hotspot/src/share/vm/gc_implementation/parallelScavenge/psAdaptiveSizePolicy.cpp
changeset 1 489c9b5090e2
child 5343 95a5c4b89273
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/gc_implementation/parallelScavenge/psAdaptiveSizePolicy.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,1175 @@
+/*
+ * Copyright 2002-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_psAdaptiveSizePolicy.cpp.incl"
+
+#include <math.h>
+
+PSAdaptiveSizePolicy::PSAdaptiveSizePolicy(size_t init_eden_size,
+                                           size_t init_promo_size,
+                                           size_t init_survivor_size,
+                                           size_t intra_generation_alignment,
+                                           double gc_pause_goal_sec,
+                                           double gc_minor_pause_goal_sec,
+                                           uint gc_cost_ratio) :
+     AdaptiveSizePolicy(init_eden_size,
+                        init_promo_size,
+                        init_survivor_size,
+                        gc_pause_goal_sec,
+                        gc_cost_ratio),
+     _collection_cost_margin_fraction(AdaptiveSizePolicyCollectionCostMargin/
+       100.0),
+     _intra_generation_alignment(intra_generation_alignment),
+     _live_at_last_full_gc(init_promo_size),
+     _gc_minor_pause_goal_sec(gc_minor_pause_goal_sec),
+     _latest_major_mutator_interval_seconds(0),
+     _young_gen_change_for_major_pause_count(0)
+{
+  // Sizing policy statistics
+  _avg_major_pause    =
+    new AdaptivePaddedAverage(AdaptiveTimeWeight, PausePadding);
+  _avg_minor_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
+  _avg_major_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
+
+  _avg_base_footprint = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
+  _major_pause_old_estimator =
+    new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
+  _major_pause_young_estimator =
+    new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
+  _major_collection_estimator =
+    new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
+
+  _young_gen_size_increment_supplement = YoungGenerationSizeSupplement;
+  _old_gen_size_increment_supplement = TenuredGenerationSizeSupplement;
+
+  // Start the timers
+  _major_timer.start();
+
+  _old_gen_policy_is_ready = false;
+}
+
+void PSAdaptiveSizePolicy::major_collection_begin() {
+  // Update the interval time
+  _major_timer.stop();
+  // Save most recent collection time
+  _latest_major_mutator_interval_seconds = _major_timer.seconds();
+  _major_timer.reset();
+  _major_timer.start();
+}
+
+void PSAdaptiveSizePolicy::update_minor_pause_old_estimator(
+    double minor_pause_in_ms) {
+  double promo_size_in_mbytes = ((double)_promo_size)/((double)M);
+  _minor_pause_old_estimator->update(promo_size_in_mbytes,
+    minor_pause_in_ms);
+}
+
+void PSAdaptiveSizePolicy::major_collection_end(size_t amount_live,
+  GCCause::Cause gc_cause) {
+  // Update the pause time.
+  _major_timer.stop();
+
+  if (gc_cause != GCCause::_java_lang_system_gc ||
+      UseAdaptiveSizePolicyWithSystemGC) {
+    double major_pause_in_seconds = _major_timer.seconds();
+    double major_pause_in_ms = major_pause_in_seconds * MILLIUNITS;
+
+    // Sample for performance counter
+    _avg_major_pause->sample(major_pause_in_seconds);
+
+    // Cost of collection (unit-less)
+    double collection_cost = 0.0;
+    if ((_latest_major_mutator_interval_seconds > 0.0) &&
+        (major_pause_in_seconds > 0.0)) {
+      double interval_in_seconds =
+        _latest_major_mutator_interval_seconds + major_pause_in_seconds;
+      collection_cost =
+        major_pause_in_seconds / interval_in_seconds;
+      avg_major_gc_cost()->sample(collection_cost);
+
+      // Sample for performance counter
+      _avg_major_interval->sample(interval_in_seconds);
+    }
+
+    // Calculate variables used to estimate pause time vs. gen sizes
+    double eden_size_in_mbytes = ((double)_eden_size)/((double)M);
+    double promo_size_in_mbytes = ((double)_promo_size)/((double)M);
+    _major_pause_old_estimator->update(promo_size_in_mbytes,
+      major_pause_in_ms);
+    _major_pause_young_estimator->update(eden_size_in_mbytes,
+      major_pause_in_ms);
+
+    if (PrintAdaptiveSizePolicy && Verbose) {
+      gclog_or_tty->print("psAdaptiveSizePolicy::major_collection_end: "
+        "major gc cost: %f  average: %f", collection_cost,
+        avg_major_gc_cost()->average());
+      gclog_or_tty->print_cr("  major pause: %f major period %f",
+        major_pause_in_ms,
+        _latest_major_mutator_interval_seconds * MILLIUNITS);
+    }
+
+    // Calculate variable used to estimate collection cost vs. gen sizes
+    assert(collection_cost >= 0.0, "Expected to be non-negative");
+    _major_collection_estimator->update(promo_size_in_mbytes,
+        collection_cost);
+  }
+
+  // Update the amount live at the end of a full GC
+  _live_at_last_full_gc = amount_live;
+
+  // The policy does not have enough data until at least some major collections
+  // have been done.
+  if (_avg_major_pause->count() >= AdaptiveSizePolicyReadyThreshold) {
+    _old_gen_policy_is_ready = true;
+  }
+
+  // Interval times use this timer to measure the interval that
+  // the mutator runs.  Reset after the GC pause has been measured.
+  _major_timer.reset();
+  _major_timer.start();
+}
+
+// If the remaining free space in the old generation is less that
+// that expected to be needed by the next collection, do a full
+// collection now.
+bool PSAdaptiveSizePolicy::should_full_GC(size_t old_free_in_bytes) {
+
+  // A similar test is done in the scavenge's should_attempt_scavenge().  If
+  // this is changed, decide if that test should also be changed.
