hotspot/src/share/vm/adlc/formssel.cpp
changeset 1 489c9b5090e2
child 360 21d113ecbf6a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/adlc/formssel.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,3999 @@
+/*
+ * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+// FORMS.CPP - Definitions for ADL Parser Forms Classes
+#include "adlc.hpp"
+
+//==============================Instructions===================================
+//------------------------------InstructForm-----------------------------------
+InstructForm::InstructForm(const char *id, bool ideal_only)
+  : _ident(id), _ideal_only(ideal_only),
+    _localNames(cmpstr, hashstr, Form::arena),
+    _effects(cmpstr, hashstr, Form::arena) {
+      _ftype = Form::INS;
+
+      _matrule   = NULL;
+      _insencode = NULL;
+      _opcode    = NULL;
+      _size      = NULL;
+      _attribs   = NULL;
+      _predicate = NULL;
+      _exprule   = NULL;
+      _rewrule   = NULL;
+      _format    = NULL;
+      _peephole  = NULL;
+      _ins_pipe  = NULL;
+      _uniq_idx  = NULL;
+      _num_uniq  = 0;
+      _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
+      _cisc_spill_alternate = NULL;            // possible cisc replacement
+      _cisc_reg_mask_name = NULL;
+      _is_cisc_alternate = false;
+      _is_short_branch = false;
+      _short_branch_form = NULL;
+      _alignment = 1;
+}
+
+InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
+  : _ident(id), _ideal_only(false),
+    _localNames(instr->_localNames),
+    _effects(instr->_effects) {
+      _ftype = Form::INS;
+
+      _matrule   = rule;
+      _insencode = instr->_insencode;
+      _opcode    = instr->_opcode;
+      _size      = instr->_size;
+      _attribs   = instr->_attribs;
+      _predicate = instr->_predicate;
+      _exprule   = instr->_exprule;
+      _rewrule   = instr->_rewrule;
+      _format    = instr->_format;
+      _peephole  = instr->_peephole;
+      _ins_pipe  = instr->_ins_pipe;
+      _uniq_idx  = instr->_uniq_idx;
+      _num_uniq  = instr->_num_uniq;
+      _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
+      _cisc_spill_alternate = NULL;            // possible cisc replacement
+      _cisc_reg_mask_name = NULL;
+      _is_cisc_alternate = false;
+      _is_short_branch = false;
+      _short_branch_form = NULL;
+      _alignment = 1;
+     // Copy parameters
+     const char *name;
+     instr->_parameters.reset();
+     for (; (name = instr->_parameters.iter()) != NULL;)
+       _parameters.addName(name);
+}
+
+InstructForm::~InstructForm() {
+}
+
+InstructForm *InstructForm::is_instruction() const {
+  return (InstructForm*)this;
+}
+
+bool InstructForm::ideal_only() const {
+  return _ideal_only;
+}
+
+bool InstructForm::sets_result() const {
+  return (_matrule != NULL && _matrule->sets_result());
+}
+
+bool InstructForm::needs_projections() {
+  _components.reset();
+  for( Component *comp; (comp = _components.iter()) != NULL; ) {
+    if (comp->isa(Component::KILL)) {
+      return true;
+    }
+  }
+  return false;
+}
+
+
+bool InstructForm::has_temps() {
+  if (_matrule) {
+    // Examine each component to see if it is a TEMP
+    _components.reset();
+    // Skip the first component, if already handled as (SET dst (...))
+    Component *comp = NULL;
+    if (sets_result())  comp = _components.iter();
+    while ((comp = _components.iter()) != NULL) {
+      if (comp->isa(Component::TEMP)) {
+        return true;
+      }
+    }
+  }
+
+  return false;
+}
+
+uint InstructForm::num_defs_or_kills() {
+  uint   defs_or_kills = 0;
+
+  _components.reset();
+  for( Component *comp; (comp = _components.iter()) != NULL; ) {
+    if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
+      ++defs_or_kills;
+    }
+  }
+
+  return  defs_or_kills;
+}
+
+// This instruction has an expand rule?
+bool InstructForm::expands() const {
+  return ( _exprule != NULL );
+}
+
+// This instruction has a peephole rule?
+Peephole *InstructForm::peepholes() const {
+  return _peephole;
+}
+
+// This instruction has a peephole rule?
+void InstructForm::append_peephole(Peephole *peephole) {
+  if( _peephole == NULL ) {
+    _peephole = peephole;
+  } else {
+    _peephole->append_peephole(peephole);
+  }
+}
+
+
+// ideal opcode enumeration
+const char *InstructForm::ideal_Opcode( FormDict &globalNames )  const {
+  if( !_matrule ) return "Node"; // Something weird
+  // Chain rules do not really have ideal Opcodes; use their source
+  // operand ideal Opcode instead.
+  if( is_simple_chain_rule(globalNames) ) {
+    const char *src = _matrule->_rChild->_opType;
+    OperandForm *src_op = globalNames[src]->is_operand();
+    assert( src_op, "Not operand class of chain rule" );
+    if( !src_op->_matrule ) return "Node";
+    return src_op->_matrule->_opType;
+  }
+  // Operand chain rules do not really have ideal Opcodes
+  if( _matrule->is_chain_rule(globalNames) )
+    return "Node";
+  return strcmp(_matrule->_opType,"Set")
+    ? _matrule->_opType
+    : _matrule->_rChild->_opType;
+}
+
+// Recursive check on all operands' match rules in my match rule
+bool InstructForm::is_pinned(FormDict &globals) {
+  if ( ! _matrule)  return false;
+
+  int  index   = 0;
+  if (_matrule->find_type("Goto",          index)) return true;
+  if (_matrule->find_type("If",            index)) return true;
+  if (_matrule->find_type("CountedLoopEnd",index)) return true;
+  if (_matrule->find_type("Return",        index)) return true;
+  if (_matrule->find_type("Rethrow",       index)) return true;
+  if (_matrule->find_type("TailCall",      index)) return true;
+  if (_matrule->find_type("TailJump",      index)) return true;
+  if (_matrule->find_type("Halt",          index)) return true;
+  if (_matrule->find_type("Jump",          index)) return true;
+
+  return is_parm(globals);
+}
+
+// Recursive check on all operands' match rules in my match rule
+bool InstructForm::is_projection(FormDict &globals) {
+  if ( ! _matrule)  return false;
+
+  int  index   = 0;
+  if (_matrule->find_type("Goto",    index)) return true;
+  if (_matrule->find_type("Return",  index)) return true;
+  if (_matrule->find_type("Rethrow", index)) return true;
+  if (_matrule->find_type("TailCall",index)) return true;
+  if (_matrule->find_type("TailJump",index)) return true;
+  if (_matrule->find_type("Halt",    index)) return true;
+
+  return false;
+}
+
+// Recursive check on all operands' match rules in my match rule
+bool InstructForm::is_parm(FormDict &globals) {
+  if ( ! _matrule)  return false;
+
+  int  index   = 0;
+  if (_matrule->find_type("Parm",index)) return true;
+
+  return false;
+}
+
+
+// Return 'true' if this instruction matches an ideal 'Copy*' node
+int InstructForm::is_ideal_copy() const {
+  return _matrule ? _matrule->is_ideal_copy() : 0;
+}
+
+// Return 'true' if this instruction is too complex to rematerialize.
+int InstructForm::is_expensive() const {
+  // We can prove it is cheap if it has an empty encoding.
+  // This helps with platform-specific nops like ThreadLocal and RoundFloat.
+  if (is_empty_encoding())
+    return 0;
+
+  if (is_tls_instruction())
+    return 1;
+
+  if (_matrule == NULL)  return 0;
+
+  return _matrule->is_expensive();
+}
+
+// Has an empty encoding if _size is a constant zero or there
+// are no ins_encode tokens.
+int InstructForm::is_empty_encoding() const {
+  if (_insencode != NULL) {
+    _insencode->reset();
+    if (_insencode->encode_class_iter() == NULL) {
+      return 1;
+    }
+  }
+  if (_size != NULL && strcmp(_size, "0") == 0) {
+    return 1;
+  }
+  return 0;
+}
+
+int InstructForm::is_tls_instruction() const {
+  if (_ident != NULL &&
+      ( ! strcmp( _ident,"tlsLoadP") ||
+        ! strncmp(_ident,"tlsLoadP_",9)) ) {
+    return 1;
+  }
+
+  if (_matrule != NULL && _insencode != NULL) {
+    const char* opType = _matrule->_opType;
+    if (strcmp(opType, "Set")==0)
+      opType = _matrule->_rChild->_opType;
+    if (strcmp(opType,"ThreadLocal")==0) {
+      fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
+              (_ident == NULL ? "NULL" : _ident));
+      return 1;
+    }
+  }
+
+  return 0;
+}
+
+
+// Return 'true' if this instruction matches an ideal 'Copy*' node
+bool InstructForm::is_ideal_unlock() const {
+  return _matrule ? _matrule->is_ideal_unlock() : false;
+}
+
+bool InstructForm::is_ideal_call_leaf() const {
+  return _matrule ? _matrule->is_ideal_call_leaf() : false;
+}
+
+// Return 'true' if this instruction matches an ideal 'If' node
+bool InstructForm::is_ideal_if() const {
+  if( _matrule == NULL ) return false;
+
+  return _matrule->is_ideal_if();
+}
+
+// Return 'true' if this instruction matches an ideal 'FastLock' node
+bool InstructForm::is_ideal_fastlock() const {
+  if( _matrule == NULL ) return false;
+
+  return _matrule->is_ideal_fastlock();
+}
+
+// Return 'true' if this instruction matches an ideal 'MemBarXXX' node
+bool InstructForm::is_ideal_membar() const {
+  if( _matrule == NULL ) return false;
+
+  return _matrule->is_ideal_membar();
+}
+
+// Return 'true' if this instruction matches an ideal 'LoadPC' node
+bool InstructForm::is_ideal_loadPC() const {
+  if( _matrule == NULL ) return false;
+
+  return _matrule->is_ideal_loadPC();
+}
+
+// Return 'true' if this instruction matches an ideal 'Box' node
+bool InstructForm::is_ideal_box() const {
+  if( _matrule == NULL ) return false;
+
+  return _matrule->is_ideal_box();
+}
+
+// Return 'true' if this instruction matches an ideal 'Goto' node
+bool InstructForm::is_ideal_goto() const {
+  if( _matrule == NULL ) return false;
+
+  return _matrule->is_ideal_goto();
+}
+
+// Return 'true' if this instruction matches an ideal 'Jump' node
+bool InstructForm::is_ideal_jump() const {
+  if( _matrule == NULL ) return false;
+
+  return _matrule->is_ideal_jump();
+}
+
+// Return 'true' if instruction matches ideal 'If' | 'Goto' |
+//                    'CountedLoopEnd' | 'Jump'
+bool InstructForm::is_ideal_branch() const {
+  if( _matrule == NULL ) return false;
+
+  return _matrule->is_ideal_if() || _matrule->is_ideal_goto() || _matrule->is_ideal_jump();
+}
+
+
+// Return 'true' if this instruction matches an ideal 'Return' node
+bool InstructForm::is_ideal_return() const {
+  if( _matrule == NULL ) return false;
+
+  // Check MatchRule to see if the first entry is the ideal "Return" node
+  int  index   = 0;
+  if (_matrule->find_type("Return",index)) return true;
+  if (_matrule->find_type("Rethrow",index)) return true;
+  if (_matrule->find_type("TailCall",index)) return true;
+  if (_matrule->find_type("TailJump",index)) return true;
+
+  return false;
+}
+
+// Return 'true' if this instruction matches an ideal 'Halt' node
+bool InstructForm::is_ideal_halt() const {
+  int  index   = 0;
+  return _matrule && _matrule->find_type("Halt",index);
+}
+
+// Return 'true' if this instruction matches an ideal 'SafePoint' node
+bool InstructForm::is_ideal_safepoint() const {
+  int  index   = 0;
+  return _matrule && _matrule->find_type("SafePoint",index);
+}
+
+// Return 'true' if this instruction matches an ideal 'Nop' node
+bool InstructForm::is_ideal_nop() const {
+  return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
+}
+
+bool InstructForm::is_ideal_control() const {
+  if ( ! _matrule)  return false;
+
+  return is_ideal_return() || is_ideal_branch() || is_ideal_halt();
+}
+
+// Return 'true' if this instruction matches an ideal 'Call' node
+Form::CallType InstructForm::is_ideal_call() const {
+  if( _matrule == NULL ) return Form::invalid_type;
+
+  // Check MatchRule to see if the first entry is the ideal "Call" node
+  int  idx   = 0;
+  if(_matrule->find_type("CallStaticJava",idx))   return Form::JAVA_STATIC;
+  idx = 0;
+  if(_matrule->find_type("Lock",idx))             return Form::JAVA_STATIC;
+  idx = 0;
+  if(_matrule->find_type("Unlock",idx))           return Form::JAVA_STATIC;
+  idx = 0;
+  if(_matrule->find_type("CallDynamicJava",idx))  return Form::JAVA_DYNAMIC;
+  idx = 0;
+  if(_matrule->find_type("CallRuntime",idx))      return Form::JAVA_RUNTIME;
+  idx = 0;
+  if(_matrule->find_type("CallLeaf",idx))         return Form::JAVA_LEAF;
+  idx = 0;
+  if(_matrule->find_type("CallLeafNoFP",idx))     return Form::JAVA_LEAF;
+  idx = 0;
+
+  return Form::invalid_type;
+}
+
+// Return 'true' if this instruction matches an ideal 'Load?' node
+Form::DataType InstructForm::is_ideal_load() const {
+  if( _matrule == NULL ) return Form::none;
+
+  return  _matrule->is_ideal_load();
+}
+
+// Return 'true' if this instruction matches an ideal 'Load?' node
+Form::DataType InstructForm::is_ideal_store() const {
+  if( _matrule == NULL ) return Form::none;
+
+  return  _matrule->is_ideal_store();
+}
+
+// Return the input register that must match the output register
+// If this is not required, return 0
+uint InstructForm::two_address(FormDict &globals) {
+  uint  matching_input = 0;
+  if(_components.count() == 0) return 0;
+
+  _components.reset();
+  Component *comp = _components.iter();
+  // Check if there is a DEF
+  if( comp->isa(Component::DEF) ) {
+    // Check that this is a register
+    const char  *def_type = comp->_type;
+    const Form  *form     = globals[def_type];
+    OperandForm *op       = form->is_operand();
+    if( op ) {
+      if( op->constrained_reg_class() != NULL &&
+          op->interface_type(globals) == Form::register_interface ) {
+        // Remember the local name for equality test later
+        const char *def_name = comp->_name;
+        // Check if a component has the same name and is a USE
+        do {
+          if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
+            return operand_position_format(def_name);
+          }
+        } while( (comp = _components.iter()) != NULL);
+      }
+    }
+  }
+
+  return 0;
+}
+
+
+// when chaining a constant to an instruction, returns 'true' and sets opType
+Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
+  const char *dummy  = NULL;
+  const char *dummy2 = NULL;
+  return is_chain_of_constant(globals, dummy, dummy2);
+}
+Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
+                const char * &opTypeParam) {
+  const char *result = NULL;
+
+  return is_chain_of_constant(globals, opTypeParam, result);
+}
+
+Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
+                const char * &opTypeParam, const char * &resultParam) {
+  Form::DataType  data_type = Form::none;
+  if ( ! _matrule)  return data_type;
+
+  // !!!!!
+  // The source of the chain rule is 'position = 1'
+  uint         position = 1;
+  const char  *result   = NULL;
+  const char  *name     = NULL;
+  const char  *opType   = NULL;
+  // Here base_operand is looking for an ideal type to be returned (opType).
+  if ( _matrule->is_chain_rule(globals)
+       && _matrule->base_operand(position, globals, result, name, opType) ) {
+    data_type = ideal_to_const_type(opType);
+
+    // if it isn't an ideal constant type, just return
+    if ( data_type == Form::none ) return data_type;
+
+    // Ideal constant types also adjust the opType parameter.
