--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/adlc/output_h.cpp Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,2102 @@
+/*
+ * Copyright 1998-2007 Sun Microsystems, Inc. All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+// output_h.cpp - Class HPP file output routines for architecture definition
+#include "adlc.hpp"
+
+
+// Generate the #define that describes the number of registers.
+static void defineRegCount(FILE *fp, RegisterForm *registers) {
+ if (registers) {
+ int regCount = AdlcVMDeps::Physical + registers->_rdefs.count();
+ fprintf(fp,"\n");
+ fprintf(fp,"// the number of reserved registers + machine registers.\n");
+ fprintf(fp,"#define REG_COUNT %d\n", regCount);
+ }
+}
+
+// Output enumeration of machine register numbers
+// (1)
+// // Enumerate machine registers starting after reserved regs.
+// // in the order of occurrence in the register block.
+// enum MachRegisterNumbers {
+// EAX_num = 0,
+// ...
+// _last_Mach_Reg
+// }
+void ArchDesc::buildMachRegisterNumbers(FILE *fp_hpp) {
+ if (_register) {
+ RegDef *reg_def = NULL;
+
+ // Output a #define for the number of machine registers
+ defineRegCount(fp_hpp, _register);
+
+ // Count all the Save_On_Entry and Always_Save registers
+ int saved_on_entry = 0;
+ int c_saved_on_entry = 0;
+ _register->reset_RegDefs();
+ while( (reg_def = _register->iter_RegDefs()) != NULL ) {
+ if( strcmp(reg_def->_callconv,"SOE") == 0 ||
+ strcmp(reg_def->_callconv,"AS") == 0 ) ++saved_on_entry;
+ if( strcmp(reg_def->_c_conv,"SOE") == 0 ||
+ strcmp(reg_def->_c_conv,"AS") == 0 ) ++c_saved_on_entry;
+ }
+ fprintf(fp_hpp, "\n");
+ fprintf(fp_hpp, "// the number of save_on_entry + always_saved registers.\n");
+ fprintf(fp_hpp, "#define MAX_SAVED_ON_ENTRY_REG_COUNT %d\n", max(saved_on_entry,c_saved_on_entry));
+ fprintf(fp_hpp, "#define SAVED_ON_ENTRY_REG_COUNT %d\n", saved_on_entry);
+ fprintf(fp_hpp, "#define C_SAVED_ON_ENTRY_REG_COUNT %d\n", c_saved_on_entry);
+
+ // (1)
+ // Build definition for enumeration of register numbers
+ fprintf(fp_hpp, "\n");
+ fprintf(fp_hpp, "// Enumerate machine register numbers starting after reserved regs.\n");
+ fprintf(fp_hpp, "// in the order of occurrence in the register block.\n");
+ fprintf(fp_hpp, "enum MachRegisterNumbers {\n");
+
+ // Output the register number for each register in the allocation classes
+ _register->reset_RegDefs();
+ int i = 0;
+ while( (reg_def = _register->iter_RegDefs()) != NULL ) {
+ fprintf(fp_hpp," %s_num,\t\t// %d\n", reg_def->_regname, i++);
+ }
+ // Finish defining enumeration
+ fprintf(fp_hpp, " _last_Mach_Reg\t// %d\n", i);
+ fprintf(fp_hpp, "};\n");
+ }
+
+ fprintf(fp_hpp, "\n// Size of register-mask in ints\n");
+ fprintf(fp_hpp, "#define RM_SIZE %d\n",RegisterForm::RegMask_Size());
+ fprintf(fp_hpp, "// Unroll factor for loops over the data in a RegMask\n");
+ fprintf(fp_hpp, "#define FORALL_BODY ");
+ int len = RegisterForm::RegMask_Size();
+ for( int i = 0; i < len; i++ )
+ fprintf(fp_hpp, "BODY(%d) ",i);
+ fprintf(fp_hpp, "\n\n");
+
+ fprintf(fp_hpp,"class RegMask;\n");
+ // All RegMasks are declared "extern const ..." in ad_<arch>.hpp
+ // fprintf(fp_hpp,"extern RegMask STACK_OR_STACK_SLOTS_mask;\n\n");
+}
+
+
+// Output enumeration of machine register encodings
+// (2)
+// // Enumerate machine registers starting after reserved regs.
+// // in the order of occurrence in the alloc_class(es).
+// enum MachRegisterEncodes {
+// EAX_enc = 0x00,
+// ...
+// }
+void ArchDesc::buildMachRegisterEncodes(FILE *fp_hpp) {
+ if (_register) {
+ RegDef *reg_def = NULL;
+ RegDef *reg_def_next = NULL;
+
+ // (2)
+ // Build definition for enumeration of encode values
+ fprintf(fp_hpp, "\n");
+ fprintf(fp_hpp, "// Enumerate machine registers starting after reserved regs.\n");
+ fprintf(fp_hpp, "// in the order of occurrence in the alloc_class(es).\n");
+ fprintf(fp_hpp, "enum MachRegisterEncodes {\n");
+
+ // Output the register encoding for each register in the allocation classes
+ _register->reset_RegDefs();
+ reg_def_next = _register->iter_RegDefs();
+ while( (reg_def = reg_def_next) != NULL ) {
+ reg_def_next = _register->iter_RegDefs();
+ fprintf(fp_hpp," %s_enc = %s%s\n",
+ reg_def->_regname, reg_def->register_encode(), reg_def_next == NULL? "" : "," );
+ }
+ // Finish defining enumeration
+ fprintf(fp_hpp, "};\n");
+
+ } // Done with register form
+}
+
+
+// Declare an array containing the machine register names, strings.
+static void declareRegNames(FILE *fp, RegisterForm *registers) {
+ if (registers) {
+// fprintf(fp,"\n");
+// fprintf(fp,"// An array of character pointers to machine register names.\n");
+// fprintf(fp,"extern const char *regName[];\n");
+ }
+}
+
+// Declare an array containing the machine register sizes in 32-bit words.
+void ArchDesc::declareRegSizes(FILE *fp) {
+// regSize[] is not used
+}
+
+// Declare an array containing the machine register encoding values
+static void declareRegEncodes(FILE *fp, RegisterForm *registers) {
+ if (registers) {
+ // // //
+ // fprintf(fp,"\n");
+ // fprintf(fp,"// An array containing the machine register encode values\n");
+ // fprintf(fp,"extern const char regEncode[];\n");
+ }
+}
+
+
+// ---------------------------------------------------------------------------
+//------------------------------Utilities to build Instruction Classes--------
+// ---------------------------------------------------------------------------
+static void out_RegMask(FILE *fp) {
+ fprintf(fp," virtual const RegMask &out_RegMask() const;\n");
+}
+
+// ---------------------------------------------------------------------------
+//--------Utilities to build MachOper and MachNode derived Classes------------
+// ---------------------------------------------------------------------------
+
+//------------------------------Utilities to build Operand Classes------------
+static void in_RegMask(FILE *fp) {
+ fprintf(fp," virtual const RegMask *in_RegMask(int index) const;\n");
+}
+
+static void declare_hash(FILE *fp) {
+ fprintf(fp," virtual uint hash() const;\n");
+}
+
+static void declare_cmp(FILE *fp) {
+ fprintf(fp," virtual uint cmp( const MachOper &oper ) const;\n");
+}
+
+static void declareConstStorage(FILE *fp, FormDict &globals, OperandForm *oper) {
+ int i = 0;
+ Component *comp;
+
+ if (oper->num_consts(globals) == 0) return;
+ // Iterate over the component list looking for constants
+ oper->_components.reset();
+ if ((comp = oper->_components.iter()) == NULL) {
+ assert(oper->num_consts(globals) == 1, "Bad component list detected.\n");
+ const char *type = oper->ideal_type(globals);
+ if (!strcmp(type, "ConI")) {
+ if (i > 0) fprintf(fp,", ");
+ fprintf(fp," int32 _c%d;\n", i);
+ }
+ else if (!strcmp(type, "ConP")) {
+ if (i > 0) fprintf(fp,", ");
+ fprintf(fp," const TypePtr *_c%d;\n", i);
+ }
+ else if (!strcmp(type, "ConL")) {
+ if (i > 0) fprintf(fp,", ");
+ fprintf(fp," jlong _c%d;\n", i);
+ }
+ else if (!strcmp(type, "ConF")) {
+ if (i > 0) fprintf(fp,", ");
+ fprintf(fp," jfloat _c%d;\n", i);
+ }
+ else if (!strcmp(type, "ConD")) {
+ if (i > 0) fprintf(fp,", ");
+ fprintf(fp," jdouble _c%d;\n", i);
+ }
+ else if (!strcmp(type, "Bool")) {
+ fprintf(fp,"private:\n");
+ fprintf(fp," BoolTest::mask _c%d;\n", i);
+ fprintf(fp,"public:\n");
+ }
+ else {
+ assert(0, "Non-constant operand lacks component list.");
+ }
+ } // end if NULL
+ else {
+ oper->_components.reset();
+ while ((comp = oper->_components.iter()) != NULL) {
+ if (!strcmp(comp->base_type(globals), "ConI")) {
+ fprintf(fp," jint _c%d;\n", i);
+ i++;
+ }
+ else if (!strcmp(comp->base_type(globals), "ConP")) {
+ fprintf(fp," const TypePtr *_c%d;\n", i);
+ i++;
+ }
+ else if (!strcmp(comp->base_type(globals), "ConL")) {
+ fprintf(fp," jlong _c%d;\n", i);
+ i++;
+ }
+ else if (!strcmp(comp->base_type(globals), "ConF")) {
+ fprintf(fp," jfloat _c%d;\n", i);
+ i++;
+ }
+ else if (!strcmp(comp->base_type(globals), "ConD")) {
+ fprintf(fp," jdouble _c%d;\n", i);
+ i++;
+ }
+ }
+ }
+}
+
+// Declare constructor.