+  bool result = padded_average_promoted_in_bytes() > (float) old_free_in_bytes;
+  if (PrintGCDetails && Verbose) {
+    if (result) {
+      gclog_or_tty->print("  full after scavenge: ");
+    } else {
+      gclog_or_tty->print("  no full after scavenge: ");
+    }
+    gclog_or_tty->print_cr(" average_promoted " SIZE_FORMAT
+      " padded_average_promoted " SIZE_FORMAT
+      " free in old gen " SIZE_FORMAT,
+      (size_t) average_promoted_in_bytes(),
+      (size_t) padded_average_promoted_in_bytes(),
+      old_free_in_bytes);
+  }
+  return result;
+}
+
+void PSAdaptiveSizePolicy::clear_generation_free_space_flags() {
+
+  AdaptiveSizePolicy::clear_generation_free_space_flags();
+
+  set_change_old_gen_for_min_pauses(0);
+
+  set_change_young_gen_for_maj_pauses(0);
+}
+
+
+// If this is not a full GC, only test and modify the young generation.
+
+void PSAdaptiveSizePolicy::compute_generation_free_space(size_t young_live,
+                                               size_t eden_live,
+                                               size_t old_live,
+                                               size_t perm_live,
+                                               size_t cur_eden,
+                                               size_t max_old_gen_size,
+                                               size_t max_eden_size,
+                                               bool   is_full_gc,
+                                               GCCause::Cause gc_cause) {
+
+  // Update statistics
+  // Time statistics are updated as we go, update footprint stats here
+  _avg_base_footprint->sample(BaseFootPrintEstimate + perm_live);
+  avg_young_live()->sample(young_live);
+  avg_eden_live()->sample(eden_live);
+  if (is_full_gc) {
+    // old_live is only accurate after a full gc
+    avg_old_live()->sample(old_live);
+  }
+
+  // This code used to return if the policy was not ready , i.e.,
+  // policy_is_ready() returning false.  The intent was that
+  // decisions below needed major collection times and so could
+  // not be made before two major collections.  A consequence was
+  // adjustments to the young generation were not done until after
+  // two major collections even if the minor collections times
+  // exceeded the requested goals.  Now let the young generation
+  // adjust for the minor collection times.  Major collection times
+  // will be zero for the first collection and will naturally be
+  // ignored.  Tenured generation adjustments are only made at the
+  // full collections so until the second major collection has
+  // been reached, no tenured generation adjustments will be made.
+
+  // Until we know better, desired promotion size uses the last calculation
+  size_t desired_promo_size = _promo_size;
+
+  // Start eden at the current value.  The desired value that is stored
+  // in _eden_size is not bounded by constraints of the heap and can
+  // run away.
+  //
+  // As expected setting desired_eden_size to the current
+  // value of desired_eden_size as a starting point
+  // caused desired_eden_size to grow way too large and caused
+  // an overflow down stream.  It may have improved performance in
+  // some case but is dangerous.
+  size_t desired_eden_size = cur_eden;
+
+#ifdef ASSERT
+  size_t original_promo_size = desired_promo_size;
+  size_t original_eden_size = desired_eden_size;
+#endif
+
+  // Cache some values. There's a bit of work getting these, so
+  // we might save a little time.
+  const double major_cost = major_gc_cost();
+  const double minor_cost = minor_gc_cost();
+
+  // Used for diagnostics
+  clear_generation_free_space_flags();
+
+  // Limits on our growth
+  size_t promo_limit = (size_t)(max_old_gen_size - avg_old_live()->average());
+
+  // This method sets the desired eden size.  That plus the
+  // desired survivor space sizes sets the desired young generation
+  // size.  This methods does not know what the desired survivor
+  // size is but expects that other policy will attempt to make
+  // the survivor sizes compatible with the live data in the
+  // young generation.  This limit is an estimate of the space left
+  // in the young generation after the survivor spaces have been
+  // subtracted out.
+  size_t eden_limit = max_eden_size;
+
+  // But don't force a promo size below the current promo size. Otherwise,
+  // the promo size will shrink for no good reason.
+  promo_limit = MAX2(promo_limit, _promo_size);
+
+  const double gc_cost_limit = GCTimeLimit/100.0;
+
+  // Which way should we go?
+  // if pause requirement is not met
+  //   adjust size of any generation with average paus exceeding
+  //   the pause limit.  Adjust one pause at a time (the larger)
+  //   and only make adjustments for the major pause at full collections.
+  // else if throughput requirement not met
+  //   adjust the size of the generation with larger gc time.  Only
+  //   adjust one generation at a time.
+  // else
+  //   adjust down the total heap size.  Adjust down the larger of the
+  //   generations.
+
+  // Add some checks for a threshhold for a change.  For example,
+  // a change less than the necessary alignment is probably not worth
+  // attempting.
+
+
+  if ((_avg_minor_pause->padded_average() > gc_pause_goal_sec()) ||
+      (_avg_major_pause->padded_average() > gc_pause_goal_sec())) {
+    //
+    // Check pauses
+    //
+    // Make changes only to affect one of the pauses (the larger)
+    // at a time.
+    adjust_for_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size);
+
+  } else if (_avg_minor_pause->padded_average() > gc_minor_pause_goal_sec()) {
+    // Adjust only for the minor pause time goal
+    adjust_for_minor_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size);
+
+  } else if(adjusted_mutator_cost() < _throughput_goal) {
+    // This branch used to require that (mutator_cost() > 0.0 in 1.4.2.
+    // This sometimes resulted in skipping to the minimize footprint
+    // code.  Change this to try and reduce GC time if mutator time is
+    // negative for whatever reason.  Or for future consideration,
+    // bail out of the code if mutator time is negative.
+    //
+    // Throughput
+    //
+    assert(major_cost >= 0.0, "major cost is < 0.0");
+    assert(minor_cost >= 0.0, "minor cost is < 0.0");
+    // Try to reduce the GC times.
+    adjust_for_throughput(is_full_gc, &desired_promo_size, &desired_eden_size);
+
+  } else {
+
+    // Be conservative about reducing the footprint.
+    //   Do a minimum number of major collections first.
+    //   Have reasonable averages for major and minor collections costs.
