hotspot/src/share/vm/gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp
changeset 1 489c9b5090e2
child 5343 95a5c4b89273
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,384 @@
+/*
+ * Copyright 2002-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+// This class keeps statistical information and computes the
+// optimal free space for both the young and old generation
+// based on current application characteristics (based on gc cost
+// and application footprint).
+//
+// It also computes an optimal tenuring threshold between the young
+// and old generations, so as to equalize the cost of collections
+// of those generations, as well as optimial survivor space sizes
+// for the young generation.
+//
+// While this class is specifically intended for a generational system
+// consisting of a young gen (containing an Eden and two semi-spaces)
+// and a tenured gen, as well as a perm gen for reflective data, it
+// makes NO references to specific generations.
+//
+// 05/02/2003 Update
+// The 1.5 policy makes use of data gathered for the costs of GC on
+// specific generations.  That data does reference specific
+// generation.  Also diagnostics specific to generations have
+// been added.
+
+// Forward decls
+class elapsedTimer;
+
+class PSAdaptiveSizePolicy : public AdaptiveSizePolicy {
+ friend class PSGCAdaptivePolicyCounters;
+ private:
+  // These values are used to record decisions made during the
+  // policy.  For example, if the young generation was decreased
+  // to decrease the GC cost of minor collections the value
+  // decrease_young_gen_for_throughput_true is used.
+
+  // Last calculated sizes, in bytes, and aligned
+  // NEEDS_CLEANUP should use sizes.hpp,  but it works in ints, not size_t's
+
+  // Time statistics
+  AdaptivePaddedAverage* _avg_major_pause;
+
+  // Footprint statistics
+  AdaptiveWeightedAverage* _avg_base_footprint;
+
+  // Statistical data gathered for GC
+  GCStats _gc_stats;
+
+  size_t _survivor_size_limit;   // Limit in bytes of survivor size
+  const double _collection_cost_margin_fraction;
+
+  // Variable for estimating the major and minor pause times.
+  // These variables represent linear least-squares fits of
+  // the data.
+  //   major pause time vs. old gen size
+  LinearLeastSquareFit* _major_pause_old_estimator;
+  //   major pause time vs. young gen size
+  LinearLeastSquareFit* _major_pause_young_estimator;
+
+
+  // These record the most recent collection times.  They
+  // are available as an alternative to using the averages
+  // for making ergonomic decisions.
+  double _latest_major_mutator_interval_seconds;
+
+  const size_t _intra_generation_alignment; // alignment for eden, survivors
+
+  const double _gc_minor_pause_goal_sec;    // goal for maximum minor gc pause
+
+  // The amount of live data in the heap at the last full GC, used
+  // as a baseline to help us determine when we need to perform the
+  // next full GC.
+  size_t _live_at_last_full_gc;
+
+  // decrease/increase the old generation for minor pause time
+  int _change_old_gen_for_min_pauses;
+
+  // increase/decrease the young generation for major pause time
+  int _change_young_gen_for_maj_pauses;
+
+
+  // Flag indicating that the adaptive policy is ready to use
+  bool _old_gen_policy_is_ready;
+
+  // Changing the generation sizing depends on the data that is
+  // gathered about the effects of changes on the pause times and
+  // throughput.  These variable count the number of data points
+  // gathered.  The policy may use these counters as a threshhold
+  // for reliable data.
+  julong _young_gen_change_for_major_pause_count;
+
+  // To facilitate faster growth at start up, supplement the normal
+  // growth percentage for the young gen eden and the
+  // old gen space for promotion with these value which decay
+  // with increasing collections.
+  uint _young_gen_size_increment_supplement;
+  uint _old_gen_size_increment_supplement;
+
+  // The number of bytes absorbed from eden into the old gen by moving the
+  // boundary over live data.
+  size_t _bytes_absorbed_from_eden;
+
+ private:
+
+  // Accessors
+  AdaptivePaddedAverage* avg_major_pause() const { return _avg_major_pause; }
+  double gc_minor_pause_goal_sec() const { return _gc_minor_pause_goal_sec; }
+
+  // Change the young generation size to achieve a minor GC pause time goal
+  void adjust_for_minor_pause_time(bool is_full_gc,
+                                   size_t* desired_promo_size_ptr,
+                                   size_t* desired_eden_size_ptr);
+  // Change the generation sizes to achieve a GC pause time goal
+  // Returned sizes are not necessarily aligned.
+  void adjust_for_pause_time(bool is_full_gc,
+                         size_t* desired_promo_size_ptr,
+                         size_t* desired_eden_size_ptr);
+  // Change the generation sizes to achieve an application throughput goal
+  // Returned sizes are not necessarily aligned.