+// Parameters start with condition code, then all other constants
+//
+// (0) public:
+// (1) MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
+// (2) : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
+//
+static void defineConstructor(FILE *fp, const char *name, uint num_consts,
+ ComponentList &lst, bool is_ideal_bool,
+ Form::DataType constant_type, FormDict &globals) {
+ fprintf(fp,"public:\n");
+ // generate line (1)
+ fprintf(fp," %sOper(", name);
+ if( num_consts == 0 ) {
+ fprintf(fp,") {}\n");
+ return;
+ }
+
+ // generate parameters for constants
+ uint i = 0;
+ Component *comp;
+ lst.reset();
+ if ((comp = lst.iter()) == NULL) {
+ assert(num_consts == 1, "Bad component list detected.\n");
+ switch( constant_type ) {
+ case Form::idealI : {
+ fprintf(fp,is_ideal_bool ? "BoolTest::mask c%d" : "int32 c%d", i);
+ break;
+ }
+ case Form::idealP : { fprintf(fp,"const TypePtr *c%d", i); break; }
+ case Form::idealL : { fprintf(fp,"jlong c%d", i); break; }
+ case Form::idealF : { fprintf(fp,"jfloat c%d", i); break; }
+ case Form::idealD : { fprintf(fp,"jdouble c%d", i); break; }
+ default:
+ assert(!is_ideal_bool, "Non-constant operand lacks component list.");
+ break;
+ }
+ } // end if NULL
+ else {
+ lst.reset();
+ while((comp = lst.iter()) != NULL) {
+ if (!strcmp(comp->base_type(globals), "ConI")) {
+ if (i > 0) fprintf(fp,", ");
+ fprintf(fp,"int32 c%d", i);
+ i++;
+ }
+ else if (!strcmp(comp->base_type(globals), "ConP")) {
+ if (i > 0) fprintf(fp,", ");
+ fprintf(fp,"const TypePtr *c%d", i);
+ i++;
+ }
+ else if (!strcmp(comp->base_type(globals), "ConL")) {
+ if (i > 0) fprintf(fp,", ");
+ fprintf(fp,"jlong c%d", i);
+ i++;
+ }
+ else if (!strcmp(comp->base_type(globals), "ConF")) {
+ if (i > 0) fprintf(fp,", ");
+ fprintf(fp,"jfloat c%d", i);
+ i++;
+ }
+ else if (!strcmp(comp->base_type(globals), "ConD")) {
+ if (i > 0) fprintf(fp,", ");
+ fprintf(fp,"jdouble c%d", i);
+ i++;
+ }
+ else if (!strcmp(comp->base_type(globals), "Bool")) {
+ if (i > 0) fprintf(fp,", ");
+ fprintf(fp,"BoolTest::mask c%d", i);
+ i++;
+ }
+ }
+ }
+ // finish line (1) and start line (2)
+ fprintf(fp,") : ");
+ // generate initializers for constants
+ i = 0;
+ fprintf(fp,"_c%d(c%d)", i, i);
+ for( i = 1; i < num_consts; ++i) {
+ fprintf(fp,", _c%d(c%d)", i, i);
+ }
+ // The body for the constructor is empty
+ fprintf(fp," {}\n");
+}
+
+// ---------------------------------------------------------------------------
+// Utilities to generate format rules for machine operands and instructions
+// ---------------------------------------------------------------------------
+
+// Generate the format rule for condition codes
+static void defineCCodeDump(FILE *fp, int i) {
+ fprintf(fp, " if( _c%d == BoolTest::eq ) st->print(\"eq\");\n",i);
+ fprintf(fp, " else if( _c%d == BoolTest::ne ) st->print(\"ne\");\n",i);
+ fprintf(fp, " else if( _c%d == BoolTest::le ) st->print(\"le\");\n",i);
+ fprintf(fp, " else if( _c%d == BoolTest::ge ) st->print(\"ge\");\n",i);
+ fprintf(fp, " else if( _c%d == BoolTest::lt ) st->print(\"lt\");\n",i);
+ fprintf(fp, " else if( _c%d == BoolTest::gt ) st->print(\"gt\");\n",i);
+}
+
+// Output code that dumps constant values, increment "i" if type is constant
+static uint dump_spec_constant(FILE *fp, const char *ideal_type, uint i) {
+ if (!strcmp(ideal_type, "ConI")) {
+ fprintf(fp," st->print(\"#%%d\", _c%d);\n", i);
+ ++i;
+ }
+ else if (!strcmp(ideal_type, "ConP")) {
+ fprintf(fp," _c%d->dump_on(st);\n", i);
+ ++i;
+ }
+ else if (!strcmp(ideal_type, "ConL")) {
+ fprintf(fp," st->print(\"#\" INT64_FORMAT, _c%d);\n", i);
+ ++i;
+ }
+ else if (!strcmp(ideal_type, "ConF")) {
+ fprintf(fp," st->print(\"#%%f\", _c%d);\n", i);
+ ++i;
+ }
+ else if (!strcmp(ideal_type, "ConD")) {
+ fprintf(fp," st->print(\"#%%f\", _c%d);\n", i);
+ ++i;
+ }
+ else if (!strcmp(ideal_type, "Bool")) {
+ defineCCodeDump(fp,i);
+ ++i;
+ }
+
+ return i;
+}
+
+// Generate the format rule for an operand
+void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file = false) {
+ if (!for_c_file) {
+ // invoked after output #ifndef PRODUCT to ad_<arch>.hpp
+ // compile the bodies separately, to cut down on recompilations
+ fprintf(fp," virtual void int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const;\n");
+ fprintf(fp," virtual void ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const;\n");
+ return;
+ }
+
+ // Local pointer indicates remaining part of format rule
+ uint idx = 0; // position of operand in match rule
+
+ // Generate internal format function, used when stored locally
+ fprintf(fp, "\n#ifndef PRODUCT\n");
+ fprintf(fp,"void %sOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {\n", oper._ident);
+ // Generate the user-defined portion of the format
+ if (oper._format) {
+ if ( oper._format->_strings.count() != 0 ) {
+ // No initialization code for int_format
+
+ // Build the format from the entries in strings and rep_vars
+ const char *string = NULL;
+ oper._format->_rep_vars.reset();
+ oper._format->_strings.reset();
+ while ( (string = oper._format->_strings.iter()) != NULL ) {
+ fprintf(fp," ");
+
+ // Check if this is a standard string or a replacement variable
+ if ( string != NameList::_signal ) {
+ // Normal string
+ // Pass through to st->print
+ fprintf(fp,"st->print(\"%s\");\n", string);
+ } else {
+ // Replacement variable
+ const char *rep_var = oper._format->_rep_vars.iter();
+ // Check that it is a local name, and an operand
+ OperandForm *op = oper._localNames[rep_var]->is_operand();
+ assert( op, "replacement variable was not found in local names");
+ // Get index if register or constant
+ if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
+ idx = oper.register_position( globals, rep_var);
+ }
+ else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
+ idx = oper.constant_position( globals, rep_var);
+ } else {
+ idx = 0;
+ }
+
+ // output invocation of "$..."s format function
+ if ( op != NULL ) op->int_format(fp, globals, idx);
+
+ if ( idx == -1 ) {
+ fprintf(stderr,
+ "Using a name, %s, that isn't in match rule\n", rep_var);
+ assert( strcmp(op->_ident,"label")==0, "Unimplemented");
+ }
+ } // Done with a replacement variable
+ } // Done with all format strings
+ } else {
+ // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
+ oper.int_format(fp, globals, 0);
+ }
+
+ } else { // oper._format == NULL
+ // Provide a few special case formats where the AD writer cannot.
+ if ( strcmp(oper._ident,"Universe")==0 ) {
+ fprintf(fp, " st->print(\"$$univ\");\n");
+ }
+ // labelOper::int_format is defined in ad_<...>.cpp
+ }
+ // ALWAYS! Provide a special case output for condition codes.
+ if( oper.is_ideal_bool() ) {
+ defineCCodeDump(fp,0);
+ }
+ fprintf(fp,"}\n");
+
+ // Generate external format function, when data is stored externally
+ fprintf(fp,"void %sOper::ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const {\n", oper._ident);
+ // Generate the user-defined portion of the format
+ if (oper._format) {
+ if ( oper._format->_strings.count() != 0 ) {
+
+ // Check for a replacement string "$..."
+ if ( oper._format->_rep_vars.count() != 0 ) {
+ // Initialization code for ext_format
+ }
+
+ // Build the format from the entries in strings and rep_vars
+ const char *string = NULL;
+ oper._format->_rep_vars.reset();
+ oper._format->_strings.reset();
+ while ( (string = oper._format->_strings.iter()) != NULL ) {
+ fprintf(fp," ");
+
+ // Check if this is a standard string or a replacement variable
+ if ( string != NameList::_signal ) {
+ // Normal string
+ // Pass through to st->print
+ fprintf(fp,"st->print(\"%s\");\n", string);
+ } else {
+ // Replacement variable
+ const char *rep_var = oper._format->_rep_vars.iter();
+ // Check that it is a local name, and an operand
+ OperandForm *op = oper._localNames[rep_var]->is_operand();
+ assert( op, "replacement variable was not found in local names");
+ // Get index if register or constant
+ if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
+ idx = oper.register_position( globals, rep_var);
+ }
+ else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
+ idx = oper.constant_position( globals, rep_var);
+ } else {
+ idx = 0;
+ }
+ // output invocation of "$..."s format function
+ if ( op != NULL ) op->ext_format(fp, globals, idx);
+
+ // Lookup the index position of the replacement variable
+ idx = oper._components.operand_position_format(rep_var);
+ if ( idx == -1 ) {
+ fprintf(stderr,
+ "Using a name, %s, that isn't in match rule\n", rep_var);
+ assert( strcmp(op->_ident,"label")==0, "Unimplemented");
+ }
+ } // Done with a replacement variable
+ } // Done with all format strings
+
+ } else {
+ // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
+ oper.ext_format(fp, globals, 0);
+ }
+ } else { // oper._format == NULL
+ // Provide a few special case formats where the AD writer cannot.
+ if ( strcmp(oper._ident,"Universe")==0 ) {
+ fprintf(fp, " st->print(\"$$univ\");\n");
+ }
+ // labelOper::ext_format is defined in ad_<...>.cpp
+ }
+ // ALWAYS! Provide a special case output for condition codes.
+ if( oper.is_ideal_bool() ) {
+ defineCCodeDump(fp,0);
+ }
+ fprintf(fp, "}\n");
+ fprintf(fp, "#endif\n");
+}
+
+
+// Generate the format rule for an instruction
+void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &inst, bool for_c_file = false) {
+ if (!for_c_file) {
+ // compile the bodies separately, to cut down on recompilations
+ // #ifndef PRODUCT region generated by caller
+ fprintf(fp," virtual void format(PhaseRegAlloc *ra, outputStream *st) const;\n");
+ return;
+ }
+
+ // Define the format function
+ fprintf(fp, "#ifndef PRODUCT\n");
+ fprintf(fp, "void %sNode::format(PhaseRegAlloc *ra, outputStream *st) const {\n", inst._ident);
+
+ // Generate the user-defined portion of the format
+ if( inst._format ) {
+ // If there are replacement variables,
+ // Generate index values needed for determing the operand position
+ if( inst._format->_rep_vars.count() )
+ inst.index_temps(fp, globals);
+
+ // Build the format from the entries in strings and rep_vars
+ const char *string = NULL;
+ inst._format->_rep_vars.reset();
+ inst._format->_strings.reset();
+ while( (string = inst._format->_strings.iter()) != NULL ) {
+ fprintf(fp," ");
+ // Check if this is a standard string or a replacement variable
+ if( string != NameList::_signal ) // Normal string. Pass through.
+ fprintf(fp,"st->print(\"%s\");\n", string);
+ else // Replacement variable
+ inst.rep_var_format( fp, inst._format->_rep_vars.iter() );
+ } // Done with all format strings
+ } // Done generating the user-defined portion of the format
+
+ // Add call debug info automatically
+ Form::CallType call_type = inst.is_ideal_call();
+ if( call_type != Form::invalid_type ) {
+ switch( call_type ) {
+ case Form::JAVA_DYNAMIC:
+ fprintf(fp," _method->print_short_name();\n");
+ break;
+ case Form::JAVA_STATIC:
+ fprintf(fp," if( _method ) _method->print_short_name(st); else st->print(\" wrapper for: %%s\", _name);\n");
+ fprintf(fp," if( !_method ) dump_trap_args(st);\n");
+ break;
+ case Form::JAVA_COMPILED:
+ case Form::JAVA_INTERP:
+ break;
+ case Form::JAVA_RUNTIME:
+ case Form::JAVA_LEAF:
+ case Form::JAVA_NATIVE:
+ fprintf(fp," st->print(\" %%s\", _name);");
+ break;
+ default:
+ assert(0,"ShouldNotReacHere");
+ }
+ fprintf(fp, " st->print_cr(\"\");\n" );
+ fprintf(fp, " if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\" No JVM State Info\");\n" );
+ fprintf(fp, " st->print(\" # \");\n" );
+ fprintf(fp, " if( _jvms ) _oop_map->print_on(st);\n");
+ }
+ else if(inst.is_ideal_safepoint()) {
+ fprintf(fp, " st->print(\"\");\n" );
+ fprintf(fp, " if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\" No JVM State Info\");\n" );
+ fprintf(fp, " st->print(\" # \");\n" );
+ fprintf(fp, " if( _jvms ) _oop_map->print_on(st);\n");
+ }
+ else if( inst.is_ideal_if() ) {
+ fprintf(fp, " st->print(\" P=%%f C=%%f\",_prob,_fcnt);\n" );
+ }
+ else if( inst.is_ideal_mem() ) {
+ // Print out the field name if available to improve readability
+ fprintf(fp, " if (ra->C->alias_type(adr_type())->field() != NULL) {\n");
+ fprintf(fp, " st->print(\" ! Field \");\n");
+ fprintf(fp, " if( ra->C->alias_type(adr_type())->is_volatile() )\n");
+ fprintf(fp, " st->print(\" Volatile\");\n");
+ fprintf(fp, " ra->C->alias_type(adr_type())->field()->holder()->name()->print_symbol_on(st);\n");
+ fprintf(fp, " st->print(\".\");\n");
+ fprintf(fp, " ra->C->alias_type(adr_type())->field()->name()->print_symbol_on(st);\n");
+ fprintf(fp, " } else\n");
+ // Make sure 'Volatile' gets printed out
+ fprintf(fp, " if( ra->C->alias_type(adr_type())->is_volatile() )\n");
+ fprintf(fp, " st->print(\" Volatile!\");\n");
+ }
+
+ // Complete the definition of the format function
+ fprintf(fp, " }\n#endif\n");
+}
+
+static bool is_non_constant(char* x) {
+ // Tells whether the string (part of an operator interface) is non-constant.