+    if (UseAdaptiveSizePolicyFootprintGoal &&
+        young_gen_policy_is_ready() &&
+        avg_major_gc_cost()->average() >= 0.0 &&
+        avg_minor_gc_cost()->average() >= 0.0) {
+      size_t desired_sum = desired_eden_size + desired_promo_size;
+      desired_eden_size = adjust_eden_for_footprint(desired_eden_size,
+                                                    desired_sum);
+      if (is_full_gc) {
+        set_decide_at_full_gc(decide_at_full_gc_true);
+        desired_promo_size = adjust_promo_for_footprint(desired_promo_size,
+                                                        desired_sum);
+      }
+    }
+  }
+
+  // Note we make the same tests as in the code block below;  the code
+  // seems a little easier to read with the printing in another block.
+  if (PrintAdaptiveSizePolicy) {
+    if (desired_promo_size > promo_limit)  {
+      // "free_in_old_gen" was the original value for used for promo_limit
+      size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average());
+      gclog_or_tty->print_cr(
+            "PSAdaptiveSizePolicy::compute_generation_free_space limits:"
+            " desired_promo_size: " SIZE_FORMAT
+            " promo_limit: " SIZE_FORMAT
+            " free_in_old_gen: " SIZE_FORMAT
+            " max_old_gen_size: " SIZE_FORMAT
+            " avg_old_live: " SIZE_FORMAT,
+            desired_promo_size, promo_limit, free_in_old_gen,
+            max_old_gen_size, (size_t) avg_old_live()->average());
+    }
+    if (desired_eden_size > eden_limit) {
+      gclog_or_tty->print_cr(
+            "AdaptiveSizePolicy::compute_generation_free_space limits:"
+            " desired_eden_size: " SIZE_FORMAT
+            " old_eden_size: " SIZE_FORMAT
+            " eden_limit: " SIZE_FORMAT
+            " cur_eden: " SIZE_FORMAT
+            " max_eden_size: " SIZE_FORMAT
+            " avg_young_live: " SIZE_FORMAT,
+            desired_eden_size, _eden_size, eden_limit, cur_eden,
+            max_eden_size, (size_t)avg_young_live()->average());
+    }
+    if (gc_cost() > gc_cost_limit) {
+      gclog_or_tty->print_cr(
+            "AdaptiveSizePolicy::compute_generation_free_space: gc time limit"
+            " gc_cost: %f "
+            " GCTimeLimit: %d",
+            gc_cost(), GCTimeLimit);
+    }
+  }
+
+  // Align everything and make a final limit check
+  const size_t alignment = _intra_generation_alignment;
+  desired_eden_size  = align_size_up(desired_eden_size, alignment);
+  desired_eden_size  = MAX2(desired_eden_size, alignment);
+  desired_promo_size = align_size_up(desired_promo_size, alignment);
+  desired_promo_size = MAX2(desired_promo_size, alignment);
+
+  eden_limit  = align_size_down(eden_limit, alignment);
+  promo_limit = align_size_down(promo_limit, alignment);
+
+  // Is too much time being spent in GC?
+  //   Is the heap trying to grow beyond it's limits?
+
+  const size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average());
+  if (desired_promo_size > free_in_old_gen && desired_eden_size > eden_limit) {
+
+    // eden_limit is the upper limit on the size of eden based on
+    // the maximum size of the young generation and the sizes
+    // of the survivor space.
+    // The question being asked is whether the gc costs are high
+    // and the space being recovered by a collection is low.
+    // free_in_young_gen is the free space in the young generation
+    // after a collection and promo_live is the free space in the old
+    // generation after a collection.
+    //
+    // Use the minimum of the current value of the live in the
+    // young gen or the average of the live in the young gen.
+    // If the current value drops quickly, that should be taken
+    // into account (i.e., don't trigger if the amount of free
+    // space has suddenly jumped up).  If the current is much
+    // higher than the average, use the average since it represents
+    // the longer term behavor.
+    const size_t live_in_eden = MIN2(eden_live, (size_t) avg_eden_live()->average());
+    const size_t free_in_eden = eden_limit > live_in_eden ?
+      eden_limit - live_in_eden : 0;
+    const size_t total_free_limit = free_in_old_gen + free_in_eden;
+    const size_t total_mem = max_old_gen_size + max_eden_size;
+    const double mem_free_limit = total_mem * (GCHeapFreeLimit/100.0);
+    if (PrintAdaptiveSizePolicy && (Verbose ||
+        (total_free_limit < (size_t) mem_free_limit))) {
+      gclog_or_tty->print_cr(
+            "PSAdaptiveSizePolicy::compute_generation_free_space limits:"
+            " promo_limit: " SIZE_FORMAT
+            " eden_limit: " SIZE_FORMAT
+            " total_free_limit: " SIZE_FORMAT
+            " max_old_gen_size: " SIZE_FORMAT
+            " max_eden_size: " SIZE_FORMAT
+            " mem_free_limit: " SIZE_FORMAT,
+            promo_limit, eden_limit, total_free_limit,
+            max_old_gen_size, max_eden_size,
+            (size_t) mem_free_limit);
+    }
+
+    if (is_full_gc) {
+      if (gc_cost() > gc_cost_limit &&
+        total_free_limit < (size_t) mem_free_limit) {
+        // Collections, on average, are taking too much time, and
+        //      gc_cost() > gc_cost_limit
+        // we have too little space available after a full gc.
+        //      total_free_limit < mem_free_limit
+        // where
+        //   total_free_limit is the free space available in
+        //     both generations
+        //   total_mem is the total space available for allocation
+        //     in both generations (survivor spaces are not included
+        //     just as they are not included in eden_limit).
+        //   mem_free_limit is a fraction of total_mem judged to be an
+        //     acceptable amount that is still unused.
+        // The heap can ask for the value of this variable when deciding
+        // whether to thrown an OutOfMemory error.
+        // Note that the gc time limit test only works for the collections
+        // of the young gen + tenured gen and not for collections of the
+        // permanent gen.  That is because the calculation of the space
+        // freed by the collection is the free space in the young gen +
+        // tenured gen.
+        // Ignore explicit GC's. Ignoring explicit GC's at this level
+        // is the equivalent of the GC did not happen as far as the
+        // overhead calculation is concerted (i.e., the flag is not set
+        // and the count is not affected).  Also the average will not
+        // have been updated unless UseAdaptiveSizePolicyWithSystemGC is on.