+  void adjust_for_throughput(bool is_full_gc,
+                             size_t* desired_promo_size_ptr,
+                             size_t* desired_eden_size_ptr);
+  // Change the generation sizes to achieve minimum footprint
+  // Returned sizes are not aligned.
+  size_t adjust_promo_for_footprint(size_t desired_promo_size,
+                                    size_t desired_total);
+  size_t adjust_eden_for_footprint(size_t desired_promo_size,
+                                   size_t desired_total);
+
+  // Size in bytes for an increment or decrement of eden.
+  virtual size_t eden_increment(size_t cur_eden, uint percent_change);
+  virtual size_t eden_decrement(size_t cur_eden);
+  size_t eden_decrement_aligned_down(size_t cur_eden);
+  size_t eden_increment_with_supplement_aligned_up(size_t cur_eden);
+
+  // Size in bytes for an increment or decrement of the promotion area
+  virtual size_t promo_increment(size_t cur_promo, uint percent_change);
+  virtual size_t promo_decrement(size_t cur_promo);
+  size_t promo_decrement_aligned_down(size_t cur_promo);
+  size_t promo_increment_with_supplement_aligned_up(size_t cur_promo);
+
+  // Decay the supplemental growth additive.
+  void decay_supplemental_growth(bool is_full_gc);
+
+  // Returns a change that has been scaled down.  Result
+  // is not aligned.  (If useful, move to some shared
+  // location.)
+  size_t scale_down(size_t change, double part, double total);
+
+ protected:
+  // Time accessors
+
+  // Footprint accessors
+  size_t live_space() const {
+    return (size_t)(avg_base_footprint()->average() +
+                    avg_young_live()->average() +
+                    avg_old_live()->average());
+  }
+  size_t free_space() const {
+    return _eden_size + _promo_size;
+  }
+
+  void set_promo_size(size_t new_size) {
+    _promo_size = new_size;
+  }
+  void set_survivor_size(size_t new_size) {
+    _survivor_size = new_size;
+  }
+
+  // Update estimators
+  void update_minor_pause_old_estimator(double minor_pause_in_ms);
+
+  virtual GCPolicyKind kind() const { return _gc_ps_adaptive_size_policy; }
+
+ public:
+  // Use by ASPSYoungGen and ASPSOldGen to limit boundary moving.
+  size_t eden_increment_aligned_up(size_t cur_eden);
+  size_t eden_increment_aligned_down(size_t cur_eden);
+  size_t promo_increment_aligned_up(size_t cur_promo);
+  size_t promo_increment_aligned_down(size_t cur_promo);
+
+  virtual size_t eden_increment(size_t cur_eden);
+  virtual size_t promo_increment(size_t cur_promo);
+
+  // Accessors for use by performance counters
+  AdaptivePaddedNoZeroDevAverage*  avg_promoted() const {
+    return _gc_stats.avg_promoted();
+  }
+  AdaptiveWeightedAverage* avg_base_footprint() const {
+    return _avg_base_footprint;
+  }
+
+  // Input arguments are initial free space sizes for young and old
+  // generations, the initial survivor space size, the
+  // alignment values and the pause & throughput goals.
+  //
+  // NEEDS_CLEANUP this is a singleton object
+  PSAdaptiveSizePolicy(size_t init_eden_size,
+                       size_t init_promo_size,
+                       size_t init_survivor_size,
+                       size_t intra_generation_alignment,
+                       double gc_pause_goal_sec,
+                       double gc_minor_pause_goal_sec,
+                       uint gc_time_ratio);
+
+  // Methods indicating events of interest to the adaptive size policy,
+  // called by GC algorithms. It is the responsibility of users of this
+  // policy to call these methods at the correct times!
+  void major_collection_begin();
+  void major_collection_end(size_t amount_live, GCCause::Cause gc_cause);
+
+  //
+  void tenured_allocation(size_t size) {
+    _avg_pretenured->sample(size);
+  }
+
+  // Accessors
+  // NEEDS_CLEANUP   should use sizes.hpp
+
+  size_t calculated_old_free_size_in_bytes() const {
+    return (size_t)(_promo_size + avg_promoted()->padded_average());
+  }
+
+  size_t average_old_live_in_bytes() const {
+    return (size_t) avg_old_live()->average();
+  }
+
+  size_t average_promoted_in_bytes() const {
+    return (size_t)avg_promoted()->average();
+  }
+
+  size_t padded_average_promoted_in_bytes() const {
+    return (size_t)avg_promoted()->padded_average();
+  }
+
+  int change_young_gen_for_maj_pauses() {
+    return _change_young_gen_for_maj_pauses;
+  }
+  void set_change_young_gen_for_maj_pauses(int v) {
+    _change_young_gen_for_maj_pauses = v;
+  }
+
+  int change_old_gen_for_min_pauses() {
+    return _change_old_gen_for_min_pauses;
+  }
+  void set_change_old_gen_for_min_pauses(int v) {
+    _change_old_gen_for_min_pauses = v;
+  }
+
+  // Return true if the old generation size was changed
+  // to try to reach a pause time goal.
