hotspot/src/share/vm/c1/c1_IR.cpp
changeset 1 489c9b5090e2
child 1547 ebdd95407cd4
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/c1/c1_IR.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,1323 @@
+/*
+ * Copyright 1999-2006 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+# include "incls/_precompiled.incl"
+# include "incls/_c1_IR.cpp.incl"
+
+
+// Implementation of XHandlers
+//
+// Note: This code could eventually go away if we are
+//       just using the ciExceptionHandlerStream.
+
+XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
+  ciExceptionHandlerStream s(method);
+  while (!s.is_done()) {
+    _list.append(new XHandler(s.handler()));
+    s.next();
+  }
+  assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
+}
+
+// deep copy of all XHandler contained in list
+XHandlers::XHandlers(XHandlers* other) :
+  _list(other->length())
+{
+  for (int i = 0; i < other->length(); i++) {
+    _list.append(new XHandler(other->handler_at(i)));
+  }
+}
+
+// Returns whether a particular exception type can be caught.  Also
+// returns true if klass is unloaded or any exception handler
+// classes are unloaded.  type_is_exact indicates whether the throw
+// is known to be exactly that class or it might throw a subtype.
+bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
+  // the type is unknown so be conservative
+  if (!klass->is_loaded()) {
+    return true;
+  }
+
+  for (int i = 0; i < length(); i++) {
+    XHandler* handler = handler_at(i);
+    if (handler->is_catch_all()) {
+      // catch of ANY
+      return true;
+    }
+    ciInstanceKlass* handler_klass = handler->catch_klass();
+    // if it's unknown it might be catchable
+    if (!handler_klass->is_loaded()) {
+      return true;
+    }
+    // if the throw type is definitely a subtype of the catch type
+    // then it can be caught.
+    if (klass->is_subtype_of(handler_klass)) {
+      return true;
+    }
+    if (!type_is_exact) {
+      // If the type isn't exactly known then it can also be caught by
+      // catch statements where the inexact type is a subtype of the
+      // catch type.
+      // given: foo extends bar extends Exception
+      // throw bar can be caught by catch foo, catch bar, and catch
+      // Exception, however it can't be caught by any handlers without
+      // bar in its type hierarchy.
+      if (handler_klass->is_subtype_of(klass)) {
+        return true;
+      }
+    }
+  }
+
+  return false;
+}
+
+
+bool XHandlers::equals(XHandlers* others) const {
+  if (others == NULL) return false;
+  if (length() != others->length()) return false;
+
+  for (int i = 0; i < length(); i++) {
+    if (!handler_at(i)->equals(others->handler_at(i))) return false;
+  }
+  return true;
+}
+
+bool XHandler::equals(XHandler* other) const {
+  assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
+
+  if (entry_pco() != other->entry_pco()) return false;
+  if (scope_count() != other->scope_count()) return false;
+  if (_desc != other->_desc) return false;
+
+  assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
+  return true;
+}
+
+
+// Implementation of IRScope
+
+BlockBegin* IRScope::header_block(BlockBegin* entry, BlockBegin::Flag f, ValueStack* state) {
+  if (entry == NULL) return NULL;
+  assert(entry->is_set(f), "entry/flag mismatch");
+  // create header block
+  BlockBegin* h = new BlockBegin(entry->bci());
+  BlockEnd* g = new Goto(entry, false);
+  h->set_next(g, entry->bci());
+  h->set_end(g);
+  h->set(f);
+  // setup header block end state
+  ValueStack* s = state->copy(); // can use copy since stack is empty (=> no phis)
+  assert(s->stack_is_empty(), "must have empty stack at entry point");
+  g->set_state(s);
+  return h;
+}
+
+
+BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
+  GraphBuilder gm(compilation, this);
+  NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
+  if (compilation->bailed_out()) return NULL;
+  return gm.start();
+}
+
+
+IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
+: _callees(2)
+, _compilation(compilation)
+, _lock_stack_size(-1)
+, _requires_phi_function(method->max_locals())
+{
+  _caller             = caller;
+  _caller_bci         = caller == NULL ? -1 : caller_bci;
+  _caller_state       = NULL; // Must be set later if needed
+  _level              = caller == NULL ?  0 : caller->level() + 1;
+  _method             = method;
+  _xhandlers          = new XHandlers(method);
+  _number_of_locks    = 0;
+  _monitor_pairing_ok = method->has_balanced_monitors();
+  _start              = NULL;
+
+  if (osr_bci == -1) {
+    _requires_phi_function.clear();
+  } else {
+        // selective creation of phi functions is not possibel in osr-methods
+    _requires_phi_function.set_range(0, method->max_locals());
+  }
+
+  assert(method->holder()->is_loaded() , "method holder must be loaded");