+ // Simply detect whether there is an occurrence of a formal parameter,
+ // which will always begin with '$'.
+ return strchr(x, '$') == 0;
+}
+
+void ArchDesc::declare_pipe_classes(FILE *fp_hpp) {
+ if (!_pipeline)
+ return;
+
+ fprintf(fp_hpp, "\n");
+ fprintf(fp_hpp, "// Pipeline_Use_Cycle_Mask Class\n");
+ fprintf(fp_hpp, "class Pipeline_Use_Cycle_Mask {\n");
+
+ if (_pipeline->_maxcycleused <=
+#ifdef SPARC
+ 64
+#else
+ 32
+#endif
+ ) {
+ fprintf(fp_hpp, "protected:\n");
+ fprintf(fp_hpp, " %s _mask;\n\n", _pipeline->_maxcycleused <= 32 ? "uint" : "uint64_t" );
+ fprintf(fp_hpp, "public:\n");
+ fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask() : _mask(0) {}\n\n");
+ if (_pipeline->_maxcycleused <= 32)
+ fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask(uint mask) : _mask(mask) {}\n\n");
+ else {
+ fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask(uint mask1, uint mask2) : _mask((((uint64_t)mask1) << 32) | mask2) {}\n\n");
+ fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask(uint64_t mask) : _mask(mask) {}\n\n");
+ }
+ fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
+ fprintf(fp_hpp, " _mask = in._mask;\n");
+ fprintf(fp_hpp, " return *this;\n");
+ fprintf(fp_hpp, " }\n\n");
+ fprintf(fp_hpp, " bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
+ fprintf(fp_hpp, " return ((_mask & in2._mask) != 0);\n");
+ fprintf(fp_hpp, " }\n\n");
+ fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
+ fprintf(fp_hpp, " _mask <<= n;\n");
+ fprintf(fp_hpp, " return *this;\n");
+ fprintf(fp_hpp, " }\n\n");
+ fprintf(fp_hpp, " void Or(const Pipeline_Use_Cycle_Mask &in2) {\n");
+ fprintf(fp_hpp, " _mask |= in2._mask;\n");
+ fprintf(fp_hpp, " }\n\n");
+ fprintf(fp_hpp, " friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
+ fprintf(fp_hpp, " friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
+ }
+ else {
+ fprintf(fp_hpp, "protected:\n");
+ uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
+ uint l;
+ fprintf(fp_hpp, " uint ");
+ for (l = 1; l <= masklen; l++)
+ fprintf(fp_hpp, "_mask%d%s", l, l < masklen ? ", " : ";\n\n");
+ fprintf(fp_hpp, "public:\n");
+ fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask() : ");
+ for (l = 1; l <= masklen; l++)
+ fprintf(fp_hpp, "_mask%d(0)%s", l, l < masklen ? ", " : " {}\n\n");
+ fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask(");
+ for (l = 1; l <= masklen; l++)
+ fprintf(fp_hpp, "uint mask%d%s", l, l < masklen ? ", " : ") : ");
+ for (l = 1; l <= masklen; l++)
+ fprintf(fp_hpp, "_mask%d(mask%d)%s", l, l, l < masklen ? ", " : " {}\n\n");
+
+ fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
+ for (l = 1; l <= masklen; l++)
+ fprintf(fp_hpp, " _mask%d = in._mask%d;\n", l, l);
+ fprintf(fp_hpp, " return *this;\n");
+ fprintf(fp_hpp, " }\n\n");
+ fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask intersect(const Pipeline_Use_Cycle_Mask &in2) {\n");
+ fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask out;\n");
+ for (l = 1; l <= masklen; l++)
+ fprintf(fp_hpp, " out._mask%d = _mask%d & in2._mask%d;\n", l, l, l);
+ fprintf(fp_hpp, " return out;\n");
+ fprintf(fp_hpp, " }\n\n");
+ fprintf(fp_hpp, " bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
+ fprintf(fp_hpp, " return (");
+ for (l = 1; l <= masklen; l++)
+ fprintf(fp_hpp, "((_mask%d & in2._mask%d) != 0)%s", l, l, l < masklen ? " || " : "");
+ fprintf(fp_hpp, ") ? true : false;\n");
+ fprintf(fp_hpp, " }\n\n");
+ fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
+ fprintf(fp_hpp, " if (n >= 32)\n");
+ fprintf(fp_hpp, " do {\n ");
+ for (l = masklen; l > 1; l--)
+ fprintf(fp_hpp, " _mask%d = _mask%d;", l, l-1);
+ fprintf(fp_hpp, " _mask%d = 0;\n", 1);
+ fprintf(fp_hpp, " } while ((n -= 32) >= 32);\n\n");
+ fprintf(fp_hpp, " if (n > 0) {\n");
+ fprintf(fp_hpp, " uint m = 32 - n;\n");
+ fprintf(fp_hpp, " uint mask = (1 << n) - 1;\n");
+ fprintf(fp_hpp, " uint temp%d = mask & (_mask%d >> m); _mask%d <<= n;\n", 2, 1, 1);
+ for (l = 2; l < masklen; l++) {
+ fprintf(fp_hpp, " uint temp%d = mask & (_mask%d >> m); _mask%d <<= n; _mask%d |= temp%d;\n", l+1, l, l, l, l);
+ }
+ fprintf(fp_hpp, " _mask%d <<= n; _mask%d |= temp%d;\n", masklen, masklen, masklen);
+ fprintf(fp_hpp, " }\n");
+
+ fprintf(fp_hpp, " return *this;\n");
+ fprintf(fp_hpp, " }\n\n");
+ fprintf(fp_hpp, " void Or(const Pipeline_Use_Cycle_Mask &);\n\n");
+ fprintf(fp_hpp, " friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
+ fprintf(fp_hpp, " friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
+ }
+
+ fprintf(fp_hpp, " friend class Pipeline_Use;\n\n");
+ fprintf(fp_hpp, " friend class Pipeline_Use_Element;\n\n");
+ fprintf(fp_hpp, "};\n\n");
+
+ uint rescount = 0;
+ const char *resource;
+
+ for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
+ int mask = _pipeline->_resdict[resource]->is_resource()->mask();
+ if ((mask & (mask-1)) == 0)
+ rescount++;
+ }
+
+ fprintf(fp_hpp, "// Pipeline_Use_Element Class\n");
+ fprintf(fp_hpp, "class Pipeline_Use_Element {\n");
+ fprintf(fp_hpp, "protected:\n");
+ fprintf(fp_hpp, " // Mask of used functional units\n");
+ fprintf(fp_hpp, " uint _used;\n\n");
+ fprintf(fp_hpp, " // Lower and upper bound of functional unit number range\n");
+ fprintf(fp_hpp, " uint _lb, _ub;\n\n");
+ fprintf(fp_hpp, " // Indicates multiple functionals units available\n");
+ fprintf(fp_hpp, " bool _multiple;\n\n");
+ fprintf(fp_hpp, " // Mask of specific used cycles\n");
+ fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask _mask;\n\n");
+ fprintf(fp_hpp, "public:\n");
+ fprintf(fp_hpp, " Pipeline_Use_Element() {}\n\n");
+ fprintf(fp_hpp, " Pipeline_Use_Element(uint used, uint lb, uint ub, bool multiple, Pipeline_Use_Cycle_Mask mask)\n");
+ fprintf(fp_hpp, " : _used(used), _lb(lb), _ub(ub), _multiple(multiple), _mask(mask) {}\n\n");
+ fprintf(fp_hpp, " uint used() const { return _used; }\n\n");
+ fprintf(fp_hpp, " uint lowerBound() const { return _lb; }\n\n");
+ fprintf(fp_hpp, " uint upperBound() const { return _ub; }\n\n");
+ fprintf(fp_hpp, " bool multiple() const { return _multiple; }\n\n");
+ fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask mask() const { return _mask; }\n\n");
+ fprintf(fp_hpp, " bool overlaps(const Pipeline_Use_Element &in2) const {\n");
+ fprintf(fp_hpp, " return ((_used & in2._used) != 0 && _mask.overlaps(in2._mask));\n");
+ fprintf(fp_hpp, " }\n\n");
+ fprintf(fp_hpp, " void step(uint cycles) {\n");
+ fprintf(fp_hpp, " _used = 0;\n");
+ fprintf(fp_hpp, " _mask <<= cycles;\n");
+ fprintf(fp_hpp, " }\n\n");
+ fprintf(fp_hpp, " friend class Pipeline_Use;\n");
+ fprintf(fp_hpp, "};\n\n");
+
+ fprintf(fp_hpp, "// Pipeline_Use Class\n");
+ fprintf(fp_hpp, "class Pipeline_Use {\n");
+ fprintf(fp_hpp, "protected:\n");
+ fprintf(fp_hpp, " // These resources can be used\n");
+ fprintf(fp_hpp, " uint _resources_used;\n\n");
+ fprintf(fp_hpp, " // These resources are used; excludes multiple choice functional units\n");
+ fprintf(fp_hpp, " uint _resources_used_exclusively;\n\n");
+ fprintf(fp_hpp, " // Number of elements\n");
+ fprintf(fp_hpp, " uint _count;\n\n");
+ fprintf(fp_hpp, " // This is the array of Pipeline_Use_Elements\n");
+ fprintf(fp_hpp, " Pipeline_Use_Element * _elements;\n\n");
+ fprintf(fp_hpp, "public:\n");
+ fprintf(fp_hpp, " Pipeline_Use(uint resources_used, uint resources_used_exclusively, uint count, Pipeline_Use_Element *elements)\n");
+ fprintf(fp_hpp, " : _resources_used(resources_used)\n");
+ fprintf(fp_hpp, " , _resources_used_exclusively(resources_used_exclusively)\n");
+ fprintf(fp_hpp, " , _count(count)\n");
+ fprintf(fp_hpp, " , _elements(elements)\n");
+ fprintf(fp_hpp, " {}\n\n");
+ fprintf(fp_hpp, " uint resourcesUsed() const { return _resources_used; }\n\n");
+ fprintf(fp_hpp, " uint resourcesUsedExclusively() const { return _resources_used_exclusively; }\n\n");
+ fprintf(fp_hpp, " uint count() const { return _count; }\n\n");
+ fprintf(fp_hpp, " Pipeline_Use_Element * element(uint i) const { return &_elements[i]; }\n\n");
+ fprintf(fp_hpp, " uint full_latency(uint delay, const Pipeline_Use &pred) const;\n\n");
+ fprintf(fp_hpp, " void add_usage(const Pipeline_Use &pred);\n\n");
+ fprintf(fp_hpp, " void reset() {\n");
+ fprintf(fp_hpp, " _resources_used = _resources_used_exclusively = 0;\n");
+ fprintf(fp_hpp, " };\n\n");
+ fprintf(fp_hpp, " void step(uint cycles) {\n");
+ fprintf(fp_hpp, " reset();\n");
+ fprintf(fp_hpp, " for (uint i = 0; i < %d; i++)\n",
+ rescount);
+ fprintf(fp_hpp, " (&_elements[i])->step(cycles);\n");
+ fprintf(fp_hpp, " };\n\n");
+ fprintf(fp_hpp, " static const Pipeline_Use elaborated_use;\n");
+ fprintf(fp_hpp, " static const Pipeline_Use_Element elaborated_elements[%d];\n\n",
+ rescount);
+ fprintf(fp_hpp, " friend class Pipeline;\n");
+ fprintf(fp_hpp, "};\n\n");
+
+ fprintf(fp_hpp, "// Pipeline Class\n");
+ fprintf(fp_hpp, "class Pipeline {\n");
+ fprintf(fp_hpp, "public:\n");
+
+ fprintf(fp_hpp, " static bool enabled() { return %s; }\n\n",
+ _pipeline ? "true" : "false" );
+
+ assert( _pipeline->_maxInstrsPerBundle &&
+ ( _pipeline->_instrUnitSize || _pipeline->_bundleUnitSize) &&
+ _pipeline->_instrFetchUnitSize &&
+ _pipeline->_instrFetchUnits,
+ "unspecified pipeline architecture units");
+
+ uint unitSize = _pipeline->_instrUnitSize ? _pipeline->_instrUnitSize : _pipeline->_bundleUnitSize;
+
+ fprintf(fp_hpp, " enum {\n");
+ fprintf(fp_hpp, " _variable_size_instructions = %d,\n",
+ _pipeline->_variableSizeInstrs ? 1 : 0);
+ fprintf(fp_hpp, " _fixed_size_instructions = %d,\n",
+ _pipeline->_variableSizeInstrs ? 0 : 1);
+ fprintf(fp_hpp, " _branch_has_delay_slot = %d,\n",
+ _pipeline->_branchHasDelaySlot ? 1 : 0);
+ fprintf(fp_hpp, " _max_instrs_per_bundle = %d,\n",
+ _pipeline->_maxInstrsPerBundle);
+ fprintf(fp_hpp, " _max_bundles_per_cycle = %d,\n",
+ _pipeline->_maxBundlesPerCycle);
+ fprintf(fp_hpp, " _max_instrs_per_cycle = %d\n",
+ _pipeline->_maxBundlesPerCycle * _pipeline->_maxInstrsPerBundle);
+ fprintf(fp_hpp, " };\n\n");
+
+ fprintf(fp_hpp, " static bool instr_has_unit_size() { return %s; }\n\n",
+ _pipeline->_instrUnitSize != 0 ? "true" : "false" );
+ if( _pipeline->_bundleUnitSize != 0 )
+ if( _pipeline->_instrUnitSize != 0 )