+        if (!GCCause::is_user_requested_gc(gc_cause) &&
+            !GCCause::is_serviceability_requested_gc(gc_cause)) {
+          inc_gc_time_limit_count();
+          if (UseGCOverheadLimit &&
+              (gc_time_limit_count() > AdaptiveSizePolicyGCTimeLimitThreshold)){
+            // All conditions have been met for throwing an out-of-memory
+            _gc_time_limit_exceeded = true;
+            // Avoid consecutive OOM due to the gc time limit by resetting
+            // the counter.
+            reset_gc_time_limit_count();
+          }
+          _print_gc_time_limit_would_be_exceeded = true;
+        }
+      } else {
+        // Did not exceed overhead limits
+        reset_gc_time_limit_count();
+      }
+    }
+  }
+
+
+  // And one last limit check, now that we've aligned things.
+  if (desired_eden_size > eden_limit) {
+    // If the policy says to get a larger eden but
+    // is hitting the limit, don't decrease eden.
+    // This can lead to a general drifting down of the
+    // eden size.  Let the tenuring calculation push more
+    // into the old gen.
+    desired_eden_size = MAX2(eden_limit, cur_eden);
+  }
+  desired_promo_size = MIN2(desired_promo_size, promo_limit);
+
+
+  if (PrintAdaptiveSizePolicy) {
+    // Timing stats
+    gclog_or_tty->print(
+               "PSAdaptiveSizePolicy::compute_generation_free_space: costs"
+               " minor_time: %f"
+               " major_cost: %f"
+               " mutator_cost: %f"
+               " throughput_goal: %f",
+               minor_gc_cost(), major_gc_cost(), mutator_cost(),
+               _throughput_goal);
+
+    // We give more details if Verbose is set
+    if (Verbose) {
+      gclog_or_tty->print( " minor_pause: %f"
+                  " major_pause: %f"
+                  " minor_interval: %f"
+                  " major_interval: %f"
+                  " pause_goal: %f",
+                  _avg_minor_pause->padded_average(),
+                  _avg_major_pause->padded_average(),
+                  _avg_minor_interval->average(),
+                  _avg_major_interval->average(),
+                  gc_pause_goal_sec());
+    }
+
+    // Footprint stats
+    gclog_or_tty->print( " live_space: " SIZE_FORMAT
+                " free_space: " SIZE_FORMAT,
+                live_space(), free_space());
+    // More detail
+    if (Verbose) {
+      gclog_or_tty->print( " base_footprint: " SIZE_FORMAT
+                  " avg_young_live: " SIZE_FORMAT
+                  " avg_old_live: " SIZE_FORMAT,
+                  (size_t)_avg_base_footprint->average(),
+                  (size_t)avg_young_live()->average(),
+                  (size_t)avg_old_live()->average());
+    }
+
+    // And finally, our old and new sizes.
+    gclog_or_tty->print(" old_promo_size: " SIZE_FORMAT
+               " old_eden_size: " SIZE_FORMAT
+               " desired_promo_size: " SIZE_FORMAT
+               " desired_eden_size: " SIZE_FORMAT,
+               _promo_size, _eden_size,
+               desired_promo_size, desired_eden_size);
+    gclog_or_tty->cr();
+  }
+
+  decay_supplemental_growth(is_full_gc);
+
+  set_promo_size(desired_promo_size);
+  set_eden_size(desired_eden_size);
+};
+
+void PSAdaptiveSizePolicy::decay_supplemental_growth(bool is_full_gc) {
+  // Decay the supplemental increment?  Decay the supplement growth
+  // factor even if it is not used.  It is only meant to give a boost
+  // to the initial growth and if it is not used, then it was not
+  // needed.
+  if (is_full_gc) {
+    // Don't wait for the threshold value for the major collections.  If
+    // here, the supplemental growth term was used and should decay.
+    if ((_avg_major_pause->count() % TenuredGenerationSizeSupplementDecay)
+        == 0) {
+      _old_gen_size_increment_supplement =
+        _old_gen_size_increment_supplement >> 1;
+    }
+  } else {
+    if ((_avg_minor_pause->count() >= AdaptiveSizePolicyReadyThreshold) &&
+        (_avg_minor_pause->count() % YoungGenerationSizeSupplementDecay) == 0) {
+      _young_gen_size_increment_supplement =
+        _young_gen_size_increment_supplement >> 1;
+    }
+  }
+}
+
+void PSAdaptiveSizePolicy::adjust_for_minor_pause_time(bool is_full_gc,
+    size_t* desired_promo_size_ptr, size_t* desired_eden_size_ptr) {
+
+  // Adjust the young generation size to reduce pause time of
+  // of collections.
+  //
+  // The AdaptiveSizePolicyInitializingSteps test is not used
+  // here.  It has not seemed to be needed but perhaps should
+  // be added for consistency.
+  if (minor_pause_young_estimator()->decrement_will_decrease()) {
+        // reduce eden size
+    set_change_young_gen_for_min_pauses(
+          decrease_young_gen_for_min_pauses_true);
+    *desired_eden_size_ptr = *desired_eden_size_ptr -
+      eden_decrement_aligned_down(*desired_eden_size_ptr);
+    } else {
+      // EXPERIMENTAL ADJUSTMENT
+      // Only record that the estimator indicated such an action.
+      // *desired_eden_size_ptr = *desired_eden_size_ptr + eden_heap_delta;
+      set_change_young_gen_for_min_pauses(
+          increase_young_gen_for_min_pauses_true);
+  }
+  if (PSAdjustTenuredGenForMinorPause) {
+    // If the desired eden size is as small as it will get,
+    // try to adjust the old gen size.
+    if (*desired_eden_size_ptr <= _intra_generation_alignment) {
+      // Vary the old gen size to reduce the young gen pause.  This
+      // may not be a good idea.  This is just a test.
