hotspot/src/os/solaris/vm/os_solaris.cpp
changeset 1 489c9b5090e2
child 233 9f4505c94388
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/os/solaris/vm/os_solaris.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,5784 @@
+/*
+ * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+// do not include  precompiled  header file
+# include "incls/_os_solaris.cpp.incl"
+
+// put OS-includes here
+# include <dlfcn.h>
+# include <errno.h>
+# include <link.h>
+# include <poll.h>
+# include <pthread.h>
+# include <pwd.h>
+# include <schedctl.h>
+# include <setjmp.h>
+# include <signal.h>
+# include <stdio.h>
+# include <alloca.h>
+# include <sys/filio.h>
+# include <sys/ipc.h>
+# include <sys/lwp.h>
+# include <sys/machelf.h>     // for elf Sym structure used by dladdr1
+# include <sys/mman.h>
+# include <sys/processor.h>
+# include <sys/procset.h>
+# include <sys/pset.h>
+# include <sys/resource.h>
+# include <sys/shm.h>
+# include <sys/socket.h>
+# include <sys/stat.h>
+# include <sys/systeminfo.h>
+# include <sys/time.h>
+# include <sys/times.h>
+# include <sys/types.h>
+# include <sys/wait.h>
+# include <sys/utsname.h>
+# include <thread.h>
+# include <unistd.h>
+# include <sys/priocntl.h>
+# include <sys/rtpriocntl.h>
+# include <sys/tspriocntl.h>
+# include <sys/iapriocntl.h>
+# include <sys/loadavg.h>
+# include <string.h>
+
+# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
+# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
+
+#define MAX_PATH (2 * K)
+
+// for timer info max values which include all bits
+#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
+
+#ifdef _GNU_SOURCE
+// See bug #6514594
+extern "C" int madvise(caddr_t, size_t, int);
+extern "C"  int memcntl(caddr_t addr, size_t len, int cmd, caddr_t  arg,
+     int attr, int mask);
+#endif //_GNU_SOURCE
+
+/*
+  MPSS Changes Start.
+  The JVM binary needs to be built and run on pre-Solaris 9
+  systems, but the constants needed by MPSS are only in Solaris 9
+  header files.  They are textually replicated here to allow
+  building on earlier systems.  Once building on Solaris 8 is
+  no longer a requirement, these #defines can be replaced by ordinary
+  system .h inclusion.
+
+  In earlier versions of the  JDK and Solaris, we used ISM for large pages.
+  But ISM requires shared memory to achieve this and thus has many caveats.
+  MPSS is a fully transparent and is a cleaner way to get large pages.
+  Although we still require keeping ISM for backward compatiblitiy as well as
+  giving the opportunity to use large pages on older systems it is
+  recommended that MPSS be used for Solaris 9 and above.
+
+*/
+
+#ifndef MC_HAT_ADVISE
+
+struct memcntl_mha {
+  uint_t          mha_cmd;        /* command(s) */
+  uint_t          mha_flags;
+  size_t          mha_pagesize;
+};
+#define MC_HAT_ADVISE   7       /* advise hat map size */
+#define MHA_MAPSIZE_VA  0x1     /* set preferred page size */
+#define MAP_ALIGN       0x200   /* addr specifies alignment */
+
+#endif
+// MPSS Changes End.
+
+
+// Here are some liblgrp types from sys/lgrp_user.h to be able to
+// compile on older systems without this header file.
+
+#ifndef MADV_ACCESS_LWP
+# define  MADV_ACCESS_LWP         7       /* next LWP to access heavily */
+#endif
+#ifndef MADV_ACCESS_MANY
+# define  MADV_ACCESS_MANY        8       /* many processes to access heavily */
+#endif
+
+// Some more macros from sys/mman.h that are not present in Solaris 8.
+
+#ifndef MAX_MEMINFO_CNT
+/*
+ * info_req request type definitions for meminfo
+ * request types starting with MEMINFO_V are used for Virtual addresses
+ * and should not be mixed with MEMINFO_PLGRP which is targeted for Physical
+ * addresses
+ */
+# define MEMINFO_SHIFT           16
+# define MEMINFO_MASK            (0xFF << MEMINFO_SHIFT)
+# define MEMINFO_VPHYSICAL       (0x01 << MEMINFO_SHIFT) /* get physical addr */
+# define MEMINFO_VLGRP           (0x02 << MEMINFO_SHIFT) /* get lgroup */
+# define MEMINFO_VPAGESIZE       (0x03 << MEMINFO_SHIFT) /* size of phys page */
+# define MEMINFO_VREPLCNT        (0x04 << MEMINFO_SHIFT) /* no. of replica */
+# define MEMINFO_VREPL           (0x05 << MEMINFO_SHIFT) /* physical replica */
+# define MEMINFO_VREPL_LGRP      (0x06 << MEMINFO_SHIFT) /* lgrp of replica */
+# define MEMINFO_PLGRP           (0x07 << MEMINFO_SHIFT) /* lgroup for paddr */
+
+/* maximum number of addresses meminfo() can process at a time */
+# define MAX_MEMINFO_CNT 256
+
+/* maximum number of request types */
+# define MAX_MEMINFO_REQ 31
+#endif
+
+// see thr_setprio(3T) for the basis of these numbers
+#define MinimumPriority 0
+#define NormalPriority  64
+#define MaximumPriority 127
+
+// Values for ThreadPriorityPolicy == 1
+int prio_policy1[MaxPriority+1] = { -99999, 0, 16, 32, 48, 64,
+                                        80, 96, 112, 124, 127 };
+
+// System parameters used internally
+static clock_t clock_tics_per_sec = 100;
+
+// For diagnostics to print a message once. see run_periodic_checks
+static bool check_addr0_done = false;
+static sigset_t check_signal_done;
+static bool check_signals = true;
+
+address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
+address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
+
+address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
+
+
+// "default" initializers for missing libc APIs
+extern "C" {
+  static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
+  static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
+
+  static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
+  static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
+}
+
+// "default" initializers for pthread-based synchronization
+extern "C" {
+  static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
+  static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
+}
+
+// Thread Local Storage
+// This is common to all Solaris platforms so it is defined here,
+// in this common file.
+// The declarations are in the os_cpu threadLS*.hpp files.