+ fprintf(fp_hpp, "// Individual Instructions may be bundled together by the hardware\n\n");
+ else
+ fprintf(fp_hpp, "// Instructions exist only in bundles\n\n");
+ else
+ fprintf(fp_hpp, "// Bundling is not supported\n\n");
+ if( _pipeline->_instrUnitSize != 0 )
+ fprintf(fp_hpp, " // Size of an instruction\n");
+ else
+ fprintf(fp_hpp, " // Size of an individual instruction does not exist - unsupported\n");
+ fprintf(fp_hpp, " static uint instr_unit_size() {");
+ if( _pipeline->_instrUnitSize == 0 )
+ fprintf(fp_hpp, " assert( false, \"Instructions are only in bundles\" );");
+ fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_instrUnitSize);
+
+ if( _pipeline->_bundleUnitSize != 0 )
+ fprintf(fp_hpp, " // Size of a bundle\n");
+ else
+ fprintf(fp_hpp, " // Bundles do not exist - unsupported\n");
+ fprintf(fp_hpp, " static uint bundle_unit_size() {");
+ if( _pipeline->_bundleUnitSize == 0 )
+ fprintf(fp_hpp, " assert( false, \"Bundles are not supported\" );");
+ fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_bundleUnitSize);
+
+ fprintf(fp_hpp, " static bool requires_bundling() { return %s; }\n\n",
+ _pipeline->_bundleUnitSize != 0 && _pipeline->_instrUnitSize == 0 ? "true" : "false" );
+
+ fprintf(fp_hpp, "private:\n");
+ fprintf(fp_hpp, " Pipeline(); // Not a legal constructor\n");
+ fprintf(fp_hpp, "\n");
+ fprintf(fp_hpp, " const unsigned char _read_stage_count;\n");
+ fprintf(fp_hpp, " const unsigned char _write_stage;\n");
+ fprintf(fp_hpp, " const unsigned char _fixed_latency;\n");
+ fprintf(fp_hpp, " const unsigned char _instruction_count;\n");
+ fprintf(fp_hpp, " const bool _has_fixed_latency;\n");
+ fprintf(fp_hpp, " const bool _has_branch_delay;\n");
+ fprintf(fp_hpp, " const bool _has_multiple_bundles;\n");
+ fprintf(fp_hpp, " const bool _force_serialization;\n");
+ fprintf(fp_hpp, " const bool _may_have_no_code;\n");
+ fprintf(fp_hpp, " const enum machPipelineStages * const _read_stages;\n");
+ fprintf(fp_hpp, " const enum machPipelineStages * const _resource_stage;\n");
+ fprintf(fp_hpp, " const uint * const _resource_cycles;\n");
+ fprintf(fp_hpp, " const Pipeline_Use _resource_use;\n");
+ fprintf(fp_hpp, "\n");
+ fprintf(fp_hpp, "public:\n");
+ fprintf(fp_hpp, " Pipeline(uint write_stage,\n");
+ fprintf(fp_hpp, " uint count,\n");
+ fprintf(fp_hpp, " bool has_fixed_latency,\n");
+ fprintf(fp_hpp, " uint fixed_latency,\n");
+ fprintf(fp_hpp, " uint instruction_count,\n");
+ fprintf(fp_hpp, " bool has_branch_delay,\n");
+ fprintf(fp_hpp, " bool has_multiple_bundles,\n");
+ fprintf(fp_hpp, " bool force_serialization,\n");
+ fprintf(fp_hpp, " bool may_have_no_code,\n");
+ fprintf(fp_hpp, " enum machPipelineStages * const dst,\n");
+ fprintf(fp_hpp, " enum machPipelineStages * const stage,\n");
+ fprintf(fp_hpp, " uint * const cycles,\n");
+ fprintf(fp_hpp, " Pipeline_Use resource_use)\n");
+ fprintf(fp_hpp, " : _write_stage(write_stage)\n");
+ fprintf(fp_hpp, " , _read_stage_count(count)\n");
+ fprintf(fp_hpp, " , _has_fixed_latency(has_fixed_latency)\n");
+ fprintf(fp_hpp, " , _fixed_latency(fixed_latency)\n");
+ fprintf(fp_hpp, " , _read_stages(dst)\n");
+ fprintf(fp_hpp, " , _resource_stage(stage)\n");
+ fprintf(fp_hpp, " , _resource_cycles(cycles)\n");
+ fprintf(fp_hpp, " , _resource_use(resource_use)\n");
+ fprintf(fp_hpp, " , _instruction_count(instruction_count)\n");
+ fprintf(fp_hpp, " , _has_branch_delay(has_branch_delay)\n");
+ fprintf(fp_hpp, " , _has_multiple_bundles(has_multiple_bundles)\n");
+ fprintf(fp_hpp, " , _force_serialization(force_serialization)\n");
+ fprintf(fp_hpp, " , _may_have_no_code(may_have_no_code)\n");
+ fprintf(fp_hpp, " {};\n");
+ fprintf(fp_hpp, "\n");
+ fprintf(fp_hpp, " uint writeStage() const {\n");
+ fprintf(fp_hpp, " return (_write_stage);\n");
+ fprintf(fp_hpp, " }\n");
+ fprintf(fp_hpp, "\n");
+ fprintf(fp_hpp, " enum machPipelineStages readStage(int ndx) const {\n");
+ fprintf(fp_hpp, " return (ndx < _read_stage_count ? _read_stages[ndx] : stage_undefined);");
+ fprintf(fp_hpp, " }\n\n");
+ fprintf(fp_hpp, " uint resourcesUsed() const {\n");
+ fprintf(fp_hpp, " return _resource_use.resourcesUsed();\n }\n\n");
+ fprintf(fp_hpp, " uint resourcesUsedExclusively() const {\n");
+ fprintf(fp_hpp, " return _resource_use.resourcesUsedExclusively();\n }\n\n");
+ fprintf(fp_hpp, " bool hasFixedLatency() const {\n");
+ fprintf(fp_hpp, " return (_has_fixed_latency);\n }\n\n");
+ fprintf(fp_hpp, " uint fixedLatency() const {\n");
+ fprintf(fp_hpp, " return (_fixed_latency);\n }\n\n");
+ fprintf(fp_hpp, " uint functional_unit_latency(uint start, const Pipeline *pred) const;\n\n");
+ fprintf(fp_hpp, " uint operand_latency(uint opnd, const Pipeline *pred) const;\n\n");
+ fprintf(fp_hpp, " const Pipeline_Use& resourceUse() const {\n");
+ fprintf(fp_hpp, " return (_resource_use); }\n\n");
+ fprintf(fp_hpp, " const Pipeline_Use_Element * resourceUseElement(uint i) const {\n");
+ fprintf(fp_hpp, " return (&_resource_use._elements[i]); }\n\n");
+ fprintf(fp_hpp, " uint resourceUseCount() const {\n");
+ fprintf(fp_hpp, " return (_resource_use._count); }\n\n");
+ fprintf(fp_hpp, " uint instructionCount() const {\n");
+ fprintf(fp_hpp, " return (_instruction_count); }\n\n");
+ fprintf(fp_hpp, " bool hasBranchDelay() const {\n");
+ fprintf(fp_hpp, " return (_has_branch_delay); }\n\n");
+ fprintf(fp_hpp, " bool hasMultipleBundles() const {\n");
+ fprintf(fp_hpp, " return (_has_multiple_bundles); }\n\n");
+ fprintf(fp_hpp, " bool forceSerialization() const {\n");
+ fprintf(fp_hpp, " return (_force_serialization); }\n\n");
+ fprintf(fp_hpp, " bool mayHaveNoCode() const {\n");
+ fprintf(fp_hpp, " return (_may_have_no_code); }\n\n");
+ fprintf(fp_hpp, "//const Pipeline_Use_Cycle_Mask& resourceUseMask(int resource) const {\n");
+ fprintf(fp_hpp, "// return (_resource_use_masks[resource]); }\n\n");
+ fprintf(fp_hpp, "\n#ifndef PRODUCT\n");
+ fprintf(fp_hpp, " static const char * stageName(uint i);\n");
+ fprintf(fp_hpp, "#endif\n");
+ fprintf(fp_hpp, "};\n\n");
+
+ fprintf(fp_hpp, "// Bundle class\n");
+ fprintf(fp_hpp, "class Bundle {\n");
+
+ uint mshift = 0;
+ for (uint msize = _pipeline->_maxInstrsPerBundle * _pipeline->_maxBundlesPerCycle; msize != 0; msize >>= 1)
+ mshift++;
+
+ uint rshift = rescount;
+
+ fprintf(fp_hpp, "protected:\n");
+ fprintf(fp_hpp, " enum {\n");
+ fprintf(fp_hpp, " _unused_delay = 0x%x,\n", 0);
+ fprintf(fp_hpp, " _use_nop_delay = 0x%x,\n", 1);
+ fprintf(fp_hpp, " _use_unconditional_delay = 0x%x,\n", 2);
+ fprintf(fp_hpp, " _use_conditional_delay = 0x%x,\n", 3);
+ fprintf(fp_hpp, " _used_in_conditional_delay = 0x%x,\n", 4);
+ fprintf(fp_hpp, " _used_in_unconditional_delay = 0x%x,\n", 5);
+ fprintf(fp_hpp, " _used_in_all_conditional_delays = 0x%x,\n", 6);
+ fprintf(fp_hpp, "\n");
+ fprintf(fp_hpp, " _use_delay = 0x%x,\n", 3);
+ fprintf(fp_hpp, " _used_in_delay = 0x%x\n", 4);
+ fprintf(fp_hpp, " };\n\n");
+ fprintf(fp_hpp, " uint _flags : 3,\n");
+ fprintf(fp_hpp, " _starts_bundle : 1,\n");
+ fprintf(fp_hpp, " _instr_count : %d,\n", mshift);
+ fprintf(fp_hpp, " _resources_used : %d;\n", rshift);
+ fprintf(fp_hpp, "public:\n");
+ fprintf(fp_hpp, " Bundle() : _flags(_unused_delay), _starts_bundle(0), _instr_count(0), _resources_used(0) {}\n\n");
+ fprintf(fp_hpp, " void set_instr_count(uint i) { _instr_count = i; }\n");
+ fprintf(fp_hpp, " void set_resources_used(uint i) { _resources_used = i; }\n");
+ fprintf(fp_hpp, " void clear_usage() { _flags = _unused_delay; }\n");
+ fprintf(fp_hpp, " void set_starts_bundle() { _starts_bundle = true; }\n");
+
+ fprintf(fp_hpp, " uint flags() const { return (_flags); }\n");
+ fprintf(fp_hpp, " uint instr_count() const { return (_instr_count); }\n");
+ fprintf(fp_hpp, " uint resources_used() const { return (_resources_used); }\n");
+ fprintf(fp_hpp, " bool starts_bundle() const { return (_starts_bundle != 0); }\n");
+
+ fprintf(fp_hpp, " void set_use_nop_delay() { _flags = _use_nop_delay; }\n");
+ fprintf(fp_hpp, " void set_use_unconditional_delay() { _flags = _use_unconditional_delay; }\n");
+ fprintf(fp_hpp, " void set_use_conditional_delay() { _flags = _use_conditional_delay; }\n");
+ fprintf(fp_hpp, " void set_used_in_unconditional_delay() { _flags = _used_in_unconditional_delay; }\n");
+ fprintf(fp_hpp, " void set_used_in_conditional_delay() { _flags = _used_in_conditional_delay; }\n");
+ fprintf(fp_hpp, " void set_used_in_all_conditional_delays() { _flags = _used_in_all_conditional_delays; }\n");
+
+ fprintf(fp_hpp, " bool use_nop_delay() { return (_flags == _use_nop_delay); }\n");
+ fprintf(fp_hpp, " bool use_unconditional_delay() { return (_flags == _use_unconditional_delay); }\n");
+ fprintf(fp_hpp, " bool use_conditional_delay() { return (_flags == _use_conditional_delay); }\n");
+ fprintf(fp_hpp, " bool used_in_unconditional_delay() { return (_flags == _used_in_unconditional_delay); }\n");
+ fprintf(fp_hpp, " bool used_in_conditional_delay() { return (_flags == _used_in_conditional_delay); }\n");
+ fprintf(fp_hpp, " bool used_in_all_conditional_delays() { return (_flags == _used_in_all_conditional_delays); }\n");
+ fprintf(fp_hpp, " bool use_delay() { return ((_flags & _use_delay) != 0); }\n");
+ fprintf(fp_hpp, " bool used_in_delay() { return ((_flags & _used_in_delay) != 0); }\n\n");
+
+ fprintf(fp_hpp, " enum {\n");
+ fprintf(fp_hpp, " _nop_count = %d\n",
+ _pipeline->_nopcnt);
+ fprintf(fp_hpp, " };\n\n");
+ fprintf(fp_hpp, " static void initialize_nops(MachNode *nop_list[%d], Compile* C);\n\n",
+ _pipeline->_nopcnt);
+ fprintf(fp_hpp, "#ifndef PRODUCT\n");
+ fprintf(fp_hpp, " void dump() const;\n");
+ fprintf(fp_hpp, "#endif\n");
+ fprintf(fp_hpp, "};\n\n");
+
+// const char *classname;
+// for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
+// PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
+// fprintf(fp_hpp, "// Pipeline Class Instance for \"%s\"\n", classname);
+// }
+}
+
+//------------------------------declareClasses---------------------------------
+// Construct the class hierarchy of MachNode classes from the instruction &
+// operand lists
+void ArchDesc::declareClasses(FILE *fp) {
+
+ // Declare an array containing the machine register names, strings.
