hotspot/src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.hpp
changeset 1 489c9b5090e2
child 360 21d113ecbf6a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.hpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,1368 @@
+/*
+ * Copyright 2005-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+class ParallelScavengeHeap;
+class PSAdaptiveSizePolicy;
+class PSYoungGen;
+class PSOldGen;
+class PSPermGen;
+class ParCompactionManager;
+class ParallelTaskTerminator;
+class PSParallelCompact;
+class GCTaskManager;
+class GCTaskQueue;
+class PreGCValues;
+class MoveAndUpdateClosure;
+class RefProcTaskExecutor;
+
+class SpaceInfo
+{
+ public:
+  MutableSpace* space() const { return _space; }
+
+  // Where the free space will start after the collection.  Valid only after the
+  // summary phase completes.
+  HeapWord* new_top() const { return _new_top; }
+
+  // Allows new_top to be set.
+  HeapWord** new_top_addr() { return &_new_top; }
+
+  // Where the smallest allowable dense prefix ends (used only for perm gen).
+  HeapWord* min_dense_prefix() const { return _min_dense_prefix; }
+
+  // Where the dense prefix ends, or the compacted region begins.
+  HeapWord* dense_prefix() const { return _dense_prefix; }
+
+  // The start array for the (generation containing the) space, or NULL if there
+  // is no start array.
+  ObjectStartArray* start_array() const { return _start_array; }
+
+  void set_space(MutableSpace* s)           { _space = s; }
+  void set_new_top(HeapWord* addr)          { _new_top = addr; }
+  void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
+  void set_dense_prefix(HeapWord* addr)     { _dense_prefix = addr; }
+  void set_start_array(ObjectStartArray* s) { _start_array = s; }
+
+ private:
+  MutableSpace*     _space;
+  HeapWord*         _new_top;
+  HeapWord*         _min_dense_prefix;
+  HeapWord*         _dense_prefix;
+  ObjectStartArray* _start_array;
+};
+
+class ParallelCompactData
+{
+public:
+  // Sizes are in HeapWords, unless indicated otherwise.
+  static const size_t Log2ChunkSize;
+  static const size_t ChunkSize;
+  static const size_t ChunkSizeBytes;
+
+ // Mask for the bits in a size_t to get an offset within a chunk.
+  static const size_t ChunkSizeOffsetMask;
+ // Mask for the bits in a pointer to get an offset within a chunk.
+  static const size_t ChunkAddrOffsetMask;
+ // Mask for the bits in a pointer to get the address of the start of a chunk.
+  static const size_t ChunkAddrMask;
+
+  static const size_t Log2BlockSize;
+  static const size_t BlockSize;
+  static const size_t BlockOffsetMask;
+  static const size_t BlockMask;
+
+  static const size_t BlocksPerChunk;
+
+  class ChunkData
+  {
+  public:
+    // Destination address of the chunk.
+    HeapWord* destination() const { return _destination; }
+
+    // The first chunk containing data destined for this chunk.
+    size_t source_chunk() const { return _source_chunk; }
+
+    // The object (if any) starting in this chunk and ending in a different
+    // chunk that could not be updated during the main (parallel) compaction
+    // phase.  This is different from _partial_obj_addr, which is an object that
+    // extends onto a source chunk.  However, the two uses do not overlap in
+    // time, so the same field is used to save space.
+    HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }
+
+    // The starting address of the partial object extending onto the chunk.
+    HeapWord* partial_obj_addr() const { return _partial_obj_addr; }
+
+    // Size of the partial object extending onto the chunk (words).
+    size_t partial_obj_size() const { return _partial_obj_size; }
+
+    // Size of live data that lies within this chunk due to objects that start
+    // in this chunk (words).  This does not include the partial object
+    // extending onto the chunk (if any), or the part of an object that extends
+    // onto the next chunk (if any).
+    size_t live_obj_size() const { return _dc_and_los & los_mask; }
+
+    // Total live data that lies within the chunk (words).
+    size_t data_size() const { return partial_obj_size() + live_obj_size(); }
+
+    // The destination_count is the number of other chunks to which data from
+    // this chunk will be copied.  At the end of the summary phase, the valid
+    // values of destination_count are
+    //
+    // 0 - data from the chunk will be compacted completely into itself, or the
+    //     chunk is empty.  The chunk can be claimed and then filled.
+    // 1 - data from the chunk will be compacted into 1 other chunk; some
+    //     data from the chunk may also be compacted into the chunk itself.
+    // 2 - data from the chunk will be copied to 2 other chunks.
+    //
+    // During compaction as chunks are emptied, the destination_count is
+    // decremented (atomically) and when it reaches 0, it can be claimed and
+    // then filled.
+    //
+    // A chunk is claimed for processing by atomically changing the
+    // destination_count to the claimed value (dc_claimed).  After a chunk has
+    // been filled, the destination_count should be set to the completed value
+    // (dc_completed).
+    inline uint destination_count() const;
+    inline uint destination_count_raw() const;
+
+    // The location of the java heap data that corresponds to this chunk.
+    inline HeapWord* data_location() const;
+
+    // The highest address referenced by objects in this chunk.
+    inline HeapWord* highest_ref() const;
+
+    // Whether this chunk is available to be claimed, has been claimed, or has
+    // been completed.
+    //
+    // Minor subtlety:  claimed() returns true if the chunk is marked
+    // completed(), which is desirable since a chunk must be claimed before it
+    // can be completed.
+    bool available() const { return _dc_and_los < dc_one; }
+    bool claimed() const   { return _dc_and_los >= dc_claimed; }
+    bool completed() const { return _dc_and_los >= dc_completed; }
+
+    // These are not atomic.
+    void set_destination(HeapWord* addr)       { _destination = addr; }
+    void set_source_chunk(size_t chunk)        { _source_chunk = chunk; }
+    void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
+    void set_partial_obj_addr(HeapWord* addr)  { _partial_obj_addr = addr; }
+    void set_partial_obj_size(size_t words)    {
+      _partial_obj_size = (chunk_sz_t) words;
+    }
+
+    inline void set_destination_count(uint count);
+    inline void set_live_obj_size(size_t words);
+    inline void set_data_location(HeapWord* addr);
+    inline void set_completed();
+    inline bool claim_unsafe();
+
+    // These are atomic.