+
+  // build graph if monitor pairing is ok
+  if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
+}
+
+
+int IRScope::max_stack() const {
+  int my_max = method()->max_stack();
+  int callee_max = 0;
+  for (int i = 0; i < number_of_callees(); i++) {
+    callee_max = MAX2(callee_max, callee_no(i)->max_stack());
+  }
+  return my_max + callee_max;
+}
+
+
+void IRScope::compute_lock_stack_size() {
+  if (!InlineMethodsWithExceptionHandlers) {
+    _lock_stack_size = 0;
+    return;
+  }
+
+  // Figure out whether we have to preserve expression stack elements
+  // for parent scopes, and if so, how many
+  IRScope* cur_scope = this;
+  while (cur_scope != NULL && !cur_scope->xhandlers()->has_handlers()) {
+    cur_scope = cur_scope->caller();
+  }
+  _lock_stack_size = (cur_scope == NULL ? 0 :
+                      (cur_scope->caller_state() == NULL ? 0 :
+                       cur_scope->caller_state()->stack_size()));
+}
+
+int IRScope::top_scope_bci() const {
+  assert(!is_top_scope(), "no correct answer for top scope possible");
+  const IRScope* scope = this;
+  while (!scope->caller()->is_top_scope()) {
+    scope = scope->caller();
+  }
+  return scope->caller_bci();
+}
+
+
+
+// Implementation of CodeEmitInfo
+
+// Stack must be NON-null
+CodeEmitInfo::CodeEmitInfo(int bci, ValueStack* stack, XHandlers* exception_handlers)
+  : _scope(stack->scope())
+  , _bci(bci)
+  , _scope_debug_info(NULL)
+  , _oop_map(NULL)
+  , _stack(stack)
+  , _exception_handlers(exception_handlers)
+  , _next(NULL)
+  , _id(-1) {
+  assert(_stack != NULL, "must be non null");
+  assert(_bci == SynchronizationEntryBCI || Bytecodes::is_defined(scope()->method()->java_code_at_bci(_bci)), "make sure bci points at a real bytecode");
+}
+
+
+CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, bool lock_stack_only)
+  : _scope(info->_scope)
+  , _exception_handlers(NULL)
+  , _bci(info->_bci)
+  , _scope_debug_info(NULL)
+  , _oop_map(NULL) {
+  if (lock_stack_only) {
+    if (info->_stack != NULL) {
+      _stack = info->_stack->copy_locks();
+    } else {
+      _stack = NULL;
+    }
+  } else {
+    _stack = info->_stack;
+  }
+
+  // deep copy of exception handlers
+  if (info->_exception_handlers != NULL) {
+    _exception_handlers = new XHandlers(info->_exception_handlers);
+  }
+}
+
+
+void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
+  // record the safepoint before recording the debug info for enclosing scopes
+  recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
+  _scope_debug_info->record_debug_info(recorder, pc_offset);
+  recorder->end_safepoint(pc_offset);
+}
+
+
+void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
+  assert(_oop_map != NULL, "oop map must already exist");
+  assert(opr->is_single_cpu(), "should not call otherwise");
+
+  int frame_size = frame_map()->framesize();
+  int arg_count = frame_map()->oop_map_arg_count();
+  VMReg name = frame_map()->regname(opr);
+  _oop_map->set_oop(name);
+}
+
+
+
+
+// Implementation of IR
+
+IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
+    _locals_size(in_WordSize(-1))
+  , _num_loops(0) {
+  // initialize data structures
+  ValueType::initialize();
+  Instruction::initialize();
+  BlockBegin::initialize();
+  GraphBuilder::initialize();
+  // setup IR fields
+  _compilation = compilation;
+  _top_scope   = new IRScope(compilation, NULL, -1, method, osr_bci, true);
+  _code        = NULL;
+}
+
+
+void IR::optimize() {
+  Optimizer opt(this);
+  if (DoCEE) {
+    opt.eliminate_conditional_expressions();
+#ifndef PRODUCT
+    if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
+    if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
+#endif
+  }
+  if (EliminateBlocks) {
+    opt.eliminate_blocks();
+#ifndef PRODUCT
+    if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
+    if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
+#endif
+  }
+  if (EliminateNullChecks) {
+    opt.eliminate_null_checks();
+#ifndef PRODUCT
+    if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
+    if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
+#endif
+  }
+}
+
+
+static int sort_pairs(BlockPair** a, BlockPair** b) {
+  if ((*a)->from() == (*b)->from()) {
+    return (*a)->to()->block_id() - (*b)->to()->block_id();
+  } else {
+    return (*a)->from()->block_id() - (*b)->from()->block_id();
+  }
+}
+
+
+class CriticalEdgeFinder: public BlockClosure {
+  BlockPairList blocks;
+  IR*       _ir;
+
+ public:
+  CriticalEdgeFinder(IR* ir): _ir(ir) {}
+  void block_do(BlockBegin* bb) {
+    BlockEnd* be = bb->end();
+    int nos = be->number_of_sux();
+    if (nos >= 2) {
+      for (int i = 0; i < nos; i++) {
+        BlockBegin* sux = be->sux_at(i);
+        if (sux->number_of_preds() >= 2) {
+          blocks.append(new BlockPair(bb, sux));