+//
+// Static member initialization for TLS
+Thread* ThreadLocalStorage::_get_thread_cache[ThreadLocalStorage::_pd_cache_size] = {NULL};
+
+#ifndef PRODUCT
+#define _PCT(n,d)       ((100.0*(double)(n))/(double)(d))
+
+int ThreadLocalStorage::_tcacheHit = 0;
+int ThreadLocalStorage::_tcacheMiss = 0;
+
+void ThreadLocalStorage::print_statistics() {
+  int total = _tcacheMiss+_tcacheHit;
+  tty->print_cr("Thread cache hits %d misses %d total %d percent %f\n",
+                _tcacheHit, _tcacheMiss, total, _PCT(_tcacheHit, total));
+}
+#undef _PCT
+#endif // PRODUCT
+
+Thread* ThreadLocalStorage::get_thread_via_cache_slowly(uintptr_t raw_id,
+                                                        int index) {
+  Thread *thread = get_thread_slow();
+  if (thread != NULL) {
+    address sp = os::current_stack_pointer();
+    guarantee(thread->_stack_base == NULL ||
+              (sp <= thread->_stack_base &&
+                 sp >= thread->_stack_base - thread->_stack_size) ||
+               is_error_reported(),
+              "sp must be inside of selected thread stack");
+
+    thread->_self_raw_id = raw_id;  // mark for quick retrieval
+    _get_thread_cache[ index ] = thread;
+  }
+  return thread;
+}
+
+
+static const double all_zero[ sizeof(Thread) / sizeof(double) + 1 ] = {0};
+#define NO_CACHED_THREAD ((Thread*)all_zero)
+
+void ThreadLocalStorage::pd_set_thread(Thread* thread) {
+
+  // Store the new value before updating the cache to prevent a race
+  // between get_thread_via_cache_slowly() and this store operation.
+  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
+
+  // Update thread cache with new thread if setting on thread create,
+  // or NO_CACHED_THREAD (zeroed) thread if resetting thread on exit.
+  uintptr_t raw = pd_raw_thread_id();
+  int ix = pd_cache_index(raw);
+  _get_thread_cache[ix] = thread == NULL ? NO_CACHED_THREAD : thread;
+}
+
+void ThreadLocalStorage::pd_init() {
+  for (int i = 0; i < _pd_cache_size; i++) {
+    _get_thread_cache[i] = NO_CACHED_THREAD;
+  }
+}
+
+// Invalidate all the caches (happens to be the same as pd_init).
+void ThreadLocalStorage::pd_invalidate_all() { pd_init(); }
+
+#undef NO_CACHED_THREAD
+
+// END Thread Local Storage
+
+static inline size_t adjust_stack_size(address base, size_t size) {
+  if ((ssize_t)size < 0) {
+    // 4759953: Compensate for ridiculous stack size.
+    size = max_intx;
+  }
+  if (size > (size_t)base) {
+    // 4812466: Make sure size doesn't allow the stack to wrap the address space.
+    size = (size_t)base;
+  }
+  return size;
+}
+
+static inline stack_t get_stack_info() {
+  stack_t st;
+  int retval = thr_stksegment(&st);
+  st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
+  assert(retval == 0, "incorrect return value from thr_stksegment");
+  assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
+  assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
+  return st;
+}
+
+address os::current_stack_base() {
+  int r = thr_main() ;
+  guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
+  bool is_primordial_thread = r;
+
+  // Workaround 4352906, avoid calls to thr_stksegment by
+  // thr_main after the first one (it looks like we trash
+  // some data, causing the value for ss_sp to be incorrect).
+  if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
+    stack_t st = get_stack_info();
+    if (is_primordial_thread) {
+      // cache initial value of stack base
+      os::Solaris::_main_stack_base = (address)st.ss_sp;
+    }
+    return (address)st.ss_sp;
+  } else {
+    guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
+    return os::Solaris::_main_stack_base;
+  }
+}
+
+size_t os::current_stack_size() {
+  size_t size;
+
+  int r = thr_main() ;
+  guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
+  if(!r) {
+    size = get_stack_info().ss_size;
+  } else {
+    struct rlimit limits;
+    getrlimit(RLIMIT_STACK, &limits);
+    size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
+  }
+  // base may not be page aligned
+  address base = current_stack_base();
+  address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
+  return (size_t)(base - bottom);
+}
+
+// interruptible infrastructure
+
+// setup_interruptible saves the thread state before going into an
+// interruptible system call.
+// The saved state is used to restore the thread to
+// its former state whether or not an interrupt is received.
+// Used by classloader os::read
+// hpi calls skip this layer and stay in _thread_in_native
+
+void os::Solaris::setup_interruptible(JavaThread* thread) {
+
+  JavaThreadState thread_state = thread->thread_state();
+
+  assert(thread_state != _thread_blocked, "Coming from the wrong thread");
+  assert(thread_state != _thread_in_native, "Native threads skip setup_interruptible");
+  OSThread* osthread = thread->osthread();
+  osthread->set_saved_interrupt_thread_state(thread_state);
+  thread->frame_anchor()->make_walkable(thread);
+  ThreadStateTransition::transition(thread, thread_state, _thread_blocked);
+}
+
+// Version of setup_interruptible() for threads that are already in
+// _thread_blocked. Used by os_sleep().
+void os::Solaris::setup_interruptible_already_blocked(JavaThread* thread) {
+  thread->frame_anchor()->make_walkable(thread);
+}
+
+JavaThread* os::Solaris::setup_interruptible() {
+  JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
+  setup_interruptible(thread);
+  return thread;
+}
+
+void os::Solaris::try_enable_extended_io() {
+  typedef int (*enable_extended_FILE_stdio_t)(int, int);
+
+  if (!UseExtendedFileIO) {
+    return;
+  }
+
+  enable_extended_FILE_stdio_t enabler =
+    (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
+                                         "enable_extended_FILE_stdio");
+  if (enabler) {
+    enabler(-1, -1);
+  }
+}
+
+
+#ifdef ASSERT
+
+JavaThread* os::Solaris::setup_interruptible_native() {
+  JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
+  JavaThreadState thread_state = thread->thread_state();
+  assert(thread_state == _thread_in_native, "Assumed thread_in_native");
+  return thread;
+}
+
+void os::Solaris::cleanup_interruptible_native(JavaThread* thread) {
+  JavaThreadState thread_state = thread->thread_state();
+  assert(thread_state == _thread_in_native, "Assumed thread_in_native");
+}
+#endif
+
+// cleanup_interruptible reverses the effects of setup_interruptible
+// setup_interruptible_already_blocked() does not need any cleanup.
+
+void os::Solaris::cleanup_interruptible(JavaThread* thread) {
+  OSThread* osthread = thread->osthread();
+
+  ThreadStateTransition::transition(thread, _thread_blocked, osthread->saved_interrupt_thread_state());
+}
+
+// I/O interruption related counters called in _INTERRUPTIBLE
+
+void os::Solaris::bump_interrupted_before_count() {
+  RuntimeService::record_interrupted_before_count();
+}
+
+void os::Solaris::bump_interrupted_during_count() {
+  RuntimeService::record_interrupted_during_count();
+}
+
+static int _processors_online = 0;
+
+         jint os::Solaris::_os_thread_limit = 0;
+volatile jint os::Solaris::_os_thread_count = 0;
+
+julong os::available_memory() {
+  return Solaris::available_memory();
+}
+
+julong os::Solaris::available_memory() {
+  return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
+}
+
+julong os::Solaris::_physical_memory = 0;
+
+julong os::physical_memory() {
+   return Solaris::physical_memory();
+}
+
+julong os::allocatable_physical_memory(julong size) {
+#ifdef _LP64
+   return size;
+#else
+   julong result = MIN2(size, (julong)3835*M);
+   if (!is_allocatable(result)) {
+     // Memory allocations will be aligned but the alignment
+     // is not known at this point.  Alignments will
+     // be at most to LargePageSizeInBytes.  Protect
+     // allocations from alignments up to illegal
+     // values. If at this point 2G is illegal.