+  bool old_gen_changed_for_pauses() {
+    bool result = _change_old_gen_for_maj_pauses != 0 ||
+                  _change_old_gen_for_min_pauses != 0;
+    return result;
+  }
+
+  // Return true if the young generation size was changed
+  // to try to reach a pause time goal.
+  bool young_gen_changed_for_pauses() {
+    bool result = _change_young_gen_for_min_pauses != 0 ||
+                  _change_young_gen_for_maj_pauses != 0;
+    return result;
+  }
+  // end flags for pause goal
+
+  // Return true if the old generation size was changed
+  // to try to reach a throughput goal.
+  bool old_gen_changed_for_throughput() {
+    bool result = _change_old_gen_for_throughput != 0;
+    return result;
+  }
+
+  // Return true if the young generation size was changed
+  // to try to reach a throughput goal.
+  bool young_gen_changed_for_throughput() {
+    bool result = _change_young_gen_for_throughput != 0;
+    return result;
+  }
+
+  int decrease_for_footprint() { return _decrease_for_footprint; }
+
+
+  // Accessors for estimators.  The slope of the linear fit is
+  // currently all that is used for making decisions.
+
+  LinearLeastSquareFit* major_pause_old_estimator() {
+    return _major_pause_old_estimator;
+  }
+
+  LinearLeastSquareFit* major_pause_young_estimator() {
+    return _major_pause_young_estimator;
+  }
+
+
+  virtual void clear_generation_free_space_flags();
+
+  float major_pause_old_slope() { return _major_pause_old_estimator->slope(); }
+  float major_pause_young_slope() {
+    return _major_pause_young_estimator->slope();
+  }
+  float major_collection_slope() { return _major_collection_estimator->slope();}
+
+  bool old_gen_policy_is_ready() { return _old_gen_policy_is_ready; }
+
+  // Given the amount of live data in the heap, should we
+  // perform a Full GC?
+  bool should_full_GC(size_t live_in_old_gen);
+
+  // Calculates optimial free space sizes for both the old and young
+  // generations.  Stores results in _eden_size and _promo_size.
+  // Takes current used space in all generations as input, as well
+  // as an indication if a full gc has just been performed, for use
+  // in deciding if an OOM error should be thrown.
+  void compute_generation_free_space(size_t young_live,
+                                     size_t eden_live,
+                                     size_t old_live,
+                                     size_t perm_live,
+                                     size_t cur_eden,  // current eden in bytes
+                                     size_t max_old_gen_size,
+                                     size_t max_eden_size,
+                                     bool   is_full_gc,
+                                     GCCause::Cause gc_cause);
+
+  // Calculates new survivor space size;  returns a new tenuring threshold
+  // value. Stores new survivor size in _survivor_size.
+  int compute_survivor_space_size_and_threshold(bool   is_survivor_overflow,
+                                                int    tenuring_threshold,
+                                                size_t survivor_limit);
+
+  // Return the maximum size of a survivor space if the young generation were of
+  // size gen_size.
+  size_t max_survivor_size(size_t gen_size) {
+    // Never allow the target survivor size to grow more than MinSurvivorRatio
+    // of the young generation size.  We cannot grow into a two semi-space
+    // system, with Eden zero sized.  Even if the survivor space grows, from()
+    // might grow by moving the bottom boundary "down" -- so from space will
+    // remain almost full anyway (top() will be near end(), but there will be a
+    // large filler object at the bottom).
+    const size_t sz = gen_size / MinSurvivorRatio;
+    const size_t alignment = _intra_generation_alignment;
+    return sz > alignment ? align_size_down(sz, alignment) : alignment;
+  }
+
+  size_t live_at_last_full_gc() {
+    return _live_at_last_full_gc;
+  }
+
+  size_t bytes_absorbed_from_eden() const { return _bytes_absorbed_from_eden; }
+  void   reset_bytes_absorbed_from_eden() { _bytes_absorbed_from_eden = 0; }
+
+  void set_bytes_absorbed_from_eden(size_t val) {
+    _bytes_absorbed_from_eden = val;
+  }
+
+  // Update averages that are always used (even
+  // if adaptive sizing is turned off).
+  void update_averages(bool is_survivor_overflow,
+                       size_t survived,
+                       size_t promoted);
+
+  // Printing support
+  virtual bool print_adaptive_size_policy_on(outputStream* st) const;
+};