+    resultParam = result;
+    opTypeParam = opType;
+    return data_type;
+  }
+
+  return data_type;
+}
+
+// Check if a simple chain rule
+bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
+  if( _matrule && _matrule->sets_result()
+      && _matrule->_rChild->_lChild == NULL
+      && globals[_matrule->_rChild->_opType]
+      && globals[_matrule->_rChild->_opType]->is_opclass() ) {
+    return true;
+  }
+  return false;
+}
+
+// check for structural rematerialization
+bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
+  bool   rematerialize = false;
+
+  Form::DataType data_type = is_chain_of_constant(globals);
+  if( data_type != Form::none )
+    rematerialize = true;
+
+  // Constants
+  if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
+    rematerialize = true;
+
+  // Pseudo-constants (values easily available to the runtime)
+  if (is_empty_encoding() && is_tls_instruction())
+    rematerialize = true;
+
+  // 1-input, 1-output, such as copies or increments.
+  if( _components.count() == 2 &&
+      _components[0]->is(Component::DEF) &&
+      _components[1]->isa(Component::USE) )
+    rematerialize = true;
+
+  // Check for an ideal 'Load?' and eliminate rematerialize option
+  if ( is_ideal_load() != Form::none || // Ideal load?  Do not rematerialize
+       is_ideal_copy() != Form::none || // Ideal copy?  Do not rematerialize
+       is_expensive()  != Form::none) { // Expensive?   Do not rematerialize
+    rematerialize = false;
+  }
+
+  // Always rematerialize the flags.  They are more expensive to save &
+  // restore than to recompute (and possibly spill the compare's inputs).
+  if( _components.count() >= 1 ) {
+    Component *c = _components[0];
+    const Form *form = globals[c->_type];
+    OperandForm *opform = form->is_operand();
+    if( opform ) {
+      // Avoid the special stack_slots register classes
+      const char *rc_name = opform->constrained_reg_class();
+      if( rc_name ) {
+        if( strcmp(rc_name,"stack_slots") ) {
+          // Check for ideal_type of RegFlags
+          const char *type = opform->ideal_type( globals, registers );
+          if( !strcmp(type,"RegFlags") )
+            rematerialize = true;
+        } else
+          rematerialize = false; // Do not rematerialize things target stk
+      }
+    }
+  }
+
+  return rematerialize;
+}
+
+// loads from memory, so must check for anti-dependence
+bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
+  // Machine independent loads must be checked for anti-dependences
+  if( is_ideal_load() != Form::none )  return true;
+
+  // !!!!! !!!!! !!!!!
+  // TEMPORARY
+  // if( is_simple_chain_rule(globals) )  return false;
+
+  // String-compare uses many memorys edges, but writes none
+  if( _matrule && _matrule->_rChild &&
+      strcmp(_matrule->_rChild->_opType,"StrComp")==0 )
+    return true;
+
+  // Check if instruction has a USE of a memory operand class, but no defs
+  bool USE_of_memory  = false;
+  bool DEF_of_memory  = false;
+  Component     *comp = NULL;
+  ComponentList &components = (ComponentList &)_components;
+
+  components.reset();
+  while( (comp = components.iter()) != NULL ) {
+    const Form  *form = globals[comp->_type];
+    if( !form ) continue;
+    OpClassForm *op   = form->is_opclass();
+    if( !op ) continue;
+    if( form->interface_type(globals) == Form::memory_interface ) {
+      if( comp->isa(Component::USE) ) USE_of_memory = true;
+      if( comp->isa(Component::DEF) ) {
+        OperandForm *oper = form->is_operand();
+        if( oper && oper->is_user_name_for_sReg() ) {
+          // Stack slots are unaliased memory handled by allocator
+          oper = oper;  // debug stopping point !!!!!
+        } else {
+          DEF_of_memory = true;
+        }
+      }
+    }
+  }
+  return (USE_of_memory && !DEF_of_memory);
+}
+
+
+bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
+  if( _matrule == NULL ) return false;
+  if( !_matrule->_opType ) return false;
+
+  if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
+  if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
+
+  return false;
+}
+
+int InstructForm::memory_operand(FormDict &globals) const {
+  // Machine independent loads must be checked for anti-dependences
+  // Check if instruction has a USE of a memory operand class, or a def.
+  int USE_of_memory  = 0;
+  int DEF_of_memory  = 0;
+  const char*    last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
+  Component     *unique          = NULL;
+  Component     *comp            = NULL;
+  ComponentList &components      = (ComponentList &)_components;
+
+  components.reset();
+  while( (comp = components.iter()) != NULL ) {
+    const Form  *form = globals[comp->_type];
+    if( !form ) continue;
+    OpClassForm *op   = form->is_opclass();
+    if( !op ) continue;
+    if( op->stack_slots_only(globals) )  continue;
+    if( form->interface_type(globals) == Form::memory_interface ) {
+      if( comp->isa(Component::DEF) ) {
+        last_memory_DEF = comp->_name;
+        DEF_of_memory++;
+        unique = comp;
+      } else if( comp->isa(Component::USE) ) {
+        if( last_memory_DEF != NULL ) {
+          assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
+          last_memory_DEF = NULL;
+        }
+        USE_of_memory++;
+        if (DEF_of_memory == 0)  // defs take precedence
+          unique = comp;
+      } else {
+        assert(last_memory_DEF == NULL, "unpaired memory DEF");
+      }
+    }
+  }
+  assert(last_memory_DEF == NULL, "unpaired memory DEF");
+  assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
+  USE_of_memory -= DEF_of_memory;   // treat paired DEF/USE as one occurrence
+  if( (USE_of_memory + DEF_of_memory) > 0 ) {
+    if( is_simple_chain_rule(globals) ) {
+      //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
+      //((InstructForm*)this)->dump();
+      // Preceding code prints nothing on sparc and these insns on intel:
+      // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
+      // leaPIdxOff leaPIdxScale leaPIdxScaleOff
+      return NO_MEMORY_OPERAND;
+    }
+
+    if( DEF_of_memory == 1 ) {
+      assert(unique != NULL, "");
+      if( USE_of_memory == 0 ) {
+        // unique def, no uses
+      } else {
+        // // unique def, some uses
+        // // must return bottom unless all uses match def
+        // unique = NULL;
+      }
+    } else if( DEF_of_memory > 0 ) {
+      // multiple defs, don't care about uses
+      unique = NULL;
+    } else if( USE_of_memory == 1) {
+      // unique use, no defs
+      assert(unique != NULL, "");
+    } else if( USE_of_memory > 0 ) {
+      // multiple uses, no defs
+      unique = NULL;
+    } else {
+      assert(false, "bad case analysis");
+    }
+    // process the unique DEF or USE, if there is one
+    if( unique == NULL ) {
+      return MANY_MEMORY_OPERANDS;
+    } else {
+      int pos = components.operand_position(unique->_name);
+      if( unique->isa(Component::DEF) ) {
+        pos += 1;                // get corresponding USE from DEF
+      }
+      assert(pos >= 1, "I was just looking at it!");
+      return pos;
+    }
+  }
+
+  // missed the memory op??
+  if( true ) {  // %%% should not be necessary
+    if( is_ideal_store() != Form::none ) {
+      fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
+      ((InstructForm*)this)->dump();
+      // pretend it has multiple defs and uses
+      return MANY_MEMORY_OPERANDS;
+    }
+    if( is_ideal_load()  != Form::none ) {
+      fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
+      ((InstructForm*)this)->dump();
+      // pretend it has multiple uses and no defs
+      return MANY_MEMORY_OPERANDS;
+    }
+  }
+
+  return NO_MEMORY_OPERAND;
+}
+
+
+// This instruction captures the machine-independent bottom_type
+// Expected use is for pointer vs oop determination for LoadP
+bool InstructForm::captures_bottom_type() const {
+  if( _matrule && _matrule->_rChild &&
+       (!strcmp(_matrule->_rChild->_opType,"CastPP")     ||  // new result type
+        !strcmp(_matrule->_rChild->_opType,"CastX2P")    ||  // new result type
+        !strcmp(_matrule->_rChild->_opType,"CreateEx")   ||  // type of exception
+        !strcmp(_matrule->_rChild->_opType,"CheckCastPP")) ) return true;
+  else if ( is_ideal_load() == Form::idealP )                return true;
+  else if ( is_ideal_store() != Form::none  )                return true;
+
+  return  false;
+}
+
+
+// Access instr_cost attribute or return NULL.
+const char* InstructForm::cost() {
+  for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
+    if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
+      return cur->_val;
+    }
+  }
+  return NULL;
+}
+
+// Return count of top-level operands.
+uint InstructForm::num_opnds() {
+  int  num_opnds = _components.num_operands();
+
+  // Need special handling for matching some ideal nodes
+  // i.e. Matching a return node
+  /*
+  if( _matrule ) {
+    if( strcmp(_matrule->_opType,"Return"   )==0 ||
+        strcmp(_matrule->_opType,"Halt"     )==0 )
+      return 3;
+  }
+    */
+  return num_opnds;
+}
+
+// Return count of unmatched operands.
+uint InstructForm::num_post_match_opnds() {
+  uint  num_post_match_opnds = _components.count();
+  uint  num_match_opnds = _components.match_count();
+  num_post_match_opnds = num_post_match_opnds - num_match_opnds;
+
+  return num_post_match_opnds;
+}
+
+// Return the number of leaves below this complex operand
+uint InstructForm::num_consts(FormDict &globals) const {
+  if ( ! _matrule) return 0;
+
+  // This is a recursive invocation on all operands in the matchrule
+  return _matrule->num_consts(globals);
+}
+
+// Constants in match rule with specified type
+uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
+  if ( ! _matrule) return 0;
+
+  // This is a recursive invocation on all operands in the matchrule
+  return _matrule->num_consts(globals, type);
+}
+
+
+// Return the register class associated with 'leaf'.
+const char *InstructForm::out_reg_class(FormDict &globals) {
+  assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
+
+  return NULL;
+}
+
+
+
+// Lookup the starting position of inputs we are interested in wrt. ideal nodes
+uint InstructForm::oper_input_base(FormDict &globals) {
+  if( !_matrule ) return 1;     // Skip control for most nodes
+
+  // Need special handling for matching some ideal nodes
+  // i.e. Matching a return node
+  if( strcmp(_matrule->_opType,"Return"    )==0 ||
+      strcmp(_matrule->_opType,"Rethrow"   )==0 ||
+      strcmp(_matrule->_opType,"TailCall"  )==0 ||
+      strcmp(_matrule->_opType,"TailJump"  )==0 ||
+      strcmp(_matrule->_opType,"SafePoint" )==0 ||
+      strcmp(_matrule->_opType,"Halt"      )==0 )
+    return AdlcVMDeps::Parms;   // Skip the machine-state edges
+
+  if( _matrule->_rChild &&
+          strcmp(_matrule->_rChild->_opType,"StrComp")==0 ) {
+        // String compare takes 1 control and 4 memory edges.
+    return 5;
+  }
+
+  // Check for handling of 'Memory' input/edge in the ideal world.
+  // The AD file writer is shielded from knowledge of these edges.
+  int base = 1;                 // Skip control
+  base += _matrule->needs_ideal_memory_edge(globals);
+
+  // Also skip the base-oop value for uses of derived oops.
+  // The AD file writer is shielded from knowledge of these edges.
+  base += needs_base_oop_edge(globals);
+
+  return base;
+}
+
+// Implementation does not modify state of internal structures
+void InstructForm::build_components() {
+  // Add top-level operands to the components
+  if (_matrule)  _matrule->append_components(_localNames, _components);
+
+  // Add parameters that "do not appear in match rule".
+  bool has_temp = false;
+  const char *name;
+  const char *kill_name = NULL;
+  for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
+    OperandForm *opForm = (OperandForm*)_localNames[name];
+
+    const Form *form = _effects[name];
+    Effect     *e    = form ? form->is_effect() : NULL;
+    if (e != NULL) {
+      has_temp |= e->is(Component::TEMP);
+
+      // KILLs must be declared after any TEMPs because TEMPs are real
+      // uses so their operand numbering must directly follow the real
+      // inputs from the match rule.  Fixing the numbering seems
+      // complex so simply enforce the restriction during parse.
+      if (kill_name != NULL &&
+          e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
+        OperandForm* kill = (OperandForm*)_localNames[kill_name];
+        globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
+                             _ident, kill->_ident, kill_name);
+      } else if (e->isa(Component::KILL)) {
+        kill_name = name;
+      }
+
+      // TEMPs are real uses and need to be among the first parameters
+      // listed, otherwise the numbering of operands and inputs gets
+      // screwy, so enforce this restriction during parse.
+      if (kill_name != NULL &&
+          e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
+        OperandForm* kill = (OperandForm*)_localNames[kill_name];
+        globalAD->syntax_err(_linenum, "%s: %s %s must follow %s %s in the argument list\n",
+                             _ident, kill->_ident, kill_name, opForm->_ident, name);
+      } else if (e->isa(Component::KILL)) {
+        kill_name = name;
+      }
+    }
+
+    const Component *component  = _components.search(name);
+    if ( component  == NULL ) {
+      if (e) {
+        _components.insert(name, opForm->_ident, e->_use_def, false);
+        component = _components.search(name);
+        if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
+          const Form *form = globalAD->globalNames()[component->_type];
+          assert( form, "component type must be a defined form");
+          OperandForm *op   = form->is_operand();
+          if (op->_interface && op->_interface->is_RegInterface()) {
+            globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
+                                 _ident, opForm->_ident, name);
+          }
+        }
+      } else {
+        // This would be a nice warning but it triggers in a few places in a benign way
+        // if (_matrule != NULL && !expands()) {
+        //   globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
+        //                        _ident, opForm->_ident, name);
+        // }
+        _components.insert(name, opForm->_ident, Component::INVALID, false);
+      }
+    }
+    else if (e) {
+      // Component was found in the list
+      // Check if there is a new effect that requires an extra component.
+      // This happens when adding 'USE' to a component that is not yet one.
+      if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
+        if (component->isa(Component::USE) && _matrule) {
+          const Form *form = globalAD->globalNames()[component->_type];
+          assert( form, "component type must be a defined form");
+          OperandForm *op   = form->is_operand();
+          if (op->_interface && op->_interface->is_RegInterface()) {
+            globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
+                                 _ident, opForm->_ident, name);
+          }
+        }
+        _components.insert(name, opForm->_ident, e->_use_def, false);
+      } else {
+        Component  *comp = (Component*)component;
+        comp->promote_use_def_info(e->_use_def);
+      }
+      // Component positions are zero based.
+      int  pos  = _components.operand_position(name);
+      assert( ! (component->isa(Component::DEF) && (pos >= 1)),
+              "Component::DEF can only occur in the first position");
+    }
+  }
+
+  // Resolving the interactions between expand rules and TEMPs would
+  // be complex so simply disallow it.
+  if (_matrule == NULL && has_temp) {
+    globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
+  }
+
+  return;
+}
+
+// Return zero-based position in component list;  -1 if not in list.
+int   InstructForm::operand_position(const char *name, int usedef) {
+  return unique_opnds_idx(_components.operand_position(name, usedef));
+}
+
+int   InstructForm::operand_position_format(const char *name) {
+  return unique_opnds_idx(_components.operand_position_format(name));
+}
+
+// Return zero-based position in component list; -1 if not in list.
+int   InstructForm::label_position() {
+  return unique_opnds_idx(_components.label_position());
+}
+
+int   InstructForm::method_position() {
+  return unique_opnds_idx(_components.method_position());
+}
+
+// Return number of relocation entries needed for this instruction.
+uint  InstructForm::reloc(FormDict &globals) {
+  uint reloc_entries  = 0;
+  // Check for "Call" nodes
+  if ( is_ideal_call() )      ++reloc_entries;
+  if ( is_ideal_return() )    ++reloc_entries;
+  if ( is_ideal_safepoint() ) ++reloc_entries;
+
+
+  // Check if operands MAYBE oop pointers, by checking for ConP elements
+  // Proceed through the leaves of the match-tree and check for ConPs
+  if ( _matrule != NULL ) {
+    uint         position = 0;
+    const char  *result   = NULL;
+    const char  *name     = NULL;
+    const char  *opType   = NULL;
+    while (_matrule->base_operand(position, globals, result, name, opType)) {
+      if ( strcmp(opType,"ConP") == 0 ) {
+#ifdef SPARC
+        reloc_entries += 2; // 1 for sethi + 1 for setlo
+#else
+        ++reloc_entries;
+#endif
+      }
+      ++position;
+    }
+  }
+
+  // Above is only a conservative estimate
+  // because it did not check contents of operand classes.