+    inline void add_live_obj(size_t words);
+    inline void set_highest_ref(HeapWord* addr);
+    inline void decrement_destination_count();
+    inline bool claim();
+
+  private:
+    // The type used to represent object sizes within a chunk.
+    typedef uint chunk_sz_t;
+
+    // Constants for manipulating the _dc_and_los field, which holds both the
+    // destination count and live obj size.  The live obj size lives at the
+    // least significant end so no masking is necessary when adding.
+    static const chunk_sz_t dc_shift;           // Shift amount.
+    static const chunk_sz_t dc_mask;            // Mask for destination count.
+    static const chunk_sz_t dc_one;             // 1, shifted appropriately.
+    static const chunk_sz_t dc_claimed;         // Chunk has been claimed.
+    static const chunk_sz_t dc_completed;       // Chunk has been completed.
+    static const chunk_sz_t los_mask;           // Mask for live obj size.
+
+    HeapWord*           _destination;
+    size_t              _source_chunk;
+    HeapWord*           _partial_obj_addr;
+    chunk_sz_t          _partial_obj_size;
+    chunk_sz_t volatile _dc_and_los;
+#ifdef ASSERT
+    // These enable optimizations that are only partially implemented.  Use
+    // debug builds to prevent the code fragments from breaking.
+    HeapWord*           _data_location;
+    HeapWord*           _highest_ref;
+#endif  // #ifdef ASSERT
+
+#ifdef ASSERT
+   public:
+    uint            _pushed;    // 0 until chunk is pushed onto a worker's stack
+   private:
+#endif
+  };
+
+  // 'Blocks' allow shorter sections of the bitmap to be searched.  Each Block
+  // holds an offset, which is the amount of live data in the Chunk to the left
+  // of the first live object in the Block.  This amount of live data will
+  // include any object extending into the block. The first block in
+  // a chunk does not include any partial object extending into the
+  // the chunk.
+  //
+  // The offset also encodes the
+  // 'parity' of the first 1 bit in the Block:  a positive offset means the
+  // first 1 bit marks the start of an object, a negative offset means the first
+  // 1 bit marks the end of an object.
+  class BlockData
+  {
+  public:
+    typedef short int blk_ofs_t;
+
+    blk_ofs_t offset() const { return _offset >= 0 ? _offset : -_offset; }
+    blk_ofs_t raw_offset() const { return _offset; }
+    void set_first_is_start_bit(bool v) { _first_is_start_bit = v; }
+
+#if 0
+    // The need for this method was anticipated but it is
+    // never actually used.  Do not include it for now.  If
+    // it is needed, consider the problem of what is passed
+    // as "v".  To avoid warning errors the method set_start_bit_offset()
+    // was changed to take a size_t as the parameter and to do the
+    // check for the possible overflow.  Doing the cast in these
+    // methods better limits the potential problems because of
+    // the size of the field to this class.
+    void set_raw_offset(blk_ofs_t v) { _offset = v; }
+#endif
+    void set_start_bit_offset(size_t val) {
+      assert(val >= 0, "sanity");
+      _offset = (blk_ofs_t) val;
+      assert(val == (size_t) _offset, "Value is too large");
+      _first_is_start_bit = true;
+    }
+    void set_end_bit_offset(size_t val) {
+      assert(val >= 0, "sanity");
+      _offset = (blk_ofs_t) val;
+      assert(val == (size_t) _offset, "Value is too large");
+      _offset = - _offset;
+      _first_is_start_bit = false;
+    }
+    bool first_is_start_bit() {
+      assert(_set_phase > 0, "Not initialized");
+      return _first_is_start_bit;
+    }
+    bool first_is_end_bit() {
+      assert(_set_phase > 0, "Not initialized");
+      return !_first_is_start_bit;
+    }
+
+  private:
+    blk_ofs_t _offset;
+    // This is temporary until the mark_bitmap is separated into
+    // a start bit array and an end bit array.
+    bool      _first_is_start_bit;
+#ifdef ASSERT
+    short     _set_phase;
+    static short _cur_phase;
+  public:
+    static void set_cur_phase(short v) { _cur_phase = v; }
+#endif
+  };
+
+public:
+  ParallelCompactData();
+  bool initialize(MemRegion covered_region);
+
+  size_t chunk_count() const { return _chunk_count; }
+
+  // Convert chunk indices to/from ChunkData pointers.
+  inline ChunkData* chunk(size_t chunk_idx) const;
+  inline size_t     chunk(const ChunkData* const chunk_ptr) const;
+
+  // Returns true if the given address is contained within the chunk
+  bool chunk_contains(size_t chunk_index, HeapWord* addr);
+
+  size_t block_count() const { return _block_count; }
+  inline BlockData* block(size_t n) const;
+
+  // Returns true if the given block is in the given chunk.
+  static bool chunk_contains_block(size_t chunk_index, size_t block_index);
+
+  void add_obj(HeapWord* addr, size_t len);
+  void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); }
+
+  // Fill in the chunks covering [beg, end) so that no data moves; i.e., the
+  // destination of chunk n is simply the start of chunk n.  The argument beg
+  // must be chunk-aligned; end need not be.
+  void summarize_dense_prefix(HeapWord* beg, HeapWord* end);
+
+  bool summarize(HeapWord* target_beg, HeapWord* target_end,
+                 HeapWord* source_beg, HeapWord* source_end,
+                 HeapWord** target_next, HeapWord** source_next = 0);
+
+  void clear();
+  void clear_range(size_t beg_chunk, size_t end_chunk);
+  void clear_range(HeapWord* beg, HeapWord* end) {
+    clear_range(addr_to_chunk_idx(beg), addr_to_chunk_idx(end));
+  }
+
+  // Return the number of words between addr and the start of the chunk
+  // containing addr.
+  inline size_t     chunk_offset(const HeapWord* addr) const;
+
+  // Convert addresses to/from a chunk index or chunk pointer.
+  inline size_t     addr_to_chunk_idx(const HeapWord* addr) const;
+  inline ChunkData* addr_to_chunk_ptr(const HeapWord* addr) const;
+  inline HeapWord*  chunk_to_addr(size_t chunk) const;
+  inline HeapWord*  chunk_to_addr(size_t chunk, size_t offset) const;
+  inline HeapWord*  chunk_to_addr(const ChunkData* chunk) const;
+
+  inline HeapWord*  chunk_align_down(HeapWord* addr) const;
+  inline HeapWord*  chunk_align_up(HeapWord* addr) const;
+  inline bool       is_chunk_aligned(HeapWord* addr) const;
+
+  // Analogous to chunk_offset() for blocks.
