hotspot/src/share/vm/oops/klass.cpp
changeset 1 489c9b5090e2
child 202 dc13bf0e5d5d
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/oops/klass.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,562 @@
+/*
+ * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+# include "incls/_precompiled.incl"
+# include "incls/_klass.cpp.incl"
+
+
+bool Klass::is_subclass_of(klassOop k) const {
+  // Run up the super chain and check
+  klassOop t = as_klassOop();
+
+  if (t == k) return true;
+  t = Klass::cast(t)->super();
+
+  while (t != NULL) {
+    if (t == k) return true;
+    t = Klass::cast(t)->super();
+  }
+  return false;
+}
+
+bool Klass::search_secondary_supers(klassOop k) const {
+  // Put some extra logic here out-of-line, before the search proper.
+  // This cuts down the size of the inline method.
+
+  // This is necessary, since I am never in my own secondary_super list.
+  if (this->as_klassOop() == k)
+    return true;
+  // Scan the array-of-objects for a match
+  int cnt = secondary_supers()->length();
+  for (int i = 0; i < cnt; i++) {
+    if (secondary_supers()->obj_at(i) == k) {
+      ((Klass*)this)->set_secondary_super_cache(k);
+      return true;
+    }
+  }
+  return false;
+}
+
+// Return self, except for abstract classes with exactly 1
+// implementor.  Then return the 1 concrete implementation.
+Klass *Klass::up_cast_abstract() {
+  Klass *r = this;
+  while( r->is_abstract() ) {   // Receiver is abstract?
+    Klass *s = r->subklass();   // Check for exactly 1 subklass
+    if( !s || s->next_sibling() ) // Oops; wrong count; give up
+      return this;              // Return 'this' as a no-progress flag
+    r = s;                    // Loop till find concrete class
+  }
+  return r;                   // Return the 1 concrete class
+}
+
+// Find LCA in class heirarchy
+Klass *Klass::LCA( Klass *k2 ) {
+  Klass *k1 = this;
+  while( 1 ) {
+    if( k1->is_subtype_of(k2->as_klassOop()) ) return k2;
+    if( k2->is_subtype_of(k1->as_klassOop()) ) return k1;
+    k1 = k1->super()->klass_part();
+    k2 = k2->super()->klass_part();
+  }
+}
+
+
+void Klass::check_valid_for_instantiation(bool throwError, TRAPS) {
+  ResourceMark rm(THREAD);
+  THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError()
+            : vmSymbols::java_lang_InstantiationException(), external_name());
+}
+
+
+void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
+  THROW(vmSymbols::java_lang_ArrayStoreException());
+}
+
+
+void Klass::initialize(TRAPS) {
+  ShouldNotReachHere();
+}
+
+bool Klass::compute_is_subtype_of(klassOop k) {
+  assert(k->is_klass(), "argument must be a class");
+  return is_subclass_of(k);
+}
+
+
+methodOop Klass::uncached_lookup_method(symbolOop name, symbolOop signature) const {
+#ifdef ASSERT
+  tty->print_cr("Error: uncached_lookup_method called on a klass oop."
+                " Likely error: reflection method does not correctly"
+                " wrap return value in a mirror object.");
+#endif
+  ShouldNotReachHere();
+  return NULL;
+}
+
+klassOop Klass::base_create_klass_oop(KlassHandle& klass, int size,
+                                      const Klass_vtbl& vtbl, TRAPS) {
+  size = align_object_size(size);
+  // allocate and initialize vtable
+  Klass*   kl = (Klass*) vtbl.allocate_permanent(klass, size, CHECK_NULL);
+  klassOop k  = kl->as_klassOop();
+
+  { // Preinitialize supertype information.