+     julong reasonable_size = (julong)2*G - 2 * LargePageSizeInBytes;
+     result =  MIN2(size, reasonable_size);
+   }
+   return result;
+#endif
+}
+
+static hrtime_t first_hrtime = 0;
+static const hrtime_t hrtime_hz = 1000*1000*1000;
+const int LOCK_BUSY = 1;
+const int LOCK_FREE = 0;
+const int LOCK_INVALID = -1;
+static volatile hrtime_t max_hrtime = 0;
+static volatile int max_hrtime_lock = LOCK_FREE;     // Update counter with LSB as lock-in-progress
+
+
+void os::Solaris::initialize_system_info() {
+  _processor_count = sysconf(_SC_NPROCESSORS_CONF);
+  _processors_online = sysconf (_SC_NPROCESSORS_ONLN);
+  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
+}
+
+int os::active_processor_count() {
+  int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
+  pid_t pid = getpid();
+  psetid_t pset = PS_NONE;
+  // Are we running in a processor set?
+  if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
+    if (pset != PS_NONE) {
+      uint_t pset_cpus;
+      // Query number of cpus in processor set
+      if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
+        assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
+        _processors_online = pset_cpus;
+        return pset_cpus;
+      }
+    }
+  }
+  // Otherwise return number of online cpus
+  return online_cpus;
+}
+
+static bool find_processors_in_pset(psetid_t        pset,
+                                    processorid_t** id_array,
+                                    uint_t*         id_length) {
+  bool result = false;
+  // Find the number of processors in the processor set.
+  if (pset_info(pset, NULL, id_length, NULL) == 0) {
+    // Make up an array to hold their ids.
+    *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length);
+    // Fill in the array with their processor ids.
+    if (pset_info(pset, NULL, id_length, *id_array) == 0) {
+      result = true;
+    }
+  }
+  return result;
+}
+
+// Callers of find_processors_online() must tolerate imprecise results --
+// the system configuration can change asynchronously because of DR
+// or explicit psradm operations.
+//
+// We also need to take care that the loop (below) terminates as the
+// number of processors online can change between the _SC_NPROCESSORS_ONLN
+// request and the loop that builds the list of processor ids.   Unfortunately
+// there's no reliable way to determine the maximum valid processor id,
+// so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
+// man pages, which claim the processor id set is "sparse, but
+// not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
+// exit the loop.
+//
+// In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
+// not available on S8.0.
+
+static bool find_processors_online(processorid_t** id_array,
+                                   uint*           id_length) {
+  const processorid_t MAX_PROCESSOR_ID = 100000 ;
+  // Find the number of processors online.
+  *id_length = sysconf(_SC_NPROCESSORS_ONLN);
+  // Make up an array to hold their ids.
+  *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length);
+  // Processors need not be numbered consecutively.
+  long found = 0;
+  processorid_t next = 0;
+  while (found < *id_length && next < MAX_PROCESSOR_ID) {
+    processor_info_t info;
+    if (processor_info(next, &info) == 0) {
+      // NB, PI_NOINTR processors are effectively online ...
+      if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
+        (*id_array)[found] = next;
+        found += 1;
+      }
+    }
+    next += 1;
+  }
+  if (found < *id_length) {
+      // The loop above didn't identify the expected number of processors.
+      // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
+      // and re-running the loop, above, but there's no guarantee of progress
+      // if the system configuration is in flux.  Instead, we just return what
+      // we've got.  Note that in the worst case find_processors_online() could
+      // return an empty set.  (As a fall-back in the case of the empty set we
+      // could just return the ID of the current processor).
+      *id_length = found ;
+  }
+
+  return true;
+}
+
+static bool assign_distribution(processorid_t* id_array,
+                                uint           id_length,
+                                uint*          distribution,
+                                uint           distribution_length) {
+  // We assume we can assign processorid_t's to uint's.
+  assert(sizeof(processorid_t) == sizeof(uint),
+         "can't convert processorid_t to uint");
+  // Quick check to see if we won't succeed.
+  if (id_length < distribution_length) {
+    return false;
+  }
+  // Assign processor ids to the distribution.
+  // Try to shuffle processors to distribute work across boards,
+  // assuming 4 processors per board.
+  const uint processors_per_board = ProcessDistributionStride;
+  // Find the maximum processor id.
+  processorid_t max_id = 0;
+  for (uint m = 0; m < id_length; m += 1) {
+    max_id = MAX2(max_id, id_array[m]);
+  }
+  // The next id, to limit loops.
+  const processorid_t limit_id = max_id + 1;
+  // Make up markers for available processors.
+  bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id);
+  for (uint c = 0; c < limit_id; c += 1) {
+    available_id[c] = false;
+  }
+  for (uint a = 0; a < id_length; a += 1) {
+    available_id[id_array[a]] = true;
+  }
+  // Step by "boards", then by "slot", copying to "assigned".
+  // NEEDS_CLEANUP: The assignment of processors should be stateful,
+  //                remembering which processors have been assigned by
+  //                previous calls, etc., so as to distribute several
+  //                independent calls of this method.  What we'd like is
+  //                It would be nice to have an API that let us ask
+  //                how many processes are bound to a processor,
+  //                but we don't have that, either.
+  //                In the short term, "board" is static so that
+  //                subsequent distributions don't all start at board 0.
+  static uint board = 0;
+  uint assigned = 0;
+  // Until we've found enough processors ....
+  while (assigned < distribution_length) {
+    // ... find the next available processor in the board.
+    for (uint slot = 0; slot < processors_per_board; slot += 1) {
+      uint try_id = board * processors_per_board + slot;
+      if ((try_id < limit_id) && (available_id[try_id] == true)) {
+        distribution[assigned] = try_id;
+        available_id[try_id] = false;
+        assigned += 1;
+        break;
+      }
+    }
+    board += 1;
+    if (board * processors_per_board + 0 >= limit_id) {
+      board = 0;
+    }
+  }
+  if (available_id != NULL) {
+    FREE_C_HEAP_ARRAY(bool, available_id);
+  }
+  return true;
+}
+
+bool os::distribute_processes(uint length, uint* distribution) {
+  bool result = false;
+  // Find the processor id's of all the available CPUs.
+  processorid_t* id_array  = NULL;
+  uint           id_length = 0;
+  // There are some races between querying information and using it,
+  // since processor sets can change dynamically.
+  psetid_t pset = PS_NONE;
+  // Are we running in a processor set?