+  // !!!!! !!!!!
+  // Add 1 to reloc info for each operand class in the component list.
+  Component  *comp;
+  _components.reset();
+  while ( (comp = _components.iter()) != NULL ) {
+    const Form        *form = globals[comp->_type];
+    assert( form, "Did not find component's type in global names");
+    const OpClassForm *opc  = form->is_opclass();
+    const OperandForm *oper = form->is_operand();
+    if ( opc && (oper == NULL) ) {
+      ++reloc_entries;
+    } else if ( oper ) {
+      // floats and doubles loaded out of method's constant pool require reloc info
+      Form::DataType type = oper->is_base_constant(globals);
+      if ( (type == Form::idealF) || (type == Form::idealD) ) {
+        ++reloc_entries;
+      }
+    }
+  }
+
+  // Float and Double constants may come from the CodeBuffer table
+  // and require relocatable addresses for access
+  // !!!!!
+  // Check for any component being an immediate float or double.
+  Form::DataType data_type = is_chain_of_constant(globals);
+  if( data_type==idealD || data_type==idealF ) {
+#ifdef SPARC
+    // sparc required more relocation entries for floating constants
+    // (expires 9/98)
+    reloc_entries += 6;
+#else
+    reloc_entries++;
+#endif
+  }
+
+  return reloc_entries;
+}
+
+// Utility function defined in archDesc.cpp
+extern bool is_def(int usedef);
+
+// Return the result of reducing an instruction
+const char *InstructForm::reduce_result() {
+  const char* result = "Universe";  // default
+  _components.reset();
+  Component *comp = _components.iter();
+  if (comp != NULL && comp->isa(Component::DEF)) {
+    result = comp->_type;
+    // Override this if the rule is a store operation:
+    if (_matrule && _matrule->_rChild &&
+        is_store_to_memory(_matrule->_rChild->_opType))
+      result = "Universe";
+  }
+  return result;
+}
+
+// Return the name of the operand on the right hand side of the binary match
+// Return NULL if there is no right hand side
+const char *InstructForm::reduce_right(FormDict &globals)  const {
+  if( _matrule == NULL ) return NULL;
+  return  _matrule->reduce_right(globals);
+}
+
+// Similar for left
+const char *InstructForm::reduce_left(FormDict &globals)   const {
+  if( _matrule == NULL ) return NULL;
+  return  _matrule->reduce_left(globals);
+}
+
+
+// Base class for this instruction, MachNode except for calls
+const char *InstructForm::mach_base_class()  const {
+  if( is_ideal_call() == Form::JAVA_STATIC ) {
+    return "MachCallStaticJavaNode";
+  }
+  else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
+    return "MachCallDynamicJavaNode";
+  }
+  else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
+    return "MachCallRuntimeNode";
+  }
+  else if( is_ideal_call() == Form::JAVA_LEAF ) {
+    return "MachCallLeafNode";
+  }
+  else if (is_ideal_return()) {
+    return "MachReturnNode";
+  }
+  else if (is_ideal_halt()) {
+    return "MachHaltNode";
+  }
+  else if (is_ideal_safepoint()) {
+    return "MachSafePointNode";
+  }
+  else if (is_ideal_if()) {
+    return "MachIfNode";
+  }
+  else if (is_ideal_fastlock()) {
+    return "MachFastLockNode";
+  }
+  else if (is_ideal_nop()) {
+    return "MachNopNode";
+  }
+  else if (captures_bottom_type()) {
+    return "MachTypeNode";
+  } else {
+    return "MachNode";
+  }
+  assert( false, "ShouldNotReachHere()");
+  return NULL;
+}
+
+// Compare the instruction predicates for textual equality
+bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
+  const Predicate *pred1  = instr1->_predicate;
+  const Predicate *pred2  = instr2->_predicate;
+  if( pred1 == NULL && pred2 == NULL ) {
+    // no predicates means they are identical
+    return true;
+  }
+  if( pred1 != NULL && pred2 != NULL ) {
+    // compare the predicates
+    const char *str1 = pred1->_pred;
+    const char *str2 = pred2->_pred;
+    if( (str1 == NULL && str2 == NULL)
+        || (str1 != NULL && str2 != NULL && strcmp(str1,str2) == 0) ) {
+      return true;
+    }
+  }
+
+  return false;
+}
+
+// Check if this instruction can cisc-spill to 'alternate'
+bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
+  assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
+  // Do not replace if a cisc-version has been found.
+  if( cisc_spill_operand() != Not_cisc_spillable ) return false;
+
+  int         cisc_spill_operand = Maybe_cisc_spillable;
+  char       *result             = NULL;
+  char       *result2            = NULL;
+  const char *op_name            = NULL;
+  const char *reg_type           = NULL;
+  FormDict   &globals            = AD.globalNames();
+  cisc_spill_operand = _matrule->cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
+  if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
+    cisc_spill_operand = operand_position(op_name, Component::USE);
+    int def_oper  = operand_position(op_name, Component::DEF);
+    if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
+      // Do not support cisc-spilling for destination operands and
+      // make sure they have the same number of operands.
+      _cisc_spill_alternate = instr;
+      instr->set_cisc_alternate(true);
+      if( AD._cisc_spill_debug ) {
+        fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
+        fprintf(stderr, "   using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
+      }
+      // Record that a stack-version of the reg_mask is needed
+      // !!!!!
+      OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
+      assert( oper != NULL, "cisc-spilling non operand");
+      const char *reg_class_name = oper->constrained_reg_class();
+      AD.set_stack_or_reg(reg_class_name);
+      const char *reg_mask_name  = AD.reg_mask(*oper);
+      set_cisc_reg_mask_name(reg_mask_name);
+      const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
+    } else {
+      cisc_spill_operand = Not_cisc_spillable;
+    }
+  } else {
+    cisc_spill_operand = Not_cisc_spillable;
+  }
+
+  set_cisc_spill_operand(cisc_spill_operand);
+  return (cisc_spill_operand != Not_cisc_spillable);
+}
+
+// Check to see if this instruction can be replaced with the short branch
+// instruction `short-branch'
+bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
+  if (_matrule != NULL &&
+      this != short_branch &&   // Don't match myself
+      !is_short_branch() &&     // Don't match another short branch variant
+      reduce_result() != NULL &&
+      strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
+      _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
+    // The instructions are equivalent.
+    if (AD._short_branch_debug) {
+      fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
+    }
+    _short_branch_form = short_branch;
+    return true;
+  }
+  return false;
+}
+
+
+// --------------------------- FILE *output_routines
+//
+// Generate the format call for the replacement variable
+void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
+  // Find replacement variable's type
+  const Form *form   = _localNames[rep_var];
+  if (form == NULL) {
+    fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
+    assert(false, "ShouldNotReachHere()");
+  }
+  OpClassForm *opc   = form->is_opclass();
+  assert( opc, "replacement variable was not found in local names");
+  // Lookup the index position of the replacement variable
+  int idx  = operand_position_format(rep_var);
+  if ( idx == -1 ) {
+    assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
+    assert( false, "ShouldNotReachHere()");
+  }
+
+  if (is_noninput_operand(idx)) {
+    // This component isn't in the input array.  Print out the static
+    // name of the register.
+    OperandForm* oper = form->is_operand();
+    if (oper != NULL && oper->is_bound_register()) {
+      const RegDef* first = oper->get_RegClass()->find_first_elem();
+      fprintf(fp, "    tty->print(\"%s\");\n", first->_regname);
+    } else {
+      globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
+    }
+  } else {
+    // Output the format call for this operand
+    fprintf(fp,"opnd_array(%d)->",idx);
+    if (idx == 0)
+      fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
+    else
+      fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
+  }
+}
+
+// Seach through operands to determine parameters unique positions.
+void InstructForm::set_unique_opnds() {
+  uint* uniq_idx = NULL;
+  uint  nopnds = num_opnds();
+  uint  num_uniq = nopnds;
+  uint i;
+  if ( nopnds > 0 ) {
+    // Allocate index array with reserve.
+    uniq_idx = (uint*) malloc(sizeof(uint)*(nopnds + 2));
+    for( i = 0; i < nopnds+2; i++ ) {
+      uniq_idx[i] = i;
+    }
+  }
+  // Do it only if there is a match rule and no expand rule.  With an
+  // expand rule it is done by creating new mach node in Expand()
+  // method.
+  if ( nopnds > 0 && _matrule != NULL && _exprule == NULL ) {
+    const char *name;
+    uint count;
+    bool has_dupl_use = false;
+
+    _parameters.reset();
+    while( (name = _parameters.iter()) != NULL ) {
+      count = 0;
+      uint position = 0;
+      uint uniq_position = 0;
+      _components.reset();
+      Component *comp = NULL;
+      if( sets_result() ) {
+        comp = _components.iter();
+        position++;
+      }
+      // The next code is copied from the method operand_position().
+      for (; (comp = _components.iter()) != NULL; ++position) {
+        // When the first component is not a DEF,
+        // leave space for the result operand!
+        if ( position==0 && (! comp->isa(Component::DEF)) ) {
+          ++position;
+        }
+        if( strcmp(name, comp->_name)==0 ) {
+          if( ++count > 1 ) {
+            uniq_idx[position] = uniq_position;
+            has_dupl_use = true;
+          } else {
+            uniq_position = position;
+          }
+        }
+        if( comp->isa(Component::DEF)
+            && comp->isa(Component::USE) ) {
+          ++position;
+          if( position != 1 )
+            --position;   // only use two slots for the 1st USE_DEF
+        }
+      }
+    }
+    if( has_dupl_use ) {
+      for( i = 1; i < nopnds; i++ )
+        if( i != uniq_idx[i] )
+          break;
+      int  j = i;
+      for( ; i < nopnds; i++ )
+        if( i == uniq_idx[i] )
+          uniq_idx[i] = j++;
+      num_uniq = j;
+    }
+  }
+  _uniq_idx = uniq_idx;
+  _num_uniq = num_uniq;
+}
+
+// Generate index values needed for determing the operand position
+void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
+  uint  idx = 0;                  // position of operand in match rule
+  int   cur_num_opnds = num_opnds();
+
+  // Compute the index into vector of operand pointers:
+  // idx0=0 is used to indicate that info comes from this same node, not from input edge.
+  // idx1 starts at oper_input_base()
+  if ( cur_num_opnds >= 1 ) {
+    fprintf(fp,"    // Start at oper_input_base() and count operands\n");
+    fprintf(fp,"    unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
+    fprintf(fp,"    unsigned %sidx1 = %d;\n", prefix, oper_input_base(globals));
+
+    // Generate starting points for other unique operands if they exist
+    for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
+      if( *receiver == 0 ) {
+        fprintf(fp,"    unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();\n",
+                prefix, idx, prefix, idx-1, idx-1 );
+      } else {
+        fprintf(fp,"    unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();\n",
+                prefix, idx, prefix, idx-1, receiver, idx-1 );
+      }
+    }
+  }
+  if( *receiver != 0 ) {
+    // This value is used by generate_peepreplace when copying a node.
+    // Don't emit it in other cases since it can hide bugs with the
+    // use invalid idx's.
+    fprintf(fp,"    unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
+  }
+
+}
+
+// ---------------------------
+bool InstructForm::verify() {
+  // !!!!! !!!!!
+  // Check that a "label" operand occurs last in the operand list, if present
+  return true;
+}
+
+void InstructForm::dump() {
+  output(stderr);
+}
+
+void InstructForm::output(FILE *fp) {
+  fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
+  if (_matrule)   _matrule->output(fp);
+  if (_insencode) _insencode->output(fp);
+  if (_opcode)    _opcode->output(fp);
+  if (_attribs)   _attribs->output(fp);
+  if (_predicate) _predicate->output(fp);
+  if (_effects.Size()) {
+    fprintf(fp,"Effects\n");
+    _effects.dump();
+  }
+  if (_exprule)   _exprule->output(fp);
+  if (_rewrule)   _rewrule->output(fp);
+  if (_format)    _format->output(fp);
+  if (_peephole)  _peephole->output(fp);
+}
+
+void MachNodeForm::dump() {
+  output(stderr);
+}
+
+void MachNodeForm::output(FILE *fp) {
+  fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
+}
+
+//------------------------------build_predicate--------------------------------
+// Build instruction predicates.  If the user uses the same operand name
+// twice, we need to check that the operands are pointer-eequivalent in
+// the DFA during the labeling process.
+Predicate *InstructForm::build_predicate() {
+  char buf[1024], *s=buf;
+  Dict names(cmpstr,hashstr,Form::arena);       // Map Names to counts
+
+  MatchNode *mnode =
+    strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
+  mnode->count_instr_names(names);
+
+  uint first = 1;
+  // Start with the predicate supplied in the .ad file.
+  if( _predicate ) {
+    if( first ) first=0;
+    strcpy(s,"("); s += strlen(s);
+    strcpy(s,_predicate->_pred);
+    s += strlen(s);
+    strcpy(s,")"); s += strlen(s);
+  }
+  for( DictI i(&names); i.test(); ++i ) {
+    uintptr_t cnt = (uintptr_t)i._value;
+    if( cnt > 1 ) {             // Need a predicate at all?
+      assert( cnt == 2, "Unimplemented" );
+      // Handle many pairs
+      if( first ) first=0;
+      else {                    // All tests must pass, so use '&&'
+        strcpy(s," && ");
+        s += strlen(s);
+      }
+      // Add predicate to working buffer
+      sprintf(s,"/*%s*/(",(char*)i._key);
+      s += strlen(s);
+      mnode->build_instr_pred(s,(char*)i._key,0);
+      s += strlen(s);
+      strcpy(s," == "); s += strlen(s);
+      mnode->build_instr_pred(s,(char*)i._key,1);
+      s += strlen(s);
+      strcpy(s,")"); s += strlen(s);
+    }
+  }
+  if( s == buf ) s = NULL;
+  else {
+    assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
+    s = strdup(buf);
+  }
+  return new Predicate(s);
+}
+
+//------------------------------EncodeForm-------------------------------------
+// Constructor
+EncodeForm::EncodeForm()
+  : _encClass(cmpstr,hashstr, Form::arena) {
+}
+EncodeForm::~EncodeForm() {
+}
+
+// record a new register class
+EncClass *EncodeForm::add_EncClass(const char *className) {
+  EncClass *encClass = new EncClass(className);
+  _eclasses.addName(className);
+  _encClass.Insert(className,encClass);
+  return encClass;
+}
+
+// Lookup the function body for an encoding class
+EncClass  *EncodeForm::encClass(const char *className) {
+  assert( className != NULL, "Must provide a defined encoding name");
+
+  EncClass *encClass = (EncClass*)_encClass[className];
+  return encClass;
+}
+
+// Lookup the function body for an encoding class
+const char *EncodeForm::encClassBody(const char *className) {
+  if( className == NULL ) return NULL;
+
+  EncClass *encClass = (EncClass*)_encClass[className];
+  assert( encClass != NULL, "Encode Class is missing.");
+  encClass->_code.reset();
+  const char *code = (const char*)encClass->_code.iter();
+  assert( code != NULL, "Found an empty encode class body.");
+
+  return code;
+}
+
+// Lookup the function body for an encoding class
+const char *EncodeForm::encClassPrototype(const char *className) {
+  assert( className != NULL, "Encode class name must be non NULL.");
+
+  return className;
+}
+
+void EncodeForm::dump() {                  // Debug printer
+  output(stderr);
+}
+
+void EncodeForm::output(FILE *fp) {          // Write info to output files
+  const char *name;
+  fprintf(fp,"\n");
+  fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
+  for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
+    ((EncClass*)_encClass[name])->output(fp);
+  }
+  fprintf(fp,"-------------------- end  EncodeForm --------------------\n");
+}
+//------------------------------EncClass---------------------------------------
+EncClass::EncClass(const char *name)
+  : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
+}
+EncClass::~EncClass() {
+}
+
+// Add a parameter <type,name> pair
+void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
+  _parameter_type.addName( parameter_type );
+  _parameter_name.addName( parameter_name );
+}
+
+// Verify operand types in parameter list
+bool EncClass::check_parameter_types(FormDict &globals) {
+  // !!!!!