+    // A later call to initialize_supers() may update these settings:
+    kl->set_super(NULL);
+    for (juint i = 0; i < Klass::primary_super_limit(); i++) {
+      kl->_primary_supers[i] = NULL;
+    }
+    kl->set_secondary_supers(NULL);
+    oop_store_without_check((oop*) &kl->_primary_supers[0], k);
+    kl->set_super_check_offset(primary_supers_offset_in_bytes() + sizeof(oopDesc));
+  }
+
+  kl->set_java_mirror(NULL);
+  kl->set_modifier_flags(0);
+  kl->set_layout_helper(Klass::_lh_neutral_value);
+  kl->set_name(NULL);
+  AccessFlags af;
+  af.set_flags(0);
+  kl->set_access_flags(af);
+  kl->set_subklass(NULL);
+  kl->set_next_sibling(NULL);
+  kl->set_alloc_count(0);
+  kl->set_alloc_size(0);
+
+  kl->set_prototype_header(markOopDesc::prototype());
+  kl->set_biased_lock_revocation_count(0);
+  kl->set_last_biased_lock_bulk_revocation_time(0);
+
+  return k;
+}
+
+KlassHandle Klass::base_create_klass(KlassHandle& klass, int size,
+                                     const Klass_vtbl& vtbl, TRAPS) {
+  klassOop ek = base_create_klass_oop(klass, size, vtbl, THREAD);
+  return KlassHandle(THREAD, ek);
+}
+
+void Klass_vtbl::post_new_init_klass(KlassHandle& klass,
+                                     klassOop new_klass,
+                                     int size) const {
+  assert(!new_klass->klass_part()->null_vtbl(), "Not a complete klass");
+  CollectedHeap::post_allocation_install_obj_klass(klass, new_klass, size);
+}
+
+void* Klass_vtbl::operator new(size_t ignored, KlassHandle& klass,
+                               int size, TRAPS) {
+  // The vtable pointer is installed during the execution of
+  // constructors in the call to permanent_obj_allocate().  Delay
+  // the installation of the klass pointer into the new klass "k"
+  // until after the vtable pointer has been installed (i.e., until
+  // after the return of permanent_obj_allocate().
+  klassOop k =
+    (klassOop) CollectedHeap::permanent_obj_allocate_no_klass_install(klass,
+      size, CHECK_NULL);
+  return k->klass_part();
+}
+
+jint Klass::array_layout_helper(BasicType etype) {
+  assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype");
+  // Note that T_ARRAY is not allowed here.
+  int  hsize = arrayOopDesc::base_offset_in_bytes(etype);
+  int  esize = type2aelembytes[etype];
+  bool isobj = (etype == T_OBJECT);
+  int  tag   =  isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value;
+  int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize));
+
+  assert(lh < (int)_lh_neutral_value, "must look like an array layout");
+  assert(layout_helper_is_javaArray(lh), "correct kind");
+  assert(layout_helper_is_objArray(lh) == isobj, "correct kind");
+  assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind");
+  assert(layout_helper_header_size(lh) == hsize, "correct decode");
+  assert(layout_helper_element_type(lh) == etype, "correct decode");
+  assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode");
+
+  return lh;
+}
+
+bool Klass::can_be_primary_super_slow() const {
+  if (super() == NULL)
+    return true;
+  else if (super()->klass_part()->super_depth() >= primary_super_limit()-1)
+    return false;
+  else
+    return true;
+}
+
+void Klass::initialize_supers(klassOop k, TRAPS) {
+  if (FastSuperclassLimit == 0) {
+    // None of the other machinery matters.
+    set_super(k);
+    return;
+  }
+  if (k == NULL) {
+    set_super(NULL);
+    oop_store_without_check((oop*) &_primary_supers[0], (oop) this->as_klassOop());
+    assert(super_depth() == 0, "Object must already be initialized properly");
+  } else if (k != super() || k == SystemDictionary::object_klass()) {
+    assert(super() == NULL || super() == SystemDictionary::object_klass(),
+           "initialize this only once to a non-trivial value");
+    set_super(k);
+    Klass* sup = k->klass_part();
+    int sup_depth = sup->super_depth();
+    juint my_depth  = MIN2(sup_depth + 1, (int)primary_super_limit());
+    if (!can_be_primary_super_slow())
+      my_depth = primary_super_limit();
+    for (juint i = 0; i < my_depth; i++) {
+      oop_store_without_check((oop*) &_primary_supers[i], (oop) sup->_primary_supers[i]);
+    }
+    klassOop *super_check_cell;
+    if (my_depth < primary_super_limit()) {
+      oop_store_without_check((oop*) &_primary_supers[my_depth], (oop) this->as_klassOop());
+      super_check_cell = &_primary_supers[my_depth];
+    } else {
+      // Overflow of the primary_supers array forces me to be secondary.