+  if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
+    result = find_processors_in_pset(pset, &id_array, &id_length);
+  } else {
+    result = find_processors_online(&id_array, &id_length);
+  }
+  if (result == true) {
+    if (id_length >= length) {
+      result = assign_distribution(id_array, id_length, distribution, length);
+    } else {
+      result = false;
+    }
+  }
+  if (id_array != NULL) {
+    FREE_C_HEAP_ARRAY(processorid_t, id_array);
+  }
+  return result;
+}
+
+bool os::bind_to_processor(uint processor_id) {
+  // We assume that a processorid_t can be stored in a uint.
+  assert(sizeof(uint) == sizeof(processorid_t),
+         "can't convert uint to processorid_t");
+  int bind_result =
+    processor_bind(P_LWPID,                       // bind LWP.
+                   P_MYID,                        // bind current LWP.
+                   (processorid_t) processor_id,  // id.
+                   NULL);                         // don't return old binding.
+  return (bind_result == 0);
+}
+
+bool os::getenv(const char* name, char* buffer, int len) {
+  char* val = ::getenv( name );
+  if ( val == NULL
+  ||   strlen(val) + 1  >  len ) {
+    if (len > 0)  buffer[0] = 0; // return a null string
+    return false;
+  }
+  strcpy( buffer, val );
+  return true;
+}
+
+
+// Return true if user is running as root.
+
+bool os::have_special_privileges() {
+  static bool init = false;
+  static bool privileges = false;
+  if (!init) {
+    privileges = (getuid() != geteuid()) || (getgid() != getegid());
+    init = true;
+  }
+  return privileges;
+}
+
+
+static char* get_property(char* name, char* buffer, int buffer_size) {
+  if (os::getenv(name, buffer, buffer_size)) {
+    return buffer;
+  }
+  static char empty[] = "";
+  return empty;
+}
+
+
+void os::init_system_properties_values() {
+  char arch[12];
+  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
+
+  // The next steps are taken in the product version:
+  //
+  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
+  // This library should be located at:
+  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
+  //
+  // If "/jre/lib/" appears at the right place in the path, then we
+  // assume libjvm[_g].so is installed in a JDK and we use this path.
+  //
+  // Otherwise exit with message: "Could not create the Java virtual machine."
+  //
+  // The following extra steps are taken in the debugging version:
+  //
+  // If "/jre/lib/" does NOT appear at the right place in the path
+  // instead of exit check for $JAVA_HOME environment variable.
+  //
+  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
+  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
+  // it looks like libjvm[_g].so is installed there
+  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
+  //
+  // Otherwise exit.
+  //
+  // Important note: if the location of libjvm.so changes this
+  // code needs to be changed accordingly.
+
+  // The next few definitions allow the code to be verbatim:
+#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
+#define free(p) FREE_C_HEAP_ARRAY(char, p)
+#define getenv(n) ::getenv(n)
+
+#define EXTENSIONS_DIR  "/lib/ext"
+#define ENDORSED_DIR    "/lib/endorsed"
+#define COMMON_DIR      "/usr/jdk/packages"
+
+  {
+    /* sysclasspath, java_home, dll_dir */
+    {
+        char *home_path;
+        char *dll_path;
+        char *pslash;
+        char buf[MAXPATHLEN];
+        os::jvm_path(buf, sizeof(buf));
+
+        // Found the full path to libjvm.so.
+        // Now cut the path to <java_home>/jre if we can.
+        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
+        pslash = strrchr(buf, '/');
+        if (pslash != NULL)
+            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
+        dll_path = malloc(strlen(buf) + 1);
+        if (dll_path == NULL)
+            return;
+        strcpy(dll_path, buf);
+        Arguments::set_dll_dir(dll_path);
+
+        if (pslash != NULL) {
+            pslash = strrchr(buf, '/');
+            if (pslash != NULL) {
+                *pslash = '\0';       /* get rid of /<arch> */
+                pslash = strrchr(buf, '/');
+                if (pslash != NULL)
+                    *pslash = '\0';   /* get rid of /lib */
+            }
+        }
+
+        home_path = malloc(strlen(buf) + 1);
+        if (home_path == NULL)
+            return;
+        strcpy(home_path, buf);
+        Arguments::set_java_home(home_path);
+
+        if (!set_boot_path('/', ':'))
+            return;
+    }
+
+    /*
+     * Where to look for native libraries
+     */
+    {
+      // Use dlinfo() to determine the correct java.library.path.
+      //
+      // If we're launched by the Java launcher, and the user
+      // does not set java.library.path explicitly on the commandline,
+      // the Java launcher sets LD_LIBRARY_PATH for us and unsets
+      // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
+      // dlinfo returns LD_LIBRARY_PATH + crle settings (including
+      // /usr/lib), which is exactly what we want.
+      //
+      // If the user does set java.library.path, it completely
+      // overwrites this setting, and always has.
+      //
+      // If we're not launched by the Java launcher, we may
+      // get here with any/all of the LD_LIBRARY_PATH[_32|64]
+      // settings.  Again, dlinfo does exactly what we want.
+
+      Dl_serinfo     _info, *info = &_info;
+      Dl_serpath     *path;
+      char*          library_path;
+      char           *common_path;
+      int            i;
+
+      // determine search path count and required buffer size
+      if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
+        vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
+      }
+
+      // allocate new buffer and initialize
+      info = (Dl_serinfo*)malloc(_info.dls_size);
+      if (info == NULL) {
+        vm_exit_out_of_memory(_info.dls_size,
+                              "init_system_properties_values info");
+      }
+      info->dls_size = _info.dls_size;
+      info->dls_cnt = _info.dls_cnt;
+
+      // obtain search path information
+      if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
+        free(info);
+        vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
+      }
+
+      path = &info->dls_serpath[0];
+
+      // Note: Due to a legacy implementation, most of the library path
+      // is set in the launcher.  This was to accomodate linking restrictions
+      // on legacy Solaris implementations (which are no longer supported).
+      // Eventually, all the library path setting will be done here.
+      //
+      // However, to prevent the proliferation of improperly built native
+      // libraries, the new path component /usr/jdk/packages is added here.
+
+      // Determine the actual CPU architecture.
+      char cpu_arch[12];
+      sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
+#ifdef _LP64
+      // If we are a 64-bit vm, perform the following translations:
+      //   sparc   -> sparcv9
+      //   i386    -> amd64
+      if (strcmp(cpu_arch, "sparc") == 0)
+        strcat(cpu_arch, "v9");
+      else if (strcmp(cpu_arch, "i386") == 0)
+        strcpy(cpu_arch, "amd64");
+#endif
+
+      // Construct the invariant part of ld_library_path. Note that the
+      // space for the colon and the trailing null are provided by the
+      // nulls included by the sizeof operator.