+  return false;
+}
+
+// Add the decomposed "code" sections of an encoding's code-block
+void EncClass::add_code(const char *code) {
+  _code.addName(code);
+}
+
+// Add the decomposed "replacement variables" of an encoding's code-block
+void EncClass::add_rep_var(char *replacement_var) {
+  _code.addName(NameList::_signal);
+  _rep_vars.addName(replacement_var);
+}
+
+// Lookup the function body for an encoding class
+int EncClass::rep_var_index(const char *rep_var) {
+  uint        position = 0;
+  const char *name     = NULL;
+
+  _parameter_name.reset();
+  while ( (name = _parameter_name.iter()) != NULL ) {
+    if ( strcmp(rep_var,name) == 0 ) return position;
+    ++position;
+  }
+
+  return -1;
+}
+
+// Check after parsing
+bool EncClass::verify() {
+  // 1!!!!
+  // Check that each replacement variable, '$name' in architecture description
+  // is actually a local variable for this encode class, or a reserved name
+  // "primary, secondary, tertiary"
+  return true;
+}
+
+void EncClass::dump() {
+  output(stderr);
+}
+
+// Write info to output files
+void EncClass::output(FILE *fp) {
+  fprintf(fp,"EncClass: %s", (_name ? _name : ""));
+
+  // Output the parameter list
+  _parameter_type.reset();
+  _parameter_name.reset();
+  const char *type = _parameter_type.iter();
+  const char *name = _parameter_name.iter();
+  fprintf(fp, " ( ");
+  for ( ; (type != NULL) && (name != NULL);
+        (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
+    fprintf(fp, " %s %s,", type, name);
+  }
+  fprintf(fp, " ) ");
+
+  // Output the code block
+  _code.reset();
+  _rep_vars.reset();
+  const char *code;
+  while ( (code = _code.iter()) != NULL ) {
+    if ( _code.is_signal(code) ) {
+      // A replacement variable
+      const char *rep_var = _rep_vars.iter();
+      fprintf(fp,"($%s)", rep_var);
+    } else {
+      // A section of code
+      fprintf(fp,"%s", code);
+    }
+  }
+
+}
+
+//------------------------------Opcode-----------------------------------------
+Opcode::Opcode(char *primary, char *secondary, char *tertiary)
+  : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
+}
+
+Opcode::~Opcode() {
+}
+
+Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
+  if( strcmp(param,"primary") == 0 ) {
+    return Opcode::PRIMARY;
+  }
+  else if( strcmp(param,"secondary") == 0 ) {
+    return Opcode::SECONDARY;
+  }
+  else if( strcmp(param,"tertiary") == 0 ) {
+    return Opcode::TERTIARY;
+  }
+  return Opcode::NOT_AN_OPCODE;
+}
+
+void Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
+  // Default values previously provided by MachNode::primary()...
+  const char *description = "default_opcode()";
+  const char *value       = "-1";
+  // Check if user provided any opcode definitions
+  if( this != NULL ) {
+    // Update 'value' if user provided a definition in the instruction
+    switch (desired_opcode) {
+    case PRIMARY:
+      description = "primary()";
+      if( _primary   != NULL)  { value = _primary;     }
+      break;
+    case SECONDARY:
+      description = "secondary()";
+      if( _secondary != NULL ) { value = _secondary;   }
+      break;
+    case TERTIARY:
+      description = "tertiary()";
+      if( _tertiary  != NULL ) { value = _tertiary;    }
+      break;
+    default:
+      assert( false, "ShouldNotReachHere();");
+      break;
+    }
+  }
+  fprintf(fp, "(%s /*%s*/)", value, description);
+}
+
+void Opcode::dump() {
+  output(stderr);
+}
+
+// Write info to output files
+void Opcode::output(FILE *fp) {
+  if (_primary   != NULL) fprintf(fp,"Primary   opcode: %s\n", _primary);
+  if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
+  if (_tertiary  != NULL) fprintf(fp,"Tertiary  opcode: %s\n", _tertiary);
+}
+
+//------------------------------InsEncode--------------------------------------
+InsEncode::InsEncode() {
+}
+InsEncode::~InsEncode() {
+}
+
+// Add "encode class name" and its parameters
+NameAndList *InsEncode::add_encode(char *encoding) {
+  assert( encoding != NULL, "Must provide name for encoding");
+
+  // add_parameter(NameList::_signal);
+  NameAndList *encode = new NameAndList(encoding);
+  _encoding.addName((char*)encode);
+
+  return encode;
+}
+
+// Access the list of encodings
+void InsEncode::reset() {
+  _encoding.reset();
+  // _parameter.reset();
+}
+const char* InsEncode::encode_class_iter() {
+  NameAndList  *encode_class = (NameAndList*)_encoding.iter();
+  return  ( encode_class != NULL ? encode_class->name() : NULL );
+}
+// Obtain parameter name from zero based index
+const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
+  NameAndList *params = (NameAndList*)_encoding.current();
+  assert( params != NULL, "Internal Error");
+  const char *param = (*params)[param_no];
+
+  // Remove '$' if parser placed it there.
+  return ( param != NULL && *param == '$') ? (param+1) : param;
+}
+
+void InsEncode::dump() {
+  output(stderr);
+}
+
+// Write info to output files
+void InsEncode::output(FILE *fp) {
+  NameAndList *encoding  = NULL;
+  const char  *parameter = NULL;
+
+  fprintf(fp,"InsEncode: ");
+  _encoding.reset();
+
+  while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
+    // Output the encoding being used
+    fprintf(fp,"%s(", encoding->name() );
+
+    // Output its parameter list, if any
+    bool first_param = true;
+    encoding->reset();
+    while (  (parameter = encoding->iter()) != 0 ) {
+      // Output the ',' between parameters
+      if ( ! first_param )  fprintf(fp,", ");
+      first_param = false;
+      // Output the parameter
+      fprintf(fp,"%s", parameter);
+    } // done with parameters
+    fprintf(fp,")  ");
+  } // done with encodings
+
+  fprintf(fp,"\n");
+}
+
+//------------------------------Effect-----------------------------------------
+static int effect_lookup(const char *name) {
+  if(!strcmp(name, "USE")) return Component::USE;
+  if(!strcmp(name, "DEF")) return Component::DEF;
+  if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
+  if(!strcmp(name, "KILL")) return Component::KILL;
+  if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
+  if(!strcmp(name, "TEMP")) return Component::TEMP;
+  if(!strcmp(name, "INVALID")) return Component::INVALID;
+  assert( false,"Invalid effect name specified\n");
+  return Component::INVALID;
+}
+
+Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
+  _ftype = Form::EFF;
+}
+Effect::~Effect() {
+}
+
+// Dynamic type check
+Effect *Effect::is_effect() const {
+  return (Effect*)this;
+}
+
+
+// True if this component is equal to the parameter.
+bool Effect::is(int use_def_kill_enum) const {
+  return (_use_def == use_def_kill_enum ? true : false);
+}
+// True if this component is used/def'd/kill'd as the parameter suggests.
+bool Effect::isa(int use_def_kill_enum) const {
+  return (_use_def & use_def_kill_enum) == use_def_kill_enum;
+}
+
+void Effect::dump() {
+  output(stderr);
+}
+
+void Effect::output(FILE *fp) {          // Write info to output files
+  fprintf(fp,"Effect: %s\n", (_name?_name:""));
+}
+
+//------------------------------ExpandRule-------------------------------------
+ExpandRule::ExpandRule() : _expand_instrs(),
+                           _newopconst(cmpstr, hashstr, Form::arena) {
+  _ftype = Form::EXP;
+}
+
+ExpandRule::~ExpandRule() {                  // Destructor
+}
+
+void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
+  _expand_instrs.addName((char*)instruction_name_and_operand_list);
+}
+
+void ExpandRule::reset_instructions() {
+  _expand_instrs.reset();
+}
+
+NameAndList* ExpandRule::iter_instructions() {
+  return (NameAndList*)_expand_instrs.iter();
+}
+
+
+void ExpandRule::dump() {
+  output(stderr);
+}
+
+void ExpandRule::output(FILE *fp) {         // Write info to output files
+  NameAndList *expand_instr = NULL;
+  const char *opid = NULL;
+
+  fprintf(fp,"\nExpand Rule:\n");
+
+  // Iterate over the instructions 'node' expands into
+  for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
+    fprintf(fp,"%s(", expand_instr->name());
+
+    // iterate over the operand list
+    for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
+      fprintf(fp,"%s ", opid);
+    }
+    fprintf(fp,");\n");
+  }
+}
+
+//------------------------------RewriteRule------------------------------------
+RewriteRule::RewriteRule(char* params, char* block)
+  : _tempParams(params), _tempBlock(block) { };  // Constructor
+RewriteRule::~RewriteRule() {                 // Destructor
+}
+
+void RewriteRule::dump() {
+  output(stderr);
+}
+
+void RewriteRule::output(FILE *fp) {         // Write info to output files
+  fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
+          (_tempParams?_tempParams:""),
+          (_tempBlock?_tempBlock:""));
+}
+
+
+//==============================MachNodes======================================
+//------------------------------MachNodeForm-----------------------------------
+MachNodeForm::MachNodeForm(char *id)
+  : _ident(id) {
+}
+
+MachNodeForm::~MachNodeForm() {
+}
+
+MachNodeForm *MachNodeForm::is_machnode() const {
+  return (MachNodeForm*)this;
+}
+
+//==============================Operand Classes================================
+//------------------------------OpClassForm------------------------------------
+OpClassForm::OpClassForm(const char* id) : _ident(id) {
+  _ftype = Form::OPCLASS;
+}
+
+OpClassForm::~OpClassForm() {
+}
+
+bool OpClassForm::ideal_only() const { return 0; }
+
+OpClassForm *OpClassForm::is_opclass() const {
+  return (OpClassForm*)this;
+}
+
+Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
+  if( _oplst.count() == 0 ) return Form::no_interface;
+
+  // Check that my operands have the same interface type
+  Form::InterfaceType  interface;
+  bool  first = true;
+  NameList &op_list = (NameList &)_oplst;
+  op_list.reset();
+  const char *op_name;
+  while( (op_name = op_list.iter()) != NULL ) {
+    const Form  *form    = globals[op_name];
+    OperandForm *operand = form->is_operand();
+    assert( operand, "Entry in operand class that is not an operand");
+    if( first ) {
+      first     = false;
+      interface = operand->interface_type(globals);
+    } else {
+      interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
+    }
+  }
+  return interface;
+}
+
+bool OpClassForm::stack_slots_only(FormDict &globals) const {
+  if( _oplst.count() == 0 ) return false;  // how?
+
+  NameList &op_list = (NameList &)_oplst;
+  op_list.reset();
+  const char *op_name;
+  while( (op_name = op_list.iter()) != NULL ) {
+    const Form  *form    = globals[op_name];
+    OperandForm *operand = form->is_operand();
+    assert( operand, "Entry in operand class that is not an operand");
+    if( !operand->stack_slots_only(globals) )  return false;
+  }
+  return true;
+}
+
+
+void OpClassForm::dump() {
+  output(stderr);
+}
+
+void OpClassForm::output(FILE *fp) {
+  const char *name;
+  fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
+  fprintf(fp,"\nCount = %d\n", _oplst.count());
+  for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
+    fprintf(fp,"%s, ",name);
+  }
+  fprintf(fp,"\n");
+}
+
+
+//==============================Operands=======================================
+//------------------------------OperandForm------------------------------------
+OperandForm::OperandForm(const char* id)
+  : OpClassForm(id), _ideal_only(false),
+    _localNames(cmpstr, hashstr, Form::arena) {
+      _ftype = Form::OPER;
+
+      _matrule   = NULL;
+      _interface = NULL;
+      _attribs   = NULL;
+      _predicate = NULL;
+      _constraint= NULL;
+      _construct = NULL;
+      _format    = NULL;
+}
+OperandForm::OperandForm(const char* id, bool ideal_only)
+  : OpClassForm(id), _ideal_only(ideal_only),
+    _localNames(cmpstr, hashstr, Form::arena) {
+      _ftype = Form::OPER;
+
+      _matrule   = NULL;
+      _interface = NULL;
+      _attribs   = NULL;
+      _predicate = NULL;
+      _constraint= NULL;
+      _construct = NULL;
+      _format    = NULL;
+}
+OperandForm::~OperandForm() {
+}
+
+
+OperandForm *OperandForm::is_operand() const {
+  return (OperandForm*)this;
+}
+
+bool OperandForm::ideal_only() const {
+  return _ideal_only;
+}
+
+Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
+  if( _interface == NULL )  return Form::no_interface;
+
+  return _interface->interface_type(globals);
+}
+
+
+bool OperandForm::stack_slots_only(FormDict &globals) const {
+  if( _constraint == NULL )  return false;
+  return _constraint->stack_slots_only();
+}
+
+
+// Access op_cost attribute or return NULL.
+const char* OperandForm::cost() {
+  for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
+    if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
+      return cur->_val;
+    }
+  }
+  return NULL;
+}
+
+// Return the number of leaves below this complex operand
+uint OperandForm::num_leaves() const {
+  if ( ! _matrule) return 0;
+
+  int num_leaves = _matrule->_numleaves;
+  return num_leaves;
+}
+
+// Return the number of constants contained within this complex operand
+uint OperandForm::num_consts(FormDict &globals) const {
+  if ( ! _matrule) return 0;
+
+  // This is a recursive invocation on all operands in the matchrule
+  return _matrule->num_consts(globals);
+}
+
+// Return the number of constants in match rule with specified type
+uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
+  if ( ! _matrule) return 0;
+
+  // This is a recursive invocation on all operands in the matchrule
+  return _matrule->num_consts(globals, type);
+}
+
+// Return the number of pointer constants contained within this complex operand
+uint OperandForm::num_const_ptrs(FormDict &globals) const {
+  if ( ! _matrule) return 0;
+
+  // This is a recursive invocation on all operands in the matchrule
+  return _matrule->num_const_ptrs(globals);
+}
+
+uint OperandForm::num_edges(FormDict &globals) const {
+  uint edges  = 0;
+  uint leaves = num_leaves();
+  uint consts = num_consts(globals);
+
+  // If we are matching a constant directly, there are no leaves.
+  edges = ( leaves > consts ) ? leaves - consts : 0;
+
+  // !!!!!
+  // Special case operands that do not have a corresponding ideal node.
+  if( (edges == 0) && (consts == 0) ) {
+    if( constrained_reg_class() != NULL ) {
+      edges = 1;
+    } else {
+      if( _matrule
+          && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
+        const Form *form = globals[_matrule->_opType];
+        OperandForm *oper = form ? form->is_operand() : NULL;
+        if( oper ) {
+          return oper->num_edges(globals);
+        }
+      }
+    }
+  }
+
+  return edges;
+}
+
+
+// Check if this operand is usable for cisc-spilling
+bool  OperandForm::is_cisc_reg(FormDict &globals) const {
+  const char *ideal = ideal_type(globals);
+  bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
+  return is_cisc_reg;
+}
+
+bool  OpClassForm::is_cisc_mem(FormDict &globals) const {
+  Form::InterfaceType my_interface = interface_type(globals);
+  return (my_interface == memory_interface);
+}
+
+
+// node matches ideal 'Bool'
+bool OperandForm::is_ideal_bool() const {
+  if( _matrule == NULL ) return false;
+
+  return _matrule->is_ideal_bool();
+}
+
+// Require user's name for an sRegX to be stackSlotX
+Form::DataType OperandForm::is_user_name_for_sReg() const {
+  DataType data_type = none;
+  if( _ident != NULL ) {
+    if(      strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
+    else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
+    else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
+    else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
+    else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
+  }
+  assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
+
+  return data_type;
+}
+
+
+// Return ideal type, if there is a single ideal type for this operand
+const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
+  const char *type = NULL;
+  if (ideal_only()) type = _ident;
+  else if( _matrule == NULL ) {
+    // Check for condition code register
+    const char *rc_name = constrained_reg_class();
+    // !!!!!