+ declareRegNames(fp, _register);
+
+ // Declare an array containing the machine register encoding values
+ declareRegEncodes(fp, _register);
+
+ // Generate declarations for the total number of operands
+ fprintf(fp,"\n");
+ fprintf(fp,"// Total number of operands defined in architecture definition\n");
+ int num_operands = 0;
+ OperandForm *op;
+ for (_operands.reset(); (op = (OperandForm*)_operands.iter()) != NULL; ) {
+ // Ensure this is a machine-world instruction
+ if (op->ideal_only()) continue;
+
+ ++num_operands;
+ }
+ int first_operand_class = num_operands;
+ OpClassForm *opc;
+ for (_opclass.reset(); (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
+ // Ensure this is a machine-world instruction
+ if (opc->ideal_only()) continue;
+
+ ++num_operands;
+ }
+ fprintf(fp,"#define FIRST_OPERAND_CLASS %d\n", first_operand_class);
+ fprintf(fp,"#define NUM_OPERANDS %d\n", num_operands);
+ fprintf(fp,"\n");
+ // Generate declarations for the total number of instructions
+ fprintf(fp,"// Total number of instructions defined in architecture definition\n");
+ fprintf(fp,"#define NUM_INSTRUCTIONS %d\n",instructFormCount());
+
+
+ // Generate Machine Classes for each operand defined in AD file
+ fprintf(fp,"\n");
+ fprintf(fp,"//----------------------------Declare classes derived from MachOper----------\n");
+ // Iterate through all operands
+ _operands.reset();
+ OperandForm *oper;
+ for( ; (oper = (OperandForm*)_operands.iter()) != NULL;) {
+ // Ensure this is a machine-world instruction
+ if (oper->ideal_only() ) continue;
+ // The declaration of labelOper is in machine-independent file: machnode
+ if ( strcmp(oper->_ident,"label") == 0 ) continue;
+ // The declaration of methodOper is in machine-independent file: machnode
+ if ( strcmp(oper->_ident,"method") == 0 ) continue;
+
+ // Build class definition for this operand
+ fprintf(fp,"\n");
+ fprintf(fp,"class %sOper : public MachOper { \n",oper->_ident);
+ fprintf(fp,"private:\n");
+ // Operand definitions that depend upon number of input edges
+ {
+ uint num_edges = oper->num_edges(_globalNames);
+ if( num_edges != 1 ) { // Use MachOper::num_edges() {return 1;}
+ fprintf(fp," virtual uint num_edges() const { return %d; }\n",
+ num_edges );
+ }
+ if( num_edges > 0 ) {
+ in_RegMask(fp);
+ }
+ }
+
+ // Support storing constants inside the MachOper
+ declareConstStorage(fp,_globalNames,oper);
+
+ // Support storage of the condition codes
+ if( oper->is_ideal_bool() ) {
+ fprintf(fp," virtual int ccode() const { \n");
+ fprintf(fp," switch (_c0) {\n");
+ fprintf(fp," case BoolTest::eq : return equal();\n");
+ fprintf(fp," case BoolTest::gt : return greater();\n");
+ fprintf(fp," case BoolTest::lt : return less();\n");
+ fprintf(fp," case BoolTest::ne : return not_equal();\n");
+ fprintf(fp," case BoolTest::le : return less_equal();\n");
+ fprintf(fp," case BoolTest::ge : return greater_equal();\n");
+ fprintf(fp," default : ShouldNotReachHere(); return 0;\n");
+ fprintf(fp," }\n");
+ fprintf(fp," };\n");
+ }
+
+ // Support storage of the condition codes
+ if( oper->is_ideal_bool() ) {
+ fprintf(fp," virtual void negate() { \n");
+ fprintf(fp," _c0 = (BoolTest::mask)((int)_c0^0x4); \n");
+ fprintf(fp," };\n");
+ }
+
+ // Declare constructor.
+ // Parameters start with condition code, then all other constants
+ //
+ // (1) MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
+ // (2) : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
+ //
+ Form::DataType constant_type = oper->simple_type(_globalNames);
+ defineConstructor(fp, oper->_ident, oper->num_consts(_globalNames),
+ oper->_components, oper->is_ideal_bool(),
+ constant_type, _globalNames);
+
+ // Clone function
+ fprintf(fp," virtual MachOper *clone(Compile* C) const;\n");
+
+ // Support setting a spill offset into a constant operand.
+ // We only support setting an 'int' offset, while in the
+ // LP64 build spill offsets are added with an AddP which
+ // requires a long constant. Thus we don't support spilling
+ // in frames larger than 4Gig.
+ if( oper->has_conI(_globalNames) ||
+ oper->has_conL(_globalNames) )
+ fprintf(fp, " virtual void set_con( jint c0 ) { _c0 = c0; }\n");
+
+ // virtual functions for encoding and format
+ // fprintf(fp," virtual void encode() const {\n %s }\n",
+ // (oper->_encrule)?(oper->_encrule->_encrule):"");
+ // Check the interface type, and generate the correct query functions
+ // encoding queries based upon MEMORY_INTER, REG_INTER, CONST_INTER.
+
+ fprintf(fp," virtual uint opcode() const { return %s; }\n",
+ machOperEnum(oper->_ident));
+
+ // virtual function to look up ideal return type of machine instruction
+ //
+ // (1) virtual const Type *type() const { return .....; }
+ //
+ if ((oper->_matrule) && (oper->_matrule->_lChild == NULL) &&
+ (oper->_matrule->_rChild == NULL)) {
+ unsigned int position = 0;
+ const char *opret, *opname, *optype;
+ oper->_matrule->base_operand(position,_globalNames,opret,opname,optype);
+ fprintf(fp," virtual const Type *type() const {");
+ const char *type = getIdealType(optype);
+ if( type != NULL ) {
+ Form::DataType data_type = oper->is_base_constant(_globalNames);
+ // Check if we are an ideal pointer type
+ if( data_type == Form::idealP ) {
+ // Return the ideal type we already have: <TypePtr *>
+ fprintf(fp," return _c0;");
+ } else {
+ // Return the appropriate bottom type
+ fprintf(fp," return %s;", getIdealType(optype));
+ }
+ } else {
+ fprintf(fp," ShouldNotCallThis(); return Type::BOTTOM;");
+ }
+ fprintf(fp," }\n");
+ } else {
+ // Check for user-defined stack slots, based upon sRegX
+ Form::DataType data_type = oper->is_user_name_for_sReg();
+ if( data_type != Form::none ){
+ const char *type = NULL;
+ switch( data_type ) {
+ case Form::idealI: type = "TypeInt::INT"; break;
+ case Form::idealP: type = "TypePtr::BOTTOM";break;
+ case Form::idealF: type = "Type::FLOAT"; break;
+ case Form::idealD: type = "Type::DOUBLE"; break;
+ case Form::idealL: type = "TypeLong::LONG"; break;
+ case Form::none: // fall through
+ default:
+ assert( false, "No support for this type of stackSlot");
+ }
+ fprintf(fp," virtual const Type *type() const { return %s; } // stackSlotX\n", type);
+ }
+ }
+
+
+ //
+ // virtual functions for defining the encoding interface.
+ //
+ // Access the linearized ideal register mask,
+ // map to physical register encoding
+ if ( oper->_matrule && oper->_matrule->is_base_register(_globalNames) ) {
+ // Just use the default virtual 'reg' call
+ } else if ( oper->ideal_to_sReg_type(oper->_ident) != Form::none ) {
+ // Special handling for operand 'sReg', a Stack Slot Register.
+ // Map linearized ideal register mask to stack slot number
+ fprintf(fp," virtual int reg(PhaseRegAlloc *ra_, const Node *node) const {\n");
+ fprintf(fp," return (int)OptoReg::reg2stack(ra_->get_reg_first(node));/* sReg */\n");
+ fprintf(fp," }\n");
+ fprintf(fp," virtual int reg(PhaseRegAlloc *ra_, const Node *node, int idx) const {\n");
+ fprintf(fp," return (int)OptoReg::reg2stack(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
+ fprintf(fp," }\n");
+ }
+
+ // Output the operand specific access functions used by an enc_class
+ // These are only defined when we want to override the default virtual func
+ if (oper->_interface != NULL) {
+ fprintf(fp,"\n");
+ // Check if it is a Memory Interface
+ if ( oper->_interface->is_MemInterface() != NULL ) {
+ MemInterface *mem_interface = oper->_interface->is_MemInterface();
+ const char *base = mem_interface->_base;
+ if( base != NULL ) {
+ define_oper_interface(fp, *oper, _globalNames, "base", base);
+ }
+ char *index = mem_interface->_index;
+ if( index != NULL ) {
+ define_oper_interface(fp, *oper, _globalNames, "index", index);
+ }
+ const char *scale = mem_interface->_scale;
+ if( scale != NULL ) {
+ define_oper_interface(fp, *oper, _globalNames, "scale", scale);
+ }
+ const char *disp = mem_interface->_disp;
+ if( disp != NULL ) {
+ define_oper_interface(fp, *oper, _globalNames, "disp", disp);
+ oper->disp_is_oop(fp, _globalNames);
+ }
+ if( oper->stack_slots_only(_globalNames) ) {
+ // should not call this:
+ fprintf(fp," virtual int constant_disp() const { return Type::OffsetBot; }");
+ } else if ( disp != NULL ) {
+ define_oper_interface(fp, *oper, _globalNames, "constant_disp", disp);
+ }
+ } // end Memory Interface
+ // Check if it is a Conditional Interface
+ else if (oper->_interface->is_CondInterface() != NULL) {
+ CondInterface *cInterface = oper->_interface->is_CondInterface();
+ const char *equal = cInterface->_equal;
+ if( equal != NULL ) {
+ define_oper_interface(fp, *oper, _globalNames, "equal", equal);
+ }
+ const char *not_equal = cInterface->_not_equal;
+ if( not_equal != NULL ) {
+ define_oper_interface(fp, *oper, _globalNames, "not_equal", not_equal);
+ }
+ const char *less = cInterface->_less;
+ if( less != NULL ) {
+ define_oper_interface(fp, *oper, _globalNames, "less", less);
+ }
+ const char *greater_equal = cInterface->_greater_equal;
+ if( greater_equal != NULL ) {
+ define_oper_interface(fp, *oper, _globalNames, "greater_equal", greater_equal);
+ }
+ const char *less_equal = cInterface->_less_equal;
+ if( less_equal != NULL ) {
+ define_oper_interface(fp, *oper, _globalNames, "less_equal", less_equal);
+ }
+ const char *greater = cInterface->_greater;
+ if( greater != NULL ) {
+ define_oper_interface(fp, *oper, _globalNames, "greater", greater);
+ }
+ } // end Conditional Interface
+ // Check if it is a Constant Interface
+ else if (oper->_interface->is_ConstInterface() != NULL ) {
+ assert( oper->num_consts(_globalNames) == 1,
+ "Must have one constant when using CONST_INTER encoding");
+ if (!strcmp(oper->ideal_type(_globalNames), "ConI")) {
+ // Access the locally stored constant
+ fprintf(fp," virtual intptr_t constant() const {");
+ fprintf(fp, " return (intptr_t)_c0;");
+ fprintf(fp," }\n");
+ }
+ else if (!strcmp(oper->ideal_type(_globalNames), "ConP")) {
+ // Access the locally stored constant
+ fprintf(fp," virtual intptr_t constant() const {");
+ fprintf(fp, " return _c0->get_con();");
+ fprintf(fp, " }\n");
+ // Generate query to determine if this pointer is an oop
+ fprintf(fp," virtual bool constant_is_oop() const {");
+ fprintf(fp, " return _c0->isa_oop_ptr();");
+ fprintf(fp, " }\n");
+ }
+ else if (!strcmp(oper->ideal_type(_globalNames), "ConL")) {
+ fprintf(fp," virtual intptr_t constant() const {");
+ // We don't support addressing modes with > 4Gig offsets.