+      super_check_cell = &_secondary_super_cache;
+    }
+    set_super_check_offset((address)super_check_cell - (address) this->as_klassOop());
+
+#ifdef ASSERT
+    {
+      juint j = super_depth();
+      assert(j == my_depth, "computed accessor gets right answer");
+      klassOop t = as_klassOop();
+      while (!Klass::cast(t)->can_be_primary_super()) {
+        t = Klass::cast(t)->super();
+        j = Klass::cast(t)->super_depth();
+      }
+      for (juint j1 = j+1; j1 < primary_super_limit(); j1++) {
+        assert(primary_super_of_depth(j1) == NULL, "super list padding");
+      }
+      while (t != NULL) {
+        assert(primary_super_of_depth(j) == t, "super list initialization");
+        t = Klass::cast(t)->super();
+        --j;
+      }
+      assert(j == (juint)-1, "correct depth count");
+    }
+#endif
+  }
+
+  if (secondary_supers() == NULL) {
+    KlassHandle this_kh (THREAD, this);
+
+    // Now compute the list of secondary supertypes.
+    // Secondaries can occasionally be on the super chain,
+    // if the inline "_primary_supers" array overflows.
+    int extras = 0;
+    klassOop p;
+    for (p = super(); !(p == NULL || p->klass_part()->can_be_primary_super()); p = p->klass_part()->super()) {
+      ++extras;
+    }
+
+    // Compute the "real" non-extra secondaries.
+    objArrayOop secondary_oops = compute_secondary_supers(extras, CHECK);
+    objArrayHandle secondaries (THREAD, secondary_oops);
+
+    // Store the extra secondaries in the first array positions:
+    int fillp = extras;
+    for (p = this_kh->super(); !(p == NULL || p->klass_part()->can_be_primary_super()); p = p->klass_part()->super()) {
+      int i;                    // Scan for overflow primaries being duplicates of 2nd'arys
+
+      // This happens frequently for very deeply nested arrays: the
+      // primary superclass chain overflows into the secondary.  The
+      // secondary list contains the element_klass's secondaries with
+      // an extra array dimension added.  If the element_klass's
+      // secondary list already contains some primary overflows, they
+      // (with the extra level of array-ness) will collide with the
+      // normal primary superclass overflows.
+      for( i = extras; i < secondaries->length(); i++ )
+        if( secondaries->obj_at(i) == p )
+          break;
+      if( i < secondaries->length() )
+        continue;               // It's a dup, don't put it in
+      secondaries->obj_at_put(--fillp, p);
+    }
+    // See if we had some dup's, so the array has holes in it.
+    if( fillp > 0 ) {
+      // Pack the array.  Drop the old secondaries array on the floor
+      // and let GC reclaim it.
+      objArrayOop s2 = oopFactory::new_system_objArray(secondaries->length() - fillp, CHECK);
+      for( int i = 0; i < s2->length(); i++ )
+        s2->obj_at_put( i, secondaries->obj_at(i+fillp) );
+      secondaries = objArrayHandle(THREAD, s2);
+    }
+
+  #ifdef ASSERT
+    if (secondaries() != Universe::the_array_interfaces_array()) {
+      // We must not copy any NULL placeholders left over from bootstrap.
