hotspot/src/share/vm/gc_implementation/parallelScavenge/psMarkSweep.cpp
changeset 1 489c9b5090e2
child 971 f0b20be4165d
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/gc_implementation/parallelScavenge/psMarkSweep.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,670 @@
+/*
+ * Copyright 2001-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_psMarkSweep.cpp.incl"
+
+elapsedTimer        PSMarkSweep::_accumulated_time;
+unsigned int        PSMarkSweep::_total_invocations = 0;
+jlong               PSMarkSweep::_time_of_last_gc   = 0;
+CollectorCounters*  PSMarkSweep::_counters = NULL;
+
+void PSMarkSweep::initialize() {
+  MemRegion mr = Universe::heap()->reserved_region();
+  _ref_processor = new ReferenceProcessor(mr,
+                                          true,    // atomic_discovery
+                                          false);  // mt_discovery
+  if (!UseParallelOldGC || !VerifyParallelOldWithMarkSweep) {
+    _counters = new CollectorCounters("PSMarkSweep", 1);
+  }
+}
+
+// This method contains all heap specific policy for invoking mark sweep.
+// PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
+// the heap. It will do nothing further. If we need to bail out for policy
+// reasons, scavenge before full gc, or any other specialized behavior, it
+// needs to be added here.
+//
+// Note that this method should only be called from the vm_thread while
+// at a safepoint!
+void PSMarkSweep::invoke(bool maximum_heap_compaction) {
+  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
+  assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
+  assert(!Universe::heap()->is_gc_active(), "not reentrant");
+
+  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
+  GCCause::Cause gc_cause = heap->gc_cause();
+  PSAdaptiveSizePolicy* policy = heap->size_policy();
+
+  // Before each allocation/collection attempt, find out from the
+  // policy object if GCs are, on the whole, taking too long. If so,
+  // bail out without attempting a collection.  The exceptions are
+  // for explicitly requested GC's.
+  if (!policy->gc_time_limit_exceeded() ||
+      GCCause::is_user_requested_gc(gc_cause) ||
+      GCCause::is_serviceability_requested_gc(gc_cause)) {
+    IsGCActiveMark mark;
+
+    if (ScavengeBeforeFullGC) {
+      PSScavenge::invoke_no_policy();
+    }
+
+    int count = (maximum_heap_compaction)?1:MarkSweepAlwaysCompactCount;
+    IntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
+    PSMarkSweep::invoke_no_policy(maximum_heap_compaction);
+  }
+}
+
+// This method contains no policy. You should probably
+// be calling invoke() instead.
+void PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
+  assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
+  assert(ref_processor() != NULL, "Sanity");
+
+  if (GC_locker::check_active_before_gc()) {
+    return;
+  }
+
+  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
+  GCCause::Cause gc_cause = heap->gc_cause();
+  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
+  PSAdaptiveSizePolicy* size_policy = heap->size_policy();
+
+  PSYoungGen* young_gen = heap->young_gen();
+  PSOldGen* old_gen = heap->old_gen();
+  PSPermGen* perm_gen = heap->perm_gen();
+
+  // Increment the invocation count
+  heap->increment_total_collections(true /* full */);
+
+  // We need to track unique mark sweep invocations as well.
+  _total_invocations++;
+
+  AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
+
+  if (PrintHeapAtGC) {
+    Universe::print_heap_before_gc();
+  }
+
+  // Fill in TLABs
+  heap->accumulate_statistics_all_tlabs();
+  heap->ensure_parsability(true);  // retire TLABs
+
+  if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
+    HandleMark hm;  // Discard invalid handles created during verification
+    gclog_or_tty->print(" VerifyBeforeGC:");
+    Universe::verify(true);
+  }
+
+  // Verify object start arrays
+  if (VerifyObjectStartArray &&
+      VerifyBeforeGC) {
+    old_gen->verify_object_start_array();
+    perm_gen->verify_object_start_array();
+  }
+
+  // Filled in below to track the state of the young gen after the collection.