+ // Truncate to int.
+ fprintf(fp, " return (intptr_t)_c0;");
+ fprintf(fp, " }\n");
+ fprintf(fp," virtual jlong constantL() const {");
+ fprintf(fp, " return _c0;");
+ fprintf(fp, " }\n");
+ }
+ else if (!strcmp(oper->ideal_type(_globalNames), "ConF")) {
+ fprintf(fp," virtual intptr_t constant() const {");
+ fprintf(fp, " ShouldNotReachHere(); return 0; ");
+ fprintf(fp, " }\n");
+ fprintf(fp," virtual jfloat constantF() const {");
+ fprintf(fp, " return (jfloat)_c0;");
+ fprintf(fp, " }\n");
+ }
+ else if (!strcmp(oper->ideal_type(_globalNames), "ConD")) {
+ fprintf(fp," virtual intptr_t constant() const {");
+ fprintf(fp, " ShouldNotReachHere(); return 0; ");
+ fprintf(fp, " }\n");
+ fprintf(fp," virtual jdouble constantD() const {");
+ fprintf(fp, " return _c0;");
+ fprintf(fp, " }\n");
+ }
+ }
+ else if (oper->_interface->is_RegInterface() != NULL) {
+ // make sure that a fixed format string isn't used for an
+ // operand which might be assiged to multiple registers.
+ // Otherwise the opto assembly output could be misleading.
+ if (oper->_format->_strings.count() != 0 && !oper->is_bound_register()) {
+ syntax_err(oper->_linenum,
+ "Only bound registers can have fixed formats: %s\n",
+ oper->_ident);
+ }
+ }
+ else {
+ assert( false, "ShouldNotReachHere();");
+ }
+ }
+
+ fprintf(fp,"\n");
+ // // Currently all XXXOper::hash() methods are identical (990820)
+ // declare_hash(fp);
+ // // Currently all XXXOper::Cmp() methods are identical (990820)
+ // declare_cmp(fp);
+
+ // Do not place dump_spec() and Name() into PRODUCT code
+ // int_format and ext_format are not needed in PRODUCT code either
+ fprintf(fp, "#ifndef PRODUCT\n");
+
+ // Declare int_format() and ext_format()
+ gen_oper_format(fp, _globalNames, *oper);
+
+ // Machine independent print functionality for debugging
+ // IF we have constants, create a dump_spec function for the derived class
+ //
+ // (1) virtual void dump_spec() const {
+ // (2) st->print("#%d", _c#); // Constant != ConP
+ // OR _c#->dump_on(st); // Type ConP
+ // ...
+ // (3) }
+ uint num_consts = oper->num_consts(_globalNames);
+ if( num_consts > 0 ) {
+ // line (1)
+ fprintf(fp, " virtual void dump_spec(outputStream *st) const {\n");
+ // generate format string for st->print
+ // Iterate over the component list & spit out the right thing
+ uint i = 0;
+ const char *type = oper->ideal_type(_globalNames);
+ Component *comp;
+ oper->_components.reset();
+ if ((comp = oper->_components.iter()) == NULL) {
+ assert(num_consts == 1, "Bad component list detected.\n");
+ i = dump_spec_constant( fp, type, i );
+ // Check that type actually matched
+ assert( i != 0, "Non-constant operand lacks component list.");
+ } // end if NULL
+ else {
+ // line (2)
+ // dump all components
+ oper->_components.reset();
+ while((comp = oper->_components.iter()) != NULL) {
+ type = comp->base_type(_globalNames);
+ i = dump_spec_constant( fp, type, i );
+ }
+ }
+ // finish line (3)
+ fprintf(fp," }\n");
+ }
+
+ fprintf(fp," virtual const char *Name() const { return \"%s\";}\n",
+ oper->_ident);
+
+ fprintf(fp,"#endif\n");
+
+ // Close definition of this XxxMachOper
+ fprintf(fp,"};\n");
+ }
+
+
+ // Generate Machine Classes for each instruction defined in AD file
+ fprintf(fp,"\n");
+ fprintf(fp,"//----------------------------Declare classes for Pipelines-----------------\n");
+ declare_pipe_classes(fp);
+
+ // Generate Machine Classes for each instruction defined in AD file
+ fprintf(fp,"\n");
+ fprintf(fp,"//----------------------------Declare classes derived from MachNode----------\n");
+ _instructions.reset();
+ InstructForm *instr;
+ for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
+ // Ensure this is a machine-world instruction
+ if ( instr->ideal_only() ) continue;
+
+ // Build class definition for this instruction
+ fprintf(fp,"\n");
+ fprintf(fp,"class %sNode : public %s { \n",
+ instr->_ident, instr->mach_base_class() );
+ fprintf(fp,"private:\n");
+ fprintf(fp," MachOper *_opnd_array[%d];\n", instr->num_opnds() );
+ if ( instr->is_ideal_jump() ) {
+ fprintf(fp, " GrowableArray<Label*> _index2label;\n");
+ }
+ fprintf(fp,"public:\n");
+ fprintf(fp," MachOper *opnd_array(uint operand_index) const { assert(operand_index < _num_opnds, \"invalid _opnd_array index\"); return _opnd_array[operand_index]; }\n");
+ fprintf(fp," void set_opnd_array(uint operand_index, MachOper *operand) { assert(operand_index < _num_opnds, \"invalid _opnd_array index\"); _opnd_array[operand_index] = operand; }\n");
+ fprintf(fp,"private:\n");
+ if ( instr->is_ideal_jump() ) {
+ fprintf(fp," virtual void add_case_label(int index_num, Label* blockLabel) {\n");
+ fprintf(fp," _index2label.at_put_grow(index_num, blockLabel);}\n");
+ }
+ if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
+ fprintf(fp," const RegMask *_cisc_RegMask;\n");
+ }
+
+ out_RegMask(fp); // output register mask
+ fprintf(fp," virtual uint rule() const { return %s_rule; }\n",
+ instr->_ident);
+
+ // If this instruction contains a labelOper
+ // Declare Node::methods that set operand Label's contents
+ int label_position = instr->label_position();
+ if( label_position != -1 ) {
+ // Set the label, stored in labelOper::_branch_label
+ fprintf(fp," virtual void label_set( Label& label, uint block_num );\n");
+ }
+
+ // If this instruction contains a methodOper
+ // Declare Node::methods that set operand method's contents
+ int method_position = instr->method_position();
+ if( method_position != -1 ) {
+ // Set the address method, stored in methodOper::_method
+ fprintf(fp," virtual void method_set( intptr_t method );\n");
+ }
+
+ // virtual functions for attributes
+ //
+ // Each instruction attribute results in a virtual call of same name.
+ // The ins_cost is not handled here.
+ Attribute *attr = instr->_attribs;
+ bool is_pc_relative = false;
+ while (attr != NULL) {
+ if (strcmp(attr->_ident,"ins_cost") &&
+ strcmp(attr->_ident,"ins_pc_relative")) {
+ fprintf(fp," int %s() const { return %s; }\n",
+ attr->_ident, attr->_val);
+ }
+ // Check value for ins_pc_relative, and if it is true (1), set the flag
+ if (!strcmp(attr->_ident,"ins_pc_relative") && attr->int_val(*this) != 0)
+ is_pc_relative = true;
+ attr = (Attribute *)attr->_next;
+ }
+
+ // virtual functions for encode and format
+ //
+ // Output the opcode function and the encode function here using the
+ // encoding class information in the _insencode slot.
+ if ( instr->_insencode ) {
+ fprintf(fp," virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;\n");
+ }
+
+ // virtual function for getting the size of an instruction
+ if ( instr->_size ) {
+ fprintf(fp," virtual uint size(PhaseRegAlloc *ra_) const;\n");
+ }
+
+ // Return the top-level ideal opcode.
+ // Use MachNode::ideal_Opcode() for nodes based on MachNode class
+ // if the ideal_Opcode == Op_Node.
+ if ( strcmp("Node", instr->ideal_Opcode(_globalNames)) != 0 ||
+ strcmp("MachNode", instr->mach_base_class()) != 0 ) {
+ fprintf(fp," virtual int ideal_Opcode() const { return Op_%s; }\n",
+ instr->ideal_Opcode(_globalNames) );
+ }
+
+ // Allow machine-independent optimization, invert the sense of the IF test
+ if( instr->is_ideal_if() ) {
+ fprintf(fp," virtual void negate() { \n");
+ // Identify which operand contains the negate(able) ideal condition code
+ int idx = 0;
+ instr->_components.reset();
+ for( Component *comp; (comp = instr->_components.iter()) != NULL; ) {
+ // Check that component is an operand
+ Form *form = (Form*)_globalNames[comp->_type];
+ OperandForm *opForm = form ? form->is_operand() : NULL;
+ if( opForm == NULL ) continue;
+
+ // Lookup the position of the operand in the instruction.
+ if( opForm->is_ideal_bool() ) {
+ idx = instr->operand_position(comp->_name, comp->_usedef);
+ assert( idx != NameList::Not_in_list, "Did not find component in list that contained it.");
+ break;
+ }
+ }
+ fprintf(fp," opnd_array(%d)->negate();\n", idx);
+ fprintf(fp," _prob = 1.0f - _prob;\n");
+ fprintf(fp," };\n");
+ }
+
+
+ // Identify which input register matches the input register.
+ uint matching_input = instr->two_address(_globalNames);
+
+ // Generate the method if it returns != 0 otherwise use MachNode::two_adr()
+ if( matching_input != 0 ) {
+ fprintf(fp," virtual uint two_adr() const ");
+ fprintf(fp,"{ return oper_input_base()");
+ for( uint i = 2; i <= matching_input; i++ )
+ fprintf(fp," + opnd_array(%d)->num_edges()",i-1);
+ fprintf(fp,"; }\n");
+ }
+
+ // Declare cisc_version, if applicable
+ // MachNode *cisc_version( int offset /* ,... */ );
+ instr->declare_cisc_version(*this, fp);
+
+ // If there is an explicit peephole rule, build it
+ if ( instr->peepholes() != NULL ) {
+ fprintf(fp," virtual MachNode *peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile *C);\n");
+ }
+
+ // Output the declaration for number of relocation entries
+ if ( instr->reloc(_globalNames) != 0 ) {
+ fprintf(fp," virtual int reloc() const;\n");
+ }
+
+ if (instr->alignment() != 1) {
+ fprintf(fp," virtual int alignment_required() const { return %d; }\n", instr->alignment());
+ fprintf(fp," virtual int compute_padding(int current_offset) const;\n");
+ }
+
+ // Starting point for inputs matcher wants.
