi()) {
+      PhiNode *phi = n->as_Phi();
+      const Type *pt = phi->type();
+      if ((pt->isa_oopptr() != NULL) || pt == TypePtr::NULL_PTR) {
+        PointsToNode *ptn = ptnode_adr(phi->_idx);
+        ptn->set_node_type(PointsToNode::LocalVar);
+        ptn->_node = n;
+        _deferred.push(n);
+      }
+    }
+  }
+}
+
+void ConnectionGraph::record_escape_work(Node *n, PhaseTransform *phase) {
+
+  int opc = n->Opcode();
+  PointsToNode *ptadr = ptnode_adr(n->_idx);
+
+  if (_processed.test(n->_idx))
+    return;
+
+  ptadr->_node = n;
+  if (n->is_Call()) {
+    CallNode *call = n->as_Call();
+    process_call_arguments(call, phase);
+    return;
+  }
+
+  switch (opc) {
+    case Op_AddP:
+    {
+      Node *base = skip_casts(n->in(AddPNode::Base));
+      ptadr->set_node_type(PointsToNode::Field);
+
+      // create a field edge to this node from everything adr could point to
+      VectorSet ptset(Thread::current()->resource_area());
+      PointsTo(ptset, base, phase);
+      for( VectorSetI i(&ptset); i.test(); ++i ) {
+        uint pt = i.elem;
+        add_field_edge(pt, n->_idx, type_to_offset(phase->type(n)));
+      }
+      break;
+    }
+    case Op_Parm:
+    {
+      ProjNode *nproj = n->as_Proj();
+      uint con = nproj->_con;
+      if (con < TypeFunc::Parms)
+        return;
+      const Type *t = nproj->in(0)->as_Start()->_domain->field_at(con);
+      if (t->isa_ptr() == NULL)
+        return;
+      ptadr->set_node_type(PointsToNode::JavaObject);
+      if (t->isa_oopptr() != NULL) {
+        set_escape_state(n->_idx, PointsToNode::ArgEscape);
+      } else {
+        // this must be the incoming state of an OSR compile, we have to assume anything
+        // passed in globally escapes
+        assert(_compile->is_osr_compilation(), "bad argument type for non-osr compilation");
+        set_escape_state(n->_idx, PointsToNode::GlobalEscape);
+      }
+      _processed.set(n->_idx);
+      break;
+    }
+    case Op_Phi:
+    {
+      PhiNode *phi = n->as_Phi();
+      if (phi->type()->isa_oopptr() == NULL)
+        return;  // nothing to do if not an oop
+      ptadr->set_node_type(PointsToNode::LocalVar);
+      process_phi_escape(phi, phase);
+      break;
+    }
+    case Op_CreateEx:
+    {
+      // assume that all exception objects globally escape
+      ptadr->set_node_type(PointsToNode::JavaObject);
+      set_escape_state(n->_idx, PointsToNode::GlobalEscape);
+      _processed.set(n->_idx);
+      break;
+    }
+    case Op_ConP:
+    {
+      const Type *t = phase->type(n);
+      ptadr->set_node_type(PointsToNode::JavaObject);
+      // assume all pointer constants globally escape except for null
+      if (t == TypePtr::NULL_PTR)
+        set_escape_state(n->_idx, PointsToNode::NoEscape);
+      else
+        set_escape_state(n->_idx, PointsToNode::GlobalEscape);
+      _processed.set(n->_idx);
+      break;
+    }
+    case Op_LoadKlass:
+    {
+      ptadr->set_node_type(PointsToNode::JavaObject);
+      set_escape_state(n->_idx, PointsToNode::GlobalEscape);
+      _processed.set(n->_idx);
+      break;
+    }
+    case Op_LoadP:
+    {
+      const Type *t = phase->type(n);
+      if (!t->isa_oopptr())
+        return;
+      ptadr->set_node_type(PointsToNode::LocalVar);
+      set_escape_state(n->_idx, PointsToNode::UnknownEscape);
+
+      Node *adr = skip_casts(n->in(MemNode::Address));