+      size_t bufsize = sizeof(COMMON_DIR) + sizeof("/lib/") + strlen(cpu_arch);
+      common_path = malloc(bufsize);
+      if (common_path == NULL) {
+        free(info);
+        vm_exit_out_of_memory(bufsize,
+                              "init_system_properties_values common_path");
+      }
+      sprintf(common_path, COMMON_DIR "/lib/%s", cpu_arch);
+
+      // struct size is more than sufficient for the path components obtained
+      // through the dlinfo() call, so only add additional space for the path
+      // components explicitly added here.
+      bufsize = info->dls_size + strlen(common_path);
+      library_path = malloc(bufsize);
+      if (library_path == NULL) {
+        free(info);
+        free(common_path);
+        vm_exit_out_of_memory(bufsize,
+                              "init_system_properties_values library_path");
+      }
+      library_path[0] = '\0';
+
+      // Construct the desired Java library path from the linker's library
+      // search path.
+      //
+      // For compatibility, it is optimal that we insert the additional path
+      // components specific to the Java VM after those components specified
+      // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
+      // infrastructure.
+      if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it
+        strcpy(library_path, common_path);
+      } else {
+        int inserted = 0;
+        for (i = 0; i < info->dls_cnt; i++, path++) {
+          uint_t flags = path->dls_flags & LA_SER_MASK;
+          if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
+            strcat(library_path, common_path);
+            strcat(library_path, os::path_separator());
+            inserted = 1;
+          }
+          strcat(library_path, path->dls_name);
+          strcat(library_path, os::path_separator());
+        }
+        // eliminate trailing path separator
+        library_path[strlen(library_path)-1] = '\0';
+      }
+
+      // happens before argument parsing - can't use a trace flag
+      // tty->print_raw("init_system_properties_values: native lib path: ");
+      // tty->print_raw_cr(library_path);
+
+      // callee copies into its own buffer
+      Arguments::set_library_path(library_path);
+
+      free(common_path);
+      free(library_path);
+      free(info);
+    }
+
+    /*
+     * Extensions directories.
+     *
+     * Note that the space for the colon and the trailing null are provided
+     * by the nulls included by the sizeof operator (so actually one byte more
+     * than necessary is allocated).
+     */
+    {
+        char *buf = (char *) malloc(strlen(Arguments::get_java_home()) +
+            sizeof(EXTENSIONS_DIR) + sizeof(COMMON_DIR) +
+            sizeof(EXTENSIONS_DIR));
+        sprintf(buf, "%s" EXTENSIONS_DIR ":" COMMON_DIR EXTENSIONS_DIR,
+            Arguments::get_java_home());
+        Arguments::set_ext_dirs(buf);
+    }
+
+    /* Endorsed standards default directory. */
+    {
+        char * buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
+        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
+        Arguments::set_endorsed_dirs(buf);
+    }
+  }
+
+#undef malloc
+#undef free
+#undef getenv
+#undef EXTENSIONS_DIR
+#undef ENDORSED_DIR
+#undef COMMON_DIR
+
+}
+
+void os::breakpoint() {
+  BREAKPOINT;
+}
+
+bool os::obsolete_option(const JavaVMOption *option)
+{
+  if (!strncmp(option->optionString, "-Xt", 3)) {
+    return true;
+  } else if (!strncmp(option->optionString, "-Xtm", 4)) {
+    return true;
+  } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
+    return true;
+  } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
+    return true;
+  }
+  return false;
+}
+
+bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
+  address  stackStart  = (address)thread->stack_base();
+  address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
+  if (sp < stackStart && sp >= stackEnd ) return true;
+  return false;
+}
+
+extern "C" void breakpoint() {
+  // use debugger to set breakpoint here
+}
+
+// Returns an estimate of the current stack pointer. Result must be guaranteed to
+// point into the calling threads stack, and be no lower than the current stack
+// pointer.
+address os::current_stack_pointer() {
+  volatile int dummy;
+  address sp = (address)&dummy + 8;     // %%%% need to confirm if this is right
+  return sp;
+}
+
+static thread_t main_thread;
+
+// Thread start routine for all new Java threads
+extern "C" void* java_start(void* thread_addr) {
+  // Try to randomize the cache line index of hot stack frames.
+  // This helps when threads of the same stack traces evict each other's
+  // cache lines. The threads can be either from the same JVM instance, or
+  // from different JVM instances. The benefit is especially true for
+  // processors with hyperthreading technology.
+  static int counter = 0;
+  int pid = os::current_process_id();
+  alloca(((pid ^ counter++) & 7) * 128);
+
+  int prio;
+  Thread* thread = (Thread*)thread_addr;
+  OSThread* osthr = thread->osthread();
+
+  osthr->set_lwp_id( _lwp_self() );  // Store lwp in case we are bound
+  thread->_schedctl = (void *) schedctl_init () ;
+
+  if (UseNUMA) {
+    int lgrp_id = os::numa_get_group_id();
+    if (lgrp_id != -1) {
+      thread->set_lgrp_id(lgrp_id);
+    }
+  }
+
+  // If the creator called set priority before we started,
+  // we need to call set priority now that we have an lwp.
+  // Get the priority from libthread and set the priority
+  // for the new Solaris lwp.
+  if ( osthr->thread_id() != -1 ) {
+    if ( UseThreadPriorities ) {
+      thr_getprio(osthr->thread_id(), &prio);
+      if (ThreadPriorityVerbose) {
+        tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT ", setting priority: %d\n",
+                      osthr->thread_id(), osthr->lwp_id(), prio );
+      }
+      os::set_native_priority(thread, prio);
+    }
+  } else if (ThreadPriorityVerbose) {
+    warning("Can't set priority in _start routine, thread id hasn't been set\n");
+  }
+
+  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
+
+  // initialize signal mask for this thread
+  os::Solaris::hotspot_sigmask(thread);
+
+  thread->run();
+
+  // One less thread is executing
+  // When the VMThread gets here, the main thread may have already exited
+  // which frees the CodeHeap containing the Atomic::dec code
+  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
+    Atomic::dec(&os::Solaris::_os_thread_count);
+  }
+
+  if (UseDetachedThreads) {
+    thr_exit(NULL);
+    ShouldNotReachHere();
+  }
+  return NULL;
+}
+
+static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
+  // Allocate the OSThread object
+  OSThread* osthread = new OSThread(NULL, NULL);
+  if (osthread == NULL) return NULL;
+
+  // Store info on the Solaris thread into the OSThread
+  osthread->set_thread_id(thread_id);
+  osthread->set_lwp_id(_lwp_self());
+  thread->_schedctl = (void *) schedctl_init () ;
+
+  if (UseNUMA) {
+    int lgrp_id = os::numa_get_group_id();
+    if (lgrp_id != -1) {
+      thread->set_lgrp_id(lgrp_id);
+    }
+  }
+
+  if ( ThreadPriorityVerbose ) {
+    tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
+                  osthread->thread_id(), osthread->lwp_id() );
+  }
+
+  // Initial thread state is INITIALIZED, not SUSPENDED
+  osthread->set_state(INITIALIZED);
+
+  return osthread;
+}
+
+void os::Solaris::hotspot_sigmask(Thread* thread) {
+
+  //Save caller's signal mask
+  sigset_t sigmask;
+  thr_sigsetmask(SIG_SETMASK, NULL, &sigmask);
+  OSThread *osthread = thread->osthread();
+  osthread->set_caller_sigmask(sigmask);
+
+  thr_sigsetmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
+  if (!ReduceSignalUsage) {
+    if (thread->is_VM_thread()) {
+      // Only the VM thread handles BREAK_SIGNAL ...