+    if (rc_name == NULL) return NULL;
+    // !!!!! !!!!!
+    // Check constraints on result's register class
+    if( registers ) {
+      RegClass *reg_class  = registers->getRegClass(rc_name);
+      assert( reg_class != NULL, "Register class is not defined");
+
+      // Check for ideal type of entries in register class, all are the same type
+      reg_class->reset();
+      RegDef *reg_def = reg_class->RegDef_iter();
+      assert( reg_def != NULL, "No entries in register class");
+      assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
+      // Return substring that names the register's ideal type
+      type = reg_def->_idealtype + 3;
+      assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
+      assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
+      assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
+    }
+  }
+  else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
+    // This operand matches a single type, at the top level.
+    // Check for ideal type
+    type = _matrule->_opType;
+    if( strcmp(type,"Bool") == 0 )
+      return "Bool";
+    // transitive lookup
+    const Form *frm = globals[type];
+    OperandForm *op = frm->is_operand();
+    type = op->ideal_type(globals, registers);
+  }
+  return type;
+}
+
+
+// If there is a single ideal type for this interface field, return it.
+const char *OperandForm::interface_ideal_type(FormDict &globals,
+                                              const char *field) const {
+  const char  *ideal_type = NULL;
+  const char  *value      = NULL;
+
+  // Check if "field" is valid for this operand's interface
+  if ( ! is_interface_field(field, value) )   return ideal_type;
+
+  // !!!!! !!!!! !!!!!
+  // If a valid field has a constant value, identify "ConI" or "ConP" or ...
+
+  // Else, lookup type of field's replacement variable
+
+  return ideal_type;
+}
+
+
+RegClass* OperandForm::get_RegClass() const {
+  if (_interface && !_interface->is_RegInterface()) return NULL;
+  return globalAD->get_registers()->getRegClass(constrained_reg_class());
+}
+
+
+bool OperandForm::is_bound_register() const {
+  RegClass *reg_class  = get_RegClass();
+  if (reg_class == NULL) return false;
+
+  const char * name = ideal_type(globalAD->globalNames());
+  if (name == NULL) return false;
+
+  int size = 0;
+  if (strcmp(name,"RegFlags")==0) size =  1;
+  if (strcmp(name,"RegI")==0) size =  1;
+  if (strcmp(name,"RegF")==0) size =  1;
+  if (strcmp(name,"RegD")==0) size =  2;
+  if (strcmp(name,"RegL")==0) size =  2;
+  if (strcmp(name,"RegP")==0) size =  globalAD->get_preproc_def("_LP64") ? 2 : 1;
+  if (size == 0) return false;
+  return size == reg_class->size();
+}
+
+
+// Check if this is a valid field for this operand,
+// Return 'true' if valid, and set the value to the string the user provided.
+bool  OperandForm::is_interface_field(const char *field,
+                                      const char * &value) const {
+  return false;
+}
+
+
+// Return register class name if a constraint specifies the register class.
+const char *OperandForm::constrained_reg_class() const {
+  const char *reg_class  = NULL;
+  if ( _constraint ) {
+    // !!!!!
+    Constraint *constraint = _constraint;
+    if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
+      reg_class = _constraint->_arg;
+    }
+  }
+
+  return reg_class;
+}
+
+
+// Return the register class associated with 'leaf'.
+const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
+  const char *reg_class = NULL; // "RegMask::Empty";
+
+  if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
+    reg_class = constrained_reg_class();
+    return reg_class;
+  }
+  const char *result   = NULL;
+  const char *name     = NULL;
+  const char *type     = NULL;
+  // iterate through all base operands
+  // until we reach the register that corresponds to "leaf"
+  // This function is not looking for an ideal type.  It needs the first
+  // level user type associated with the leaf.
+  for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
+    const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
+    OperandForm *oper = form ? form->is_operand() : NULL;
+    if( oper ) {
+      reg_class = oper->constrained_reg_class();
+      if( reg_class ) {
+        reg_class = reg_class;
+      } else {
+        // ShouldNotReachHere();
+      }
+    } else {
+      // ShouldNotReachHere();
+    }
+
+    // Increment our target leaf position if current leaf is not a candidate.
+    if( reg_class == NULL)    ++leaf;
+    // Exit the loop with the value of reg_class when at the correct index
+    if( idx == leaf )         break;
+    // May iterate through all base operands if reg_class for 'leaf' is NULL
+  }
+  return reg_class;
+}
+
+
+// Recursive call to construct list of top-level operands.
+// Implementation does not modify state of internal structures
+void OperandForm::build_components() {
+  if (_matrule)  _matrule->append_components(_localNames, _components);
+
+  // Add parameters that "do not appear in match rule".
+  const char *name;
+  for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
+    OperandForm *opForm = (OperandForm*)_localNames[name];
+
+    if ( _components.operand_position(name) == -1 ) {
+      _components.insert(name, opForm->_ident, Component::INVALID, false);
+    }
+  }
+
+  return;
+}
+
+int OperandForm::operand_position(const char *name, int usedef) {
+  return _components.operand_position(name, usedef);
+}
+
+
+// Return zero-based position in component list, only counting constants;
+// Return -1 if not in list.
+int OperandForm::constant_position(FormDict &globals, const Component *last) {
+  // Iterate through components and count constants preceeding 'constant'
+  uint  position = 0;
+  Component *comp;
+  _components.reset();
+  while( (comp = _components.iter()) != NULL  && (comp != last) ) {
+    // Special case for operands that take a single user-defined operand
+    // Skip the initial definition in the component list.
+    if( strcmp(comp->_name,this->_ident) == 0 ) continue;
+
+    const char *type = comp->_type;
+    // Lookup operand form for replacement variable's type
+    const Form *form = globals[type];
+    assert( form != NULL, "Component's type not found");
+    OperandForm *oper = form ? form->is_operand() : NULL;
+    if( oper ) {
+      if( oper->_matrule->is_base_constant(globals) != Form::none ) {
+        ++position;
+      }
+    }
+  }
+
+  // Check for being passed a component that was not in the list
+  if( comp != last )  position = -1;
+
+  return position;
+}
+// Provide position of constant by "name"
+int OperandForm::constant_position(FormDict &globals, const char *name) {
+  const Component *comp = _components.search(name);
+  int idx = constant_position( globals, comp );
+
+  return idx;
+}
+
+
+// Return zero-based position in component list, only counting constants;
+// Return -1 if not in list.
+int OperandForm::register_position(FormDict &globals, const char *reg_name) {
+  // Iterate through components and count registers preceeding 'last'
+  uint  position = 0;
+  Component *comp;
+  _components.reset();
+  while( (comp = _components.iter()) != NULL
+         && (strcmp(comp->_name,reg_name) != 0) ) {
+    // Special case for operands that take a single user-defined operand
+    // Skip the initial definition in the component list.
+    if( strcmp(comp->_name,this->_ident) == 0 ) continue;
+
+    const char *type = comp->_type;
+    // Lookup operand form for component's type
+    const Form *form = globals[type];
+    assert( form != NULL, "Component's type not found");
+    OperandForm *oper = form ? form->is_operand() : NULL;
+    if( oper ) {
+      if( oper->_matrule->is_base_register(globals) ) {
+        ++position;
+      }
+    }
+  }
+
+  return position;
+}
+
+
+const char *OperandForm::reduce_result()  const {
+  return _ident;
+}
+// Return the name of the operand on the right hand side of the binary match
+// Return NULL if there is no right hand side
+const char *OperandForm::reduce_right(FormDict &globals)  const {
+  return  ( _matrule ? _matrule->reduce_right(globals) : NULL );
+}
+
+// Similar for left
+const char *OperandForm::reduce_left(FormDict &globals)   const {
+  return  ( _matrule ? _matrule->reduce_left(globals) : NULL );
+}
+
+
+// --------------------------- FILE *output_routines
+//
+// Output code for disp_is_oop, if true.
+void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
+  //  Check it is a memory interface with a non-user-constant disp field
+  if ( this->_interface == NULL ) return;
+  MemInterface *mem_interface = this->_interface->is_MemInterface();
+  if ( mem_interface == NULL )    return;
+  const char   *disp  = mem_interface->_disp;
+  if ( *disp != '$' )             return;
+
+  // Lookup replacement variable in operand's component list
+  const char   *rep_var = disp + 1;
+  const Component *comp = this->_components.search(rep_var);
+  assert( comp != NULL, "Replacement variable not found in components");
+  // Lookup operand form for replacement variable's type
+  const char      *type = comp->_type;
+  Form            *form = (Form*)globals[type];
+  assert( form != NULL, "Replacement variable's type not found");
+  OperandForm     *op   = form->is_operand();
+  assert( op, "Memory Interface 'disp' can only emit an operand form");
+  // Check if this is a ConP, which may require relocation
+  if ( op->is_base_constant(globals) == Form::idealP ) {
+    // Find the constant's index:  _c0, _c1, _c2, ... , _cN
+    uint idx  = op->constant_position( globals, rep_var);
+    fprintf(fp,"  virtual bool disp_is_oop() const {", _ident);
+    fprintf(fp,  "  return _c%d->isa_oop_ptr();", idx);
+    fprintf(fp, " }\n");
+  }
+}
+
+// Generate code for internal and external format methods
+//
+// internal access to reg# node->_idx
+// access to subsumed constant _c0, _c1,
+void  OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
+  Form::DataType dtype;
+  if (_matrule && (_matrule->is_base_register(globals) ||
+                   strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
+    // !!!!! !!!!!
+    fprintf(fp,    "{ char reg_str[128];\n");
+    fprintf(fp,"      ra->dump_register(node,reg_str);\n");
+    fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
+    fprintf(fp,"    }\n");
+  } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
+    format_constant( fp, index, dtype );
+  } else if (ideal_to_sReg_type(_ident) != Form::none) {
+    // Special format for Stack Slot Register
+    fprintf(fp,    "{ char reg_str[128];\n");
+    fprintf(fp,"      ra->dump_register(node,reg_str);\n");
+    fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
+    fprintf(fp,"    }\n");
+  } else {
+    fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
+    fflush(fp);
+    fprintf(stderr,"No format defined for %s\n", _ident);
+    dump();
+    assert( false,"Internal error:\n  output_internal_operand() attempting to output other than a Register or Constant");
+  }
+}
+
+// Similar to "int_format" but for cases where data is external to operand
+// external access to reg# node->in(idx)->_idx,
+void  OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
+  Form::DataType dtype;
+  if (_matrule && (_matrule->is_base_register(globals) ||
+                   strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
+    fprintf(fp,    "{ char reg_str[128];\n");
+    fprintf(fp,"      ra->dump_register(node->in(idx");
+    if ( index != 0 ) fprintf(fp,                  "+%d",index);
+    fprintf(fp,                                       "),reg_str);\n");
+    fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
+    fprintf(fp,"    }\n");
+  } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
+    format_constant( fp, index, dtype );
+  } else if (ideal_to_sReg_type(_ident) != Form::none) {
+    // Special format for Stack Slot Register
+    fprintf(fp,    "{ char reg_str[128];\n");
+    fprintf(fp,"      ra->dump_register(node->in(idx");
+    if ( index != 0 ) fprintf(fp,                  "+%d",index);
+    fprintf(fp,                                       "),reg_str);\n");
+    fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
+    fprintf(fp,"    }\n");
+  } else {
+    fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
+    assert( false,"Internal error:\n  output_external_operand() attempting to output other than a Register or Constant");
+  }
+}
+
+void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
+  switch(const_type) {
+  case Form::idealI: fprintf(fp,"st->print(\"#%%d\", _c%d);\n", const_index); break;
+  case Form::idealP: fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
+  case Form::idealL: fprintf(fp,"st->print(\"#%%lld\", _c%d);\n", const_index); break;
+  case Form::idealF: fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
+  case Form::idealD: fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
+  default:
+    assert( false, "ShouldNotReachHere()");
+  }
+}
+
+// Return the operand form corresponding to the given index, else NULL.
+OperandForm *OperandForm::constant_operand(FormDict &globals,
+                                           uint      index) {
+  // !!!!!
+  // Check behavior on complex operands
+  uint n_consts = num_consts(globals);
+  if( n_consts > 0 ) {
+    uint i = 0;
+    const char *type;
+    Component  *comp;
+    _components.reset();
+    if ((comp = _components.iter()) == NULL) {
+      assert(n_consts == 1, "Bad component list detected.\n");
+      // Current operand is THE operand
+      if ( index == 0 ) {
+        return this;
+      }
+    } // end if NULL
+    else {
+      // Skip the first component, it can not be a DEF of a constant
+      do {
+        type = comp->base_type(globals);
+        // Check that "type" is a 'ConI', 'ConP', ...
+        if ( ideal_to_const_type(type) != Form::none ) {
+          // When at correct component, get corresponding Operand
+          if ( index == 0 ) {
+            return globals[comp->_type]->is_operand();
+          }
+          // Decrement number of constants to go
+          --index;
+        }
+      } while((comp = _components.iter()) != NULL);
+    }
+  }
+
+  // Did not find a constant for this index.