+      if (minor_pause_old_estimator()->decrement_will_decrease()) {
+        set_change_old_gen_for_min_pauses(
+          decrease_old_gen_for_min_pauses_true);
+        *desired_promo_size_ptr =
+          _promo_size - promo_decrement_aligned_down(*desired_promo_size_ptr);
+      } else {
+        set_change_old_gen_for_min_pauses(
+          increase_old_gen_for_min_pauses_true);
+        size_t promo_heap_delta =
+          promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr);
+        if ((*desired_promo_size_ptr + promo_heap_delta) >
+            *desired_promo_size_ptr) {
+          *desired_promo_size_ptr =
+            _promo_size + promo_heap_delta;
+        }
+      }
+    }
+  }
+}
+
+void PSAdaptiveSizePolicy::adjust_for_pause_time(bool is_full_gc,
+                                             size_t* desired_promo_size_ptr,
+                                             size_t* desired_eden_size_ptr) {
+
+  size_t promo_heap_delta = 0;
+  size_t eden_heap_delta = 0;
+  // Add some checks for a threshhold for a change.  For example,
+  // a change less than the required alignment is probably not worth
+  // attempting.
+  if (is_full_gc) {
+    set_decide_at_full_gc(decide_at_full_gc_true);
+  }
+
+  if (_avg_minor_pause->padded_average() > _avg_major_pause->padded_average()) {
+    adjust_for_minor_pause_time(is_full_gc,
+                                desired_promo_size_ptr,
+                                desired_eden_size_ptr);
+    // major pause adjustments
+  } else if (is_full_gc) {
+    // Adjust for the major pause time only at full gc's because the
+    // affects of a change can only be seen at full gc's.
+
+    // Reduce old generation size to reduce pause?
+    if (major_pause_old_estimator()->decrement_will_decrease()) {
+      // reduce old generation size
+      set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true);
+      promo_heap_delta = promo_decrement_aligned_down(*desired_promo_size_ptr);
+      *desired_promo_size_ptr = _promo_size - promo_heap_delta;
+    } else {
+      // EXPERIMENTAL ADJUSTMENT
+      // Only record that the estimator indicated such an action.
+      // *desired_promo_size_ptr = _promo_size +
+      //   promo_increment_aligned_up(*desired_promo_size_ptr);
+      set_change_old_gen_for_maj_pauses(increase_old_gen_for_maj_pauses_true);
+    }
+    if (PSAdjustYoungGenForMajorPause) {
+      // If the promo size is at the minimum (i.e., the old gen
+      // size will not actually decrease), consider changing the
+      // young gen size.
+      if (*desired_promo_size_ptr < _intra_generation_alignment) {
+        // If increasing the young generation will decrease the old gen
+        // pause, do it.
+        // During startup there is noise in the statistics for deciding
+        // on whether to increase or decrease the young gen size.  For
+        // some number of iterations, just try to increase the young
+        // gen size if the major pause is too long to try and establish
+        // good statistics for later decisions.
+        if (major_pause_young_estimator()->increment_will_decrease() ||
+          (_young_gen_change_for_major_pause_count
+            <= AdaptiveSizePolicyInitializingSteps)) {
+          set_change_young_gen_for_maj_pauses(
+          increase_young_gen_for_maj_pauses_true);
+          eden_heap_delta = eden_increment_aligned_up(*desired_eden_size_ptr);
+          *desired_eden_size_ptr = _eden_size + eden_heap_delta;
+          _young_gen_change_for_major_pause_count++;
+        } else {
+          // Record that decreasing the young gen size would decrease
+          // the major pause
+          set_change_young_gen_for_maj_pauses(
+            decrease_young_gen_for_maj_pauses_true);
+          eden_heap_delta = eden_decrement_aligned_down(*desired_eden_size_ptr);
+          *desired_eden_size_ptr = _eden_size - eden_heap_delta;
+        }
+      }
+    }
+  }
+
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print_cr(
+      "AdaptiveSizePolicy::compute_generation_free_space "
+      "adjusting gen sizes for major pause (avg %f goal %f). "
+      "desired_promo_size " SIZE_FORMAT "desired_eden_size "
+       SIZE_FORMAT
+      " promo delta " SIZE_FORMAT  " eden delta " SIZE_FORMAT,
+      _avg_major_pause->average(), gc_pause_goal_sec(),
+      *desired_promo_size_ptr, *desired_eden_size_ptr,
+      promo_heap_delta, eden_heap_delta);
+  }
+}
+
+void PSAdaptiveSizePolicy::adjust_for_throughput(bool is_full_gc,
+                                             size_t* desired_promo_size_ptr,
+                                             size_t* desired_eden_size_ptr) {
+
+  // Add some checks for a threshhold for a change.  For example,
+  // a change less than the required alignment is probably not worth
+  // attempting.
+  if (is_full_gc) {
+    set_decide_at_full_gc(decide_at_full_gc_true);
+  }
+
+  if ((gc_cost() + mutator_cost()) == 0.0) {
+    return;
+  }
+
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print("\nPSAdaptiveSizePolicy::adjust_for_throughput("
+      "is_full: %d, promo: " SIZE_FORMAT ",  cur_eden: " SIZE_FORMAT "): ",
+      is_full_gc, *desired_promo_size_ptr, *desired_eden_size_ptr);
+    gclog_or_tty->print_cr("mutator_cost %f  major_gc_cost %f "
+      "minor_gc_cost %f", mutator_cost(), major_gc_cost(), minor_gc_cost());
+  }
+
+  // Tenured generation
+  if (is_full_gc) {
+
+    // Calculate the change to use for the tenured gen.
+    size_t scaled_promo_heap_delta = 0;
+    // Can the increment to the generation be scaled?
+    if (gc_cost() >= 0.0 && major_gc_cost() >= 0.0) {
+      size_t promo_heap_delta =
+        promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr);
+      double scale_by_ratio = major_gc_cost() / gc_cost();
+      scaled_promo_heap_delta =
+        (size_t) (scale_by_ratio * (double) promo_heap_delta);
+      if (PrintAdaptiveSizePolicy && Verbose) {
+        gclog_or_tty->print_cr(
+          "Scaled tenured increment: " SIZE_FORMAT " by %f down to "
+          SIZE_FORMAT,
+          promo_heap_delta, scale_by_ratio, scaled_promo_heap_delta);
+      }
+    } else if (major_gc_cost() >= 0.0) {
+      // Scaling is not going to work.  If the major gc time is the
+      // larger, give it a full increment.