+  bool eden_empty;
+  bool survivors_empty;
+  bool young_gen_empty;
+
+  {
+    HandleMark hm;
+    const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;
+    // This is useful for debugging but don't change the output the
+    // the customer sees.
+    const char* gc_cause_str = "Full GC";
+    if (is_system_gc && PrintGCDetails) {
+      gc_cause_str = "Full GC (System)";
+    }
+    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
+    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
+    TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
+    TraceCollectorStats tcs(counters());
+    TraceMemoryManagerStats tms(true /* Full GC */);
+
+    if (TraceGen1Time) accumulated_time()->start();
+
+    // Let the size policy know we're starting
+    size_policy->major_collection_begin();
+
+    // When collecting the permanent generation methodOops may be moving,
+    // so we either have to flush all bcp data or convert it into bci.
+    CodeCache::gc_prologue();
+    Threads::gc_prologue();
+    BiasedLocking::preserve_marks();
+
+    // Capture heap size before collection for printing.
+    size_t prev_used = heap->used();
+
+    // Capture perm gen size before collection for sizing.
+    size_t perm_gen_prev_used = perm_gen->used_in_bytes();
+
+    // For PrintGCDetails
+    size_t old_gen_prev_used = old_gen->used_in_bytes();
+    size_t young_gen_prev_used = young_gen->used_in_bytes();
+
+    allocate_stacks();
+
+    NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
+    COMPILER2_PRESENT(DerivedPointerTable::clear());
+
+    ref_processor()->enable_discovery();
+
+    mark_sweep_phase1(clear_all_softrefs);
+
+    mark_sweep_phase2();
+
+    // Don't add any more derived pointers during phase3
+    COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
+    COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
+
+    mark_sweep_phase3();
+
+    mark_sweep_phase4();
+
+    restore_marks();
+
+    deallocate_stacks();
+
+    eden_empty = young_gen->eden_space()->is_empty();
+    if (!eden_empty) {
+      eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen);
+    }
+
+    // Update heap occupancy information which is used as
+    // input to soft ref clearing policy at the next gc.
+    Universe::update_heap_info_at_gc();
+
+    survivors_empty = young_gen->from_space()->is_empty() &&
+      young_gen->to_space()->is_empty();
+    young_gen_empty = eden_empty && survivors_empty;
+
+    BarrierSet* bs = heap->barrier_set();
+    if (bs->is_a(BarrierSet::ModRef)) {
+      ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
+      MemRegion old_mr = heap->old_gen()->reserved();
+      MemRegion perm_mr = heap->perm_gen()->reserved();
+      assert(perm_mr.end() <= old_mr.start(), "Generations out of order");
+
+      if (young_gen_empty) {
+        modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
+      } else {
+        modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
+      }
+    }
+
+    BiasedLocking::restore_marks();
+    Threads::gc_epilogue();
+    CodeCache::gc_epilogue();
+
+    COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
+
+    ref_processor()->enqueue_discovered_references(NULL);
+
+    // Update time of last GC
+    reset_millis_since_last_gc();
+
+    // Let the size policy know we're done
+    size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
+
+    if (UseAdaptiveSizePolicy) {
+
+      if (PrintAdaptiveSizePolicy) {
+        gclog_or_tty->print("AdaptiveSizeStart: ");
+        gclog_or_tty->stamp();
+        gclog_or_tty->print_cr(" collection: %d ",
+                       heap->total_collections());
+        if (Verbose) {
+          gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
+            " perm_gen_capacity: %d ",
+            old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
+            perm_gen->capacity_in_bytes());
+        }
+      }
+
+      // Don't check if the size_policy is ready here.  Let
+      // the size_policy check that internally.