+        }
+      }
+    }
+  }
+
+  void split_edges() {
+    BlockPair* last_pair = NULL;
+    blocks.sort(sort_pairs);
+    for (int i = 0; i < blocks.length(); i++) {
+      BlockPair* pair = blocks.at(i);
+      if (last_pair != NULL && pair->is_same(last_pair)) continue;
+      BlockBegin* from = pair->from();
+      BlockBegin* to = pair->to();
+      BlockBegin* split = from->insert_block_between(to);
+#ifndef PRODUCT
+      if ((PrintIR || PrintIR1) && Verbose) {
+        tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
+                      from->block_id(), to->block_id(), split->block_id());
+      }
+#endif
+      last_pair = pair;
+    }
+  }
+};
+
+void IR::split_critical_edges() {
+  CriticalEdgeFinder cef(this);
+
+  iterate_preorder(&cef);
+  cef.split_edges();
+}
+
+
+class UseCountComputer: public AllStatic {
+ private:
+  static void update_use_count(Value* n) {
+    // Local instructions and Phis for expression stack values at the
+    // start of basic blocks are not added to the instruction list
+    if ((*n)->bci() == -99 && (*n)->as_Local() == NULL &&
+        (*n)->as_Phi() == NULL) {
+      assert(false, "a node was not appended to the graph");
+      Compilation::current_compilation()->bailout("a node was not appended to the graph");
+    }
+    // use n's input if not visited before
+    if (!(*n)->is_pinned() && !(*n)->has_uses()) {
+      // note: a) if the instruction is pinned, it will be handled by compute_use_count
+      //       b) if the instruction has uses, it was touched before
+      //       => in both cases we don't need to update n's values
+      uses_do(n);
+    }
+    // use n
+    (*n)->_use_count++;
+  }
+
+  static Values* worklist;
+  static int depth;
+  enum {
+    max_recurse_depth = 20
+  };
+
+  static void uses_do(Value* n) {
+    depth++;
+    if (depth > max_recurse_depth) {
+      // don't allow the traversal to recurse too deeply
+      worklist->push(*n);
+    } else {
+      (*n)->input_values_do(update_use_count);
+      // special handling for some instructions
+      if ((*n)->as_BlockEnd() != NULL) {
+        // note on BlockEnd:
+        //   must 'use' the stack only if the method doesn't
+        //   terminate, however, in those cases stack is empty
+        (*n)->state_values_do(update_use_count);
+      }
+    }
+    depth--;
+  }
+
+  static void basic_compute_use_count(BlockBegin* b) {
+    depth = 0;
+    // process all pinned nodes as the roots of expression trees
+    for (Instruction* n = b; n != NULL; n = n->next()) {
+      if (n->is_pinned()) uses_do(&n);
+    }
+    assert(depth == 0, "should have counted back down");
+
+    // now process any unpinned nodes which recursed too deeply
+    while (worklist->length() > 0) {
+      Value t = worklist->pop();
+      if (!t->is_pinned()) {
+        // compute the use count
+        uses_do(&t);
+
+        // pin the instruction so that LIRGenerator doesn't recurse
+        // too deeply during it's evaluation.
+        t->pin();
+      }
+    }
+    assert(depth == 0, "should have counted back down");
+  }
+
+ public:
+  static void compute(BlockList* blocks) {
+    worklist = new Values();
+    blocks->blocks_do(basic_compute_use_count);
+    worklist = NULL;
+  }
+};
+
+
+Values* UseCountComputer::worklist = NULL;
+int UseCountComputer::depth = 0;
+
+// helper macro for short definition of trace-output inside code
+#ifndef PRODUCT
+  #define TRACE_LINEAR_SCAN(level, code)       \
+    if (TraceLinearScanLevel >= level) {       \
+      code;                                    \
+    }
+#else
+  #define TRACE_LINEAR_SCAN(level, code)
+#endif
+
+class ComputeLinearScanOrder : public StackObj {
+ private:
+  int        _max_block_id;        // the highest block_id of a block
+  int        _num_blocks;          // total number of blocks (smaller than _max_block_id)
+  int        _num_loops;           // total number of loops
+  bool       _iterative_dominators;// method requires iterative computation of dominatiors
+
+  BlockList* _linear_scan_order;   // the resulting list of blocks in correct order
+
+  BitMap     _visited_blocks;      // used for recursive processing of blocks
+  BitMap     _active_blocks;       // used for recursive processing of blocks
+  BitMap     _dominator_blocks;    // temproary BitMap used for computation of dominator
+  intArray   _forward_branches;    // number of incoming forward branches for each block
+  BlockList  _loop_end_blocks;     // list of all loop end blocks collected during count_edges
+  BitMap2D   _loop_map;            // two-dimensional bit set: a bit is set if a block is contained in a loop
+  BlockList  _work_list;           // temporary list (used in mark_loops and compute_order)
+
+  // accessors for _visited_blocks and _active_blocks
