hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp
changeset 1 489c9b5090e2
child 185 cda2a1eb4be5
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,748 @@
+/*
+ * Copyright 2001-2006 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+// Classes in support of keeping track of promotions into a non-Contiguous
+// space, in this case a CompactibleFreeListSpace.
+
+#define CFLS_LAB_REFILL_STATS 0
+
+// Forward declarations
+class CompactibleFreeListSpace;
+class BlkClosure;
+class BlkClosureCareful;
+class UpwardsObjectClosure;
+class ObjectClosureCareful;
+class Klass;
+
+class PromotedObject VALUE_OBJ_CLASS_SPEC {
+ private:
+  enum {
+    promoted_mask  = right_n_bits(2),   // i.e. 0x3
+    displaced_mark = nth_bit(2),        // i.e. 0x4
+    next_mask      = ~(right_n_bits(3)) // i.e. ~(0x7)
+  };
+  intptr_t _next;
+ public:
+  inline PromotedObject* next() const {
+    return (PromotedObject*)(_next & next_mask);
+  }
+  inline void setNext(PromotedObject* x) {
+    assert(((intptr_t)x & ~next_mask) == 0,
+           "Conflict in bit usage, "
+           " or insufficient alignment of objects");
+    _next |= (intptr_t)x;
+  }
+  inline void setPromotedMark() {
+    _next |= promoted_mask;
+  }
+  inline bool hasPromotedMark() const {
+    return (_next & promoted_mask) == promoted_mask;
+  }
+  inline void setDisplacedMark() {
+    _next |= displaced_mark;
+  }
+  inline bool hasDisplacedMark() const {
+    return (_next & displaced_mark) != 0;
+  }
+  inline void clearNext()        { _next = 0; }
+  debug_only(void *next_addr() { return (void *) &_next; })
+};
+
+class SpoolBlock: public FreeChunk {
+  friend class PromotionInfo;
+ protected:
+  SpoolBlock*  nextSpoolBlock;
+  size_t       bufferSize;        // number of usable words in this block
+  markOop*     displacedHdr;      // the displaced headers start here
+
+  // Note about bufferSize: it denotes the number of entries available plus 1;
+  // legal indices range from 1 through BufferSize - 1.  See the verification
+  // code verify() that counts the number of displaced headers spooled.
+  size_t computeBufferSize() {
+    return (size() * sizeof(HeapWord) - sizeof(*this)) / sizeof(markOop);
+  }
+
+ public:
+  void init() {
+    bufferSize = computeBufferSize();
+    displacedHdr = (markOop*)&displacedHdr;
+    nextSpoolBlock = NULL;
+  }
+};
+
+class PromotionInfo VALUE_OBJ_CLASS_SPEC {
+  bool            _tracking;      // set if tracking
+  CompactibleFreeListSpace* _space; // the space to which this belongs
+  PromotedObject* _promoHead;     // head of list of promoted objects
+  PromotedObject* _promoTail;     // tail of list of promoted objects
+  SpoolBlock*     _spoolHead;     // first spooling block
+  SpoolBlock*     _spoolTail;     // last  non-full spooling block or null
+  SpoolBlock*     _splice_point;  // when _spoolTail is null, holds list tail
+  SpoolBlock*     _spareSpool;    // free spool buffer
+  size_t          _firstIndex;    // first active index in
+                                  // first spooling block (_spoolHead)
+  size_t          _nextIndex;     // last active index + 1 in last
+                                  // spooling block (_spoolTail)
+ private:
+  // ensure that spooling space exists; return true if there is spooling space
+  bool ensure_spooling_space_work();
+
+ public:
+  PromotionInfo() :
+    _tracking(0), _space(NULL),
+    _promoHead(NULL), _promoTail(NULL),