+      if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
+          ((gc_cause != GCCause::_java_lang_system_gc) ||
+            UseAdaptiveSizePolicyWithSystemGC)) {
+        // Calculate optimal free space amounts
+        assert(young_gen->max_size() >
+          young_gen->from_space()->capacity_in_bytes() +
+          young_gen->to_space()->capacity_in_bytes(),
+          "Sizes of space in young gen are out-of-bounds");
+        size_t max_eden_size = young_gen->max_size() -
+          young_gen->from_space()->capacity_in_bytes() -
+          young_gen->to_space()->capacity_in_bytes();
+        size_policy->compute_generation_free_space(young_gen->used_in_bytes(),
+                                 young_gen->eden_space()->used_in_bytes(),
+                                 old_gen->used_in_bytes(),
+                                 perm_gen->used_in_bytes(),
+                                 young_gen->eden_space()->capacity_in_bytes(),
+                                 old_gen->max_gen_size(),
+                                 max_eden_size,
+                                 true /* full gc*/,
+                                 gc_cause);
+
+        heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
+
+        // Don't resize the young generation at an major collection.  A
+        // desired young generation size may have been calculated but
+        // resizing the young generation complicates the code because the
+        // resizing of the old generation may have moved the boundary
+        // between the young generation and the old generation.  Let the
+        // young generation resizing happen at the minor collections.
+      }
+      if (PrintAdaptiveSizePolicy) {
+        gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
+                       heap->total_collections());
+      }
+    }
+
+    if (UsePerfData) {
+      heap->gc_policy_counters()->update_counters();
+      heap->gc_policy_counters()->update_old_capacity(
+        old_gen->capacity_in_bytes());
+      heap->gc_policy_counters()->update_young_capacity(
+        young_gen->capacity_in_bytes());
+    }
+
+    heap->resize_all_tlabs();
+
+    // We collected the perm gen, so we'll resize it here.
+    perm_gen->compute_new_size(perm_gen_prev_used);
+
+    if (TraceGen1Time) accumulated_time()->stop();
+
+    if (PrintGC) {
+      if (PrintGCDetails) {
+        // Don't print a GC timestamp here.  This is after the GC so
+        // would be confusing.
+        young_gen->print_used_change(young_gen_prev_used);
+        old_gen->print_used_change(old_gen_prev_used);
+      }
+      heap->print_heap_change(prev_used);
+      // Do perm gen after heap becase prev_used does
+      // not include the perm gen (done this way in the other
+      // collectors).
+      if (PrintGCDetails) {
+        perm_gen->print_used_change(perm_gen_prev_used);
+      }
+    }
+
+    // Track memory usage and detect low memory
+    MemoryService::track_memory_usage();
+    heap->update_counters();
+
+    if (PrintGCDetails) {
+      if (size_policy->print_gc_time_limit_would_be_exceeded()) {
+        if (size_policy->gc_time_limit_exceeded()) {
+          gclog_or_tty->print_cr("      GC time is exceeding GCTimeLimit "
+            "of %d%%", GCTimeLimit);
+        } else {
+          gclog_or_tty->print_cr("      GC time would exceed GCTimeLimit "
+            "of %d%%", GCTimeLimit);
+        }
+      }
+      size_policy->set_print_gc_time_limit_would_be_exceeded(false);
+    }
+  }
+
+  if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
+    HandleMark hm;  // Discard invalid handles created during verification
+    gclog_or_tty->print(" VerifyAfterGC:");
+    Universe::verify(false);
+  }
+
+  // Re-verify object start arrays
+  if (VerifyObjectStartArray &&
+      VerifyAfterGC) {
+    old_gen->verify_object_start_array();
+    perm_gen->verify_object_start_array();
+  }
+
+  NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
+
+  if (PrintHeapAtGC) {
+    Universe::print_heap_after_gc();
+  }
+}
+
+bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
+                                             PSYoungGen* young_gen,
+                                             PSOldGen* old_gen) {
+  MutableSpace* const eden_space = young_gen->eden_space();
+  assert(!eden_space->is_empty(), "eden must be non-empty");
+  assert(young_gen->virtual_space()->alignment() ==
+         old_gen->virtual_space()->alignment(), "alignments do not match");
+
+  if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
+    return false;
+  }
+
+  // Both generations must be completely committed.