+ // Use MachNode::oper_input_base() for nodes based on MachNode class
+ // if the base == 1.
+ if ( instr->oper_input_base(_globalNames) != 1 ||
+ strcmp("MachNode", instr->mach_base_class()) != 0 ) {
+ fprintf(fp," virtual uint oper_input_base() const { return %d; }\n",
+ instr->oper_input_base(_globalNames));
+ }
+
+ // Make the constructor and following methods 'public:'
+ fprintf(fp,"public:\n");
+
+ // Constructor
+ if ( instr->is_ideal_jump() ) {
+ fprintf(fp," %sNode() : _index2label(MinJumpTableSize*2) { ", instr->_ident);
+ } else {
+ fprintf(fp," %sNode() { ", instr->_ident);
+ if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
+ fprintf(fp,"_cisc_RegMask = NULL; ");
+ }
+ }
+
+ fprintf(fp," _num_opnds = %d; _opnds = _opnd_array; ", instr->num_opnds());
+
+ bool node_flags_set = false;
+ // flag: if this instruction matches an ideal 'Goto' node
+ if ( instr->is_ideal_goto() ) {
+ fprintf(fp,"init_flags(Flag_is_Goto");
+ node_flags_set = true;
+ }
+
+ // flag: if this instruction matches an ideal 'Copy*' node
+ if ( instr->is_ideal_copy() != 0 ) {
+ if ( node_flags_set ) {
+ fprintf(fp," | Flag_is_Copy");
+ } else {
+ fprintf(fp,"init_flags(Flag_is_Copy");
+ node_flags_set = true;
+ }
+ }
+
+ // Is an instruction is a constant? If so, get its type
+ Form::DataType data_type;
+ const char *opType = NULL;
+ const char *result = NULL;
+ data_type = instr->is_chain_of_constant(_globalNames, opType, result);
+ // Check if this instruction is a constant
+ if ( data_type != Form::none ) {
+ if ( node_flags_set ) {
+ fprintf(fp," | Flag_is_Con");
+ } else {
+ fprintf(fp,"init_flags(Flag_is_Con");
+ node_flags_set = true;
+ }
+ }
+
+ // flag: if instruction matches 'If' | 'Goto' | 'CountedLoopEnd | 'Jump'
+ if ( instr->is_ideal_branch() ) {
+ if ( node_flags_set ) {
+ fprintf(fp," | Flag_is_Branch");
+ } else {
+ fprintf(fp,"init_flags(Flag_is_Branch");
+ node_flags_set = true;
+ }
+ }
+
+ // flag: if this instruction is cisc alternate
+ if ( can_cisc_spill() && instr->is_cisc_alternate() ) {
+ if ( node_flags_set ) {
+ fprintf(fp," | Flag_is_cisc_alternate");
+ } else {
+ fprintf(fp,"init_flags(Flag_is_cisc_alternate");
+ node_flags_set = true;
+ }
+ }
+
+ // flag: if this instruction is pc relative
+ if ( is_pc_relative ) {
+ if ( node_flags_set ) {
+ fprintf(fp," | Flag_is_pc_relative");
+ } else {
+ fprintf(fp,"init_flags(Flag_is_pc_relative");
+ node_flags_set = true;
+ }
+ }
+
+ // flag: if this instruction has short branch form
+ if ( instr->has_short_branch_form() ) {
+ if ( node_flags_set ) {
+ fprintf(fp," | Flag_may_be_short_branch");
+ } else {
+ fprintf(fp,"init_flags(Flag_may_be_short_branch");
+ node_flags_set = true;
+ }
+ }
+
+ // Check if machine instructions that USE memory, but do not DEF memory,
+ // depend upon a node that defines memory in machine-independent graph.
+ if ( instr->needs_anti_dependence_check(_globalNames) ) {
+ if ( node_flags_set ) {
+ fprintf(fp," | Flag_needs_anti_dependence_check");
+ } else {
+ fprintf(fp,"init_flags(Flag_needs_anti_dependence_check");
+ node_flags_set = true;
+ }
+ }
+
+ if ( node_flags_set ) {
+ fprintf(fp,"); ");
+ }
+
+ if (instr->is_ideal_unlock() || instr->is_ideal_call_leaf()) {
+ fprintf(fp,"clear_flag(Flag_is_safepoint_node); ");
+ }
+
+ fprintf(fp,"}\n");
+
+ // size_of, used by base class's clone to obtain the correct size.
+ fprintf(fp," virtual uint size_of() const {");
+ fprintf(fp, " return sizeof(%sNode);", instr->_ident);
+ fprintf(fp, " }\n");
+
+ // Virtual methods which are only generated to override base class
+ if( instr->expands() || instr->needs_projections() ||
+ instr->has_temps() ||
+ instr->_matrule != NULL &&
+ instr->num_opnds() != instr->num_unique_opnds() ) {
+ fprintf(fp," virtual MachNode *Expand(State *state, Node_List &proj_list);\n");
+ }
+
+ if (instr->is_pinned(_globalNames)) {
+ fprintf(fp," virtual bool pinned() const { return ");
+ if (instr->is_parm(_globalNames)) {
+ fprintf(fp,"_in[0]->pinned();");
+ } else {
+ fprintf(fp,"true;");
+ }
+ fprintf(fp," }\n");
+ }
+ if (instr->is_projection(_globalNames)) {
+ fprintf(fp," virtual const Node *is_block_proj() const { return this; }\n");
+ }
+ if ( instr->num_post_match_opnds() != 0
+ || instr->is_chain_of_constant(_globalNames) ) {
+ fprintf(fp," friend MachNode *State::MachNodeGenerator(int opcode, Compile* C);\n");
+ }
+ if ( instr->rematerialize(_globalNames, get_registers()) ) {
+ fprintf(fp," // Rematerialize %s\n", instr->_ident);
+ }
+
+ // Declare short branch methods, if applicable
+ instr->declare_short_branch_methods(fp);
+
+ // Instructions containing a constant that will be entered into the
+ // float/double table redefine the base virtual function
+#ifdef SPARC
+ // Sparc doubles entries in the constant table require more space for
+ // alignment. (expires 9/98)
+ int table_entries = (3 * instr->num_consts( _globalNames, Form::idealD ))
+ + instr->num_consts( _globalNames, Form::idealF );
+#else
+ int table_entries = instr->num_consts( _globalNames, Form::idealD )
+ + instr->num_consts( _globalNames, Form::idealF );
+#endif
+ if( table_entries != 0 ) {
+ fprintf(fp," virtual int const_size() const {");
+ fprintf(fp, " return %d;", table_entries);
+ fprintf(fp, " }\n");
+ }
+
+
+ // See if there is an "ins_pipe" declaration for this instruction
+ if (instr->_ins_pipe) {
+ fprintf(fp," static const Pipeline *pipeline_class();\n");
+ fprintf(fp," virtual const Pipeline *pipeline() const;\n");
+ }
+
+ // Generate virtual function for MachNodeX::bottom_type when necessary
+ //
+ // Note on accuracy: Pointer-types of machine nodes need to be accurate,
+ // or else alias analysis on the matched graph may produce bad code.
+ // Moreover, the aliasing decisions made on machine-node graph must be
+ // no less accurate than those made on the ideal graph, or else the graph
+ // may fail to schedule. (Reason: Memory ops which are reordered in
+ // the ideal graph might look interdependent in the machine graph,
+ // thereby removing degrees of scheduling freedom that the optimizer
+ // assumed would be available.)
+ //
+ // %%% We should handle many of these cases with an explicit ADL clause:
+ // instruct foo() %{ ... bottom_type(TypeRawPtr::BOTTOM); ... %}
+ if( data_type != Form::none ) {
+ // A constant's bottom_type returns a Type containing its constant value
+
+ // !!!!!
+ // Convert all ints, floats, ... to machine-independent TypeXs
+ // as is done for pointers
+ //
+ // Construct appropriate constant type containing the constant value.
+ fprintf(fp," virtual const class Type *bottom_type() const{\n");
+ switch( data_type ) {
+ case Form::idealI:
+ fprintf(fp," return TypeInt::make(opnd_array(1)->constant());\n");
+ break;
+ case Form::idealP:
+ fprintf(fp," return opnd_array(1)->type();\n",result);
+ break;
+ case Form::idealD:
+ fprintf(fp," return TypeD::make(opnd_array(1)->constantD());\n");
+ break;
+ case Form::idealF:
+ fprintf(fp," return TypeF::make(opnd_array(1)->constantF());\n");
+ break;
+ case Form::idealL:
+ fprintf(fp," return TypeLong::make(opnd_array(1)->constantL());\n");
+ break;
+ default:
+ assert( false, "Unimplemented()" );
+ break;
+ }
+ fprintf(fp," };\n");
+ }
+/* else if ( instr->_matrule && instr->_matrule->_rChild &&
+ ( strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
+ || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
+ // !!!!! !!!!!
+ // Provide explicit bottom type for conversions to int
+ // On Intel the result operand is a stackSlot, untyped.
+ fprintf(fp," virtual const class Type *bottom_type() const{");
+ fprintf(fp, " return TypeInt::INT;");
+ fprintf(fp, " };\n");
+ }*/
+ else if( instr->is_ideal_copy() &&
+ !strcmp(instr->_matrule->_lChild->_opType,"stackSlotP") ) {
+ // !!!!!
+ // Special hack for ideal Copy of pointer. Bottom type is oop or not depending on input.
+ fprintf(fp," const Type *bottom_type() const { return in(1)->bottom_type(); } // Copy?\n");
+ }
+ else if( instr->is_ideal_loadPC() ) {
+ // LoadPCNode provides the return address of a call to native code.
+ // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
+ // since it is a pointer to an internal VM location and must have a zero offset.
+ // Allocation detects derived pointers, in part, by their non-zero offsets.
+ fprintf(fp," const Type *bottom_type() const { return TypeRawPtr::BOTTOM; } // LoadPC?\n");
+ }
+ else if( instr->is_ideal_box() ) {
+ // BoxNode provides the address of a stack slot.
+ // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
+ // This prevent s insert_anti_dependencies from complaining. It will
+ // complain if it see that the pointer base is TypePtr::BOTTOM since
+ // it doesn't understand what that might alias.
+ fprintf(fp," const Type *bottom_type() const { return TypeRawPtr::BOTTOM; } // Box?\n");
+ }
+ else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveP") ) {
+ int offset = 1;
+ // Special special hack to see if the Cmp? has been incorporated in the conditional move
+ MatchNode *rl = instr->_matrule->_rChild->_lChild;
+ if( rl && !strcmp(rl->_opType, "Binary") ) {
+ MatchNode *rlr = rl->_rChild;
+ if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
+ offset = 2;
+ }
+ // Special hack for ideal CMoveP; ideal type depends on inputs
+ fprintf(fp," const Type *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveP\n",
+ offset, offset+1, offset+1);
+ }
+ else if( instr->needs_base_oop_edge(_globalNames) ) {
+ // Special hack for ideal AddP. Bottom type is an oop IFF it has a
+ // legal base-pointer input. Otherwise it is NOT an oop.
+ fprintf(fp," const Type *bottom_type() const { return AddPNode::mach_bottom_type(this); } // AddP\n");
+ }
+ else if (instr->is_tls_instruction()) {
+ // Special hack for tlsLoadP
+ fprintf(fp," const Type *bottom_type() const { return TypeRawPtr::BOTTOM; } // tlsLoadP\n");
+ }
+ else if ( instr->is_ideal_if() ) {
+ fprintf(fp," const Type *bottom_type() const { return TypeTuple::IFBOTH; } // matched IfNode\n");
+ }
+ else if ( instr->is_ideal_membar() ) {
+ fprintf(fp," const Type *bottom_type() const { return TypeTuple::MEMBAR; } // matched MemBar\n");
+ }
+
+ // Check where 'ideal_type' must be customized
+ /*
+ if ( instr->_matrule && instr->_matrule->_rChild &&
+ ( strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
+ || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
+ fprintf(fp," virtual uint ideal_reg() const { return Compile::current()->matcher()->base2reg[Type::Int]; }\n");
+ }*/
+
+ // Analyze machine instructions that either USE or DEF memory.