+      thr_sigsetmask(SIG_UNBLOCK, vm_signals(), NULL);
+    } else {
+      // ... all other threads block BREAK_SIGNAL
+      assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
+      thr_sigsetmask(SIG_BLOCK, vm_signals(), NULL);
+    }
+  }
+}
+
+bool os::create_attached_thread(JavaThread* thread) {
+#ifdef ASSERT
+  thread->verify_not_published();
+#endif
+  OSThread* osthread = create_os_thread(thread, thr_self());
+  if (osthread == NULL) {
+     return false;
+  }
+
+  // Initial thread state is RUNNABLE
+  osthread->set_state(RUNNABLE);
+  thread->set_osthread(osthread);
+
+  // initialize signal mask for this thread
+  // and save the caller's signal mask
+  os::Solaris::hotspot_sigmask(thread);
+
+  return true;
+}
+
+bool os::create_main_thread(JavaThread* thread) {
+#ifdef ASSERT
+  thread->verify_not_published();
+#endif
+  if (_starting_thread == NULL) {
+    _starting_thread = create_os_thread(thread, main_thread);
+     if (_starting_thread == NULL) {
+        return false;
+     }
+  }
+
+  // The primodial thread is runnable from the start
+  _starting_thread->set_state(RUNNABLE);
+
+  thread->set_osthread(_starting_thread);
+
+  // initialize signal mask for this thread
+  // and save the caller's signal mask
+  os::Solaris::hotspot_sigmask(thread);
+
+  return true;
+}
+
+// _T2_libthread is true if we believe we are running with the newer
+// SunSoft lwp/libthread.so (2.8 patch, 2.9 default)
+bool os::Solaris::_T2_libthread = false;
+
+bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
+  // Allocate the OSThread object
+  OSThread* osthread = new OSThread(NULL, NULL);
+  if (osthread == NULL) {
+    return false;
+  }
+
+  if ( ThreadPriorityVerbose ) {
+    char *thrtyp;
+    switch ( thr_type ) {
+      case vm_thread:
+        thrtyp = (char *)"vm";
+        break;
+      case cgc_thread:
+        thrtyp = (char *)"cgc";
+        break;
+      case pgc_thread:
+        thrtyp = (char *)"pgc";
+        break;
+      case java_thread:
+        thrtyp = (char *)"java";
+        break;
+      case compiler_thread:
+        thrtyp = (char *)"compiler";
+        break;
+      case watcher_thread:
+        thrtyp = (char *)"watcher";
+        break;
+      default:
+        thrtyp = (char *)"unknown";
+        break;
+    }
+    tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
+  }
+
+  // Calculate stack size if it's not specified by caller.
+  if (stack_size == 0) {
+    // The default stack size 1M (2M for LP64).
+    stack_size = (BytesPerWord >> 2) * K * K;
+
+    switch (thr_type) {
+    case os::java_thread:
+      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
+      if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
+      break;
+    case os::compiler_thread:
+      if (CompilerThreadStackSize > 0) {
+        stack_size = (size_t)(CompilerThreadStackSize * K);
+        break;
+      } // else fall through:
+        // use VMThreadStackSize if CompilerThreadStackSize is not defined
+    case os::vm_thread:
+    case os::pgc_thread:
+    case os::cgc_thread:
+    case os::watcher_thread:
+      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
+      break;
+    }
+  }
+  stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
+
+  // Initial state is ALLOCATED but not INITIALIZED
+  osthread->set_state(ALLOCATED);
+
+  if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
+    // We got lots of threads. Check if we still have some address space left.
+    // Need to be at least 5Mb of unreserved address space. We do check by
+    // trying to reserve some.
+    const size_t VirtualMemoryBangSize = 20*K*K;
+    char* mem = os::reserve_memory(VirtualMemoryBangSize);
+    if (mem == NULL) {
+      delete osthread;
+      return false;
+    } else {
+      // Release the memory again
+      os::release_memory(mem, VirtualMemoryBangSize);
+    }
+  }
+
+  // Setup osthread because the child thread may need it.
+  thread->set_osthread(osthread);
+
+  // Create the Solaris thread
+  // explicit THR_BOUND for T2_libthread case in case
+  // that assumption is not accurate, but our alternate signal stack
+  // handling is based on it which must have bound threads
+  thread_t tid = 0;
+  long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED
+                   | ((UseBoundThreads || os::Solaris::T2_libthread() ||
+                       (thr_type == vm_thread) ||
+                       (thr_type == cgc_thread) ||
+                       (thr_type == pgc_thread) ||
+                       (thr_type == compiler_thread && BackgroundCompilation)) ?
+                      THR_BOUND : 0);
+  int      status;
+
+  // 4376845 -- libthread/kernel don't provide enough LWPs to utilize all CPUs.
+  //
+  // On multiprocessors systems, libthread sometimes under-provisions our
+  // process with LWPs.  On a 30-way systems, for instance, we could have
+  // 50 user-level threads in ready state and only 2 or 3 LWPs assigned
+  // to our process.  This can result in under utilization of PEs.
+  // I suspect the problem is related to libthread's LWP
+  // pool management and to the kernel's SIGBLOCKING "last LWP parked"
+  // upcall policy.
+  //
+  // The following code is palliative -- it attempts to ensure that our
+  // process has sufficient LWPs to take advantage of multiple PEs.
+  // Proper long-term cures include using user-level threads bound to LWPs
+  // (THR_BOUND) or using LWP-based synchronization.  Note that there is a
+  // slight timing window with respect to sampling _os_thread_count, but
+  // the race is benign.  Also, we should periodically recompute
+  // _processors_online as the min of SC_NPROCESSORS_ONLN and the
+  // the number of PEs in our partition.  You might be tempted to use
+  // THR_NEW_LWP here, but I'd recommend against it as that could
+  // result in undesirable growth of the libthread's LWP pool.
+  // The fix below isn't sufficient; for instance, it doesn't take into count
+  // LWPs parked on IO.  It does, however, help certain CPU-bound benchmarks.
+  //
+  // Some pathologies this scheme doesn't handle:
+  // *  Threads can block, releasing the LWPs.  The LWPs can age out.
+  //    When a large number of threads become ready again there aren't
+  //    enough LWPs available to service them.  This can occur when the
+  //    number of ready threads oscillates.
+  // *  LWPs/Threads park on IO, thus taking the LWP out of circulation.