+    _spoolHead(NULL), _spoolTail(NULL),
+    _spareSpool(NULL), _firstIndex(1),
+    _nextIndex(1) {}
+
+  bool noPromotions() const {
+    assert(_promoHead != NULL || _promoTail == NULL, "list inconsistency");
+    return _promoHead == NULL;
+  }
+  void startTrackingPromotions();
+  void stopTrackingPromotions();
+  bool tracking() const          { return _tracking;  }
+  void track(PromotedObject* trackOop);      // keep track of a promoted oop
+  // The following variant must be used when trackOop is not fully
+  // initialized and has a NULL klass:
+  void track(PromotedObject* trackOop, klassOop klassOfOop); // keep track of a promoted oop
+  void setSpace(CompactibleFreeListSpace* sp) { _space = sp; }
+  CompactibleFreeListSpace* space() const     { return _space; }
+  markOop nextDisplacedHeader(); // get next header & forward spool pointer
+  void    saveDisplacedHeader(markOop hdr);
+                                 // save header and forward spool
+
+  inline size_t refillSize() const;
+
+  SpoolBlock* getSpoolBlock();   // return a free spooling block
+  inline bool has_spooling_space() {
+    return _spoolTail != NULL && _spoolTail->bufferSize > _nextIndex;
+  }
+  // ensure that spooling space exists
+  bool ensure_spooling_space() {
+    return has_spooling_space() || ensure_spooling_space_work();
+  }
+  #define PROMOTED_OOPS_ITERATE_DECL(OopClosureType, nv_suffix)  \
+    void promoted_oops_iterate##nv_suffix(OopClosureType* cl);
+  ALL_SINCE_SAVE_MARKS_CLOSURES(PROMOTED_OOPS_ITERATE_DECL)
+  #undef PROMOTED_OOPS_ITERATE_DECL
+  void promoted_oops_iterate(OopsInGenClosure* cl) {
+    promoted_oops_iterate_v(cl);
+  }
+  void verify()  const;
+  void reset() {
+    _promoHead = NULL;
+    _promoTail = NULL;
+    _spoolHead = NULL;
+    _spoolTail = NULL;
+    _spareSpool = NULL;
+    _firstIndex = 0;
+    _nextIndex = 0;
+
+  }
+};
+
+class LinearAllocBlock VALUE_OBJ_CLASS_SPEC {
+ public:
+  LinearAllocBlock() : _ptr(0), _word_size(0), _refillSize(0),
+    _allocation_size_limit(0) {}
+  void set(HeapWord* ptr, size_t word_size, size_t refill_size,
+    size_t allocation_size_limit) {
+    _ptr = ptr;
+    _word_size = word_size;
+    _refillSize = refill_size;
+    _allocation_size_limit = allocation_size_limit;
+  }
+  HeapWord* _ptr;
+  size_t    _word_size;
+  size_t    _refillSize;
+  size_t    _allocation_size_limit;  // largest size that will be allocated
+};
+
+// Concrete subclass of CompactibleSpace that implements
+// a free list space, such as used in the concurrent mark sweep
+// generation.
+
+class CompactibleFreeListSpace: public CompactibleSpace {
+  friend class VMStructs;
+  friend class ConcurrentMarkSweepGeneration;
+  friend class ASConcurrentMarkSweepGeneration;
+  friend class CMSCollector;
+  friend class CMSPermGenGen;
+  // Local alloc buffer for promotion into this space.
+  friend class CFLS_LAB;
+
+  // "Size" of chunks of work (executed during parallel remark phases
+  // of CMS collection); this probably belongs in CMSCollector, although
+  // it's cached here because it's used in
+  // initialize_sequential_subtasks_for_rescan() which modifies
+  // par_seq_tasks which also lives in Space. XXX
+  const size_t _rescan_task_size;
+  const size_t _marking_task_size;
+
+  // Yet another sequential tasks done structure. This supports
+  // CMS GC, where we have threads dynamically
+  // claiming sub-tasks from a larger parallel task.