+  void init_visited()                     { _active_blocks.clear(); _visited_blocks.clear(); }
+  bool is_visited(BlockBegin* b) const    { return _visited_blocks.at(b->block_id()); }
+  bool is_active(BlockBegin* b) const     { return _active_blocks.at(b->block_id()); }
+  void set_visited(BlockBegin* b)         { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
+  void set_active(BlockBegin* b)          { assert(!is_active(b), "already set");  _active_blocks.set_bit(b->block_id()); }
+  void clear_active(BlockBegin* b)        { assert(is_active(b), "not already");   _active_blocks.clear_bit(b->block_id()); }
+
+  // accessors for _forward_branches
+  void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
+  int  dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
+
+  // accessors for _loop_map
+  bool is_block_in_loop   (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
+  void set_block_in_loop  (int loop_idx, BlockBegin* b)       { _loop_map.set_bit(loop_idx, b->block_id()); }
+  void clear_block_in_loop(int loop_idx, int block_id)        { _loop_map.clear_bit(loop_idx, block_id); }
+
+  // count edges between blocks
+  void count_edges(BlockBegin* cur, BlockBegin* parent);
+
+  // loop detection
+  void mark_loops();
+  void clear_non_natural_loops(BlockBegin* start_block);
+  void assign_loop_depth(BlockBegin* start_block);
+
+  // computation of final block order
+  BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
+  void compute_dominator(BlockBegin* cur, BlockBegin* parent);
+  int  compute_weight(BlockBegin* cur);
+  bool ready_for_processing(BlockBegin* cur);
+  void sort_into_work_list(BlockBegin* b);
+  void append_block(BlockBegin* cur);
+  void compute_order(BlockBegin* start_block);
+
+  // fixup of dominators for non-natural loops
+  bool compute_dominators_iter();
+  void compute_dominators();
+
+  // debug functions
+  NOT_PRODUCT(void print_blocks();)
+  DEBUG_ONLY(void verify();)
+
+ public:
+  ComputeLinearScanOrder(BlockBegin* start_block);
+
+  // accessors for final result
+  BlockList* linear_scan_order() const    { return _linear_scan_order; }
+  int        num_loops() const            { return _num_loops; }
+};
+
+
+ComputeLinearScanOrder::ComputeLinearScanOrder(BlockBegin* start_block) :
+  _max_block_id(BlockBegin::number_of_blocks()),
+  _num_blocks(0),
+  _num_loops(0),
+  _iterative_dominators(false),
+  _visited_blocks(_max_block_id),
+  _active_blocks(_max_block_id),
+  _dominator_blocks(_max_block_id),
+  _forward_branches(_max_block_id, 0),
+  _loop_end_blocks(8),
+  _work_list(8),
+  _linear_scan_order(NULL), // initialized later with correct size
+  _loop_map(0, 0)           // initialized later with correct size
+{
+  TRACE_LINEAR_SCAN(2, "***** computing linear-scan block order");
+
+  init_visited();
+  count_edges(start_block, NULL);
+
+  if (_num_loops > 0) {
+    mark_loops();
+    clear_non_natural_loops(start_block);
+    assign_loop_depth(start_block);
+  }
+
+  compute_order(start_block);
+  compute_dominators();
+
+  NOT_PRODUCT(print_blocks());
+  DEBUG_ONLY(verify());
+}
+
+
+// Traverse the CFG:
+// * count total number of blocks
+// * count all incoming edges and backward incoming edges
+// * number loop header blocks
+// * create a list with all loop end blocks
+void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
+  TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
+  assert(cur->dominator() == NULL, "dominator already initialized");
+
+  if (is_active(cur)) {
+    TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
+    assert(is_visited(cur), "block must be visisted when block is active");
+    assert(parent != NULL, "must have parent");
+    assert(parent->number_of_sux() == 1, "loop end blocks must have one successor (critical edges are split)");
+
+    cur->set(BlockBegin::linear_scan_loop_header_flag);
+    cur->set(BlockBegin::backward_branch_target_flag);
+
+    parent->set(BlockBegin::linear_scan_loop_end_flag);
+    _loop_end_blocks.append(parent);
+    return;
+  }
+
+  // increment number of incoming forward branches
+  inc_forward_branches(cur);
+
+  if (is_visited(cur)) {
+    TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
+    return;
+  }
+
+  _num_blocks++;
+  set_visited(cur);
+  set_active(cur);
+
+  // recursive call for all successors
+  int i;
+  for (i = cur->number_of_sux() - 1; i >= 0; i--) {
+    count_edges(cur->sux_at(i), cur);
+  }
+  for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
+    count_edges(cur->exception_handler_at(i), cur);
+  }
+
+  clear_active(cur);
+
+  // Each loop has a unique number.
+  // When multiple loops are nested, assign_loop_depth assumes that the
+  // innermost loop has the lowest number. This is guaranteed by setting
+  // the loop number after the recursive calls for the successors above
+  // have returned.