+  //
+  // Finally, we should call thr_setconcurrency() periodically to refresh
+  // the LWP pool and thwart the LWP age-out mechanism.
+  // The "+3" term provides a little slop -- we want to slightly overprovision.
+
+  if (AdjustConcurrency && os::Solaris::_os_thread_count < (_processors_online+3)) {
+    if (!(flags & THR_BOUND)) {
+      thr_setconcurrency (os::Solaris::_os_thread_count);       // avoid starvation
+    }
+  }
+  // Although this doesn't hurt, we should warn of undefined behavior
+  // when using unbound T1 threads with schedctl().  This should never
+  // happen, as the compiler and VM threads are always created bound
+  DEBUG_ONLY(
+      if ((VMThreadHintNoPreempt || CompilerThreadHintNoPreempt) &&
+          (!os::Solaris::T2_libthread() && (!(flags & THR_BOUND))) &&
+          ((thr_type == vm_thread) || (thr_type == cgc_thread) ||
+           (thr_type == pgc_thread) || (thr_type == compiler_thread && BackgroundCompilation))) {
+         warning("schedctl behavior undefined when Compiler/VM/GC Threads are Unbound");
+      }
+  );
+
+
+  // Mark that we don't have an lwp or thread id yet.
+  // In case we attempt to set the priority before the thread starts.
+  osthread->set_lwp_id(-1);
+  osthread->set_thread_id(-1);
+
+  status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
+  if (status != 0) {
+    if (PrintMiscellaneous && (Verbose || WizardMode)) {
+      perror("os::create_thread");
+    }
+    thread->set_osthread(NULL);
+    // Need to clean up stuff we've allocated so far
+    delete osthread;
+    return false;
+  }
+
+  Atomic::inc(&os::Solaris::_os_thread_count);
+
+  // Store info on the Solaris thread into the OSThread
+  osthread->set_thread_id(tid);
+
+  // Remember that we created this thread so we can set priority on it
+  osthread->set_vm_created();
+
+  // Set the default thread priority otherwise use NormalPriority
+
+  if ( UseThreadPriorities ) {
+     thr_setprio(tid, (DefaultThreadPriority == -1) ?
+                        java_to_os_priority[NormPriority] :
+                        DefaultThreadPriority);
+  }
+
+  // Initial thread state is INITIALIZED, not SUSPENDED
+  osthread->set_state(INITIALIZED);
+
+  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
+  return true;
+}
+
+/* defined for >= Solaris 10. This allows builds on earlier versions
+ *  of Solaris to take advantage of the newly reserved Solaris JVM signals
+ *  With SIGJVM1, SIGJVM2, INTERRUPT_SIGNAL is SIGJVM1, ASYNC_SIGNAL is SIGJVM2
+ *  and -XX:+UseAltSigs does nothing since these should have no conflict
+ */
+#if !defined(SIGJVM1)
+#define SIGJVM1 39
+#define SIGJVM2 40
+#endif
+
+debug_only(static bool signal_sets_initialized = false);
+static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
+int os::Solaris::_SIGinterrupt = INTERRUPT_SIGNAL;
+int os::Solaris::_SIGasync = ASYNC_SIGNAL;
+
+bool os::Solaris::is_sig_ignored(int sig) {
+      struct sigaction oact;
+      sigaction(sig, (struct sigaction*)NULL, &oact);
+      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
+                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
+      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
+           return true;
+      else
+           return false;
+}
+
+// Note: SIGRTMIN is a macro that calls sysconf() so it will
+// dynamically detect SIGRTMIN value for the system at runtime, not buildtime
+static bool isJVM1available() {
+  return SIGJVM1 < SIGRTMIN;
+}
+
+void os::Solaris::signal_sets_init() {
+  // Should also have an assertion stating we are still single-threaded.
+  assert(!signal_sets_initialized, "Already initialized");
+  // Fill in signals that are necessarily unblocked for all threads in
+  // the VM. Currently, we unblock the following signals:
+  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
+  //                         by -Xrs (=ReduceSignalUsage));
+  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
+  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
+  // the dispositions or masks wrt these signals.
+  // Programs embedding the VM that want to use the above signals for their
+  // own purposes must, at this time, use the "-Xrs" option to prevent
+  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
+  // (See bug 4345157, and other related bugs).
+  // In reality, though, unblocking these signals is really a nop, since
+  // these signals are not blocked by default.
+  sigemptyset(&unblocked_sigs);
+  sigemptyset(&allowdebug_blocked_sigs);
+  sigaddset(&unblocked_sigs, SIGILL);
+  sigaddset(&unblocked_sigs, SIGSEGV);
+  sigaddset(&unblocked_sigs, SIGBUS);
+  sigaddset(&unblocked_sigs, SIGFPE);
+
+  if (isJVM1available) {
+    os::Solaris::set_SIGinterrupt(SIGJVM1);
+    os::Solaris::set_SIGasync(SIGJVM2);
+  } else if (UseAltSigs) {
+    os::Solaris::set_SIGinterrupt(ALT_INTERRUPT_SIGNAL);
+    os::Solaris::set_SIGasync(ALT_ASYNC_SIGNAL);
+  } else {
+    os::Solaris::set_SIGinterrupt(INTERRUPT_SIGNAL);
+    os::Solaris::set_SIGasync(ASYNC_SIGNAL);
+  }
+
+  sigaddset(&unblocked_sigs, os::Solaris::SIGinterrupt());
+  sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
+
+  if (!ReduceSignalUsage) {
+   if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
+      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
+      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
+   }
+   if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
+      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
+      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
+   }
+   if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
+      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
+      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
+   }
+  }
+  // Fill in signals that are blocked by all but the VM thread.
+  sigemptyset(&vm_sigs);
+  if (!ReduceSignalUsage)
+    sigaddset(&vm_sigs, BREAK_SIGNAL);
+  debug_only(signal_sets_initialized = true);
+
+  // For diagnostics only used in run_periodic_checks
+  sigemptyset(&check_signal_done);
+}
+
+// These are signals that are unblocked while a thread is running Java.
+// (For some reason, they get blocked by default.)
+sigset_t* os::Solaris::unblocked_signals() {
+  assert(signal_sets_initialized, "Not initialized");
+  return &unblocked_sigs;
+}
+
+// These are the signals that are blocked while a (non-VM) thread is
+// running Java. Only the VM thread handles these signals.
+sigset_t* os::Solaris::vm_signals() {
+  assert(signal_sets_initialized, "Not initialized");
+  return &vm_sigs;
+}
+
+// These are signals that are blocked during cond_wait to allow debugger in
+sigset_t* os::Solaris::allowdebug_blocked_signals() {
+  assert(signal_sets_initialized, "Not initialized");
+  return &allowdebug_blocked_sigs;
+}
+
+// First crack at OS-specific initialization, from inside the new thread.