+  SequentialSubTasksDone _conc_par_seq_tasks;
+
+  BlockOffsetArrayNonContigSpace _bt;
+
+  CMSCollector* _collector;
+  ConcurrentMarkSweepGeneration* _gen;
+
+  // Data structures for free blocks (used during allocation/sweeping)
+
+  // Allocation is done linearly from two different blocks depending on
+  // whether the request is small or large, in an effort to reduce
+  // fragmentation. We assume that any locking for allocation is done
+  // by the containing generation. Thus, none of the methods in this
+  // space are re-entrant.
+  enum SomeConstants {
+    SmallForLinearAlloc = 16,        // size < this then use _sLAB
+    SmallForDictionary  = 257,       // size < this then use _indexedFreeList
+    IndexSetSize        = SmallForDictionary,  // keep this odd-sized
+    IndexSetStart       = MinObjAlignment,
+    IndexSetStride      = MinObjAlignment
+  };
+
+ private:
+  enum FitStrategyOptions {
+    FreeBlockStrategyNone = 0,
+    FreeBlockBestFitFirst
+  };
+
+  PromotionInfo _promoInfo;
+
+  // helps to impose a global total order on freelistLock ranks;
+  // assumes that CFLSpace's are allocated in global total order
+  static int   _lockRank;
+
+  // a lock protecting the free lists and free blocks;
+  // mutable because of ubiquity of locking even for otherwise const methods
+  mutable Mutex _freelistLock;
+  // locking verifier convenience function
+  void assert_locked() const PRODUCT_RETURN;
+
+  // Linear allocation blocks
+  LinearAllocBlock _smallLinearAllocBlock;
+
+  FreeBlockDictionary::DictionaryChoice _dictionaryChoice;
+  FreeBlockDictionary* _dictionary;    // ptr to dictionary for large size blocks
+
+  FreeList _indexedFreeList[IndexSetSize];
+                                       // indexed array for small size blocks
+  // allocation stategy
+  bool       _fitStrategy;      // Use best fit strategy.
+  bool       _adaptive_freelists; // Use adaptive freelists
+
+  // This is an address close to the largest free chunk in the heap.
+  // It is currently assumed to be at the end of the heap.  Free
+  // chunks with addresses greater than nearLargestChunk are coalesced
+  // in an effort to maintain a large chunk at the end of the heap.
+  HeapWord*  _nearLargestChunk;
+
+  // Used to keep track of limit of sweep for the space
+  HeapWord* _sweep_limit;
+
+  // Support for compacting cms
+  HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
+  HeapWord* forward(oop q, size_t size, CompactPoint* cp, HeapWord* compact_top);
+
+  // Initialization helpers.
+  void initializeIndexedFreeListArray();
+
+  // Extra stuff to manage promotion parallelism.
+
+  // a lock protecting the dictionary during par promotion allocation.
+  mutable Mutex _parDictionaryAllocLock;
+  Mutex* parDictionaryAllocLock() const { return &_parDictionaryAllocLock; }
+
+  // Locks protecting the exact lists during par promotion allocation.
+  Mutex* _indexedFreeListParLocks[IndexSetSize];
+
+#if CFLS_LAB_REFILL_STATS
+  // Some statistics.
+  jint  _par_get_chunk_from_small;
+  jint  _par_get_chunk_from_large;
+#endif
+
+
+  // Attempt to obtain up to "n" blocks of the size "word_sz" (which is
+  // required to be smaller than "IndexSetSize".)  If successful,
+  // adds them to "fl", which is required to be an empty free list.
+  // If the count of "fl" is negative, it's absolute value indicates a
+  // number of free chunks that had been previously "borrowed" from global
+  // list of size "word_sz", and must now be decremented.
+  void par_get_chunk_of_blocks(size_t word_sz, size_t n, FreeList* fl);
+
+  // Allocation helper functions
+  // Allocate using a strategy that takes from the indexed free lists
+  // first.  This allocation strategy assumes a companion sweeping
+  // strategy that attempts to keep the needed number of chunks in each
+  // indexed free lists.