+  if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
+    assert(cur->loop_index() == -1, "cannot set loop-index twice");
+    TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
+
+    cur->set_loop_index(_num_loops);
+    _num_loops++;
+  }
+
+  TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
+}
+
+
+void ComputeLinearScanOrder::mark_loops() {
+  TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
+
+  _loop_map = BitMap2D(_num_loops, _max_block_id);
+  _loop_map.clear();
+
+  for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
+    BlockBegin* loop_end   = _loop_end_blocks.at(i);
+    BlockBegin* loop_start = loop_end->sux_at(0);
+    int         loop_idx   = loop_start->loop_index();
+
+    TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
+    assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
+    assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
+    assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
+    assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
+    assert(_work_list.is_empty(), "work list must be empty before processing");
+
+    // add the end-block of the loop to the working list
+    _work_list.push(loop_end);
+    set_block_in_loop(loop_idx, loop_end);
+    do {
+      BlockBegin* cur = _work_list.pop();
+
+      TRACE_LINEAR_SCAN(3, tty->print_cr("    processing B%d", cur->block_id()));
+      assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
+
+      // recursive processing of all predecessors ends when start block of loop is reached
+      if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
+        for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
+          BlockBegin* pred = cur->pred_at(j);
+
+          if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
+            // this predecessor has not been processed yet, so add it to work list
+            TRACE_LINEAR_SCAN(3, tty->print_cr("    pushing B%d", pred->block_id()));
+            _work_list.push(pred);
+            set_block_in_loop(loop_idx, pred);
+          }
+        }
+      }
+    } while (!_work_list.is_empty());
+  }
+}
+
+
+// check for non-natural loops (loops where the loop header does not dominate
+// all other loop blocks = loops with mulitple entries).
+// such loops are ignored
+void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
+  for (int i = _num_loops - 1; i >= 0; i--) {
+    if (is_block_in_loop(i, start_block)) {
+      // loop i contains the entry block of the method
+      // -> this is not a natural loop, so ignore it
+      TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
+
+      for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
+        clear_block_in_loop(i, block_id);
+      }
+      _iterative_dominators = true;
+    }
+  }
+}
+
+void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
+  TRACE_LINEAR_SCAN(3, "----- computing loop-depth and weight");
+  init_visited();
+
+  assert(_work_list.is_empty(), "work list must be empty before processing");
+  _work_list.append(start_block);
+
+  do {
+    BlockBegin* cur = _work_list.pop();
+
+    if (!is_visited(cur)) {
+      set_visited(cur);
+      TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
+
+      // compute loop-depth and loop-index for the block
+      assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
+      int i;
+      int loop_depth = 0;
+      int min_loop_idx = -1;
+      for (i = _num_loops - 1; i >= 0; i--) {
+        if (is_block_in_loop(i, cur)) {
+          loop_depth++;
+          min_loop_idx = i;
+        }
+      }
+      cur->set_loop_depth(loop_depth);
+      cur->set_loop_index(min_loop_idx);
+
+      // append all unvisited successors to work list
+      for (i = cur->number_of_sux() - 1; i >= 0; i--) {
+        _work_list.append(cur->sux_at(i));
+      }
+      for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
+        _work_list.append(cur->exception_handler_at(i));
+      }
+    }
+  } while (!_work_list.is_empty());
+}
+
+
+BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
+  assert(a != NULL && b != NULL, "must have input blocks");
+
+  _dominator_blocks.clear();
+  while (a != NULL) {
+    _dominator_blocks.set_bit(a->block_id());
+    assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
+    a = a->dominator();
+  }
+  while (b != NULL && !_dominator_blocks.at(b->block_id())) {
+    assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
+    b = b->dominator();
+  }
+
+  assert(b != NULL, "could not find dominator");
+  return b;
+}
+
+void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
+  if (cur->dominator() == NULL) {
+    TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
+    cur->set_dominator(parent);
+
+  } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
+    TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
+    assert(cur->number_of_preds() > 1, "");
+    cur->set_dominator(common_dominator(cur->dominator(), parent));
+  }
+}
+
+
+int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
+  BlockBegin* single_sux = NULL;
+  if (cur->number_of_sux() == 1) {
+    single_sux = cur->sux_at(0);
+  }
+
+  // limit loop-depth to 15 bit (only for security reason, it will never be so big)
+  int weight = (cur->loop_depth() & 0x7FFF) << 16;
+
+  // general macro for short definition of weight flags
+  // the first instance of INC_WEIGHT_IF has the highest priority
+  int cur_bit = 15;
+  #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
+
+  // this is necessery for the (very rare) case that two successing blocks have
+  // the same loop depth, but a different loop index (can happen for endless loops
+  // with exception handlers)
+  INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
+
+  // loop end blocks (blocks that end with a backward branch) are added
+  // after all other blocks of the loop.
+  INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
+
+  // critical edge split blocks are prefered because than they have a bigger
+  // proability to be completely empty
+  INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
+
+  // exceptions should not be thrown in normal control flow, so these blocks
+  // are added as late as possible
+  INC_WEIGHT_IF(cur->end()->as_Throw() == NULL  && (single_sux == NULL || single_sux->end()->as_Throw()  == NULL));
+  INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
+
+  // exceptions handlers are added as late as possible
+  INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
+
+  // guarantee that weight is > 0
+  weight |= 1;
+
+  #undef INC_WEIGHT_IF
+  assert(cur_bit >= 0, "too many flags");
+  assert(weight > 0, "weight cannot become negative");
+
+  return weight;
+}
+
+bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
+  // Discount the edge just traveled.