+      const Type *adr_type = phase->type(adr);
+      Node *adr_base = skip_casts((adr->Opcode() == Op_AddP) ? adr->in(AddPNode::Base) : adr);
+
+      // For everything "adr" could point to, create a deferred edge from
+      // this node to each field with the same offset as "adr_type"
+      VectorSet ptset(Thread::current()->resource_area());
+      PointsTo(ptset, adr_base, phase);
+      // If ptset is empty, then this value must have been set outside
+      // this method, so we add the phantom node
+      if (ptset.Size() == 0)
+        ptset.set(_phantom_object);
+      for( VectorSetI i(&ptset); i.test(); ++i ) {
+        uint pt = i.elem;
+        add_deferred_edge_to_fields(n->_idx, pt, type_to_offset(adr_type));
+      }
+      break;
+    }
+    case Op_StoreP:
+    case Op_StorePConditional:
+    case Op_CompareAndSwapP:
+    {
+      Node *adr = n->in(MemNode::Address);
+      Node *val = skip_casts(n->in(MemNode::ValueIn));
+      const Type *adr_type = phase->type(adr);
+      if (!adr_type->isa_oopptr())
+        return;
+
+      assert(adr->Opcode() == Op_AddP, "expecting an AddP");
+      Node *adr_base = adr->in(AddPNode::Base);
+
+      // For everything "adr_base" could point to, create a deferred edge to "val" from each field
+      // with the same offset as "adr_type"
+      VectorSet ptset(Thread::current()->resource_area());
+      PointsTo(ptset, adr_base, phase);
+      for( VectorSetI i(&ptset); i.test(); ++i ) {
+        uint pt = i.elem;
+        add_edge_from_fields(pt, val->_idx, type_to_offset(adr_type));
+      }
+      break;
+    }
+    case Op_Proj:
+    {
+      ProjNode *nproj = n->as_Proj();
+      Node *n0 = nproj->in(0);
+      // we are only interested in the result projection from a call
+      if (nproj->_con == TypeFunc::Parms && n0->is_Call() ) {
+        process_call_result(nproj, phase);
+      }
+
+      break;
+    }
+    case Op_CastPP:
+    case Op_CheckCastPP:
+    {
+      ptadr->set_node_type(PointsToNode::LocalVar);
+      int ti = n->in(1)->_idx;
+      if (_nodes->at(ti).node_type() == PointsToNode::JavaObject) {
+        add_pointsto_edge(n->_idx, ti);
+      } else {
+        add_deferred_edge(n->_idx, ti);
+      }
+      break;
+    }
+    default:
+      ;
+      // nothing to do
+  }
+}
+
+void ConnectionGraph::record_escape(Node *n, PhaseTransform *phase) {
+  if (_collecting)
+    record_escape_work(n, phase);
+}
+
+#ifndef PRODUCT
+void ConnectionGraph::dump() {
+  PhaseGVN  *igvn = _compile->initial_gvn();
+  bool first = true;
+
+  for (uint ni = 0; ni < (uint)_nodes->length(); ni++) {
+    PointsToNode *esp = _nodes->adr_at(ni);
+    if (esp->node_type() == PointsToNode::UnknownType || esp->_node == NULL)
+      continue;
+    PointsToNode::EscapeState es = escape_state(esp->_node, igvn);
+    if (es == PointsToNode::NoEscape || (Verbose &&
+            (es != PointsToNode::UnknownEscape || esp->edge_count() != 0))) {
+      // don't print null pointer node which almost every method has
+      if (esp->_node->Opcode() != Op_ConP || igvn->type(esp->_node) != TypePtr::NULL_PTR) {
+        if (first) {
+          tty->print("======== Connection graph for ");
+          C()->method()->print_short_name();
+          tty->cr();
+          first = false;
+        }
+        tty->print("%4d  ", ni);
+        esp->dump();
+      }
+    }
+  }
+}
+#endif