+  return NULL;
+}
+
+// If this operand has a single ideal type, return its type
+Form::DataType OperandForm::simple_type(FormDict &globals) const {
+  const char *type_name = ideal_type(globals);
+  Form::DataType type   = type_name ? ideal_to_const_type( type_name )
+                                    : Form::none;
+  return type;
+}
+
+Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
+  if ( _matrule == NULL )    return Form::none;
+
+  return _matrule->is_base_constant(globals);
+}
+
+// "true" if this operand is a simple type that is swallowed
+bool  OperandForm::swallowed(FormDict &globals) const {
+  Form::DataType type   = simple_type(globals);
+  if( type != Form::none ) {
+    return true;
+  }
+
+  return false;
+}
+
+// Output code to access the value of the index'th constant
+void OperandForm::access_constant(FILE *fp, FormDict &globals,
+                                  uint const_index) {
+  OperandForm *oper = constant_operand(globals, const_index);
+  assert( oper, "Index exceeds number of constants in operand");
+  Form::DataType dtype = oper->is_base_constant(globals);
+
+  switch(dtype) {
+  case idealI: fprintf(fp,"_c%d",           const_index); break;
+  case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
+  case idealL: fprintf(fp,"_c%d",           const_index); break;
+  case idealF: fprintf(fp,"_c%d",           const_index); break;
+  case idealD: fprintf(fp,"_c%d",           const_index); break;
+  default:
+    assert( false, "ShouldNotReachHere()");
+  }
+}
+
+
+void OperandForm::dump() {
+  output(stderr);
+}
+
+void OperandForm::output(FILE *fp) {
+  fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
+  if (_matrule)    _matrule->dump();
+  if (_interface)  _interface->dump();
+  if (_attribs)    _attribs->dump();
+  if (_predicate)  _predicate->dump();
+  if (_constraint) _constraint->dump();
+  if (_construct)  _construct->dump();
+  if (_format)     _format->dump();
+}
+
+//------------------------------Constraint-------------------------------------
+Constraint::Constraint(const char *func, const char *arg)
+  : _func(func), _arg(arg) {
+}
+Constraint::~Constraint() { /* not owner of char* */
+}
+
+bool Constraint::stack_slots_only() const {
+  return strcmp(_func, "ALLOC_IN_RC") == 0
+      && strcmp(_arg,  "stack_slots") == 0;
+}
+
+void Constraint::dump() {
+  output(stderr);
+}
+
+void Constraint::output(FILE *fp) {           // Write info to output files
+  assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
+  fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
+}
+
+//------------------------------Predicate--------------------------------------
+Predicate::Predicate(char *pr)
+  : _pred(pr) {
+}
+Predicate::~Predicate() {
+}
+
+void Predicate::dump() {
+  output(stderr);
+}
+
+void Predicate::output(FILE *fp) {
+  fprintf(fp,"Predicate");  // Write to output files
+}
+//------------------------------Interface--------------------------------------
+Interface::Interface(const char *name) : _name(name) {
+}
+Interface::~Interface() {
+}
+
+Form::InterfaceType Interface::interface_type(FormDict &globals) const {
+  Interface *thsi = (Interface*)this;
+  if ( thsi->is_RegInterface()   ) return Form::register_interface;
+  if ( thsi->is_MemInterface()   ) return Form::memory_interface;
+  if ( thsi->is_ConstInterface() ) return Form::constant_interface;
+  if ( thsi->is_CondInterface()  ) return Form::conditional_interface;
+
+  return Form::no_interface;
+}
+
+RegInterface   *Interface::is_RegInterface() {
+  if ( strcmp(_name,"REG_INTER") != 0 )
+    return NULL;
+  return (RegInterface*)this;
+}
+MemInterface   *Interface::is_MemInterface() {
+  if ( strcmp(_name,"MEMORY_INTER") != 0 )  return NULL;
+  return (MemInterface*)this;
+}
+ConstInterface *Interface::is_ConstInterface() {
+  if ( strcmp(_name,"CONST_INTER") != 0 )  return NULL;
+  return (ConstInterface*)this;
+}
+CondInterface  *Interface::is_CondInterface() {
+  if ( strcmp(_name,"COND_INTER") != 0 )  return NULL;
+  return (CondInterface*)this;
+}
+
+
+void Interface::dump() {
+  output(stderr);
+}
+
+// Write info to output files
+void Interface::output(FILE *fp) {
+  fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
+}
+
+//------------------------------RegInterface-----------------------------------
+RegInterface::RegInterface() : Interface("REG_INTER") {
+}
+RegInterface::~RegInterface() {
+}
+
+void RegInterface::dump() {
+  output(stderr);
+}
+
+// Write info to output files
+void RegInterface::output(FILE *fp) {
+  Interface::output(fp);
+}
+
+//------------------------------ConstInterface---------------------------------
+ConstInterface::ConstInterface() : Interface("CONST_INTER") {
+}
+ConstInterface::~ConstInterface() {
+}
+
+void ConstInterface::dump() {
+  output(stderr);
+}
+
+// Write info to output files
+void ConstInterface::output(FILE *fp) {
+  Interface::output(fp);
+}
+
+//------------------------------MemInterface-----------------------------------
+MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
+  : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
+}
+MemInterface::~MemInterface() {
+  // not owner of any character arrays
+}
+
+void MemInterface::dump() {
+  output(stderr);
+}
+
+// Write info to output files
+void MemInterface::output(FILE *fp) {
+  Interface::output(fp);
+  if ( _base  != NULL ) fprintf(fp,"  base  == %s\n", _base);
+  if ( _index != NULL ) fprintf(fp,"  index == %s\n", _index);
+  if ( _scale != NULL ) fprintf(fp,"  scale == %s\n", _scale);
+  if ( _disp  != NULL ) fprintf(fp,"  disp  == %s\n", _disp);
+  // fprintf(fp,"\n");
+}
+
+//------------------------------CondInterface----------------------------------
+CondInterface::CondInterface(char *equal,      char *not_equal,
+                             char *less,       char *greater_equal,
+                             char *less_equal, char *greater)
+  : Interface("COND_INTER"),
+    _equal(equal), _not_equal(not_equal),
+    _less(less), _greater_equal(greater_equal),
+    _less_equal(less_equal), _greater(greater) {
+      //
+}
+CondInterface::~CondInterface() {
+  // not owner of any character arrays
+}
+
+void CondInterface::dump() {
+  output(stderr);
+}
+
+// Write info to output files
+void CondInterface::output(FILE *fp) {
+  Interface::output(fp);
+  if ( _equal  != NULL )     fprintf(fp," equal       == %s\n", _equal);
+  if ( _not_equal  != NULL ) fprintf(fp," not_equal   == %s\n", _not_equal);
+  if ( _less  != NULL )      fprintf(fp," less        == %s\n", _less);
+  if ( _greater_equal  != NULL ) fprintf(fp," greater_equal   == %s\n", _greater_equal);
+  if ( _less_equal  != NULL ) fprintf(fp," less_equal  == %s\n", _less_equal);
+  if ( _greater  != NULL )    fprintf(fp," greater     == %s\n", _greater);
+  // fprintf(fp,"\n");
+}
+
+//------------------------------ConstructRule----------------------------------
+ConstructRule::ConstructRule(char *cnstr)
+  : _construct(cnstr) {
+}
+ConstructRule::~ConstructRule() {
+}
+
+void ConstructRule::dump() {
+  output(stderr);
+}
+
+void ConstructRule::output(FILE *fp) {
+  fprintf(fp,"\nConstruct Rule\n");  // Write to output files
+}
+
+
+//==============================Shared Forms===================================
+//------------------------------AttributeForm----------------------------------
+int         AttributeForm::_insId   = 0;           // start counter at 0
+int         AttributeForm::_opId    = 0;           // start counter at 0
+const char* AttributeForm::_ins_cost = "ins_cost"; // required name
+const char* AttributeForm::_ins_pc_relative = "ins_pc_relative";
+const char* AttributeForm::_op_cost  = "op_cost";  // required name
+
+AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
+  : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
+    if (type==OP_ATTR) {
+      id = ++_opId;
+    }
+    else if (type==INS_ATTR) {
+      id = ++_insId;
+    }
+    else assert( false,"");
+}
+AttributeForm::~AttributeForm() {
+}
+
+// Dynamic type check
+AttributeForm *AttributeForm::is_attribute() const {
+  return (AttributeForm*)this;
+}
+
+
+// inlined  // int  AttributeForm::type() { return id;}
+
+void AttributeForm::dump() {
+  output(stderr);
+}
+
+void AttributeForm::output(FILE *fp) {
+  if( _attrname && _attrdef ) {
+    fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
+            _attrname, _attrdef);
+  }
+  else {
+    fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
+            (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
+  }
+}
+
+//------------------------------Component--------------------------------------
+Component::Component(const char *name, const char *type, int usedef)
+  : _name(name), _type(type), _usedef(usedef) {
+    _ftype = Form::COMP;
+}
+Component::~Component() {
+}
+
+// True if this component is equal to the parameter.
+bool Component::is(int use_def_kill_enum) const {
+  return (_usedef == use_def_kill_enum ? true : false);
+}
+// True if this component is used/def'd/kill'd as the parameter suggests.
+bool Component::isa(int use_def_kill_enum) const {
+  return (_usedef & use_def_kill_enum) == use_def_kill_enum;
+}
+
+// Extend this component with additional use/def/kill behavior
+int Component::promote_use_def_info(int new_use_def) {
+  _usedef |= new_use_def;
+
+  return _usedef;
+}
+
+// Check the base type of this component, if it has one
+const char *Component::base_type(FormDict &globals) {
+  const Form *frm = globals[_type];
+  if (frm == NULL) return NULL;
+  OperandForm *op = frm->is_operand();
+  if (op == NULL) return NULL;
+  if (op->ideal_only()) return op->_ident;
+  return (char *)op->ideal_type(globals);
+}
+
+void Component::dump() {
+  output(stderr);
+}
+
+void Component::output(FILE *fp) {
+  fprintf(fp,"Component:");  // Write to output files
+  fprintf(fp, "  name = %s", _name);
+  fprintf(fp, ", type = %s", _type);
+  const char * usedef = "Undefined Use/Def info";
+  switch (_usedef) {
+    case USE:      usedef = "USE";      break;
+    case USE_DEF:  usedef = "USE_DEF";  break;
+    case USE_KILL: usedef = "USE_KILL"; break;
+    case KILL:     usedef = "KILL";     break;
+    case TEMP:     usedef = "TEMP";     break;
+    case DEF:      usedef = "DEF";      break;
+    default: assert(false, "unknown effect");
+  }
+  fprintf(fp, ", use/def = %s\n", usedef);
+}
+
+
+//------------------------------ComponentList---------------------------------
+ComponentList::ComponentList() : NameList(), _matchcnt(0) {
+}
+ComponentList::~ComponentList() {
+  // // This list may not own its elements if copied via assignment
+  // Component *component;
+  // for (reset(); (component = iter()) != NULL;) {
+  //   delete component;
+  // }
+}
+
+void   ComponentList::insert(Component *component, bool mflag) {
+  NameList::addName((char *)component);
+  if(mflag) _matchcnt++;
+}
+void   ComponentList::insert(const char *name, const char *opType, int usedef,
+                             bool mflag) {
+  Component * component = new Component(name, opType, usedef);
+  insert(component, mflag);
+}
+Component *ComponentList::current() { return (Component*)NameList::current(); }
+Component *ComponentList::iter()    { return (Component*)NameList::iter(); }
+Component *ComponentList::match_iter() {
+  if(_iter < _matchcnt) return (Component*)NameList::iter();
+  return NULL;
+}
+Component *ComponentList::post_match_iter() {
+  Component *comp = iter();
+  // At end of list?
+  if ( comp == NULL ) {
+    return comp;
+  }
+  // In post-match components?
+  if (_iter > match_count()-1) {
+    return comp;
+  }
+
+  return post_match_iter();
+}
+
+void       ComponentList::reset()   { NameList::reset(); }
+int        ComponentList::count()   { return NameList::count(); }
+
+Component *ComponentList::operator[](int position) {
+  // Shortcut complete iteration if there are not enough entries
+  if (position >= count()) return NULL;
+
+  int        index     = 0;
+  Component *component = NULL;
+  for (reset(); (component = iter()) != NULL;) {
+    if (index == position) {
+      return component;
+    }
+    ++index;
+  }
+
+  return NULL;
+}
+
+const Component *ComponentList::search(const char *name) {
+  PreserveIter pi(this);
+  reset();
+  for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
+    if( strcmp(comp->_name,name) == 0 ) return comp;
+  }
+
+  return NULL;
+}
+
+// Return number of USEs + number of DEFs
+// When there are no components, or the first component is a USE,
+// then we add '1' to hold a space for the 'result' operand.
+int ComponentList::num_operands() {
+  PreserveIter pi(this);
+  uint       count = 1;           // result operand
+  uint       position = 0;
+
+  Component *component  = NULL;
+  for( reset(); (component = iter()) != NULL; ++position ) {
+    if( component->isa(Component::USE) ||
+        ( position == 0 && (! component->isa(Component::DEF))) ) {
+      ++count;
+    }
+  }
+
+  return count;
+}
+
+// Return zero-based position in list;  -1 if not in list.
+// if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
+int ComponentList::operand_position(const char *name, int usedef) {
+  PreserveIter pi(this);
+  int position = 0;
+  int num_opnds = num_operands();
+  Component *component;
+  Component* preceding_non_use = NULL;
+  Component* first_def = NULL;
+  for (reset(); (component = iter()) != NULL; ++position) {
+    // When the first component is not a DEF,
+    // leave space for the result operand!
+    if ( position==0 && (! component->isa(Component::DEF)) ) {
+      ++position;
+      ++num_opnds;
+    }
+    if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
+      // When the first entry in the component list is a DEF and a USE
+      // Treat them as being separate, a DEF first, then a USE
+      if( position==0
+          && usedef==Component::USE && component->isa(Component::DEF) ) {
+        assert(position+1 < num_opnds, "advertised index in bounds");
+        return position+1;
+      } else {
+        if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
+          fprintf(stderr, "the name '%s' should not precede the name '%s'\n", preceding_non_use->_name, name);
+        }
+        if( position >= num_opnds ) {
+          fprintf(stderr, "the name '%s' is too late in its name list\n", name);
+        }
+        assert(position < num_opnds, "advertised index in bounds");
+        return position;
+      }
+    }
+    if( component->isa(Component::DEF)
+        && component->isa(Component::USE) ) {
+      ++position;
+      if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
+    }
+    if( component->isa(Component::DEF) && !first_def ) {
+      first_def = component;
+    }
+    if( !component->isa(Component::USE) && component != first_def ) {
+      preceding_non_use = component;
+    } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
+      preceding_non_use = NULL;
+    }
+  }
+  return Not_in_list;
+}
+
+// Find position for this name, regardless of use/def information
+int ComponentList::operand_position(const char *name) {
+  PreserveIter pi(this);
+  int position = 0;
+  Component *component;
+  for (reset(); (component = iter()) != NULL; ++position) {
+    // When the first component is not a DEF,
+    // leave space for the result operand!
+    if ( position==0 && (! component->isa(Component::DEF)) ) {
+      ++position;
+    }
+    if (strcmp(name, component->_name)==0) {
+      return position;
+    }
+    if( component->isa(Component::DEF)
+        && component->isa(Component::USE) ) {
+      ++position;
+      if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
+    }
+  }
+  return Not_in_list;
+}
+
+int ComponentList::operand_position_format(const char *name) {
+  PreserveIter pi(this);
+  int  first_position = operand_position(name);
+  int  use_position   = operand_position(name, Component::USE);
+
+  return ((first_position < use_position) ? use_position : first_position);
+}
+
+int ComponentList::label_position() {
+  PreserveIter pi(this);
+  int position = 0;
+  reset();
+  for( Component *comp; (comp = iter()) != NULL; ++position) {
+    // When the first component is not a DEF,
+    // leave space for the result operand!
+    if ( position==0 && (! comp->isa(Component::DEF)) ) {
+      ++position;
+    }
+    if (strcmp(comp->_type, "label")==0) {
+      return position;
+    }
+    if( comp->isa(Component::DEF)
+        && comp->isa(Component::USE) ) {
+      ++position;
+      if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
+    }
+  }
+
+  return -1;
+}
+
+int ComponentList::method_position() {
+  PreserveIter pi(this);
+  int position = 0;
+  reset();
+  for( Component *comp; (comp = iter()) != NULL; ++position) {
+    // When the first component is not a DEF,
+    // leave space for the result operand!
+    if ( position==0 && (! comp->isa(Component::DEF)) ) {
+      ++position;
+    }
+    if (strcmp(comp->_type, "method")==0) {
+      return position;
+    }
+    if( comp->isa(Component::DEF)
+        && comp->isa(Component::USE) ) {
+      ++position;
+      if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
+    }
+  }
+
+  return -1;
+}
+
+void ComponentList::dump() { output(stderr); }
+
+void ComponentList::output(FILE *fp) {
+  PreserveIter pi(this);
+  fprintf(fp, "\n");
+  Component *component;
+  for (reset(); (component = iter()) != NULL;) {
+    component->output(fp);
+  }
+  fprintf(fp, "\n");
+}
+
+//------------------------------MatchNode--------------------------------------
+MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
+                     const char *opType, MatchNode *lChild, MatchNode *rChild)
+  : _AD(ad), _result(result), _name(mexpr), _opType(opType),
+    _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
+    _commutative_id(0) {
+  _numleaves = (lChild ? lChild->_numleaves : 0)
+               + (rChild ? rChild->_numleaves : 0);
+}
+
+MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
+  : _AD(ad), _result(mnode._result), _name(mnode._name),
+    _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
+    _internalop(0), _numleaves(mnode._numleaves),
+    _commutative_id(mnode._commutative_id) {
+}
+
+MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
+  : _AD(ad), _result(mnode._result), _name(mnode._name),
+    _opType(mnode._opType),
+    _internalop(0), _numleaves(mnode._numleaves),
+    _commutative_id(mnode._commutative_id) {
+  if (mnode._lChild) {
+    _lChild = new MatchNode(ad, *mnode._lChild, clone);
+  } else {
+    _lChild = NULL;
+  }
+  if (mnode._rChild) {
+    _rChild = new MatchNode(ad, *mnode._rChild, clone);
+  } else {
+    _rChild = NULL;
+  }
+}
+
+MatchNode::~MatchNode() {
+  // // This node may not own its children if copied via assignment
+  // if( _lChild ) delete _lChild;
+  // if( _rChild ) delete _rChild;
+}
+
+bool  MatchNode::find_type(const char *type, int &position) const {
+  if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
+  if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
+
+  if (strcmp(type,_opType)==0)  {
+    return true;
+  } else {
+    ++position;
+  }
+  return false;
+}
+
+// Recursive call collecting info on top-level operands, not transitive.