+  HeapWord* allocate_adaptive_freelists(size_t size);
+  // Allocate from the linear allocation buffers first.  This allocation
+  // strategy assumes maximal coalescing can maintain chunks large enough
+  // to be used as linear allocation buffers.
+  HeapWord* allocate_non_adaptive_freelists(size_t size);
+
+  // Gets a chunk from the linear allocation block (LinAB).  If there
+  // is not enough space in the LinAB, refills it.
+  HeapWord*  getChunkFromLinearAllocBlock(LinearAllocBlock* blk, size_t size);
+  HeapWord*  getChunkFromSmallLinearAllocBlock(size_t size);
+  // Get a chunk from the space remaining in the linear allocation block.  Do
+  // not attempt to refill if the space is not available, return NULL.  Do the
+  // repairs on the linear allocation block as appropriate.
+  HeapWord*  getChunkFromLinearAllocBlockRemainder(LinearAllocBlock* blk, size_t size);
+  inline HeapWord*  getChunkFromSmallLinearAllocBlockRemainder(size_t size);
+
+  // Helper function for getChunkFromIndexedFreeList.
+  // Replenish the indexed free list for this "size".  Do not take from an
+  // underpopulated size.
+  FreeChunk*  getChunkFromIndexedFreeListHelper(size_t size);
+
+  // Get a chunk from the indexed free list.  If the indexed free list
+  // does not have a free chunk, try to replenish the indexed free list
+  // then get the free chunk from the replenished indexed free list.
+  inline FreeChunk* getChunkFromIndexedFreeList(size_t size);
+
+  // The returned chunk may be larger than requested (or null).
+  FreeChunk* getChunkFromDictionary(size_t size);
+  // The returned chunk is the exact size requested (or null).
+  FreeChunk* getChunkFromDictionaryExact(size_t size);
+
+  // Find a chunk in the indexed free list that is the best
+  // fit for size "numWords".
+  FreeChunk* bestFitSmall(size_t numWords);
+  // For free list "fl" of chunks of size > numWords,
+  // remove a chunk, split off a chunk of size numWords
+  // and return it.  The split off remainder is returned to
+  // the free lists.  The old name for getFromListGreater
+  // was lookInListGreater.
+  FreeChunk* getFromListGreater(FreeList* fl, size_t numWords);
+  // Get a chunk in the indexed free list or dictionary,
+  // by considering a larger chunk and splitting it.
+  FreeChunk* getChunkFromGreater(size_t numWords);
+  //  Verify that the given chunk is in the indexed free lists.
+  bool verifyChunkInIndexedFreeLists(FreeChunk* fc) const;
+  // Remove the specified chunk from the indexed free lists.
+  void       removeChunkFromIndexedFreeList(FreeChunk* fc);
+  // Remove the specified chunk from the dictionary.
+  void       removeChunkFromDictionary(FreeChunk* fc);
+  // Split a free chunk into a smaller free chunk of size "new_size".
+  // Return the smaller free chunk and return the remainder to the
+  // free lists.
+  FreeChunk* splitChunkAndReturnRemainder(FreeChunk* chunk, size_t new_size);
+  // Add a chunk to the free lists.
+  void       addChunkToFreeLists(HeapWord* chunk, size_t size);
+  // Add a chunk to the free lists, preferring to suffix it
+  // to the last free chunk at end of space if possible, and
+  // updating the block census stats as well as block offset table.
+  // Take any locks as appropriate if we are multithreaded.
+  void       addChunkToFreeListsAtEndRecordingStats(HeapWord* chunk, size_t size);
+  // Add a free chunk to the indexed free lists.
+  void       returnChunkToFreeList(FreeChunk* chunk);
+  // Add a free chunk to the dictionary.
+  void       returnChunkToDictionary(FreeChunk* chunk);
+
+  // Functions for maintaining the linear allocation buffers (LinAB).