+      if (major_gc_cost() >= minor_gc_cost()) {
+        scaled_promo_heap_delta =
+          promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr);
+      }
+    } else {
+      // Don't expect to get here but it's ok if it does
+      // in the product build since the delta will be 0
+      // and nothing will change.
+      assert(false, "Unexpected value for gc costs");
+    }
+
+    switch (AdaptiveSizeThroughPutPolicy) {
+      case 1:
+        // Early in the run the statistics might not be good.  Until
+        // a specific number of collections have been, use the heuristic
+        // that a larger generation size means lower collection costs.
+        if (major_collection_estimator()->increment_will_decrease() ||
+           (_old_gen_change_for_major_throughput
+            <= AdaptiveSizePolicyInitializingSteps)) {
+          // Increase tenured generation size to reduce major collection cost
+          if ((*desired_promo_size_ptr + scaled_promo_heap_delta) >
+              *desired_promo_size_ptr) {
+            *desired_promo_size_ptr = _promo_size + scaled_promo_heap_delta;
+          }
+          set_change_old_gen_for_throughput(
+              increase_old_gen_for_throughput_true);
+              _old_gen_change_for_major_throughput++;
+        } else {
+          // EXPERIMENTAL ADJUSTMENT
+          // Record that decreasing the old gen size would decrease
+          // the major collection cost but don't do it.
+          // *desired_promo_size_ptr = _promo_size -
+          //   promo_decrement_aligned_down(*desired_promo_size_ptr);
+          set_change_old_gen_for_throughput(
+                decrease_old_gen_for_throughput_true);
+        }
+
+        break;
+      default:
+        // Simplest strategy
+        if ((*desired_promo_size_ptr + scaled_promo_heap_delta) >
+            *desired_promo_size_ptr) {
+          *desired_promo_size_ptr = *desired_promo_size_ptr +
+            scaled_promo_heap_delta;
+        }
+        set_change_old_gen_for_throughput(
+          increase_old_gen_for_throughput_true);
+        _old_gen_change_for_major_throughput++;
+    }
+
+    if (PrintAdaptiveSizePolicy && Verbose) {
+      gclog_or_tty->print_cr(
+          "adjusting tenured gen for throughput (avg %f goal %f). "
+          "desired_promo_size " SIZE_FORMAT " promo_delta " SIZE_FORMAT ,
+          mutator_cost(), _throughput_goal,
+          *desired_promo_size_ptr, scaled_promo_heap_delta);
+    }
+  }
+
+  // Young generation
+  size_t scaled_eden_heap_delta = 0;
+  // Can the increment to the generation be scaled?
+  if (gc_cost() >= 0.0 && minor_gc_cost() >= 0.0) {
+    size_t eden_heap_delta =
+      eden_increment_with_supplement_aligned_up(*desired_eden_size_ptr);
+    double scale_by_ratio = minor_gc_cost() / gc_cost();
+    assert(scale_by_ratio <= 1.0 && scale_by_ratio >= 0.0, "Scaling is wrong");
+    scaled_eden_heap_delta =
+      (size_t) (scale_by_ratio * (double) eden_heap_delta);
+    if (PrintAdaptiveSizePolicy && Verbose) {
+      gclog_or_tty->print_cr(
+        "Scaled eden increment: " SIZE_FORMAT " by %f down to "
+        SIZE_FORMAT,
+        eden_heap_delta, scale_by_ratio, scaled_eden_heap_delta);
+    }
+  } else if (minor_gc_cost() >= 0.0) {
+    // Scaling is not going to work.  If the minor gc time is the
+    // larger, give it a full increment.
+    if (minor_gc_cost() > major_gc_cost()) {
+      scaled_eden_heap_delta =
+        eden_increment_with_supplement_aligned_up(*desired_eden_size_ptr);
+    }
+  } else {
+    // Don't expect to get here but it's ok if it does
+    // in the product build since the delta will be 0
+    // and nothing will change.
+    assert(false, "Unexpected value for gc costs");
+  }
+
+  // Use a heuristic for some number of collections to give
+  // the averages time to settle down.
+  switch (AdaptiveSizeThroughPutPolicy) {
+    case 1:
+      if (minor_collection_estimator()->increment_will_decrease() ||
+        (_young_gen_change_for_minor_throughput
+          <= AdaptiveSizePolicyInitializingSteps)) {
+        // Expand young generation size to reduce frequency of
+        // of collections.
+        if ((*desired_eden_size_ptr + scaled_eden_heap_delta) >
+            *desired_eden_size_ptr) {
+          *desired_eden_size_ptr =
+            *desired_eden_size_ptr + scaled_eden_heap_delta;
+        }
+        set_change_young_gen_for_throughput(
+          increase_young_gen_for_througput_true);
+        _young_gen_change_for_minor_throughput++;
+      } else {
+        // EXPERIMENTAL ADJUSTMENT
+        // Record that decreasing the young gen size would decrease
+        // the minor collection cost but don't do it.