+ int memory_operand = instr->memory_operand(_globalNames);
+ // Some guys kill all of memory
+ if ( instr->is_wide_memory_kill(_globalNames) ) {
+ memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
+ }
+ if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
+ if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
+ fprintf(fp," virtual const TypePtr *adr_type() const;\n");
+ }
+ fprintf(fp," virtual const MachOper *memory_operand() const;\n");
+ }
+
+ fprintf(fp, "#ifndef PRODUCT\n");
+
+ // virtual function for generating the user's assembler output
+ gen_inst_format(fp, _globalNames,*instr);
+
+ // Machine independent print functionality for debugging
+ fprintf(fp," virtual const char *Name() const { return \"%s\";}\n",
+ instr->_ident);
+
+ fprintf(fp, "#endif\n");
+
+ // Close definition of this XxxMachNode
+ fprintf(fp,"};\n");
+ };
+
+}
+
+void ArchDesc::defineStateClass(FILE *fp) {
+ static const char *state__valid = "_valid[((uint)index) >> 5] & (0x1 << (((uint)index) & 0x0001F))";
+ static const char *state__set_valid= "_valid[((uint)index) >> 5] |= (0x1 << (((uint)index) & 0x0001F))";
+
+ fprintf(fp,"\n");
+ fprintf(fp,"// MACROS to inline and constant fold State::valid(index)...\n");
+ fprintf(fp,"// when given a constant 'index' in dfa_<arch>.cpp\n");
+ fprintf(fp,"// uint word = index >> 5; // Shift out bit position\n");
+ fprintf(fp,"// uint bitpos = index & 0x0001F; // Mask off word bits\n");
+ fprintf(fp,"#define STATE__VALID(index) ");
+ fprintf(fp," (%s)\n", state__valid);
+ fprintf(fp,"\n");
+ fprintf(fp,"#define STATE__NOT_YET_VALID(index) ");
+ fprintf(fp," ( (%s) == 0 )\n", state__valid);
+ fprintf(fp,"\n");
+ fprintf(fp,"#define STATE__VALID_CHILD(state,index) ");
+ fprintf(fp," ( state && (state->%s) )\n", state__valid);
+ fprintf(fp,"\n");
+ fprintf(fp,"#define STATE__SET_VALID(index) ");
+ fprintf(fp," (%s)\n", state__set_valid);
+ fprintf(fp,"\n");
+ fprintf(fp,
+ "//---------------------------State-------------------------------------------\n");
+ fprintf(fp,"// State contains an integral cost vector, indexed by machine operand opcodes,\n");
+ fprintf(fp,"// a rule vector consisting of machine operand/instruction opcodes, and also\n");
+ fprintf(fp,"// indexed by machine operand opcodes, pointers to the children in the label\n");
+ fprintf(fp,"// tree generated by the Label routines in ideal nodes (currently limited to\n");
+ fprintf(fp,"// two for convenience, but this could change).\n");
+ fprintf(fp,"class State : public ResourceObj {\n");
+ fprintf(fp,"public:\n");
+ fprintf(fp," int _id; // State identifier\n");
+ fprintf(fp," Node *_leaf; // Ideal (non-machine-node) leaf of match tree\n");
+ fprintf(fp," State *_kids[2]; // Children of state node in label tree\n");
+ fprintf(fp," unsigned int _cost[_LAST_MACH_OPER]; // Cost vector, indexed by operand opcodes\n");
+ fprintf(fp," unsigned int _rule[_LAST_MACH_OPER]; // Rule vector, indexed by operand opcodes\n");
+ fprintf(fp," unsigned int _valid[(_LAST_MACH_OPER/32)+1]; // Bit Map of valid Cost/Rule entries\n");
+ fprintf(fp,"\n");
+ fprintf(fp," State(void); // Constructor\n");
+ fprintf(fp," DEBUG_ONLY( ~State(void); ) // Destructor\n");
+ fprintf(fp,"\n");
+ fprintf(fp," // Methods created by ADLC and invoked by Reduce\n");
+ fprintf(fp," MachOper *MachOperGenerator( int opcode, Compile* C );\n");
+ fprintf(fp," MachNode *MachNodeGenerator( int opcode, Compile* C );\n");
+ fprintf(fp,"\n");
+ fprintf(fp," // Assign a state to a node, definition of method produced by ADLC\n");
+ fprintf(fp," bool DFA( int opcode, const Node *ideal );\n");
+ fprintf(fp,"\n");
+ fprintf(fp," // Access function for _valid bit vector\n");
+ fprintf(fp," bool valid(uint index) {\n");
+ fprintf(fp," return( STATE__VALID(index) != 0 );\n");
+ fprintf(fp," }\n");
+ fprintf(fp,"\n");
+ fprintf(fp," // Set function for _valid bit vector\n");
+ fprintf(fp," void set_valid(uint index) {\n");
+ fprintf(fp," STATE__SET_VALID(index);\n");
+ fprintf(fp," }\n");
+ fprintf(fp,"\n");
+ fprintf(fp,"#ifndef PRODUCT\n");
+ fprintf(fp," void dump(); // Debugging prints\n");
+ fprintf(fp," void dump(int depth);\n");
+ fprintf(fp,"#endif\n");
+ if (_dfa_small) {
+ // Generate the routine name we'll need
+ for (int i = 1; i < _last_opcode; i++) {
+ if (_mlistab[i] == NULL) continue;
+ fprintf(fp, " void _sub_Op_%s(const Node *n);\n", NodeClassNames[i]);
+ }
+ }
+ fprintf(fp,"};\n");
+ fprintf(fp,"\n");
+ fprintf(fp,"\n");
+
+}
+
+
+//---------------------------buildMachOperEnum---------------------------------
+// Build enumeration for densely packed operands.
+// This enumeration is used to index into the arrays in the State objects
+// that indicate cost and a successfull rule match.
+
+// Information needed to generate the ReduceOp mapping for the DFA
+class OutputMachOperands : public OutputMap {
+public:
+ OutputMachOperands(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
+ : OutputMap(hpp, cpp, globals, AD) {};
+
+ void declaration() { }
+ void definition() { fprintf(_cpp, "enum MachOperands {\n"); }
+ void closing() { fprintf(_cpp, " _LAST_MACH_OPER\n");
+ OutputMap::closing();
+ }
+ void map(OpClassForm &opc) { fprintf(_cpp, " %s", _AD.machOperEnum(opc._ident) ); }
+ void map(OperandForm &oper) { fprintf(_cpp, " %s", _AD.machOperEnum(oper._ident) ); }
+ void map(char *name) { fprintf(_cpp, " %s", _AD.machOperEnum(name)); }
+
+ bool do_instructions() { return false; }
+ void map(InstructForm &inst){ assert( false, "ShouldNotCallThis()"); }
+};
+
+
+void ArchDesc::buildMachOperEnum(FILE *fp_hpp) {
+ // Construct the table for MachOpcodes
+ OutputMachOperands output_mach_operands(fp_hpp, fp_hpp, _globalNames, *this);
+ build_map(output_mach_operands);
+}
+
+
+//---------------------------buildMachEnum----------------------------------
+// Build enumeration for all MachOpers and all MachNodes
+
+// Information needed to generate the ReduceOp mapping for the DFA
+class OutputMachOpcodes : public OutputMap {
+ int begin_inst_chain_rule;
+ int end_inst_chain_rule;
+ int begin_rematerialize;
+ int end_rematerialize;
+ int end_instructions;
+public:
+ OutputMachOpcodes(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
+ : OutputMap(hpp, cpp, globals, AD),
+ begin_inst_chain_rule(-1), end_inst_chain_rule(-1), end_instructions(-1)
+ {};
+
+ void declaration() { }
+ void definition() { fprintf(_cpp, "enum MachOpcodes {\n"); }
+ void closing() {
+ if( begin_inst_chain_rule != -1 )
+ fprintf(_cpp, " _BEGIN_INST_CHAIN_RULE = %d,\n", begin_inst_chain_rule);
+ if( end_inst_chain_rule != -1 )
+ fprintf(_cpp, " _END_INST_CHAIN_RULE = %d,\n", end_inst_chain_rule);
+ if( begin_rematerialize != -1 )
+ fprintf(_cpp, " _BEGIN_REMATERIALIZE = %d,\n", begin_rematerialize);
+ if( end_rematerialize != -1 )
+ fprintf(_cpp, " _END_REMATERIALIZE = %d,\n", end_rematerialize);
+ // always execute since do_instructions() is true, and avoids trailing comma
+ fprintf(_cpp, " _last_Mach_Node = %d \n", end_instructions);
+ OutputMap::closing();
+ }
+ void map(OpClassForm &opc) { fprintf(_cpp, " %s_rule", opc._ident ); }
+ void map(OperandForm &oper) { fprintf(_cpp, " %s_rule", oper._ident ); }
+ void map(char *name) { if (name) fprintf(_cpp, " %s_rule", name);
+ else fprintf(_cpp, " 0"); }
+ void map(InstructForm &inst) {fprintf(_cpp, " %s_rule", inst._ident ); }
+
+ void record_position(OutputMap::position place, int idx ) {
+ switch(place) {
+ case OutputMap::BEGIN_INST_CHAIN_RULES :
+ begin_inst_chain_rule = idx;
+ break;
+ case OutputMap::END_INST_CHAIN_RULES :
+ end_inst_chain_rule = idx;
+ break;
+ case OutputMap::BEGIN_REMATERIALIZE :
+ begin_rematerialize = idx;
+ break;
+ case OutputMap::END_REMATERIALIZE :
+ end_rematerialize = idx;
+ break;
+ case OutputMap::END_INSTRUCTIONS :
+ end_instructions = idx;
+ break;
+ default:
+ break;
+ }
+ }
+};
+
+
+void ArchDesc::buildMachOpcodesEnum(FILE *fp_hpp) {
+ // Construct the table for MachOpcodes
+ OutputMachOpcodes output_mach_opcodes(fp_hpp, fp_hpp, _globalNames, *this);
+ build_map(output_mach_opcodes);
+}
+
+
+// Generate an enumeration of the pipeline states, and both
+// the functional units (resources) and the masks for
+// specifying resources
+void ArchDesc::build_pipeline_enums(FILE *fp_hpp) {
+ int stagelen = (int)strlen("undefined");
+ int stagenum = 0;
+
+ if (_pipeline) { // Find max enum string length
+ const char *stage;
+ for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; ) {
+ int len = (int)strlen(stage);
+ if (stagelen < len) stagelen = len;
+ }
+ }
+
+ // Generate a list of stages
+ fprintf(fp_hpp, "\n");
+ fprintf(fp_hpp, "// Pipeline Stages\n");
+ fprintf(fp_hpp, "enum machPipelineStages {\n");
+ fprintf(fp_hpp, " stage_%-*s = 0,\n", stagelen, "undefined");
+
+ if( _pipeline ) {
+ const char *stage;
+ for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; )
+ fprintf(fp_hpp, " stage_%-*s = %d,\n", stagelen, stage, ++stagenum);
+ }
+
+ fprintf(fp_hpp, " stage_%-*s = %d\n", stagelen, "count", stagenum);
+ fprintf(fp_hpp, "};\n");
+
+ fprintf(fp_hpp, "\n");
+ fprintf(fp_hpp, "// Pipeline Resources\n");
+ fprintf(fp_hpp, "enum machPipelineResources {\n");
+ int rescount = 0;
+
+ if( _pipeline ) {
+ const char *resource;
+ int reslen = 0;
+
+ // Generate a list of resources, and masks
+ for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
+ int len = (int)strlen(resource);
+ if (reslen < len)
+ reslen = len;
+ }
+
+ for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
+ const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
+ int mask = resform->mask();
+ if ((mask & (mask-1)) == 0)
+ fprintf(fp_hpp, " resource_%-*s = %d,\n", reslen, resource, rescount++);
+ }
+ fprintf(fp_hpp, "\n");
+ for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
+ const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
+ fprintf(fp_hpp, " res_mask_%-*s = 0x%08x,\n", reslen, resource, resform->mask());
+ }
+ fprintf(fp_hpp, "\n");
+ }
+ fprintf(fp_hpp, " resource_count = %d\n", rescount);
+ fprintf(fp_hpp, "};\n");
+}