+// Implementation does not modify state of internal structures.
+void MatchNode::append_components(FormDict &locals, ComponentList &components,
+                                  bool deflag) const {
+  int   usedef = deflag ? Component::DEF : Component::USE;
+  FormDict &globals = _AD.globalNames();
+
+  assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
+  // Base case
+  if (_lChild==NULL && _rChild==NULL) {
+    // If _opType is not an operation, do not build a component for it #####
+    const Form *f = globals[_opType];
+    if( f != NULL ) {
+      // Add non-ideals that are operands, operand-classes,
+      if( ! f->ideal_only()
+          && (f->is_opclass() || f->is_operand()) ) {
+        components.insert(_name, _opType, usedef, true);
+      }
+    }
+    return;
+  }
+  // Promote results of "Set" to DEF
+  bool def_flag = (!strcmp(_opType, "Set")) ? true : false;
+  if (_lChild) _lChild->append_components(locals, components, def_flag);
+  def_flag = false;   // only applies to component immediately following 'Set'
+  if (_rChild) _rChild->append_components(locals, components, def_flag);
+}
+
+// Find the n'th base-operand in the match node,
+// recursively investigates match rules of user-defined operands.
+//
+// Implementation does not modify state of internal structures since they
+// can be shared.
+bool MatchNode::base_operand(uint &position, FormDict &globals,
+                             const char * &result, const char * &name,
+                             const char * &opType) const {
+  assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
+  // Base case
+  if (_lChild==NULL && _rChild==NULL) {
+    // Check for special case: "Universe", "label"
+    if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
+      if (position == 0) {
+        result = _result;
+        name   = _name;
+        opType = _opType;
+        return 1;
+      } else {
+        -- position;
+        return 0;
+      }
+    }
+
+    const Form *form = globals[_opType];
+    MatchNode *matchNode = NULL;
+    // Check for user-defined type
+    if (form) {
+      // User operand or instruction?
+      OperandForm  *opForm = form->is_operand();
+      InstructForm *inForm = form->is_instruction();
+      if ( opForm ) {
+        matchNode = (MatchNode*)opForm->_matrule;
+      } else if ( inForm ) {
+        matchNode = (MatchNode*)inForm->_matrule;
+      }
+    }
+    // if this is user-defined, recurse on match rule
+    // User-defined operand and instruction forms have a match-rule.
+    if (matchNode) {
+      return (matchNode->base_operand(position,globals,result,name,opType));
+    } else {
+      // Either not a form, or a system-defined form (no match rule).
+      if (position==0) {
+        result = _result;
+        name   = _name;
+        opType = _opType;
+        return 1;
+      } else {
+        --position;
+        return 0;
+      }
+    }
+
+  } else {
+    // Examine the left child and right child as well
+    if (_lChild) {
+      if (_lChild->base_operand(position, globals, result, name, opType))
+        return 1;
+    }
+
+    if (_rChild) {
+      if (_rChild->base_operand(position, globals, result, name, opType))
+        return 1;
+    }
+  }
+
+  return 0;
+}
+
+// Recursive call on all operands' match rules in my match rule.
+uint  MatchNode::num_consts(FormDict &globals) const {
+  uint        index      = 0;
+  uint        num_consts = 0;
+  const char *result;
+  const char *name;
+  const char *opType;
+
+  for (uint position = index;
+       base_operand(position,globals,result,name,opType); position = index) {
+    ++index;
+    if( ideal_to_const_type(opType) )        num_consts++;
+  }
+
+  return num_consts;
+}
+
+// Recursive call on all operands' match rules in my match rule.
+// Constants in match rule subtree with specified type
+uint  MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
+  uint        index      = 0;
+  uint        num_consts = 0;
+  const char *result;
+  const char *name;
+  const char *opType;
+
+  for (uint position = index;
+       base_operand(position,globals,result,name,opType); position = index) {
+    ++index;
+    if( ideal_to_const_type(opType) == type ) num_consts++;
+  }
+
+  return num_consts;
+}
+
+// Recursive call on all operands' match rules in my match rule.
+uint  MatchNode::num_const_ptrs(FormDict &globals) const {
+  return  num_consts( globals, Form::idealP );
+}
+
+bool  MatchNode::sets_result() const {
+  return   ( (strcmp(_name,"Set") == 0) ? true : false );
+}
+
+const char *MatchNode::reduce_right(FormDict &globals) const {
+  // If there is no right reduction, return NULL.
+  const char      *rightStr    = NULL;
+
+  // If we are a "Set", start from the right child.
+  const MatchNode *const mnode = sets_result() ?
+    (const MatchNode *const)this->_rChild :
+    (const MatchNode *const)this;
+
+  // If our right child exists, it is the right reduction
+  if ( mnode->_rChild ) {
+    rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
+      : mnode->_rChild->_opType;
+  }
+  // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
+  return rightStr;
+}
+
+const char *MatchNode::reduce_left(FormDict &globals) const {
+  // If there is no left reduction, return NULL.
+  const char  *leftStr  = NULL;
+
+  // If we are a "Set", start from the right child.
+  const MatchNode *const mnode = sets_result() ?
+    (const MatchNode *const)this->_rChild :
+    (const MatchNode *const)this;
+
+  // If our left child exists, it is the left reduction
+  if ( mnode->_lChild ) {
+    leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
+      : mnode->_lChild->_opType;
+  } else {
+    // May be simple chain rule: (Set dst operand_form_source)
+    if ( sets_result() ) {
+      OperandForm *oper = globals[mnode->_opType]->is_operand();
+      if( oper ) {
+        leftStr = mnode->_opType;
+      }
+    }
+  }
+  return leftStr;
+}
+
+//------------------------------count_instr_names------------------------------
+// Count occurrences of operands names in the leaves of the instruction
+// match rule.
+void MatchNode::count_instr_names( Dict &names ) {
+  if( !this ) return;
+  if( _lChild ) _lChild->count_instr_names(names);
+  if( _rChild ) _rChild->count_instr_names(names);
+  if( !_lChild && !_rChild ) {
+    uintptr_t cnt = (uintptr_t)names[_name];
+    cnt++;                      // One more name found
+    names.Insert(_name,(void*)cnt);
+  }
+}
+
+//------------------------------build_instr_pred-------------------------------
+// Build a path to 'name' in buf.  Actually only build if cnt is zero, so we
+// can skip some leading instances of 'name'.
+int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
+  if( _lChild ) {
+    if( !cnt ) strcpy( buf, "_kids[0]->" );
+    cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
+    if( cnt < 0 ) return cnt;   // Found it, all done
+  }
+  if( _rChild ) {
+    if( !cnt ) strcpy( buf, "_kids[1]->" );
+    cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
+    if( cnt < 0 ) return cnt;   // Found it, all done
+  }
+  if( !_lChild && !_rChild ) {  // Found a leaf
+    // Wrong name?  Give up...
+    if( strcmp(name,_name) ) return cnt;
+    if( !cnt ) strcpy(buf,"_leaf");
+    return cnt-1;
+  }
+  return cnt;
+}
+
+
+//------------------------------build_internalop-------------------------------
+// Build string representation of subtree
+void MatchNode::build_internalop( ) {
+  char *iop, *subtree;
+  const char *lstr, *rstr;
+  // Build string representation of subtree
+  // Operation lchildType rchildType
+  int len = (int)strlen(_opType) + 4;
+  lstr = (_lChild) ? ((_lChild->_internalop) ?
+                       _lChild->_internalop : _lChild->_opType) : "";
+  rstr = (_rChild) ? ((_rChild->_internalop) ?
+                       _rChild->_internalop : _rChild->_opType) : "";
+  len += (int)strlen(lstr) + (int)strlen(rstr);
+  subtree = (char *)malloc(len);
+  sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
+  // Hash the subtree string in _internalOps; if a name exists, use it
+  iop = (char *)_AD._internalOps[subtree];
+  // Else create a unique name, and add it to the hash table
+  if (iop == NULL) {
+    iop = subtree;
+    _AD._internalOps.Insert(subtree, iop);
+    _AD._internalOpNames.addName(iop);
+    _AD._internalMatch.Insert(iop, this);
+  }
+  // Add the internal operand name to the MatchNode
+  _internalop = iop;
+  _result = iop;
+}
+
+
+void MatchNode::dump() {
+  output(stderr);
+}
+
+void MatchNode::output(FILE *fp) {
+  if (_lChild==0 && _rChild==0) {
+    fprintf(fp," %s",_name);    // operand
+  }
+  else {
+    fprintf(fp," (%s ",_name);  // " (opcodeName "
+    if(_lChild) _lChild->output(fp); //               left operand
+    if(_rChild) _rChild->output(fp); //                    right operand
+    fprintf(fp,")");                 //                                 ")"
+  }
+}
+
+int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
+  static const char *needs_ideal_memory_list[] = {
+    "StoreI","StoreL","StoreP","StoreD","StoreF" ,
+    "StoreB","StoreC","Store" ,"StoreFP",
+    "LoadI" ,"LoadL", "LoadP" ,"LoadD" ,"LoadF"  ,
+    "LoadB" ,"LoadC" ,"LoadS" ,"Load"   ,
+    "Store4I","Store2I","Store2L","Store2D","Store4F","Store2F","Store16B",
+    "Store8B","Store4B","Store8C","Store4C","Store2C",
+    "Load4I" ,"Load2I" ,"Load2L" ,"Load2D" ,"Load4F" ,"Load2F" ,"Load16B" ,
+    "Load8B" ,"Load4B" ,"Load8C" ,"Load4C" ,"Load2C" ,"Load8S", "Load4S","Load2S",
+    "LoadRange", "LoadKlass", "LoadL_unaligned", "LoadD_unaligned",
+    "LoadPLocked", "LoadLLocked",
+    "StorePConditional", "StoreLConditional",
+    "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP",
+    "StoreCM",
+    "ClearArray"
+  };
+  int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
+  if( strcmp(_opType,"PrefetchRead")==0 || strcmp(_opType,"PrefetchWrite")==0 )
+    return 1;
+  if( _lChild ) {
+    const char *opType = _lChild->_opType;
+    for( int i=0; i<cnt; i++ )
+      if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
+        return 1;
+    if( _lChild->needs_ideal_memory_edge(globals) )
+      return 1;
+  }
+  if( _rChild ) {
+    const char *opType = _rChild->_opType;
+    for( int i=0; i<cnt; i++ )
+      if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
+        return 1;
+    if( _rChild->needs_ideal_memory_edge(globals) )
+      return 1;
+  }
+
+  return 0;
+}
+
+// TRUE if defines a derived oop, and so needs a base oop edge present
+// post-matching.
+int MatchNode::needs_base_oop_edge() const {
+  if( !strcmp(_opType,"AddP") ) return 1;
+  if( strcmp(_opType,"Set") ) return 0;
+  return !strcmp(_rChild->_opType,"AddP");
+}
+
+int InstructForm::needs_base_oop_edge(FormDict &globals) const {
+  if( is_simple_chain_rule(globals) ) {
+    const char *src = _matrule->_rChild->_opType;
+    OperandForm *src_op = globals[src]->is_operand();
+    assert( src_op, "Not operand class of chain rule" );
+    return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
+  }                             // Else check instruction
+
+  return _matrule ? _matrule->needs_base_oop_edge() : 0;
+}
+
+
+//-------------------------cisc spilling methods-------------------------------
+// helper routines and methods for detecting cisc-spilling instructions
+//-------------------------cisc_spill_merge------------------------------------
+int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
+  int cisc_spillable  = Maybe_cisc_spillable;
+
+  // Combine results of left and right checks
+  if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
+    // neither side is spillable, nor prevents cisc spilling
+    cisc_spillable = Maybe_cisc_spillable;
+  }
+  else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
+    // right side is spillable
+    cisc_spillable = right_spillable;
+  }
+  else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
+    // left side is spillable
+    cisc_spillable = left_spillable;
+  }
+  else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
+    // left or right prevents cisc spilling this instruction
+    cisc_spillable = Not_cisc_spillable;
+  }
+  else {
+    // Only allow one to spill
+    cisc_spillable = Not_cisc_spillable;
+  }
+
+  return cisc_spillable;
+}
+
+//-------------------------root_ops_match--------------------------------------
+bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
+  // Base Case: check that the current operands/operations match
+  assert( op1, "Must have op's name");
+  assert( op2, "Must have op's name");
+  const Form *form1 = globals[op1];
+  const Form *form2 = globals[op2];
+
+  return (form1 == form2);
+}
+
+//-------------------------cisc_spill_match------------------------------------
+// Recursively check two MatchRules for legal conversion via cisc-spilling
+int  MatchNode::cisc_spill_match(FormDict &globals, RegisterForm *registers, MatchNode *mRule2, const char * &operand, const char * &reg_type) {
+  int cisc_spillable  = Maybe_cisc_spillable;
+  int left_spillable  = Maybe_cisc_spillable;
+  int right_spillable = Maybe_cisc_spillable;
+
+  // Check that each has same number of operands at this level
+  if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
+    return Not_cisc_spillable;
+
+  // Base Case: check that the current operands/operations match
+  // or are CISC spillable
+  assert( _opType, "Must have _opType");
+  assert( mRule2->_opType, "Must have _opType");
+  const Form *form  = globals[_opType];
+  const Form *form2 = globals[mRule2->_opType];
+  if( form == form2 ) {
+    cisc_spillable = Maybe_cisc_spillable;
+  } else {
+    const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
+    const char *name_left  = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
+    const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
+    // Detect reg vs (loadX memory)
+    if( form->is_cisc_reg(globals)
+        && form2_inst
+        && (is_load_from_memory(mRule2->_opType) != Form::none) // reg vs. (load memory)
+        && (name_left != NULL)       // NOT (load)
+        && (name_right == NULL) ) {  // NOT (load memory foo)
+      const Form *form2_left = name_left ? globals[name_left] : NULL;
+      if( form2_left && form2_left->is_cisc_mem(globals) ) {
+        cisc_spillable = Is_cisc_spillable;
+        operand        = _name;
+        reg_type       = _result;
+        return Is_cisc_spillable;
+      } else {
+        cisc_spillable = Not_cisc_spillable;
+      }
+    }
+    // Detect reg vs memory
+    else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
+      cisc_spillable = Is_cisc_spillable;
+      operand        = _name;
+      reg_type       = _result;
+      return Is_cisc_spillable;
+    } else {
+      cisc_spillable = Not_cisc_spillable;
+    }
+  }
+
+  // If cisc is still possible, check rest of tree
+  if( cisc_spillable == Maybe_cisc_spillable ) {
+    // Check that each has same number of operands at this level
+    if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
+
+    // Check left operands
+    if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
+      left_spillable = Maybe_cisc_spillable;
+    } else {
+      left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
+    }
+
+    // Check right operands
+    if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
+      right_spillable =  Maybe_cisc_spillable;
+    } else {
+      right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
+    }
+
+    // Combine results of left and right checks
+    cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
+  }
+
+  return cisc_spillable;
+}
+
+//---------------------------cisc_spill_match----------------------------------
+// Recursively check two MatchRules for legal conversion via cisc-spilling
+// This method handles the root of Match tree,
+// general recursive checks done in MatchNode
+int  MatchRule::cisc_spill_match(FormDict &globals, RegisterForm *registers,
+                                 MatchRule *mRule2, const char * &operand,
+                                 const char * &reg_type) {
+  int cisc_spillable  = Maybe_cisc_spillable;
+  int left_spillable  = Maybe_cisc_spillable;
+  int right_spillable = Maybe_cisc_spillable;
+
+  // Check that each sets a result
+  if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
+  // Check that each has same number of operands at this level
+  if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
+
+  // Check left operands: at root, must be target of 'Set'
+  if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
+    left_spillable = Not_cisc_spillable;
+  } else {
+    // Do not support cisc-spilling instruction's target location
+    if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
+      left_spillable = Maybe_cisc_spillable;
+    } else {
+      left_spillable = Not_cisc_spillable;
+    }
+  }
+
+  // Check right operands: recursive walk to identify reg->mem operand
+  if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
+    right_spillable =  Maybe_cisc_spillable;
+  } else {
+    right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
+  }
+
+  // Combine results of left and right checks
+  cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
+
+  return cisc_spillable;
+}
+
+//----------------------------- equivalent ------------------------------------
+// Recursively check to see if two match rules are equivalent.