+  // When the number drops to zero, all forward branches were processed
+  if (dec_forward_branches(cur) != 0) {
+    return false;
+  }
+
+  assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
+  assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
+  return true;
+}
+
+void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
+  assert(_work_list.index_of(cur) == -1, "block already in work list");
+
+  int cur_weight = compute_weight(cur);
+
+  // the linear_scan_number is used to cache the weight of a block
+  cur->set_linear_scan_number(cur_weight);
+
+#ifndef PRODUCT
+  if (StressLinearScan) {
+    _work_list.insert_before(0, cur);
+    return;
+  }
+#endif
+
+  _work_list.append(NULL); // provide space for new element
+
+  int insert_idx = _work_list.length() - 1;
+  while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
+    _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
+    insert_idx--;
+  }
+  _work_list.at_put(insert_idx, cur);
+
+  TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
+  TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d  weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
+
+#ifdef ASSERT
+  for (int i = 0; i < _work_list.length(); i++) {
+    assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
+    assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
+  }
+#endif
+}
+
+void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
+  TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
+  assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
+
+  // currently, the linear scan order and code emit order are equal.
+  // therefore the linear_scan_number and the weight of a block must also
+  // be equal.
+  cur->set_linear_scan_number(_linear_scan_order->length());
+  _linear_scan_order->append(cur);
+}
+
+void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
+  TRACE_LINEAR_SCAN(3, "----- computing final block order");
+
+  // the start block is always the first block in the linear scan order
+  _linear_scan_order = new BlockList(_num_blocks);
+  append_block(start_block);
+
+  assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
+  BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
+  BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
+
+  BlockBegin* sux_of_osr_entry = NULL;
+  if (osr_entry != NULL) {
+    // special handling for osr entry:
+    // ignore the edge between the osr entry and its successor for processing
+    // the osr entry block is added manually below
+    assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
+    assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
+
+    sux_of_osr_entry = osr_entry->sux_at(0);
+    dec_forward_branches(sux_of_osr_entry);
+
+    compute_dominator(osr_entry, start_block);
+    _iterative_dominators = true;
+  }
+  compute_dominator(std_entry, start_block);
+
+  // start processing with standard entry block
+  assert(_work_list.is_empty(), "list must be empty before processing");
+
+  if (ready_for_processing(std_entry)) {
+    sort_into_work_list(std_entry);
+  } else {
+    assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
+  }
+
+  do {
+    BlockBegin* cur = _work_list.pop();
+
+    if (cur == sux_of_osr_entry) {
+      // the osr entry block is ignored in normal processing, it is never added to the
+      // work list. Instead, it is added as late as possible manually here.
+      append_block(osr_entry);
+      compute_dominator(cur, osr_entry);
+    }
+    append_block(cur);
+
+    int i;
+    int num_sux = cur->number_of_sux();
+    // changed loop order to get "intuitive" order of if- and else-blocks
+    for (i = 0; i < num_sux; i++) {
+      BlockBegin* sux = cur->sux_at(i);
+      compute_dominator(sux, cur);
+      if (ready_for_processing(sux)) {
+        sort_into_work_list(sux);
+      }
+    }
+    num_sux = cur->number_of_exception_handlers();
+    for (i = 0; i < num_sux; i++) {
+      BlockBegin* sux = cur->exception_handler_at(i);
+      compute_dominator(sux, cur);
+      if (ready_for_processing(sux)) {
+        sort_into_work_list(sux);
+      }
+    }
+  } while (_work_list.length() > 0);
+}
+
+
+bool ComputeLinearScanOrder::compute_dominators_iter() {
+  bool changed = false;
+  int num_blocks = _linear_scan_order->length();
+
+  assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
+  assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
+  for (int i = 1; i < num_blocks; i++) {
+    BlockBegin* block = _linear_scan_order->at(i);
+
+    BlockBegin* dominator = block->pred_at(0);
+    int num_preds = block->number_of_preds();
+    for (int i = 1; i < num_preds; i++) {
+      dominator = common_dominator(dominator, block->pred_at(i));
+    }
+
+    if (dominator != block->dominator()) {
+      TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
+
+      block->set_dominator(dominator);
+      changed = true;
+    }
+  }
+  return changed;
+}
+
+void ComputeLinearScanOrder::compute_dominators() {
+  TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
+
+  // iterative computation of dominators is only required for methods with non-natural loops
+  // and OSR-methods. For all other methods, the dominators computed when generating the
+  // linear scan block order are correct.