+  size_t     block_offset(const HeapWord* addr) const;
+  size_t     addr_to_block_idx(const HeapWord* addr) const;
+  size_t     addr_to_block_idx(const oop obj) const {
+    return addr_to_block_idx((HeapWord*) obj);
+  }
+  inline BlockData* addr_to_block_ptr(const HeapWord* addr) const;
+  inline HeapWord*  block_to_addr(size_t block) const;
+
+  // Return the address one past the end of the partial object.
+  HeapWord* partial_obj_end(size_t chunk_idx) const;
+
+  // Return the new location of the object p after the
+  // the compaction.
+  HeapWord* calc_new_pointer(HeapWord* addr);
+
+  // Same as calc_new_pointer() using blocks.
+  HeapWord* block_calc_new_pointer(HeapWord* addr);
+
+  // Same as calc_new_pointer() using chunks.
+  HeapWord* chunk_calc_new_pointer(HeapWord* addr);
+
+  HeapWord* calc_new_pointer(oop p) {
+    return calc_new_pointer((HeapWord*) p);
+  }
+
+  // Return the updated address for the given klass
+  klassOop calc_new_klass(klassOop);
+
+  // Given a block returns true if the partial object for the
+  // corresponding chunk ends in the block.  Returns false, otherwise
+  // If there is no partial object, returns false.
+  bool partial_obj_ends_in_block(size_t block_index);
+
+  // Returns the block index for the block
+  static size_t block_idx(BlockData* block);
+
+#ifdef  ASSERT
+  void verify_clear(const PSVirtualSpace* vspace);
+  void verify_clear();
+#endif  // #ifdef ASSERT
+
+private:
+  bool initialize_block_data(size_t region_size);
+  bool initialize_chunk_data(size_t region_size);
+  PSVirtualSpace* create_vspace(size_t count, size_t element_size);
+
+private:
+  HeapWord*       _region_start;
+#ifdef  ASSERT
+  HeapWord*       _region_end;
+#endif  // #ifdef ASSERT
+
+  PSVirtualSpace* _chunk_vspace;
+  ChunkData*      _chunk_data;
+  size_t          _chunk_count;
+
+  PSVirtualSpace* _block_vspace;
+  BlockData*      _block_data;
+  size_t          _block_count;
+};
+
+inline uint
+ParallelCompactData::ChunkData::destination_count_raw() const
+{
+  return _dc_and_los & dc_mask;
+}
+
+inline uint
+ParallelCompactData::ChunkData::destination_count() const
+{
+  return destination_count_raw() >> dc_shift;
+}
+
+inline void
+ParallelCompactData::ChunkData::set_destination_count(uint count)
+{
+  assert(count <= (dc_completed >> dc_shift), "count too large");
+  const chunk_sz_t live_sz = (chunk_sz_t) live_obj_size();
+  _dc_and_los = (count << dc_shift) | live_sz;
+}
+
+inline void ParallelCompactData::ChunkData::set_live_obj_size(size_t words)
+{
+  assert(words <= los_mask, "would overflow");
+  _dc_and_los = destination_count_raw() | (chunk_sz_t)words;
+}
+
+inline void ParallelCompactData::ChunkData::decrement_destination_count()
+{
+  assert(_dc_and_los < dc_claimed, "already claimed");
+  assert(_dc_and_los >= dc_one, "count would go negative");
+  Atomic::add((int)dc_mask, (volatile int*)&_dc_and_los);
+}
+
+inline HeapWord* ParallelCompactData::ChunkData::data_location() const
+{
+  DEBUG_ONLY(return _data_location;)
+  NOT_DEBUG(return NULL;)
+}
+
+inline HeapWord* ParallelCompactData::ChunkData::highest_ref() const
+{
+  DEBUG_ONLY(return _highest_ref;)
+  NOT_DEBUG(return NULL;)
+}
+
+inline void ParallelCompactData::ChunkData::set_data_location(HeapWord* addr)
+{
+  DEBUG_ONLY(_data_location = addr;)
+}
+
+inline void ParallelCompactData::ChunkData::set_completed()
+{
+  assert(claimed(), "must be claimed first");
+  _dc_and_los = dc_completed | (chunk_sz_t) live_obj_size();
+}
+
+// MT-unsafe claiming of a chunk.  Should only be used during single threaded
+// execution.
+inline bool ParallelCompactData::ChunkData::claim_unsafe()
+{
+  if (available()) {
+    _dc_and_los |= dc_claimed;
+    return true;
+  }
+  return false;
+}
+
+inline void ParallelCompactData::ChunkData::add_live_obj(size_t words)
+{
+  assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
+  Atomic::add((int) words, (volatile int*) &_dc_and_los);
+}
+
+inline void ParallelCompactData::ChunkData::set_highest_ref(HeapWord* addr)
+{
+#ifdef ASSERT
+  HeapWord* tmp = _highest_ref;
+  while (addr > tmp) {
+    tmp = (HeapWord*)Atomic::cmpxchg_ptr(addr, &_highest_ref, tmp);
+  }
+#endif  // #ifdef ASSERT
+}
+
+inline bool ParallelCompactData::ChunkData::claim()
+{
+  const int los = (int) live_obj_size();
+  const int old = Atomic::cmpxchg(dc_claimed | los,
+                                  (volatile int*) &_dc_and_los, los);
+  return old == los;
+}
+
+inline ParallelCompactData::ChunkData*
+ParallelCompactData::chunk(size_t chunk_idx) const
+{
+  assert(chunk_idx <= chunk_count(), "bad arg");
+  return _chunk_data + chunk_idx;
+}
+
+inline size_t
+ParallelCompactData::chunk(const ChunkData* const chunk_ptr) const
+{
+  assert(chunk_ptr >= _chunk_data, "bad arg");
+  assert(chunk_ptr <= _chunk_data + chunk_count(), "bad arg");
+  return pointer_delta(chunk_ptr, _chunk_data, sizeof(ChunkData));
+}
+
+inline ParallelCompactData::BlockData*
+ParallelCompactData::block(size_t n) const {
+  assert(n < block_count(), "bad arg");
+  return _block_data + n;
+}
+
+inline size_t
+ParallelCompactData::chunk_offset(const HeapWord* addr) const
+{
+  assert(addr >= _region_start, "bad addr");
+  assert(addr <= _region_end, "bad addr");
+  return (size_t(addr) & ChunkAddrOffsetMask) >> LogHeapWordSize;
+}
+
+inline size_t
+ParallelCompactData::addr_to_chunk_idx(const HeapWord* addr) const
+{
+  assert(addr >= _region_start, "bad addr");
+  assert(addr <= _region_end, "bad addr");
+  return pointer_delta(addr, _region_start) >> Log2ChunkSize;
+}
+
+inline ParallelCompactData::ChunkData*
+ParallelCompactData::addr_to_chunk_ptr(const HeapWord* addr) const
+{
+  return chunk(addr_to_chunk_idx(addr));
+}
+
+inline HeapWord*
+ParallelCompactData::chunk_to_addr(size_t chunk) const
+{
+  assert(chunk <= _chunk_count, "chunk out of range");
+  return _region_start + (chunk << Log2ChunkSize);
+}
+
+inline HeapWord*
+ParallelCompactData::chunk_to_addr(const ChunkData* chunk) const
+{
+  return chunk_to_addr(pointer_delta(chunk, _chunk_data, sizeof(ChunkData)));
+}
+
+inline HeapWord*
+ParallelCompactData::chunk_to_addr(size_t chunk, size_t offset) const
+{
+  assert(chunk <= _chunk_count, "chunk out of range");
+  assert(offset < ChunkSize, "offset too big");  // This may be too strict.