+// This rule handles the root.
+bool MatchRule::equivalent(FormDict &globals, MatchRule *mRule2) {
+  // Check that each sets a result
+  if (sets_result() != mRule2->sets_result()) {
+    return false;
+  }
+
+  // Check that the current operands/operations match
+  assert( _opType, "Must have _opType");
+  assert( mRule2->_opType, "Must have _opType");
+  const Form *form  = globals[_opType];
+  const Form *form2 = globals[mRule2->_opType];
+  if( form != form2 ) {
+    return false;
+  }
+
+  if (_lChild ) {
+    if( !_lChild->equivalent(globals, mRule2->_lChild) )
+      return false;
+  } else if (mRule2->_lChild) {
+    return false; // I have NULL left child, mRule2 has non-NULL left child.
+  }
+
+  if (_rChild ) {
+    if( !_rChild->equivalent(globals, mRule2->_rChild) )
+      return false;
+  } else if (mRule2->_rChild) {
+    return false; // I have NULL right child, mRule2 has non-NULL right child.
+  }
+
+  // We've made it through the gauntlet.
+  return true;
+}
+
+//----------------------------- equivalent ------------------------------------
+// Recursively check to see if two match rules are equivalent.
+// This rule handles the operands.
+bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
+  if( !mNode2 )
+    return false;
+
+  // Check that the current operands/operations match
+  assert( _opType, "Must have _opType");
+  assert( mNode2->_opType, "Must have _opType");
+  const Form *form  = globals[_opType];
+  const Form *form2 = globals[mNode2->_opType];
+  return (form == form2);
+}
+
+//-------------------------- has_commutative_op -------------------------------
+// Recursively check for commutative operations with subtree operands
+// which could be swapped.
+void MatchNode::count_commutative_op(int& count) {
+  static const char *commut_op_list[] = {
+    "AddI","AddL","AddF","AddD",
+    "AndI","AndL",
+    "MaxI","MinI",
+    "MulI","MulL","MulF","MulD",
+    "OrI" ,"OrL" ,
+    "XorI","XorL"
+  };
+  int cnt = sizeof(commut_op_list)/sizeof(char*);
+
+  if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
+    // Don't swap if right operand is an immediate constant.
+    bool is_const = false;
+    if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
+      FormDict &globals = _AD.globalNames();
+      const Form *form = globals[_rChild->_opType];
+      if ( form ) {
+        OperandForm  *oper = form->is_operand();
+        if( oper && oper->interface_type(globals) == Form::constant_interface )
+          is_const = true;
+      }
+    }
+    if( !is_const ) {
+      for( int i=0; i<cnt; i++ ) {
+        if( strcmp(_opType, commut_op_list[i]) == 0 ) {
+          count++;
+          _commutative_id = count; // id should be > 0
+          break;
+        }
+      }
+    }
+  }
+  if( _lChild )
+    _lChild->count_commutative_op(count);
+  if( _rChild )
+    _rChild->count_commutative_op(count);
+}
+
+//-------------------------- swap_commutative_op ------------------------------
+// Recursively swap specified commutative operation with subtree operands.
+void MatchNode::swap_commutative_op(bool atroot, int id) {
+  if( _commutative_id == id ) { // id should be > 0
+    assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
+            "not swappable operation");
+    MatchNode* tmp = _lChild;
+    _lChild = _rChild;
+    _rChild = tmp;
+    // Don't exit here since we need to build internalop.
+  }
+
+  bool is_set = ( strcmp(_opType, "Set") == 0 );
+  if( _lChild )
+    _lChild->swap_commutative_op(is_set, id);
+  if( _rChild )
+    _rChild->swap_commutative_op(is_set, id);
+
+  // If not the root, reduce this subtree to an internal operand
+  if( !atroot && (_lChild || _rChild) ) {
+    build_internalop();
+  }
+}
+
+//-------------------------- swap_commutative_op ------------------------------
+// Recursively swap specified commutative operation with subtree operands.
+void MatchRule::swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
+  assert(match_rules_cnt < 100," too many match rule clones");
+  // Clone
+  MatchRule* clone = new MatchRule(_AD, this);
+  // Swap operands of commutative operation
+  ((MatchNode*)clone)->swap_commutative_op(true, count);
+  char* buf = (char*) malloc(strlen(instr_ident) + 4);
+  sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
+  clone->_result = buf;
+
+  clone->_next = this->_next;
+  this-> _next = clone;
+  if( (--count) > 0 ) {
+    this-> swap_commutative_op(instr_ident, count, match_rules_cnt);
+    clone->swap_commutative_op(instr_ident, count, match_rules_cnt);
+  }
+}
+
+//------------------------------MatchRule--------------------------------------
+MatchRule::MatchRule(ArchDesc &ad)
+  : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
+    _next = NULL;
+}
+
+MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
+  : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
+    _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
+    _next = NULL;
+}
+
+MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
+                     int numleaves)
+  : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
+    _numchilds(0) {
+      _next = NULL;
+      mroot->_lChild = NULL;
+      mroot->_rChild = NULL;
+      delete mroot;
+      _numleaves = numleaves;
+      _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
+}
+MatchRule::~MatchRule() {
+}
+
+// Recursive call collecting info on top-level operands, not transitive.
+// Implementation does not modify state of internal structures.
+void MatchRule::append_components(FormDict &locals, ComponentList &components) const {
+  assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
+
+  MatchNode::append_components(locals, components,
+                               false /* not necessarily a def */);
+}
+
+// Recursive call on all operands' match rules in my match rule.
+// Implementation does not modify state of internal structures  since they
+// can be shared.
+// The MatchNode that is called first treats its
+bool MatchRule::base_operand(uint &position0, FormDict &globals,
+                             const char *&result, const char * &name,
+                             const char * &opType)const{
+  uint position = position0;
+
+  return (MatchNode::base_operand( position, globals, result, name, opType));
+}
+
+
+bool MatchRule::is_base_register(FormDict &globals) const {
+  uint   position = 1;
+  const char  *result   = NULL;
+  const char  *name     = NULL;
+  const char  *opType   = NULL;
+  if (!base_operand(position, globals, result, name, opType)) {
+    position = 0;
+    if( base_operand(position, globals, result, name, opType) &&
+        (strcmp(opType,"RegI")==0 ||
+         strcmp(opType,"RegP")==0 ||
+         strcmp(opType,"RegL")==0 ||
+         strcmp(opType,"RegF")==0 ||
+         strcmp(opType,"RegD")==0 ||
+         strcmp(opType,"Reg" )==0) ) {
+      return 1;
+    }
+  }
+  return 0;
+}
+
+Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
+  uint         position = 1;
+  const char  *result   = NULL;
+  const char  *name     = NULL;
+  const char  *opType   = NULL;
+  if (!base_operand(position, globals, result, name, opType)) {
+    position = 0;
+    if (base_operand(position, globals, result, name, opType)) {
+      return ideal_to_const_type(opType);
+    }
+  }
+  return Form::none;
+}
+
+bool MatchRule::is_chain_rule(FormDict &globals) const {
+
+  // Check for chain rule, and do not generate a match list for it
+  if ((_lChild == NULL) && (_rChild == NULL) ) {
+    const Form *form = globals[_opType];
+    // If this is ideal, then it is a base match, not a chain rule.
+    if ( form && form->is_operand() && (!form->ideal_only())) {
+      return true;
+    }
+  }
+  // Check for "Set" form of chain rule, and do not generate a match list
+  if (_rChild) {
+    const char *rch = _rChild->_opType;
+    const Form *form = globals[rch];
+    if ((!strcmp(_opType,"Set") &&
+         ((form) && form->is_operand()))) {
+      return true;
+    }
+  }
+  return false;
+}
+
+int MatchRule::is_ideal_copy() const {
+  if( _rChild ) {
+    const char  *opType = _rChild->_opType;
+    if( strcmp(opType,"CastII")==0 )
+      return 1;
+    // Do not treat *CastPP this way, because it
+    // may transfer a raw pointer to an oop.
+    // If the register allocator were to coalesce this
+    // into a single LRG, the GC maps would be incorrect.
+    //if( strcmp(opType,"CastPP")==0 )
+    //  return 1;
+    //if( strcmp(opType,"CheckCastPP")==0 )
+    //  return 1;
+    //
+    // Do not treat CastX2P or CastP2X this way, because
+    // raw pointers and int types are treated differently
+    // when saving local & stack info for safepoints in
+    // Output().
+    //if( strcmp(opType,"CastX2P")==0 )
+    //  return 1;
+    //if( strcmp(opType,"CastP2X")==0 )
+    //  return 1;
+  }
+  if( is_chain_rule(_AD.globalNames()) &&
+      _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
+    return 1;
+  return 0;
+}
+
+
+int MatchRule::is_expensive() const {
+  if( _rChild ) {
+    const char  *opType = _rChild->_opType;
+    if( strcmp(opType,"AtanD")==0 ||
+        strcmp(opType,"CosD")==0 ||
+        strcmp(opType,"DivD")==0 ||
+        strcmp(opType,"DivF")==0 ||
+        strcmp(opType,"DivI")==0 ||
+        strcmp(opType,"ExpD")==0 ||
+        strcmp(opType,"LogD")==0 ||
+        strcmp(opType,"Log10D")==0 ||
+        strcmp(opType,"ModD")==0 ||
+        strcmp(opType,"ModF")==0 ||
+        strcmp(opType,"ModI")==0 ||
+        strcmp(opType,"PowD")==0 ||
+        strcmp(opType,"SinD")==0 ||
+        strcmp(opType,"SqrtD")==0 ||
+        strcmp(opType,"TanD")==0 ||
+        strcmp(opType,"ConvD2F")==0 ||
+        strcmp(opType,"ConvD2I")==0 ||
+        strcmp(opType,"ConvD2L")==0 ||
+        strcmp(opType,"ConvF2D")==0 ||
+        strcmp(opType,"ConvF2I")==0 ||
+        strcmp(opType,"ConvF2L")==0 ||
+        strcmp(opType,"ConvI2D")==0 ||
+        strcmp(opType,"ConvI2F")==0 ||
+        strcmp(opType,"ConvI2L")==0 ||
+        strcmp(opType,"ConvL2D")==0 ||
+        strcmp(opType,"ConvL2F")==0 ||
+        strcmp(opType,"ConvL2I")==0 ||
+        strcmp(opType,"RoundDouble")==0 ||
+        strcmp(opType,"RoundFloat")==0 ||
+        strcmp(opType,"ReverseBytesI")==0 ||
+        strcmp(opType,"ReverseBytesL")==0 ||
+        strcmp(opType,"Replicate16B")==0 ||
+        strcmp(opType,"Replicate8B")==0 ||
+        strcmp(opType,"Replicate4B")==0 ||
+        strcmp(opType,"Replicate8C")==0 ||
+        strcmp(opType,"Replicate4C")==0 ||
+        strcmp(opType,"Replicate8S")==0 ||
+        strcmp(opType,"Replicate4S")==0 ||
+        strcmp(opType,"Replicate4I")==0 ||
+        strcmp(opType,"Replicate2I")==0 ||
+        strcmp(opType,"Replicate2L")==0 ||
+        strcmp(opType,"Replicate4F")==0 ||
+        strcmp(opType,"Replicate2F")==0 ||
+        strcmp(opType,"Replicate2D")==0 ||
+        0 /* 0 to line up columns nicely */ )
+      return 1;
+  }
+  return 0;
+}
+
+bool MatchRule::is_ideal_unlock() const {
+  if( !_opType ) return false;
+  return !strcmp(_opType,"Unlock") || !strcmp(_opType,"FastUnlock");
+}
+
+
+bool MatchRule::is_ideal_call_leaf() const {
+  if( !_opType ) return false;
+  return !strcmp(_opType,"CallLeaf")     ||
+         !strcmp(_opType,"CallLeafNoFP");
+}
+
+
+bool MatchRule::is_ideal_if() const {
+  if( !_opType ) return false;
+  return
+    !strcmp(_opType,"If"            ) ||
+    !strcmp(_opType,"CountedLoopEnd");
+}
+
+bool MatchRule::is_ideal_fastlock() const {
+  if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
+    return (strcmp(_rChild->_opType,"FastLock") == 0);
+  }
+  return false;
+}
+
+bool MatchRule::is_ideal_membar() const {
+  if( !_opType ) return false;
+  return
+    !strcmp(_opType,"MemBarAcquire"  ) ||
+    !strcmp(_opType,"MemBarRelease"  ) ||
+    !strcmp(_opType,"MemBarVolatile" ) ||
+    !strcmp(_opType,"MemBarCPUOrder" ) ;
+}
+
+bool MatchRule::is_ideal_loadPC() const {
+  if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
+    return (strcmp(_rChild->_opType,"LoadPC") == 0);
+  }
+  return false;
+}
+
+bool MatchRule::is_ideal_box() const {
+  if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
+    return (strcmp(_rChild->_opType,"Box") == 0);
+  }
+  return false;
+}
+
+bool MatchRule::is_ideal_goto() const {
+  bool   ideal_goto = false;
+
+  if( _opType && (strcmp(_opType,"Goto") == 0) ) {
+    ideal_goto = true;
+  }
+  return ideal_goto;
+}
+
+bool MatchRule::is_ideal_jump() const {
+  if( _opType ) {
+    if( !strcmp(_opType,"Jump") )
+      return true;
+  }
+  return false;
+}
+
+bool MatchRule::is_ideal_bool() const {
+  if( _opType ) {
+    if( !strcmp(_opType,"Bool") )
+      return true;
+  }
+  return false;
+}
+
+
+Form::DataType MatchRule::is_ideal_load() const {
+  Form::DataType ideal_load = Form::none;
+
+  if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
+    const char *opType = _rChild->_opType;
+    ideal_load = is_load_from_memory(opType);
+  }
+
+  return ideal_load;
+}
+
+
+Form::DataType MatchRule::is_ideal_store() const {
+  Form::DataType ideal_store = Form::none;
+
+  if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
+    const char *opType = _rChild->_opType;
+    ideal_store = is_store_to_memory(opType);
+  }
+
+  return ideal_store;
+}
+
+
+void MatchRule::dump() {
+  output(stderr);
+}
+
+void MatchRule::output(FILE *fp) {
+  fprintf(fp,"MatchRule: ( %s",_name);
+  if (_lChild) _lChild->output(fp);
+  if (_rChild) _rChild->output(fp);
+  fprintf(fp," )\n");
+  fprintf(fp,"   nesting depth = %d\n", _depth);
+  if (_result) fprintf(fp,"   Result Type = %s", _result);
+  fprintf(fp,"\n");
+}
+
+//------------------------------Attribute--------------------------------------
+Attribute::Attribute(char *id, char* val, int type)
+  : _ident(id), _val(val), _atype(type) {
+}
+Attribute::~Attribute() {
+}
+
+int Attribute::int_val(ArchDesc &ad) {
+  // Make sure it is an integer constant:
+  int result = 0;
+  if (!_val || !ADLParser::is_int_token(_val, result)) {
+    ad.syntax_err(0, "Attribute %s must have an integer value: %s",
+                  _ident, _val ? _val : "");
+  }
+  return result;
+}
+
+void Attribute::dump() {
+  output(stderr);
+} // Debug printer
+
+// Write to output files
+void Attribute::output(FILE *fp) {
+  fprintf(fp,"Attribute: %s  %s\n", (_ident?_ident:""), (_val?_val:""));
+}
+
+//------------------------------FormatRule----------------------------------
+FormatRule::FormatRule(char *temp)
+  : _temp(temp) {
+}
+FormatRule::~FormatRule() {
+}
+
+void FormatRule::dump() {
+  output(stderr);
+}
+
+// Write to output files
+void FormatRule::output(FILE *fp) {
+  fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
+  fprintf(fp,"\n");
+}