+  if (_iterative_dominators) {
+    do {
+      TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
+    } while (compute_dominators_iter());
+  }
+
+  // check that dominators are correct
+  assert(!compute_dominators_iter(), "fix point not reached");
+}
+
+
+#ifndef PRODUCT
+void ComputeLinearScanOrder::print_blocks() {
+  if (TraceLinearScanLevel >= 2) {
+    tty->print_cr("----- loop information:");
+    for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
+      BlockBegin* cur = _linear_scan_order->at(block_idx);
+
+      tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
+      for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
+        tty->print ("%d ", is_block_in_loop(loop_idx, cur));
+      }
+      tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
+    }
+  }
+
+  if (TraceLinearScanLevel >= 1) {
+    tty->print_cr("----- linear-scan block order:");
+    for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
+      BlockBegin* cur = _linear_scan_order->at(block_idx);
+      tty->print("%4d: B%2d    loop: %2d  depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
+
+      tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
+      tty->print(cur->is_set(BlockBegin::critical_edge_split_flag)     ? " ce" : "   ");
+      tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : "   ");
+      tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag)    ? " le" : "   ");
+
+      if (cur->dominator() != NULL) {
+        tty->print("    dom: B%d ", cur->dominator()->block_id());
+      } else {
+        tty->print("    dom: NULL ");
+      }
+
+      if (cur->number_of_preds() > 0) {
+        tty->print("    preds: ");
+        for (int j = 0; j < cur->number_of_preds(); j++) {
+          BlockBegin* pred = cur->pred_at(j);
+          tty->print("B%d ", pred->block_id());
+        }
+      }
+      if (cur->number_of_sux() > 0) {
+        tty->print("    sux: ");
+        for (int j = 0; j < cur->number_of_sux(); j++) {
+          BlockBegin* sux = cur->sux_at(j);
+          tty->print("B%d ", sux->block_id());
+        }
+      }
+      if (cur->number_of_exception_handlers() > 0) {
+        tty->print("    ex: ");
+        for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
+          BlockBegin* ex = cur->exception_handler_at(j);
+          tty->print("B%d ", ex->block_id());
+        }
+      }
+      tty->cr();
+    }
+  }
+}
+#endif
+
+#ifdef ASSERT
+void ComputeLinearScanOrder::verify() {
+  assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
+
+  if (StressLinearScan) {
+    // blocks are scrambled when StressLinearScan is used
+    return;
+  }
+
+  // check that all successors of a block have a higher linear-scan-number
+  // and that all predecessors of a block have a lower linear-scan-number
+  // (only backward branches of loops are ignored)
+  int i;
+  for (i = 0; i < _linear_scan_order->length(); i++) {
+    BlockBegin* cur = _linear_scan_order->at(i);
+
+    assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
+    assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
+
+    int j;
+    for (j = cur->number_of_sux() - 1; j >= 0; j--) {
+      BlockBegin* sux = cur->sux_at(j);
+
+      assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
+      if (!cur->is_set(BlockBegin::linear_scan_loop_end_flag)) {
+        assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
+      }
+      if (cur->loop_depth() == sux->loop_depth()) {
+        assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
+      }
+    }
+
+    for (j = cur->number_of_preds() - 1; j >= 0; j--) {
+      BlockBegin* pred = cur->pred_at(j);
+
+      assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
+      if (!cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
+        assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
+      }
+      if (cur->loop_depth() == pred->loop_depth()) {
+        assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
+      }
+
+      assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
+    }
+
+    // check dominator
+    if (i == 0) {
+      assert(cur->dominator() == NULL, "first block has no dominator");
+    } else {
+      assert(cur->dominator() != NULL, "all but first block must have dominator");
+    }
+    assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0), "Single predecessor must also be dominator");
+  }
+
+  // check that all loops are continuous
+  for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
+    int block_idx = 0;
+    assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
+
+    // skip blocks before the loop
+    while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
+      block_idx++;
+    }
+    // skip blocks of loop
+    while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
+      block_idx++;
+    }
+    // after the first non-loop block, there must not be another loop-block
+    while (block_idx < _num_blocks) {
+      assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
+      block_idx++;
+    }
+  }
+}
+#endif
+
+
+void IR::compute_code() {
+  assert(is_valid(), "IR must be valid");
+
+  ComputeLinearScanOrder compute_order(start());
+  _num_loops = compute_order.num_loops();
+  _code = compute_order.linear_scan_order();
+}
+
+
+void IR::compute_use_counts() {
+  // make sure all values coming out of this block get evaluated.