+  return chunk_to_addr(chunk) + offset;
+}
+
+inline HeapWord*
+ParallelCompactData::chunk_align_down(HeapWord* addr) const
+{
+  assert(addr >= _region_start, "bad addr");
+  assert(addr < _region_end + ChunkSize, "bad addr");
+  return (HeapWord*)(size_t(addr) & ChunkAddrMask);
+}
+
+inline HeapWord*
+ParallelCompactData::chunk_align_up(HeapWord* addr) const
+{
+  assert(addr >= _region_start, "bad addr");
+  assert(addr <= _region_end, "bad addr");
+  return chunk_align_down(addr + ChunkSizeOffsetMask);
+}
+
+inline bool
+ParallelCompactData::is_chunk_aligned(HeapWord* addr) const
+{
+  return chunk_offset(addr) == 0;
+}
+
+inline size_t
+ParallelCompactData::block_offset(const HeapWord* addr) const
+{
+  assert(addr >= _region_start, "bad addr");
+  assert(addr <= _region_end, "bad addr");
+  return pointer_delta(addr, _region_start) & BlockOffsetMask;
+}
+
+inline size_t
+ParallelCompactData::addr_to_block_idx(const HeapWord* addr) const
+{
+  assert(addr >= _region_start, "bad addr");
+  assert(addr <= _region_end, "bad addr");
+  return pointer_delta(addr, _region_start) >> Log2BlockSize;
+}
+
+inline ParallelCompactData::BlockData*
+ParallelCompactData::addr_to_block_ptr(const HeapWord* addr) const
+{
+  return block(addr_to_block_idx(addr));
+}
+
+inline HeapWord*
+ParallelCompactData::block_to_addr(size_t block) const
+{
+  assert(block < _block_count, "block out of range");
+  return _region_start + (block << Log2BlockSize);
+}
+
+// Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
+// do_addr() method.
+//
+// The closure is initialized with the number of heap words to process
+// (words_remaining()), and becomes 'full' when it reaches 0.  The do_addr()
+// methods in subclasses should update the total as words are processed.  Since
+// only one subclass actually uses this mechanism to terminate iteration, the
+// default initial value is > 0.  The implementation is here and not in the
+// single subclass that uses it to avoid making is_full() virtual, and thus
+// adding a virtual call per live object.
+
+class ParMarkBitMapClosure: public StackObj {
+ public:
+  typedef ParMarkBitMap::idx_t idx_t;
+  typedef ParMarkBitMap::IterationStatus IterationStatus;
+
+ public:
+  inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
+                              size_t words = max_uintx);
+
+  inline ParCompactionManager* compaction_manager() const;
+  inline ParMarkBitMap*        bitmap() const;
+  inline size_t                words_remaining() const;
+  inline bool                  is_full() const;
+  inline HeapWord*             source() const;
+
+  inline void                  set_source(HeapWord* addr);
+
+  virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;
+
+ protected:
+  inline void decrement_words_remaining(size_t words);
+
+ private:
+  ParMarkBitMap* const        _bitmap;
+  ParCompactionManager* const _compaction_manager;
+  DEBUG_ONLY(const size_t     _initial_words_remaining;) // Useful in debugger.
+  size_t                      _words_remaining; // Words left to copy.
+
+ protected:
+  HeapWord*                   _source;          // Next addr that would be read.
+};
+
+inline
+ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
+                                           ParCompactionManager* cm,
+                                           size_t words):
+  _bitmap(bitmap), _compaction_manager(cm)
+#ifdef  ASSERT
+  , _initial_words_remaining(words)
+#endif
+{
+  _words_remaining = words;
+  _source = NULL;
+}
+
+inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
+  return _compaction_manager;
+}
+
+inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
+  return _bitmap;
+}
+
+inline size_t ParMarkBitMapClosure::words_remaining() const {
+  return _words_remaining;
+}
+
+inline bool ParMarkBitMapClosure::is_full() const {
+  return words_remaining() == 0;
+}
+
+inline HeapWord* ParMarkBitMapClosure::source() const {
+  return _source;
+}
+
+inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
+  _source = addr;
+}
+
+inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
+  assert(_words_remaining >= words, "processed too many words");
+  _words_remaining -= words;
+}
+
+// Closure for updating the block data during the summary phase.
+class BitBlockUpdateClosure: public ParMarkBitMapClosure {
+  // ParallelCompactData::BlockData::blk_ofs_t _live_data_left;
+  size_t    _live_data_left;
+  size_t    _cur_block;
+  HeapWord* _chunk_start;
+  HeapWord* _chunk_end;
+  size_t    _chunk_index;
+
+ public:
+  BitBlockUpdateClosure(ParMarkBitMap* mbm,
+                        ParCompactionManager* cm,
+                        size_t chunk_index);
+
+  size_t cur_block() { return _cur_block; }
+  size_t chunk_index() { return _chunk_index; }
+  size_t live_data_left() { return _live_data_left; }
+  // Returns true the first bit in the current block (cur_block) is
+  // a start bit.