+  if (young_gen->virtual_space()->uncommitted_size() != 0) {
+    return false;
+  }
+  if (old_gen->virtual_space()->uncommitted_size() != 0) {
+    return false;
+  }
+
+  // Figure out how much to take from eden.  Include the average amount promoted
+  // in the total; otherwise the next young gen GC will simply bail out to a
+  // full GC.
+  const size_t alignment = old_gen->virtual_space()->alignment();
+  const size_t eden_used = eden_space->used_in_bytes();
+  const size_t promoted = (size_t)(size_policy->avg_promoted()->padded_average());
+  const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
+  const size_t eden_capacity = eden_space->capacity_in_bytes();
+
+  if (absorb_size >= eden_capacity) {
+    return false; // Must leave some space in eden.
+  }
+
+  const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
+  if (new_young_size < young_gen->min_gen_size()) {
+    return false; // Respect young gen minimum size.
+  }
+
+  if (TraceAdaptiveGCBoundary && Verbose) {
+    gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
+                        "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
+                        "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
+                        "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
+                        absorb_size / K,
+                        eden_capacity / K, (eden_capacity - absorb_size) / K,
+                        young_gen->from_space()->used_in_bytes() / K,
+                        young_gen->to_space()->used_in_bytes() / K,
+                        young_gen->capacity_in_bytes() / K, new_young_size / K);
+  }
+
+  // Fill the unused part of the old gen.
+  MutableSpace* const old_space = old_gen->object_space();
+  MemRegion old_gen_unused(old_space->top(), old_space->end());
+
+  // If the unused part of the old gen cannot be filled, skip
+  // absorbing eden.
+  if (old_gen_unused.word_size() < SharedHeap::min_fill_size()) {
+    return false;
+  }
+
+  if (!old_gen_unused.is_empty()) {
+    SharedHeap::fill_region_with_object(old_gen_unused);
+  }
+
+  // Take the live data from eden and set both top and end in the old gen to
+  // eden top.  (Need to set end because reset_after_change() mangles the region
+  // from end to virtual_space->high() in debug builds).
+  HeapWord* const new_top = eden_space->top();
+  old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
+                                        absorb_size);
+  young_gen->reset_after_change();
+  old_space->set_top(new_top);
+  old_space->set_end(new_top);
+  old_gen->reset_after_change();
+
+  // Update the object start array for the filler object and the data from eden.
+  ObjectStartArray* const start_array = old_gen->start_array();
+  HeapWord* const start = old_gen_unused.start();
+  for (HeapWord* addr = start; addr < new_top; addr += oop(addr)->size()) {
+    start_array->allocate_block(addr);
+  }
+
+  // Could update the promoted average here, but it is not typically updated at
+  // full GCs and the value to use is unclear.  Something like
+  //
+  // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
+
+  size_policy->set_bytes_absorbed_from_eden(absorb_size);
+  return true;
+}
+
+void PSMarkSweep::allocate_stacks() {
+  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
+  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
+
+  PSYoungGen* young_gen = heap->young_gen();
+
+  MutableSpace* to_space = young_gen->to_space();
+  _preserved_marks = (PreservedMark*)to_space->top();
+  _preserved_count = 0;
+
+  // We want to calculate the size in bytes first.