+        // *desired_eden_size_ptr = _eden_size -
+        //   eden_decrement_aligned_down(*desired_eden_size_ptr);
+        set_change_young_gen_for_throughput(
+          decrease_young_gen_for_througput_true);
+      }
+          break;
+    default:
+      if ((*desired_eden_size_ptr + scaled_eden_heap_delta) >
+          *desired_eden_size_ptr) {
+        *desired_eden_size_ptr =
+          *desired_eden_size_ptr + scaled_eden_heap_delta;
+      }
+      set_change_young_gen_for_throughput(
+        increase_young_gen_for_througput_true);
+      _young_gen_change_for_minor_throughput++;
+  }
+
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print_cr(
+        "adjusting eden for throughput (avg %f goal %f). desired_eden_size "
+        SIZE_FORMAT " eden delta " SIZE_FORMAT "\n",
+      mutator_cost(), _throughput_goal,
+        *desired_eden_size_ptr, scaled_eden_heap_delta);
+  }
+}
+
+size_t PSAdaptiveSizePolicy::adjust_promo_for_footprint(
+    size_t desired_promo_size, size_t desired_sum) {
+  assert(desired_promo_size <= desired_sum, "Inconsistent parameters");
+  set_decrease_for_footprint(decrease_old_gen_for_footprint_true);
+
+  size_t change = promo_decrement(desired_promo_size);
+  change = scale_down(change, desired_promo_size, desired_sum);
+
+  size_t reduced_size = desired_promo_size - change;
+
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print_cr(
+      "AdaptiveSizePolicy::compute_generation_free_space "
+      "adjusting tenured gen for footprint. "
+      "starting promo size " SIZE_FORMAT
+      " reduced promo size " SIZE_FORMAT,
+      " promo delta " SIZE_FORMAT,
+      desired_promo_size, reduced_size, change );
+  }
+
+  assert(reduced_size <= desired_promo_size, "Inconsistent result");
+  return reduced_size;
+}
+
+size_t PSAdaptiveSizePolicy::adjust_eden_for_footprint(
+  size_t desired_eden_size, size_t desired_sum) {
+  assert(desired_eden_size <= desired_sum, "Inconsistent parameters");
+  set_decrease_for_footprint(decrease_young_gen_for_footprint_true);
+
+  size_t change = eden_decrement(desired_eden_size);
+  change = scale_down(change, desired_eden_size, desired_sum);
+
+  size_t reduced_size = desired_eden_size - change;
+
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print_cr(
+      "AdaptiveSizePolicy::compute_generation_free_space "
+      "adjusting eden for footprint. "
+      " starting eden size " SIZE_FORMAT
+      " reduced eden size " SIZE_FORMAT
+      " eden delta " SIZE_FORMAT,
+      desired_eden_size, reduced_size, change);
+  }
+
+  assert(reduced_size <= desired_eden_size, "Inconsistent result");
+  return reduced_size;
+}
+
+// Scale down "change" by the factor
+//      part / total
+// Don't align the results.
+
+size_t PSAdaptiveSizePolicy::scale_down(size_t change,
+                                        double part,
+                                        double total) {
+  assert(part <= total, "Inconsistent input");
+  size_t reduced_change = change;
+  if (total > 0) {
+    double fraction =  part / total;
+    reduced_change = (size_t) (fraction * (double) change);
+  }
+  assert(reduced_change <= change, "Inconsistent result");
+  return reduced_change;
+}
+
+size_t PSAdaptiveSizePolicy::eden_increment(size_t cur_eden,
+                                            uint percent_change) {
+  size_t eden_heap_delta;
+  eden_heap_delta = cur_eden / 100 * percent_change;
+  return eden_heap_delta;
+}
+
+size_t PSAdaptiveSizePolicy::eden_increment(size_t cur_eden) {
+  return eden_increment(cur_eden, YoungGenerationSizeIncrement);
+}
+
+size_t PSAdaptiveSizePolicy::eden_increment_aligned_up(size_t cur_eden) {
+  size_t result = eden_increment(cur_eden, YoungGenerationSizeIncrement);
+  return align_size_up(result, _intra_generation_alignment);
+}
+
+size_t PSAdaptiveSizePolicy::eden_increment_aligned_down(size_t cur_eden) {
+  size_t result = eden_increment(cur_eden);
+  return align_size_down(result, _intra_generation_alignment);
+}
+
+size_t PSAdaptiveSizePolicy::eden_increment_with_supplement_aligned_up(
+  size_t cur_eden) {
+  size_t result = eden_increment(cur_eden,
+    YoungGenerationSizeIncrement + _young_gen_size_increment_supplement);
+  return align_size_up(result, _intra_generation_alignment);
+}
+
+size_t PSAdaptiveSizePolicy::eden_decrement_aligned_down(size_t cur_eden) {
+  size_t eden_heap_delta = eden_decrement(cur_eden);
+  return align_size_down(eden_heap_delta, _intra_generation_alignment);
+}
+
+size_t PSAdaptiveSizePolicy::eden_decrement(size_t cur_eden) {
+  size_t eden_heap_delta = eden_increment(cur_eden) /
+    AdaptiveSizeDecrementScaleFactor;
+  return eden_heap_delta;
+}
+
+size_t PSAdaptiveSizePolicy::promo_increment(size_t cur_promo,
+                                             uint percent_change) {
+  size_t promo_heap_delta;
+  promo_heap_delta = cur_promo / 100 * percent_change;
+  return promo_heap_delta;
+}
+
+size_t PSAdaptiveSizePolicy::promo_increment(size_t cur_promo) {
+  return promo_increment(cur_promo, TenuredGenerationSizeIncrement);
+}
+
+size_t PSAdaptiveSizePolicy::promo_increment_aligned_up(size_t cur_promo) {
+  size_t result =  promo_increment(cur_promo, TenuredGenerationSizeIncrement);
+  return align_size_up(result, _intra_generation_alignment);
+}
+
+size_t PSAdaptiveSizePolicy::promo_increment_aligned_down(size_t cur_promo) {
+  size_t result =  promo_increment(cur_promo, TenuredGenerationSizeIncrement);
+  return align_size_down(result, _intra_generation_alignment);
+}
+
+size_t PSAdaptiveSizePolicy::promo_increment_with_supplement_aligned_up(
+  size_t cur_promo) {
+  size_t result =  promo_increment(cur_promo,
+    TenuredGenerationSizeIncrement + _old_gen_size_increment_supplement);
+  return align_size_up(result, _intra_generation_alignment);
+}
+
+size_t PSAdaptiveSizePolicy::promo_decrement_aligned_down(size_t cur_promo) {
+  size_t promo_heap_delta = promo_decrement(cur_promo);
+  return align_size_down(promo_heap_delta, _intra_generation_alignment);
+}
+
+size_t PSAdaptiveSizePolicy::promo_decrement(size_t cur_promo) {
+  size_t promo_heap_delta = promo_increment(cur_promo);
+  promo_heap_delta = promo_heap_delta / AdaptiveSizeDecrementScaleFactor;
+  return promo_heap_delta;
+}
+
+int PSAdaptiveSizePolicy::compute_survivor_space_size_and_threshold(
+                                             bool is_survivor_overflow,
+                                             int tenuring_threshold,
+                                             size_t survivor_limit) {
+  assert(survivor_limit >= _intra_generation_alignment,
+         "survivor_limit too small");
+  assert((size_t)align_size_down(survivor_limit, _intra_generation_alignment)
+         == survivor_limit, "survivor_limit not aligned");
+
+  // This method is called even if the tenuring threshold and survivor
+  // spaces are not adjusted so that the averages are sampled above.