+  // Returns true if the current block is within the chunk for the closure;
+  bool chunk_contains_cur_block();
+
+  // Set the chunk index and related chunk values for
+  // a new chunk.
+  void reset_chunk(size_t chunk_index);
+
+  virtual IterationStatus do_addr(HeapWord* addr, size_t words);
+};
+
+class PSParallelCompact : AllStatic {
+ public:
+  // Convenient access to type names.
+  typedef ParMarkBitMap::idx_t idx_t;
+  typedef ParallelCompactData::ChunkData ChunkData;
+  typedef ParallelCompactData::BlockData BlockData;
+
+  typedef enum {
+    perm_space_id, old_space_id, eden_space_id,
+    from_space_id, to_space_id, last_space_id
+  } SpaceId;
+
+ public:
+  // In line closure decls
+  //
+
+  class IsAliveClosure: public BoolObjectClosure {
+   public:
+    void do_object(oop p) { assert(false, "don't call"); }
+    bool do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
+  };
+
+  class KeepAliveClosure: public OopClosure {
+    ParCompactionManager* _compaction_manager;
+   public:
+    KeepAliveClosure(ParCompactionManager* cm) {
+      _compaction_manager = cm;
+    }
+    void do_oop(oop* p);
+  };
+
+  class FollowRootClosure: public OopsInGenClosure{
+    ParCompactionManager* _compaction_manager;
+   public:
+    FollowRootClosure(ParCompactionManager* cm) {
+      _compaction_manager = cm;
+    }
+    void do_oop(oop* p) { follow_root(_compaction_manager, p); }
+    virtual const bool do_nmethods() const { return true; }
+  };
+
+  class FollowStackClosure: public VoidClosure {
+    ParCompactionManager* _compaction_manager;
+   public:
+    FollowStackClosure(ParCompactionManager* cm) {
+      _compaction_manager = cm;
+    }
+    void do_void() { follow_stack(_compaction_manager); }
+  };
+
+  class AdjustPointerClosure: public OopsInGenClosure {
+    bool _is_root;
+   public:
+    AdjustPointerClosure(bool is_root) : _is_root(is_root) {}
+    void do_oop(oop* p) { adjust_pointer(p, _is_root); }
+  };
+
+  // Closure for verifying update of pointers.  Does not
+  // have any side effects.
+  class VerifyUpdateClosure: public ParMarkBitMapClosure {
+    const MutableSpace* _space; // Is this ever used?
+
+   public:
+    VerifyUpdateClosure(ParCompactionManager* cm, const MutableSpace* sp) :
+      ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm), _space(sp)
+    { }
+
+    virtual IterationStatus do_addr(HeapWord* addr, size_t words);
+
+    const MutableSpace* space() { return _space; }
+  };
+
+  // Closure for updating objects altered for debug checking
+  class ResetObjectsClosure: public ParMarkBitMapClosure {
+   public:
+    ResetObjectsClosure(ParCompactionManager* cm):
+      ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm)
+    { }
+
+    virtual IterationStatus do_addr(HeapWord* addr, size_t words);
+  };
+
+  friend class KeepAliveClosure;
+  friend class FollowStackClosure;
+  friend class AdjustPointerClosure;
+  friend class FollowRootClosure;
+  friend class instanceKlassKlass;
+  friend class RefProcTaskProxy;
+
+  static void mark_and_push_internal(ParCompactionManager* cm, oop* p);
+
+ private:
+  static elapsedTimer         _accumulated_time;
+  static unsigned int         _total_invocations;
+  static unsigned int         _maximum_compaction_gc_num;
+  static jlong                _time_of_last_gc;   // ms
+  static CollectorCounters*   _counters;
+  static ParMarkBitMap        _mark_bitmap;
+  static ParallelCompactData  _summary_data;
+  static IsAliveClosure       _is_alive_closure;
+  static SpaceInfo            _space_info[last_space_id];
+  static bool                 _print_phases;
+  static AdjustPointerClosure _adjust_root_pointer_closure;
+  static AdjustPointerClosure _adjust_pointer_closure;
+
+  // Reference processing (used in ...follow_contents)
+  static ReferenceProcessor*  _ref_processor;
+
+  // Updated location of intArrayKlassObj.
+  static klassOop _updated_int_array_klass_obj;
+
+  // Values computed at initialization and used by dead_wood_limiter().
+  static double _dwl_mean;
+  static double _dwl_std_dev;
+  static double _dwl_first_term;
+  static double _dwl_adjustment;
+#ifdef  ASSERT
+  static bool   _dwl_initialized;
+#endif  // #ifdef ASSERT
+
+ private:
+  // Closure accessors
+  static OopClosure* adjust_pointer_closure() { return (OopClosure*)&_adjust_pointer_closure; }
+  static OopClosure* adjust_root_pointer_closure() { return (OopClosure*)&_adjust_root_pointer_closure; }
+  static BoolObjectClosure* is_alive_closure() { return (BoolObjectClosure*)&_is_alive_closure; }
+
+  static void initialize_space_info();
+
+  // Return true if details about individual phases should be printed.
+  static inline bool print_phases();
+
+  // Clear the marking bitmap and summary data that cover the specified space.
+  static void clear_data_covering_space(SpaceId id);
+
+  static void pre_compact(PreGCValues* pre_gc_values);
+  static void post_compact();
+
+  // Mark live objects
+  static void marking_phase(ParCompactionManager* cm,
+                            bool maximum_heap_compaction);
+  static void follow_stack(ParCompactionManager* cm);
+  static void follow_weak_klass_links(ParCompactionManager* cm);
+
+  static void adjust_pointer(oop* p, bool is_root);
+  static void adjust_root_pointer(oop* p) { adjust_pointer(p, true); }
+
+  static void follow_root(ParCompactionManager* cm, oop* p);
+
+  // Compute the dense prefix for the designated space.  This is an experimental
+  // implementation currently not used in production.
+  static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
+                                                    bool maximum_compaction);
+
+  // Methods used to compute the dense prefix.
+
+  // Compute the value of the normal distribution at x = density.  The mean and
+  // standard deviation are values saved by initialize_dead_wood_limiter().