+  // Repairing a linear allocation block refers to operations
+  // performed on the remainder of a LinAB after an allocation
+  // has been made from it.
+  void       repairLinearAllocationBlocks();
+  void       repairLinearAllocBlock(LinearAllocBlock* blk);
+  void       refillLinearAllocBlock(LinearAllocBlock* blk);
+  void       refillLinearAllocBlockIfNeeded(LinearAllocBlock* blk);
+  void       refillLinearAllocBlocksIfNeeded();
+
+  void       verify_objects_initialized() const;
+
+  // Statistics reporting helper functions
+  void       reportFreeListStatistics() const;
+  void       reportIndexedFreeListStatistics() const;
+  size_t     maxChunkSizeInIndexedFreeLists() const;
+  size_t     numFreeBlocksInIndexedFreeLists() const;
+  // Accessor
+  HeapWord* unallocated_block() const {
+    HeapWord* ub = _bt.unallocated_block();
+    assert(ub >= bottom() &&
+           ub <= end(), "space invariant");
+    return ub;
+  }
+  void freed(HeapWord* start, size_t size) {
+    _bt.freed(start, size);
+  }
+
+ protected:
+  // reset the indexed free list to its initial empty condition.
+  void resetIndexedFreeListArray();
+  // reset to an initial state with a single free block described
+  // by the MemRegion parameter.
+  void reset(MemRegion mr);
+  // Return the total number of words in the indexed free lists.
+  size_t     totalSizeInIndexedFreeLists() const;
+
+ public:
+  // Constructor...
+  CompactibleFreeListSpace(BlockOffsetSharedArray* bs, MemRegion mr,
+                           bool use_adaptive_freelists,
+                           FreeBlockDictionary::DictionaryChoice);
+  // accessors
+  bool bestFitFirst() { return _fitStrategy == FreeBlockBestFitFirst; }
+  FreeBlockDictionary* dictionary() const { return _dictionary; }
+  HeapWord* nearLargestChunk() const { return _nearLargestChunk; }
+  void set_nearLargestChunk(HeapWord* v) { _nearLargestChunk = v; }
+
+  // Return the free chunk at the end of the space.  If no such
+  // chunk exists, return NULL.
+  FreeChunk* find_chunk_at_end();
+
+  bool adaptive_freelists() { return _adaptive_freelists; }
+
+  void set_collector(CMSCollector* collector) { _collector = collector; }
+
+  // Support for parallelization of rescan and marking
+  const size_t rescan_task_size()  const { return _rescan_task_size;  }
+  const size_t marking_task_size() const { return _marking_task_size; }
+  SequentialSubTasksDone* conc_par_seq_tasks() {return &_conc_par_seq_tasks; }
+  void initialize_sequential_subtasks_for_rescan(int n_threads);
+  void initialize_sequential_subtasks_for_marking(int n_threads,
+         HeapWord* low = NULL);
+
+#if CFLS_LAB_REFILL_STATS
+  void print_par_alloc_stats();
+#endif
+
+  // Space enquiries
+  size_t used() const;
+  size_t free() const;
+  size_t max_alloc_in_words() const;
+  // XXX: should have a less conservative used_region() than that of
+  // Space; we could consider keeping track of highest allocated
+  // address and correcting that at each sweep, as the sweeper
+  // goes through the entire allocated part of the generation. We
+  // could also use that information to keep the sweeper from
+  // sweeping more than is necessary. The allocator and sweeper will
+  // of course need to synchronize on this, since the sweeper will
+  // try to bump down the address and the allocator will try to bump it up.
+  // For now, however, we'll just use the default used_region()
+  // which overestimates the region by returning the entire
+  // committed region (this is safe, but inefficient).
+
+  // Returns a subregion of the space containing all the objects in
+  // the space.
+  MemRegion used_region() const {
+    return MemRegion(bottom(),
+                     BlockOffsetArrayUseUnallocatedBlock ?