+  _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
+  // Now divide by the size of a PreservedMark
+  _preserved_count_max /= sizeof(PreservedMark);
+
+  _preserved_mark_stack = NULL;
+  _preserved_oop_stack = NULL;
+
+  _marking_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(4000, true);
+
+  int size = SystemDictionary::number_of_classes() * 2;
+  _revisit_klass_stack = new (ResourceObj::C_HEAP) GrowableArray<Klass*>(size, true);
+}
+
+
+void PSMarkSweep::deallocate_stacks() {
+  if (_preserved_oop_stack) {
+    delete _preserved_mark_stack;
+    _preserved_mark_stack = NULL;
+    delete _preserved_oop_stack;
+    _preserved_oop_stack = NULL;
+  }
+
+  delete _marking_stack;
+  delete _revisit_klass_stack;
+}
+
+void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
+  // Recursively traverse all live objects and mark them
+  EventMark m("1 mark object");
+  TraceTime tm("phase 1", PrintGCDetails && Verbose, true, gclog_or_tty);
+  trace(" 1");
+
+  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
+  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
+
+  // General strong roots.
+  Universe::oops_do(mark_and_push_closure());
+  ReferenceProcessor::oops_do(mark_and_push_closure());
+  JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
+  Threads::oops_do(mark_and_push_closure());
+  ObjectSynchronizer::oops_do(mark_and_push_closure());
+  FlatProfiler::oops_do(mark_and_push_closure());
+  Management::oops_do(mark_and_push_closure());
+  JvmtiExport::oops_do(mark_and_push_closure());
+  SystemDictionary::always_strong_oops_do(mark_and_push_closure());
+  vmSymbols::oops_do(mark_and_push_closure());
+
+  // Flush marking stack.
+  follow_stack();
+
+  // Process reference objects found during marking
+
+  // Skipping the reference processing for VerifyParallelOldWithMarkSweep
+  // affects the marking (makes it different).
+  {
+    ReferencePolicy *soft_ref_policy;
+    if (clear_all_softrefs) {
+      soft_ref_policy = new AlwaysClearPolicy();
+    } else {
+#ifdef COMPILER2
+      soft_ref_policy = new LRUMaxHeapPolicy();
+#else
+      soft_ref_policy = new LRUCurrentHeapPolicy();
+#endif // COMPILER2
+    }
+    assert(soft_ref_policy != NULL,"No soft reference policy");
+    ref_processor()->process_discovered_references(
+      soft_ref_policy, is_alive_closure(), mark_and_push_closure(),
+      follow_stack_closure(), NULL);
+  }
+
+  // Follow system dictionary roots and unload classes
+  bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
+
+  // Follow code cache roots
+  CodeCache::do_unloading(is_alive_closure(), mark_and_push_closure(),
+                          purged_class);
+  follow_stack(); // Flush marking stack
+
+  // Update subklass/sibling/implementor links of live klasses
+  follow_weak_klass_links();
+  assert(_marking_stack->is_empty(), "just drained");
+
+  // Visit symbol and interned string tables and delete unmarked oops
+  SymbolTable::unlink(is_alive_closure());
+  StringTable::unlink(is_alive_closure());
+
+  assert(_marking_stack->is_empty(), "stack should be empty by now");
+}
+
+
+void PSMarkSweep::mark_sweep_phase2() {
+  EventMark m("2 compute new addresses");
+  TraceTime tm("phase 2", PrintGCDetails && Verbose, true, gclog_or_tty);
+  trace("2");
+
+  // Now all live objects are marked, compute the new object addresses.
+
+  // It is imperative that we traverse perm_gen LAST. If dead space is
+  // allowed a range of dead object may get overwritten by a dead int
+  // array. If perm_gen is not traversed last a klassOop may get
+  // overwritten. This is fine since it is dead, but if the class has dead
+  // instances we have to skip them, and in order to find their size we
+  // need the klassOop!
+  //
+  // It is not required that we traverse spaces in the same order in
+  // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
+  // tracking expects us to do so. See comment under phase4.
+
+  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
+  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
+
+  PSOldGen* old_gen = heap->old_gen();
+  PSPermGen* perm_gen = heap->perm_gen();
+
+  // Begin compacting into the old gen
+  PSMarkSweepDecorator::set_destination_decorator_tenured();
+
+  // This will also compact the young gen spaces.