+  static inline double normal_distribution(double density);
+
+  // Initialize the static vars used by dead_wood_limiter().
+  static void initialize_dead_wood_limiter();
+
+  // Return the percentage of space that can be treated as "dead wood" (i.e.,
+  // not reclaimed).
+  static double dead_wood_limiter(double density, size_t min_percent);
+
+  // Find the first (left-most) chunk in the range [beg, end) that has at least
+  // dead_words of dead space to the left.  The argument beg must be the first
+  // chunk in the space that is not completely live.
+  static ChunkData* dead_wood_limit_chunk(const ChunkData* beg,
+                                          const ChunkData* end,
+                                          size_t dead_words);
+
+  // Return a pointer to the first chunk in the range [beg, end) that is not
+  // completely full.
+  static ChunkData* first_dead_space_chunk(const ChunkData* beg,
+                                           const ChunkData* end);
+
+  // Return a value indicating the benefit or 'yield' if the compacted region
+  // were to start (or equivalently if the dense prefix were to end) at the
+  // candidate chunk.  Higher values are better.
+  //
+  // The value is based on the amount of space reclaimed vs. the costs of (a)
+  // updating references in the dense prefix plus (b) copying objects and
+  // updating references in the compacted region.
+  static inline double reclaimed_ratio(const ChunkData* const candidate,
+                                       HeapWord* const bottom,
+                                       HeapWord* const top,
+                                       HeapWord* const new_top);
+
+  // Compute the dense prefix for the designated space.
+  static HeapWord* compute_dense_prefix(const SpaceId id,
+                                        bool maximum_compaction);
+
+  // Return true if dead space crosses onto the specified Chunk; bit must be the
+  // bit index corresponding to the first word of the Chunk.
+  static inline bool dead_space_crosses_boundary(const ChunkData* chunk,
+                                                 idx_t bit);
+
+  // Summary phase utility routine to fill dead space (if any) at the dense
+  // prefix boundary.  Should only be called if the the dense prefix is
+  // non-empty.
+  static void fill_dense_prefix_end(SpaceId id);
+
+  static void summarize_spaces_quick();
+  static void summarize_space(SpaceId id, bool maximum_compaction);
+  static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);
+
+  static bool block_first_offset(size_t block_index, idx_t* block_offset_ptr);
+
+  // Fill in the BlockData
+  static void summarize_blocks(ParCompactionManager* cm,
+                               SpaceId first_compaction_space_id);
+
+  // The space that is compacted after space_id.
+  static SpaceId next_compaction_space_id(SpaceId space_id);
+
+  // Adjust addresses in roots.  Does not adjust addresses in heap.
+  static void adjust_roots();
+
+  // Serial code executed in preparation for the compaction phase.
+  static void compact_prologue();
+
+  // Move objects to new locations.
+  static void compact_perm(ParCompactionManager* cm);
+  static void compact();
+
+  // Add available chunks to the stack and draining tasks to the task queue.
+  static void enqueue_chunk_draining_tasks(GCTaskQueue* q,
+                                           uint parallel_gc_threads);
+
+  // Add dense prefix update tasks to the task queue.
+  static void enqueue_dense_prefix_tasks(GCTaskQueue* q,
+                                         uint parallel_gc_threads);
+
+  // Add chunk stealing tasks to the task queue.
+  static void enqueue_chunk_stealing_tasks(
+                                       GCTaskQueue* q,
+                                       ParallelTaskTerminator* terminator_ptr,
+                                       uint parallel_gc_threads);
+
+  // For debugging only - compacts the old gen serially
+  static void compact_serial(ParCompactionManager* cm);
+
+  // If objects are left in eden after a collection, try to move the boundary
+  // and absorb them into the old gen.  Returns true if eden was emptied.
+  static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
+                                         PSYoungGen* young_gen,
+                                         PSOldGen* old_gen);
+
+  // Reset time since last full gc
+  static void reset_millis_since_last_gc();
+
+ protected:
+#ifdef VALIDATE_MARK_SWEEP
+  static GrowableArray<oop*>*            _root_refs_stack;
+  static GrowableArray<oop> *            _live_oops;
+  static GrowableArray<oop> *            _live_oops_moved_to;
+  static GrowableArray<size_t>*          _live_oops_size;
+  static size_t                          _live_oops_index;
+  static size_t                          _live_oops_index_at_perm;
+  static GrowableArray<oop*>*            _other_refs_stack;
+  static GrowableArray<oop*>*            _adjusted_pointers;
+  static bool                            _pointer_tracking;
+  static bool                            _root_tracking;
+
+  // The following arrays are saved since the time of the last GC and
+  // assist in tracking down problems where someone has done an errant
+  // store into the heap, usually to an oop that wasn't properly
+  // handleized across a GC. If we crash or otherwise fail before the
+  // next GC, we can query these arrays to find out the object we had
+  // intended to do the store to (assuming it is still alive) and the
+  // offset within that object. Covered under RecordMarkSweepCompaction.
+  static GrowableArray<HeapWord*> *      _cur_gc_live_oops;
+  static GrowableArray<HeapWord*> *      _cur_gc_live_oops_moved_to;
+  static GrowableArray<size_t>*          _cur_gc_live_oops_size;
+  static GrowableArray<HeapWord*> *      _last_gc_live_oops;
+  static GrowableArray<HeapWord*> *      _last_gc_live_oops_moved_to;
+  static GrowableArray<size_t>*          _last_gc_live_oops_size;
+#endif
+
+ public:
+  class MarkAndPushClosure: public OopClosure {
+    ParCompactionManager* _compaction_manager;
+   public:
+    MarkAndPushClosure(ParCompactionManager* cm) {
+      _compaction_manager = cm;
+    }
+    void do_oop(oop* p) { mark_and_push(_compaction_manager, p); }
+    virtual const bool do_nmethods() const { return true; }
+  };
+
+  PSParallelCompact();
+
+  // Convenient accessor for Universe::heap().
+  static ParallelScavengeHeap* gc_heap() {
+    return (ParallelScavengeHeap*)Universe::heap();
+  }
+
+  static void invoke(bool maximum_heap_compaction);
+  static void invoke_no_policy(bool maximum_heap_compaction);
+
+  static void post_initialize();
+  // Perform initialization for PSParallelCompact that requires
+  // allocations.  This should be called during the VM initialization
+  // at a pointer where it would be appropriate to return a JNI_ENOMEM
+  // in the event of a failure.