+                     unallocated_block() : end());
+  }
+
+  // This is needed because the default implementation uses block_start()
+  // which can;t be used at certain times (for example phase 3 of mark-sweep).
+  // A better fix is to change the assertions in phase 3 of mark-sweep to
+  // use is_in_reserved(), but that is deferred since the is_in() assertions
+  // are buried through several layers of callers and are used elsewhere
+  // as well.
+  bool is_in(const void* p) const {
+    return used_region().contains(p);
+  }
+
+  virtual bool is_free_block(const HeapWord* p) const;
+
+  // Resizing support
+  void set_end(HeapWord* value);  // override
+
+  // mutual exclusion support
+  Mutex* freelistLock() const { return &_freelistLock; }
+
+  // Iteration support
+  void oop_iterate(MemRegion mr, OopClosure* cl);
+  void oop_iterate(OopClosure* cl);
+
+  void object_iterate(ObjectClosure* blk);
+  void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
+
+  // Requires that "mr" be entirely within the space.
+  // Apply "cl->do_object" to all objects that intersect with "mr".
+  // If the iteration encounters an unparseable portion of the region,
+  // terminate the iteration and return the address of the start of the
+  // subregion that isn't done.  Return of "NULL" indicates that the
+  // interation completed.
+  virtual HeapWord*
+       object_iterate_careful_m(MemRegion mr,
+                                ObjectClosureCareful* cl);
+  virtual HeapWord*
+       object_iterate_careful(ObjectClosureCareful* cl);
+
+  // Override: provides a DCTO_CL specific to this kind of space.
+  DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
+                                     CardTableModRefBS::PrecisionStyle precision,
+                                     HeapWord* boundary);
+
+  void blk_iterate(BlkClosure* cl);
+  void blk_iterate_careful(BlkClosureCareful* cl);
+  HeapWord* block_start(const void* p) const;
+  HeapWord* block_start_careful(const void* p) const;
+  size_t block_size(const HeapWord* p) const;
+  size_t block_size_no_stall(HeapWord* p, const CMSCollector* c) const;
+  bool block_is_obj(const HeapWord* p) const;
+  bool obj_is_alive(const HeapWord* p) const;
+  size_t block_size_nopar(const HeapWord* p) const;
+  bool block_is_obj_nopar(const HeapWord* p) const;
+
+  // iteration support for promotion
+  void save_marks();
+  bool no_allocs_since_save_marks();
+  void object_iterate_since_last_GC(ObjectClosure* cl);
+
+  // iteration support for sweeping
+  void save_sweep_limit() {
+    _sweep_limit = BlockOffsetArrayUseUnallocatedBlock ?
+                   unallocated_block() : end();
+  }
+  NOT_PRODUCT(
+    void clear_sweep_limit() { _sweep_limit = NULL; }
+  )
+  HeapWord* sweep_limit() { return _sweep_limit; }
+
+  // Apply "blk->do_oop" to the addresses of all reference fields in objects
+  // promoted into this generation since the most recent save_marks() call.
+  // Fields in objects allocated by applications of the closure
+  // *are* included in the iteration. Thus, when the iteration completes
+  // there should be no further such objects remaining.
+  #define CFLS_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
+    void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
+  ALL_SINCE_SAVE_MARKS_CLOSURES(CFLS_OOP_SINCE_SAVE_MARKS_DECL)
+  #undef CFLS_OOP_SINCE_SAVE_MARKS_DECL
+
+  // Allocation support
+  HeapWord* allocate(size_t size);
+  HeapWord* par_allocate(size_t size);
+
+  oop       promote(oop obj, size_t obj_size, oop* ref);
+  void      gc_prologue();
+  void      gc_epilogue();
+
+  // This call is used by a containing CMS generation / collector
+  // to inform the CFLS space that a sweep has been completed
+  // and that the space can do any related house-keeping functions.