+  old_gen->precompact();
+
+  // Compact the perm gen into the perm gen
+  PSMarkSweepDecorator::set_destination_decorator_perm_gen();
+
+  perm_gen->precompact();
+}
+
+// This should be moved to the shared markSweep code!
+class PSAlwaysTrueClosure: public BoolObjectClosure {
+public:
+  void do_object(oop p) { ShouldNotReachHere(); }
+  bool do_object_b(oop p) { return true; }
+};
+static PSAlwaysTrueClosure always_true;
+
+void PSMarkSweep::mark_sweep_phase3() {
+  // Adjust the pointers to reflect the new locations
+  EventMark m("3 adjust pointers");
+  TraceTime tm("phase 3", PrintGCDetails && Verbose, true, gclog_or_tty);
+  trace("3");
+
+  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
+  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
+
+  PSYoungGen* young_gen = heap->young_gen();
+  PSOldGen* old_gen = heap->old_gen();
+  PSPermGen* perm_gen = heap->perm_gen();
+
+  // General strong roots.
+  Universe::oops_do(adjust_root_pointer_closure());
+  ReferenceProcessor::oops_do(adjust_root_pointer_closure());
+  JNIHandles::oops_do(adjust_root_pointer_closure());   // Global (strong) JNI handles
+  Threads::oops_do(adjust_root_pointer_closure());
+  ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
+  FlatProfiler::oops_do(adjust_root_pointer_closure());
+  Management::oops_do(adjust_root_pointer_closure());
+  JvmtiExport::oops_do(adjust_root_pointer_closure());
+  // SO_AllClasses
+  SystemDictionary::oops_do(adjust_root_pointer_closure());
+  vmSymbols::oops_do(adjust_root_pointer_closure());
+
+  // Now adjust pointers in remaining weak roots.  (All of which should
+  // have been cleared if they pointed to non-surviving objects.)
+  // Global (weak) JNI handles
+  JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
+
+  CodeCache::oops_do(adjust_pointer_closure());
+  SymbolTable::oops_do(adjust_root_pointer_closure());
+  StringTable::oops_do(adjust_root_pointer_closure());
+  ref_processor()->weak_oops_do(adjust_root_pointer_closure());
+  PSScavenge::reference_processor()->weak_oops_do(adjust_root_pointer_closure());
+
+  adjust_marks();
+
+  young_gen->adjust_pointers();
+  old_gen->adjust_pointers();
+  perm_gen->adjust_pointers();
+}
+
+void PSMarkSweep::mark_sweep_phase4() {
+  EventMark m("4 compact heap");
+  TraceTime tm("phase 4", PrintGCDetails && Verbose, true, gclog_or_tty);
+  trace("4");
+
+  // All pointers are now adjusted, move objects accordingly
+
+  // It is imperative that we traverse perm_gen first in phase4. All
+  // classes must be allocated earlier than their instances, and traversing
+  // perm_gen first makes sure that all klassOops have moved to their new
+  // location before any instance does a dispatch through it's klass!
+  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
+  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
+
+  PSYoungGen* young_gen = heap->young_gen();
+  PSOldGen* old_gen = heap->old_gen();
+  PSPermGen* perm_gen = heap->perm_gen();
+
+  perm_gen->compact();
+  old_gen->compact();
+  young_gen->compact();
+}
+
+jlong PSMarkSweep::millis_since_last_gc() {
+  jlong ret_val = os::javaTimeMillis() - _time_of_last_gc;
+  // XXX See note in genCollectedHeap::millis_since_last_gc().
+  if (ret_val < 0) {
+    NOT_PRODUCT(warning("time warp: %d", ret_val);)
+    return 0;
+  }
+  return ret_val;
+}
+
+void PSMarkSweep::reset_millis_since_last_gc() {
+  _time_of_last_gc = os::javaTimeMillis();
+}