+  static bool initialize();
+
+  // Public accessors
+  static elapsedTimer* accumulated_time() { return &_accumulated_time; }
+  static unsigned int total_invocations() { return _total_invocations; }
+  static CollectorCounters* counters()    { return _counters; }
+
+  // Used to add tasks
+  static GCTaskManager* const gc_task_manager();
+  static klassOop updated_int_array_klass_obj() {
+    return _updated_int_array_klass_obj;
+  }
+
+  // Marking support
+  static inline bool mark_obj(oop obj);
+  static bool mark_obj(oop* p)  {
+    if (*p != NULL) {
+      return mark_obj(*p);
+    } else {
+      return false;
+    }
+  }
+  static void mark_and_push(ParCompactionManager* cm, oop* p) {
+                                          // Check mark and maybe push on
+                                          // marking stack
+    oop m = *p;
+    if (m != NULL && mark_bitmap()->is_unmarked(m)) {
+      mark_and_push_internal(cm, p);
+    }
+  }
+
+  // Compaction support.
+  // Return true if p is in the range [beg_addr, end_addr).
+  static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
+  static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);
+
+  // Convenience wrappers for per-space data kept in _space_info.
+  static inline MutableSpace*     space(SpaceId space_id);
+  static inline HeapWord*         new_top(SpaceId space_id);
+  static inline HeapWord*         dense_prefix(SpaceId space_id);
+  static inline ObjectStartArray* start_array(SpaceId space_id);
+
+  // Return true if the klass should be updated.
+  static inline bool should_update_klass(klassOop k);
+
+  // Move and update the live objects in the specified space.
+  static void move_and_update(ParCompactionManager* cm, SpaceId space_id);
+
+  // Process the end of the given chunk range in the dense prefix.
+  // This includes saving any object not updated.
+  static void dense_prefix_chunks_epilogue(ParCompactionManager* cm,
+                                           size_t chunk_start_index,
+                                           size_t chunk_end_index,
+                                           idx_t exiting_object_offset,
+                                           idx_t chunk_offset_start,
+                                           idx_t chunk_offset_end);
+
+  // Update a chunk in the dense prefix.  For each live object
+  // in the chunk, update it's interior references.  For each
+  // dead object, fill it with deadwood. Dead space at the end
+  // of a chunk range will be filled to the start of the next
+  // live object regardless of the chunk_index_end.  None of the
+  // objects in the dense prefix move and dead space is dead
+  // (holds only dead objects that don't need any processing), so
+  // dead space can be filled in any order.
+  static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
+                                                  SpaceId space_id,
+                                                  size_t chunk_index_start,
+                                                  size_t chunk_index_end);
+
+  // Return the address of the count + 1st live word in the range [beg, end).
+  static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);
+
+  // Return the address of the word to be copied to dest_addr, which must be
+  // aligned to a chunk boundary.
+  static HeapWord* first_src_addr(HeapWord* const dest_addr,
+                                  size_t src_chunk_idx);
+
+  // Determine the next source chunk, set closure.source() to the start of the
+  // new chunk return the chunk index.  Parameter end_addr is the address one
+  // beyond the end of source range just processed.  If necessary, switch to a
+  // new source space and set src_space_id (in-out parameter) and src_space_top
+  // (out parameter) accordingly.
+  static size_t next_src_chunk(MoveAndUpdateClosure& closure,
+                               SpaceId& src_space_id,
+                               HeapWord*& src_space_top,
+                               HeapWord* end_addr);
+
+  // Decrement the destination count for each non-empty source chunk in the
+  // range [beg_chunk, chunk(chunk_align_up(end_addr))).
+  static void decrement_destination_counts(ParCompactionManager* cm,
+                                           size_t beg_chunk,
+                                           HeapWord* end_addr);
+
+  // Fill a chunk, copying objects from one or more source chunks.
+  static void fill_chunk(ParCompactionManager* cm, size_t chunk_idx);
+  static void fill_and_update_chunk(ParCompactionManager* cm, size_t chunk) {
+    fill_chunk(cm, chunk);
+  }
+
+  // Update the deferred objects in the space.
+  static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);
+
+  // Mark pointer and follow contents.
+  static void mark_and_follow(ParCompactionManager* cm, oop* p);
+
+  static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
+  static ParallelCompactData& summary_data() { return _summary_data; }
+
+  static inline void adjust_pointer(oop* p) { adjust_pointer(p, false); }
+  static inline void adjust_pointer(oop* p,
+                                    HeapWord* beg_addr,
+                                    HeapWord* end_addr);
+
+  // Reference Processing
+  static ReferenceProcessor* const ref_processor() { return _ref_processor; }
+
+  // Return the SpaceId for the given address.
+  static SpaceId space_id(HeapWord* addr);
+
+  // Time since last full gc (in milliseconds).
+  static jlong millis_since_last_gc();
+
+#ifdef VALIDATE_MARK_SWEEP
+  static void track_adjusted_pointer(oop* p, oop newobj, bool isroot);
+  static void check_adjust_pointer(oop* p);     // Adjust this pointer
+  static void track_interior_pointers(oop obj);
+  static void check_interior_pointers();
+
+  static void reset_live_oop_tracking(bool at_perm);
+  static void register_live_oop(oop p, size_t size);
+  static void validate_live_oop(oop p, size_t size);
+  static void live_oop_moved_to(HeapWord* q, size_t size, HeapWord* compaction_top);
+  static void compaction_complete();
+
+  // Querying operation of RecordMarkSweepCompaction results.
+  // Finds and prints the current base oop and offset for a word
+  // within an oop that was live during the last GC. Helpful for
+  // tracking down heap stomps.
+  static void print_new_location_of_heap_address(HeapWord* q);
+#endif  // #ifdef VALIDATE_MARK_SWEEP
+
+  // Call backs for class unloading
+  // Update subklass/sibling/implementor links at end of marking.
+  static void revisit_weak_klass_link(ParCompactionManager* cm, Klass* k);
+
+#ifndef PRODUCT
+  // Debugging support.
+  static const char* space_names[last_space_id];
+  static void print_chunk_ranges();
+  static void print_dense_prefix_stats(const char* const algorithm,
+                                       const SpaceId id,
+                                       const bool maximum_compaction,
+                                       HeapWord* const addr);
+#endif  // #ifndef PRODUCT
+
+#ifdef  ASSERT
+  // Verify that all the chunks have been emptied.