+  void      sweep_completed();
+
+  // For an object in this space, the mark-word's two
+  // LSB's having the value [11] indicates that it has been
+  // promoted since the most recent call to save_marks() on
+  // this generation and has not subsequently been iterated
+  // over (using oop_since_save_marks_iterate() above).
+  bool obj_allocated_since_save_marks(const oop obj) const {
+    assert(is_in_reserved(obj), "Wrong space?");
+    return ((PromotedObject*)obj)->hasPromotedMark();
+  }
+
+  // A worst-case estimate of the space required (in HeapWords) to expand the
+  // heap when promoting an obj of size obj_size.
+  size_t expansionSpaceRequired(size_t obj_size) const;
+
+  FreeChunk* allocateScratch(size_t size);
+
+  // returns true if either the small or large linear allocation buffer is empty.
+  bool       linearAllocationWouldFail();
+
+  // Adjust the chunk for the minimum size.  This version is called in
+  // most cases in CompactibleFreeListSpace methods.
+  inline static size_t adjustObjectSize(size_t size) {
+    return (size_t) align_object_size(MAX2(size, (size_t)MinChunkSize));
+  }
+  // This is a virtual version of adjustObjectSize() that is called
+  // only occasionally when the compaction space changes and the type
+  // of the new compaction space is is only known to be CompactibleSpace.
+  size_t adjust_object_size_v(size_t size) const {
+    return adjustObjectSize(size);
+  }
+  // Minimum size of a free block.
+  virtual size_t minimum_free_block_size() const { return MinChunkSize; }
+  void      removeFreeChunkFromFreeLists(FreeChunk* chunk);
+  void      addChunkAndRepairOffsetTable(HeapWord* chunk, size_t size,
+              bool coalesced);
+
+  // Support for compaction
+  void prepare_for_compaction(CompactPoint* cp);
+  void adjust_pointers();
+  void compact();
+  // reset the space to reflect the fact that a compaction of the
+  // space has been done.
+  virtual void reset_after_compaction();
+
+  // Debugging support
+  void print()                            const;
+  void prepare_for_verify();
+  void verify(bool allow_dirty)           const;
+  void verifyFreeLists()                  const PRODUCT_RETURN;
+  void verifyIndexedFreeLists()           const;
+  void verifyIndexedFreeList(size_t size) const;
+  // verify that the given chunk is in the free lists.
+  bool verifyChunkInFreeLists(FreeChunk* fc) const;
+  // Do some basic checks on the the free lists.
+  void checkFreeListConsistency()         const PRODUCT_RETURN;
+
+  NOT_PRODUCT (
+    void initializeIndexedFreeListArrayReturnedBytes();
+    size_t sumIndexedFreeListArrayReturnedBytes();
+    // Return the total number of chunks in the indexed free lists.
+    size_t totalCountInIndexedFreeLists() const;
+    // Return the total numberof chunks in the space.
+    size_t totalCount();
+  )
+
+  // The census consists of counts of the quantities such as
+  // the current count of the free chunks, number of chunks
+  // created as a result of the split of a larger chunk or
+  // coalescing of smaller chucks, etc.  The counts in the
+  // census is used to make decisions on splitting and
+  // coalescing of chunks during the sweep of garbage.
+
+  // Print the statistics for the free lists.
+  void printFLCensus(int sweepCt)         const;
+
+  // Statistics functions
+  // Initialize census for lists before the sweep.
+  void beginSweepFLCensus(float sweep_current,
+                          float sweep_estimate);
+  // Set the surplus for each of the free lists.
+  void setFLSurplus();
+  // Set the hint for each of the free lists.
+  void setFLHints();
+  // Clear the census for each of the free lists.
+  void clearFLCensus();
+  // Perform functions for the census after the end of the sweep.
+  void endSweepFLCensus(int sweepCt);
+  // Return true if the count of free chunks is greater
+  // than the desired number of free chunks.