+      for (int j = 0; j < secondaries->length(); j++) {
+        assert(secondaries->obj_at(j) != NULL, "correct bootstrapping order");
+      }
+    }
+  #endif
+
+    this_kh->set_secondary_supers(secondaries());
+  }
+}
+
+objArrayOop Klass::compute_secondary_supers(int num_extra_slots, TRAPS) {
+  assert(num_extra_slots == 0, "override for complex klasses");
+  return Universe::the_empty_system_obj_array();
+}
+
+
+Klass* Klass::subklass() const {
+  return _subklass == NULL ? NULL : Klass::cast(_subklass);
+}
+
+instanceKlass* Klass::superklass() const {
+  assert(super() == NULL || super()->klass_part()->oop_is_instance(), "must be instance klass");
+  return _super == NULL ? NULL : instanceKlass::cast(_super);
+}
+
+Klass* Klass::next_sibling() const {
+  return _next_sibling == NULL ? NULL : Klass::cast(_next_sibling);
+}
+
+void Klass::set_subklass(klassOop s) {
+  assert(s != as_klassOop(), "sanity check");
+  oop_store_without_check((oop*)&_subklass, s);
+}
+
+void Klass::set_next_sibling(klassOop s) {
+  assert(s != as_klassOop(), "sanity check");
+  oop_store_without_check((oop*)&_next_sibling, s);
+}
+
+void Klass::append_to_sibling_list() {
+  debug_only(if (!SharedSkipVerify) as_klassOop()->verify();)
+  // add ourselves to superklass' subklass list
+  instanceKlass* super = superklass();
+  if (super == NULL) return;        // special case: class Object
+  assert(SharedSkipVerify ||
+         (!super->is_interface()    // interfaces cannot be supers
+          && (super->superklass() == NULL || !is_interface())),
+         "an interface can only be a subklass of Object");
+  klassOop prev_first_subklass = super->subklass_oop();
+  if (prev_first_subklass != NULL) {
+    // set our sibling to be the superklass' previous first subklass
+    set_next_sibling(prev_first_subklass);
+  }
+  // make ourselves the superklass' first subklass
+  super->set_subklass(as_klassOop());
+  debug_only(if (!SharedSkipVerify) as_klassOop()->verify();)
+}
+
+void Klass::remove_from_sibling_list() {
+  // remove receiver from sibling list
+  instanceKlass* super = superklass();
+  assert(super != NULL || as_klassOop() == SystemDictionary::object_klass(), "should have super");
+  if (super == NULL) return;        // special case: class Object
+  if (super->subklass() == this) {
+    // first subklass
+    super->set_subklass(_next_sibling);
+  } else {
+    Klass* sib = super->subklass();
+    while (sib->next_sibling() != this) {
+      sib = sib->next_sibling();
+    };
+    sib->set_next_sibling(_next_sibling);
+  }
+}
+
+void Klass::follow_weak_klass_links( BoolObjectClosure* is_alive, OopClosure* keep_alive) {
+  // This klass is alive but the subklass and siblings are not followed/updated.
+  // We update the subklass link and the subklass' sibling links here.
+  // Our own sibling link will be updated by our superclass (which must be alive
+  // since we are).
+  assert(is_alive->do_object_b(as_klassOop()), "just checking, this should be live");
+  if (ClassUnloading) {
+    klassOop sub = subklass_oop();
+    if (sub != NULL && !is_alive->do_object_b(sub)) {
+      // first subklass not alive, find first one alive
+      do {
+#ifndef PRODUCT
+        if (TraceClassUnloading && WizardMode) {
+          ResourceMark rm;
+          tty->print_cr("[Unlinking class (subclass) %s]", sub->klass_part()->external_name());
+        }
+#endif
+        sub = sub->klass_part()->next_sibling_oop();
+      } while (sub != NULL && !is_alive->do_object_b(sub));
+      set_subklass(sub);
+    }
+    // now update the subklass' sibling list
+    while (sub != NULL) {
+      klassOop next = sub->klass_part()->next_sibling_oop();
+      if (next != NULL && !is_alive->do_object_b(next)) {
+        // first sibling not alive, find first one alive
+        do {
+#ifndef PRODUCT
+          if (TraceClassUnloading && WizardMode) {
+            ResourceMark rm;
+            tty->print_cr("[Unlinking class (sibling) %s]", next->klass_part()->external_name());
+          }
+#endif
+          next = next->klass_part()->next_sibling_oop();
+        } while (next != NULL && !is_alive->do_object_b(next));
+        sub->klass_part()->set_next_sibling(next);
+      }
+      sub = next;
+    }
+  } else {
+    // Always follow subklass and sibling link. This will prevent any klasses from
+    // being unloaded (all classes are transitively linked from java.lang.Object).