+  static void verify_complete(SpaceId space_id);
+#endif  // #ifdef ASSERT
+};
+
+bool PSParallelCompact::mark_obj(oop obj) {
+  const int obj_size = obj->size();
+  if (mark_bitmap()->mark_obj(obj, obj_size)) {
+    _summary_data.add_obj(obj, obj_size);
+    return true;
+  } else {
+    return false;
+  }
+}
+
+inline bool PSParallelCompact::print_phases()
+{
+  return _print_phases;
+}
+
+inline double PSParallelCompact::normal_distribution(double density)
+{
+  assert(_dwl_initialized, "uninitialized");
+  const double squared_term = (density - _dwl_mean) / _dwl_std_dev;
+  return _dwl_first_term * exp(-0.5 * squared_term * squared_term);
+}
+
+inline bool
+PSParallelCompact::dead_space_crosses_boundary(const ChunkData* chunk,
+                                               idx_t bit)
+{
+  assert(bit > 0, "cannot call this for the first bit/chunk");
+  assert(_summary_data.chunk_to_addr(chunk) == _mark_bitmap.bit_to_addr(bit),
+         "sanity check");
+
+  // Dead space crosses the boundary if (1) a partial object does not extend
+  // onto the chunk, (2) an object does not start at the beginning of the chunk,
+  // and (3) an object does not end at the end of the prior chunk.
+  return chunk->partial_obj_size() == 0 &&
+    !_mark_bitmap.is_obj_beg(bit) &&
+    !_mark_bitmap.is_obj_end(bit - 1);
+}
+
+inline bool
+PSParallelCompact::is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr) {
+  return p >= beg_addr && p < end_addr;
+}
+
+inline bool
+PSParallelCompact::is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr) {
+  return is_in((HeapWord*)p, beg_addr, end_addr);
+}
+
+inline MutableSpace* PSParallelCompact::space(SpaceId id) {
+  assert(id < last_space_id, "id out of range");
+  return _space_info[id].space();
+}
+
+inline HeapWord* PSParallelCompact::new_top(SpaceId id) {
+  assert(id < last_space_id, "id out of range");
+  return _space_info[id].new_top();
+}
+
+inline HeapWord* PSParallelCompact::dense_prefix(SpaceId id) {
+  assert(id < last_space_id, "id out of range");
+  return _space_info[id].dense_prefix();
+}
+
+inline ObjectStartArray* PSParallelCompact::start_array(SpaceId id) {
+  assert(id < last_space_id, "id out of range");
+  return _space_info[id].start_array();
+}
+
+inline bool PSParallelCompact::should_update_klass(klassOop k) {
+  return ((HeapWord*) k) >= dense_prefix(perm_space_id);
+}
+
+inline void PSParallelCompact::adjust_pointer(oop* p,
+                                              HeapWord* beg_addr,
+                                              HeapWord* end_addr) {
+  if (is_in(p, beg_addr, end_addr)) {
+    adjust_pointer(p);
+  }
+}
+
+class MoveAndUpdateClosure: public ParMarkBitMapClosure {
+ public:
+  inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
+                              ObjectStartArray* start_array,
+                              HeapWord* destination, size_t words);
+
+  // Accessors.
+  HeapWord* destination() const         { return _destination; }
+
+  // If the object will fit (size <= words_remaining()), copy it to the current
+  // destination, update the interior oops and the start array and return either
+  // full (if the closure is full) or incomplete.  If the object will not fit,
+  // return would_overflow.
+  virtual IterationStatus do_addr(HeapWord* addr, size_t size);
+
+  // Copy enough words to fill this closure, starting at source().  Interior
+  // oops and the start array are not updated.  Return full.
+  IterationStatus copy_until_full();
+
+  // Copy enough words to fill this closure or to the end of an object,
+  // whichever is smaller, starting at source().  Interior oops and the start
+  // array are not updated.
+  void copy_partial_obj();
+
+ protected:
+  // Update variables to indicate that word_count words were processed.
+  inline void update_state(size_t word_count);
+
+ protected:
+  ObjectStartArray* const _start_array;
+  HeapWord*               _destination;         // Next addr to be written.
+};
+
+inline
+MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
+                                           ParCompactionManager* cm,
+                                           ObjectStartArray* start_array,
+                                           HeapWord* destination,
+                                           size_t words) :
+  ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array)
+{
+  _destination = destination;
+}
+
+inline void MoveAndUpdateClosure::update_state(size_t words)
+{
+  decrement_words_remaining(words);
+  _source += words;
+  _destination += words;
+}
+
+class UpdateOnlyClosure: public ParMarkBitMapClosure {
+ private:
+  const PSParallelCompact::SpaceId _space_id;
+  ObjectStartArray* const          _start_array;
+
+ public:
+  UpdateOnlyClosure(ParMarkBitMap* mbm,
+                    ParCompactionManager* cm,
+                    PSParallelCompact::SpaceId space_id);
+
+  // Update the object.
+  virtual IterationStatus do_addr(HeapWord* addr, size_t words);
+
+  inline void do_addr(HeapWord* addr);
+};
+
+inline void UpdateOnlyClosure::do_addr(HeapWord* addr) {
+  _start_array->allocate_block(addr);
+  oop(addr)->update_contents(compaction_manager());
+}
+
+class FillClosure: public ParMarkBitMapClosure {
+public:
+  FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id):
+    ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
+    _space_id(space_id),
+    _start_array(PSParallelCompact::start_array(space_id))
+  {
+    assert(_space_id == PSParallelCompact::perm_space_id ||
+           _space_id == PSParallelCompact::old_space_id,
+           "cannot use FillClosure in the young gen");
+    assert(bitmap() != NULL, "need a bitmap");
+    assert(_start_array != NULL, "need a start array");
+  }
+
+  void fill_region(HeapWord* addr, size_t size) {
+    MemRegion region(addr, size);
+    SharedHeap::fill_region_with_object(region);
+    _start_array->allocate_block(addr);
+  }
+
+  virtual IterationStatus do_addr(HeapWord* addr, size_t size) {
+    fill_region(addr, size);
+    return ParMarkBitMap::incomplete;
+  }
+
+private:
+  const PSParallelCompact::SpaceId _space_id;
+  ObjectStartArray* const          _start_array;
+};