+  bool coalOverPopulated(size_t size);
+
+
+// Record (for each size):
+//
+//   split-births = #chunks added due to splits in (prev-sweep-end,
+//      this-sweep-start)
+//   split-deaths = #chunks removed for splits in (prev-sweep-end,
+//      this-sweep-start)
+//   num-curr     = #chunks at start of this sweep
+//   num-prev     = #chunks at end of previous sweep
+//
+// The above are quantities that are measured. Now define:
+//
+//   num-desired := num-prev + split-births - split-deaths - num-curr
+//
+// Roughly, num-prev + split-births is the supply,
+// split-deaths is demand due to other sizes
+// and num-curr is what we have left.
+//
+// Thus, num-desired is roughly speaking the "legitimate demand"
+// for blocks of this size and what we are striving to reach at the
+// end of the current sweep.
+//
+// For a given list, let num-len be its current population.
+// Define, for a free list of a given size:
+//
+//   coal-overpopulated := num-len >= num-desired * coal-surplus
+// (coal-surplus is set to 1.05, i.e. we allow a little slop when
+// coalescing -- we do not coalesce unless we think that the current
+// supply has exceeded the estimated demand by more than 5%).
+//
+// For the set of sizes in the binary tree, which is neither dense nor
+// closed, it may be the case that for a particular size we have never
+// had, or do not now have, or did not have at the previous sweep,
+// chunks of that size. We need to extend the definition of
+// coal-overpopulated to such sizes as well:
+//
+//   For a chunk in/not in the binary tree, extend coal-overpopulated
+//   defined above to include all sizes as follows:
+//
+//   . a size that is non-existent is coal-overpopulated
+//   . a size that has a num-desired <= 0 as defined above is
+//     coal-overpopulated.
+//
+// Also define, for a chunk heap-offset C and mountain heap-offset M:
+//
+//   close-to-mountain := C >= 0.99 * M
+//
+// Now, the coalescing strategy is:
+//
+//    Coalesce left-hand chunk with right-hand chunk if and
+//    only if:
+//
+//      EITHER
+//        . left-hand chunk is of a size that is coal-overpopulated
+//      OR
+//        . right-hand chunk is close-to-mountain
+  void smallCoalBirth(size_t size);
+  void smallCoalDeath(size_t size);
+  void coalBirth(size_t size);
+  void coalDeath(size_t size);
+  void smallSplitBirth(size_t size);
+  void smallSplitDeath(size_t size);
+  void splitBirth(size_t size);
+  void splitDeath(size_t size);
+  void split(size_t from, size_t to1);
+
+  double flsFrag() const;
+};
+
+// A parallel-GC-thread-local allocation buffer for allocation into a
+// CompactibleFreeListSpace.
+class CFLS_LAB : public CHeapObj {
+  // The space that this buffer allocates into.
+  CompactibleFreeListSpace* _cfls;
+
+  // Our local free lists.
+  FreeList _indexedFreeList[CompactibleFreeListSpace::IndexSetSize];
+
+  // Initialized from a command-line arg.
+  size_t _blocks_to_claim;
+
+#if CFLS_LAB_REFILL_STATS
+  // Some statistics.
+  int _refills;
+  int _blocksTaken;
+  static int _tot_refills;
+  static int _tot_blocksTaken;
+  static int _next_threshold;
+#endif
+
+public:
+  CFLS_LAB(CompactibleFreeListSpace* cfls);
+
+  // Allocate and return a block of the given size, or else return NULL.
+  HeapWord* alloc(size_t word_sz);
+
+  // Return any unused portions of the buffer to the global pool.
+  void retire();
+};
+
+size_t PromotionInfo::refillSize() const {
+  const size_t CMSSpoolBlockSize = 256;
+  const size_t sz = heap_word_size(sizeof(SpoolBlock) + sizeof(markOop)
+                                   * CMSSpoolBlockSize);
+  return CompactibleFreeListSpace::adjustObjectSize(sz);
+}