+    keep_alive->do_oop(adr_subklass());
+    keep_alive->do_oop(adr_next_sibling());
+  }
+}
+
+
+void Klass::remove_unshareable_info() {
+  if (oop_is_instance()) {
+    instanceKlass* ik = (instanceKlass*)this;
+    if (ik->is_linked()) {
+      ik->unlink_class();
+    }
+  }
+  set_subklass(NULL);
+  set_next_sibling(NULL);
+}
+
+
+klassOop Klass::array_klass_or_null(int rank) {
+  EXCEPTION_MARK;
+  // No exception can be thrown by array_klass_impl when called with or_null == true.
+  // (In anycase, the execption mark will fail if it do so)
+  return array_klass_impl(true, rank, THREAD);
+}
+
+
+klassOop Klass::array_klass_or_null() {
+  EXCEPTION_MARK;
+  // No exception can be thrown by array_klass_impl when called with or_null == true.
+  // (In anycase, the execption mark will fail if it do so)
+  return array_klass_impl(true, THREAD);
+}
+
+
+klassOop Klass::array_klass_impl(bool or_null, int rank, TRAPS) {
+  fatal("array_klass should be dispatched to instanceKlass, objArrayKlass or typeArrayKlass");
+  return NULL;
+}
+
+
+klassOop Klass::array_klass_impl(bool or_null, TRAPS) {
+  fatal("array_klass should be dispatched to instanceKlass, objArrayKlass or typeArrayKlass");
+  return NULL;
+}
+
+
+void Klass::with_array_klasses_do(void f(klassOop k)) {
+  f(as_klassOop());
+}
+
+
+const char* Klass::external_name() const {
+  return name()->as_klass_external_name();
+}
+
+
+char* Klass::signature_name() const {
+  return name()->as_C_string();
+}
+
+// Unless overridden, modifier_flags is 0.
+jint Klass::compute_modifier_flags(TRAPS) const {
+  return 0;
+}
+
+int Klass::atomic_incr_biased_lock_revocation_count() {
+  return (int) Atomic::add(1, &_biased_lock_revocation_count);
+}
+
+// Unless overridden, jvmti_class_status has no flags set.
+jint Klass::jvmti_class_status() const {
+  return 0;
+}
+
+#ifndef PRODUCT
+
+// Printing
+
+void Klass::oop_print_on(oop obj, outputStream* st) {
+  ResourceMark rm;
+  // print title
+  st->print_cr("%s ", internal_name());
+  obj->print_address_on(st);
+
+  if (WizardMode) {
+     // print header
+     obj->mark()->print_on(st);
+  }
+
+  // print class
+  st->print(" - klass: ");
+  obj->klass()->print_value_on(st);
+  st->cr();
+}
+
+
+void Klass::oop_print_value_on(oop obj, outputStream* st) {
+  // print title
+  ResourceMark rm;              // Cannot print in debug mode without this
+  st->print("%s", internal_name());
+  obj->print_address_on(st);
+}
+
+#endif
+
+// Verification
+
+void Klass::oop_verify_on(oop obj, outputStream* st) {
+  guarantee(obj->is_oop(),  "should be oop");
+  guarantee(obj->klass()->is_perm(),  "should be in permspace");
+  guarantee(obj->klass()->is_klass(), "klass field is not a klass");
+}
+
+
+void Klass::oop_verify_old_oop(oop obj, oop* p, bool allow_dirty) {
+  /* $$$ I think this functionality should be handled by verification of
+
+  RememberedSet::verify_old_oop(obj, p, allow_dirty, false);
+
+  the card table. */
+}
+
+#ifndef PRODUCT
+
+void Klass::verify_vtable_index(int i) {
+  assert(oop_is_instance() || oop_is_array(), "only instanceKlass and arrayKlass have vtables");
+  if (oop_is_instance()) {
+    assert(i>=0 && i<((instanceKlass*)this)->vtable_length()/vtableEntry::size(), "index out of bounds");
+  } else {
+    assert(i>=0 && i<((arrayKlass*)this)->vtable_length()/vtableEntry::size(), "index out of bounds");
+  }
+}
+
+#endif