+  int num_blocks = _code->length();
+  for (int i = 0; i < num_blocks; i++) {
+    _code->at(i)->end()->state()->pin_stack_for_linear_scan();
+  }
+
+  // compute use counts
+  UseCountComputer::compute(_code);
+}
+
+
+void IR::iterate_preorder(BlockClosure* closure) {
+  assert(is_valid(), "IR must be valid");
+  start()->iterate_preorder(closure);
+}
+
+
+void IR::iterate_postorder(BlockClosure* closure) {
+  assert(is_valid(), "IR must be valid");
+  start()->iterate_postorder(closure);
+}
+
+void IR::iterate_linear_scan_order(BlockClosure* closure) {
+  linear_scan_order()->iterate_forward(closure);
+}
+
+
+#ifndef PRODUCT
+class BlockPrinter: public BlockClosure {
+ private:
+  InstructionPrinter* _ip;
+  bool                _cfg_only;
+  bool                _live_only;
+
+ public:
+  BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
+    _ip       = ip;
+    _cfg_only = cfg_only;
+    _live_only = live_only;
+  }
+
+  virtual void block_do(BlockBegin* block) {
+    if (_cfg_only) {
+      _ip->print_instr(block); tty->cr();
+    } else {
+      block->print_block(*_ip, _live_only);
+    }
+  }
+};
+
+
+void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
+  ttyLocker ttyl;
+  InstructionPrinter ip(!cfg_only);
+  BlockPrinter bp(&ip, cfg_only, live_only);
+  start->iterate_preorder(&bp);
+  tty->cr();
+}
+
+void IR::print(bool cfg_only, bool live_only) {
+  if (is_valid()) {
+    print(start(), cfg_only, live_only);
+  } else {
+    tty->print_cr("invalid IR");
+  }
+}
+
+
+define_array(BlockListArray, BlockList*)
+define_stack(BlockListList, BlockListArray)
+
+class PredecessorValidator : public BlockClosure {
+ private:
+  BlockListList* _predecessors;
+  BlockList*     _blocks;
+
+  static int cmp(BlockBegin** a, BlockBegin** b) {
+    return (*a)->block_id() - (*b)->block_id();
+  }
+
+ public:
+  PredecessorValidator(IR* hir) {
+    ResourceMark rm;
+    _predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
+    _blocks = new BlockList();
+
+    int i;
+    hir->start()->iterate_preorder(this);
+    if (hir->code() != NULL) {
+      assert(hir->code()->length() == _blocks->length(), "must match");
+      for (i = 0; i < _blocks->length(); i++) {
+        assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
+      }
+    }
+
+    for (i = 0; i < _blocks->length(); i++) {
+      BlockBegin* block = _blocks->at(i);
+      BlockList* preds = _predecessors->at(block->block_id());
+      if (preds == NULL) {
+        assert(block->number_of_preds() == 0, "should be the same");
+        continue;
+      }
+
+      // clone the pred list so we can mutate it
+      BlockList* pred_copy = new BlockList();
+      int j;
+      for (j = 0; j < block->number_of_preds(); j++) {
+        pred_copy->append(block->pred_at(j));
+      }
+      // sort them in the same order
+      preds->sort(cmp);
+      pred_copy->sort(cmp);
+      int length = MIN2(preds->length(), block->number_of_preds());
+      for (j = 0; j < block->number_of_preds(); j++) {
+        assert(preds->at(j) == pred_copy->at(j), "must match");
+      }
+
+      assert(preds->length() == block->number_of_preds(), "should be the same");
+    }
+  }
+
+  virtual void block_do(BlockBegin* block) {
+    _blocks->append(block);
+    BlockEnd* be = block->end();
+    int n = be->number_of_sux();
+    int i;
+    for (i = 0; i < n; i++) {
+      BlockBegin* sux = be->sux_at(i);
+      assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
+
+      BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
+      if (preds == NULL) {
+        preds = new BlockList();
+        _predecessors->at_put(sux->block_id(), preds);
+      }
+      preds->append(block);
+    }
+
+    n = block->number_of_exception_handlers();
+    for (i = 0; i < n; i++) {
+      BlockBegin* sux = block->exception_handler_at(i);
+      assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
+
+      BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
+      if (preds == NULL) {
+        preds = new BlockList();
+        _predecessors->at_put(sux->block_id(), preds);
+      }
+      preds->append(block);
+    }
+  }
+};
+
+void IR::verify() {
+#ifdef ASSERT
+  PredecessorValidator pv(this);
+#endif
+}
+
+#endif // PRODUCT
+
+void SubstitutionResolver::substitute(Value* v) {
+  Value v0 = *v;
+  if (v0) {
+    Value vs = v0->subst();
+    if (vs != v0) {
+      *v = v0->subst();
+    }
+  }
+}
+
+#ifdef ASSERT
+void check_substitute(Value* v) {
+  Value v0 = *v;
+  if (v0) {
+    Value vs = v0->subst();
+    assert(vs == v0, "missed substitution");
+  }
+}
+#endif
+
+
+void SubstitutionResolver::block_do(BlockBegin* block) {
+  Instruction* last = NULL;
+  for (Instruction* n = block; n != NULL;) {
+    n->values_do(substitute);
+    // need to remove this instruction from the instruction stream
+    if (n->subst() != n) {
+      assert(last != NULL, "must have last");
+      last->set_next(n->next(), n->next()->bci());
+    } else {
+      last = n;
+    }
+    n = last->next();
+  }
+
+#ifdef ASSERT
+  if (block->state()) block->state()->values_do(check_substitute);
+  block->block_values_do(check_substitute);
+  if (block->end() && block->end()->state()) block->end()->state()->values_do(check_substitute);
+#endif
+}