+  if (!UsePSAdaptiveSurvivorSizePolicy ||
+      !young_gen_policy_is_ready()) {
+    return tenuring_threshold;
+  }
+
+  // We'll decide whether to increase or decrease the tenuring
+  // threshold based partly on the newly computed survivor size
+  // (if we hit the maximum limit allowed, we'll always choose to
+  // decrement the threshold).
+  bool incr_tenuring_threshold = false;
+  bool decr_tenuring_threshold = false;
+
+  set_decrement_tenuring_threshold_for_gc_cost(false);
+  set_increment_tenuring_threshold_for_gc_cost(false);
+  set_decrement_tenuring_threshold_for_survivor_limit(false);
+
+  if (!is_survivor_overflow) {
+    // Keep running averages on how much survived
+
+    // We use the tenuring threshold to equalize the cost of major
+    // and minor collections.
+    // ThresholdTolerance is used to indicate how sensitive the
+    // tenuring threshold is to differences in cost betweent the
+    // collection types.
+
+    // Get the times of interest. This involves a little work, so
+    // we cache the values here.
+    const double major_cost = major_gc_cost();
+    const double minor_cost = minor_gc_cost();
+
+    if (minor_cost > major_cost * _threshold_tolerance_percent) {
+      // Minor times are getting too long;  lower the threshold so
+      // less survives and more is promoted.
+      decr_tenuring_threshold = true;
+      set_decrement_tenuring_threshold_for_gc_cost(true);
+    } else if (major_cost > minor_cost * _threshold_tolerance_percent) {
+      // Major times are too long, so we want less promotion.
+      incr_tenuring_threshold = true;
+      set_increment_tenuring_threshold_for_gc_cost(true);
+    }
+
+  } else {
+    // Survivor space overflow occurred, so promoted and survived are
+    // not accurate. We'll make our best guess by combining survived
+    // and promoted and count them as survivors.
+    //
+    // We'll lower the tenuring threshold to see if we can correct
+    // things. Also, set the survivor size conservatively. We're
+    // trying to avoid many overflows from occurring if defnew size
+    // is just too small.
+
+    decr_tenuring_threshold = true;
+  }
+
+  // The padded average also maintains a deviation from the average;
+  // we use this to see how good of an estimate we have of what survived.
+  // We're trying to pad the survivor size as little as possible without
+  // overflowing the survivor spaces.
+  size_t target_size = align_size_up((size_t)_avg_survived->padded_average(),
+                                     _intra_generation_alignment);
+  target_size = MAX2(target_size, _intra_generation_alignment);
+
+  if (target_size > survivor_limit) {
+    // Target size is bigger than we can handle. Let's also reduce
+    // the tenuring threshold.
+    target_size = survivor_limit;
+    decr_tenuring_threshold = true;
+    set_decrement_tenuring_threshold_for_survivor_limit(true);
+  }
+
+  // Finally, increment or decrement the tenuring threshold, as decided above.
+  // We test for decrementing first, as we might have hit the target size
+  // limit.
+  if (decr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
+    if (tenuring_threshold > 1) {
+      tenuring_threshold--;
+    }
+  } else if (incr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
+    if (tenuring_threshold < MaxTenuringThreshold) {
+      tenuring_threshold++;
+    }
+  }
+
+  // We keep a running average of the amount promoted which is used
+  // to decide when we should collect the old generation (when
+  // the amount of old gen free space is less than what we expect to
+  // promote).
+
+  if (PrintAdaptiveSizePolicy) {
+    // A little more detail if Verbose is on
+    if (Verbose) {
+      gclog_or_tty->print( "  avg_survived: %f"
+                  "  avg_deviation: %f",
+                  _avg_survived->average(),
+                  _avg_survived->deviation());
+    }
+
+    gclog_or_tty->print( "  avg_survived_padded_avg: %f",
+                _avg_survived->padded_average());
+
+    if (Verbose) {
+      gclog_or_tty->print( "  avg_promoted_avg: %f"
+                  "  avg_promoted_dev: %f",
+                  avg_promoted()->average(),
+                  avg_promoted()->deviation());
+    }
+
+    gclog_or_tty->print( "  avg_promoted_padded_avg: %f"
+                "  avg_pretenured_padded_avg: %f"
+                "  tenuring_thresh: %d"
+                "  target_size: " SIZE_FORMAT,
+                avg_promoted()->padded_average(),
+                _avg_pretenured->padded_average(),
+                tenuring_threshold, target_size);
+    tty->cr();
+  }
+
+  set_survivor_size(target_size);
+
+  return tenuring_threshold;
+}
+
+void PSAdaptiveSizePolicy::update_averages(bool is_survivor_overflow,
+                                           size_t survived,
+                                           size_t promoted) {
+  // Update averages
+  if (!is_survivor_overflow) {
+    // Keep running averages on how much survived
+    _avg_survived->sample(survived);
+  } else {
+    size_t survived_guess = survived + promoted;
+    _avg_survived->sample(survived_guess);
+  }
+  avg_promoted()->sample(promoted + _avg_pretenured->padded_average());
+
+  if (PrintAdaptiveSizePolicy) {
+    gclog_or_tty->print(
+                  "AdaptiveSizePolicy::compute_survivor_space_size_and_thresh:"
+                  "  survived: "  SIZE_FORMAT
+                  "  promoted: "  SIZE_FORMAT
+                  "  overflow: %s",
+                  survived, promoted, is_survivor_overflow ? "true" : "false");
+  }
+}
+
+bool PSAdaptiveSizePolicy::print_adaptive_size_policy_on(outputStream* st)
+  const {
+
+  if (!UseAdaptiveSizePolicy) return false;
+
+  return AdaptiveSizePolicy::print_adaptive_size_policy_on(
+                          st,
+                          PSScavenge::tenuring_threshold());
+}