+void os::initialize_thread() {
+  int r = thr_main() ;
+  guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
+  if (r) {
+    JavaThread* jt = (JavaThread *)Thread::current();
+    assert(jt != NULL,"Sanity check");
+    size_t stack_size;
+    address base = jt->stack_base();
+    if (Arguments::created_by_java_launcher()) {
+      // Use 2MB to allow for Solaris 7 64 bit mode.
+      stack_size = JavaThread::stack_size_at_create() == 0
+        ? 2048*K : JavaThread::stack_size_at_create();
+
+      // There are rare cases when we may have already used more than
+      // the basic stack size allotment before this method is invoked.
+      // Attempt to allow for a normally sized java_stack.
+      size_t current_stack_offset = (size_t)(base - (address)&stack_size);
+      stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
+    } else {
+      // 6269555: If we were not created by a Java launcher, i.e. if we are
+      // running embedded in a native application, treat the primordial thread
+      // as much like a native attached thread as possible.  This means using
+      // the current stack size from thr_stksegment(), unless it is too large
+      // to reliably setup guard pages.  A reasonable max size is 8MB.
+      size_t current_size = current_stack_size();
+      // This should never happen, but just in case....
+      if (current_size == 0) current_size = 2 * K * K;
+      stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
+    }
+    address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
+    stack_size = (size_t)(base - bottom);
+
+    assert(stack_size > 0, "Stack size calculation problem");
+
+    if (stack_size > jt->stack_size()) {
+      NOT_PRODUCT(
+        struct rlimit limits;
+        getrlimit(RLIMIT_STACK, &limits);
+        size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
+        assert(size >= jt->stack_size(), "Stack size problem in main thread");
+      )
+      tty->print_cr(
+        "Stack size of %d Kb exceeds current limit of %d Kb.\n"
+        "(Stack sizes are rounded up to a multiple of the system page size.)\n"
+        "See limit(1) to increase the stack size limit.",
+        stack_size / K, jt->stack_size() / K);
+      vm_exit(1);
+    }
+    assert(jt->stack_size() >= stack_size,
+          "Attempt to map more stack than was allocated");
+    jt->set_stack_size(stack_size);
+  }
+
+   // 5/22/01: Right now alternate signal stacks do not handle
+   // throwing stack overflow exceptions, see bug 4463178
+   // Until a fix is found for this, T2 will NOT imply alternate signal
+   // stacks.
+   // If using T2 libthread threads, install an alternate signal stack.
+   // Because alternate stacks associate with LWPs on Solaris,
+   // see sigaltstack(2), if using UNBOUND threads, or if UseBoundThreads
+   // we prefer to explicitly stack bang.
+   // If not using T2 libthread, but using UseBoundThreads any threads
+   // (primordial thread, jni_attachCurrentThread) we do not create,
+   // probably are not bound, therefore they can not have an alternate
+   // signal stack. Since our stack banging code is generated and
+   // is shared across threads, all threads must be bound to allow
+   // using alternate signal stacks.  The alternative is to interpose
+   // on _lwp_create to associate an alt sig stack with each LWP,
+   // and this could be a problem when the JVM is embedded.
+   // We would prefer to use alternate signal stacks with T2
+   // Since there is currently no accurate way to detect T2
+   // we do not. Assuming T2 when running T1 causes sig 11s or assertions
+   // on installing alternate signal stacks
+
+
+   // 05/09/03: removed alternate signal stack support for Solaris
+   // The alternate signal stack mechanism is no longer needed to
+   // handle stack overflow. This is now handled by allocating
+   // guard pages (red zone) and stackbanging.
+   // Initially the alternate signal stack mechanism was removed because
+   // it did not work with T1 llibthread. Alternate
+   // signal stacks MUST have all threads bound to lwps. Applications
+   // can create their own threads and attach them without their being
+   // bound under T1. This is frequently the case for the primordial thread.
+   // If we were ever to reenable this mechanism we would need to
+   // use the dynamic check for T2 libthread.
+
+  os::Solaris::init_thread_fpu_state();
+}
+
+
+
+// Free Solaris resources related to the OSThread
+void os::free_thread(OSThread* osthread) {
+  assert(osthread != NULL, "os::free_thread but osthread not set");
+
+
+  // We are told to free resources of the argument thread,
+  // but we can only really operate on the current thread.
+  // The main thread must take the VMThread down synchronously
+  // before the main thread exits and frees up CodeHeap
+  guarantee((Thread::current()->osthread() == osthread
+     || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
+  if (Thread::current()->osthread() == osthread) {
+    // Restore caller's signal mask
+    sigset_t sigmask = osthread->caller_sigmask();
+    thr_sigsetmask(SIG_SETMASK, &sigmask, NULL);
+  }
+  delete osthread;
+}
+
+void os::pd_start_thread(Thread* thread) {
+  int status = thr_continue(thread->osthread()->thread_id());
+  assert_status(status == 0, status, "thr_continue failed");
+}
+
+
+intx os::current_thread_id() {
+  return (intx)thr_self();
+}
+
+static pid_t _initial_pid = 0;
+
+int os::current_process_id() {
+  return (int)(_initial_pid ? _initial_pid : getpid());
+}
+
+int os::allocate_thread_local_storage() {
+  // %%%       in Win32 this allocates a memory segment pointed to by a
+  //           register.  Dan Stein can implement a similar feature in
+  //           Solaris.  Alternatively, the VM can do the same thing
+  //           explicitly: malloc some storage and keep the pointer in a
+  //           register (which is part of the thread's context) (or keep it
+  //           in TLS).
+  // %%%       In current versions of Solaris, thr_self and TSD can
+  //           be accessed via short sequences of displaced indirections.
+  //           The value of thr_self is available as %g7(36).
+  //           The value of thr_getspecific(k) is stored in %g7(12)(4)(k*4-4),
+  //           assuming that the current thread already has a value bound to k.
+  //           It may be worth experimenting with such access patterns,
+  //           and later having the parameters formally exported from a Solaris
+  //           interface.  I think, however, that it will be faster to
+  //           maintain the invariant that %g2 always contains the
+  //           JavaThread in Java code, and have stubs simply
+  //           treat %g2 as a caller-save register, preserving it in a %lN.
+  thread_key_t tk;
+  if (thr_keycreate( &tk, NULL ) )
+    fatal1("os::allocate_thread_local_storage: thr_keycreate failed (%s)", strerror(errno));
+  return int(tk);
+}
+
+void os::free_thread_local_storage(int index) {
+  // %%% don't think we need anything here
+  // if ( pthread_key_delete((pthread_key_t) tk) )
+  //   fatal("os::free_thread_local_storage: pthread_key_delete failed");
+}
+
+#define SMALLINT 32   // libthread allocate for tsd_common is a version specific
+                      // small number - point is NO swap space available
+void os::thread_local_storage_at_put(int index, void* value) {
+  // %%% this is used only in threadLocalStorage.cpp
+  if (thr_setspecific((thread_key_t)index, value)) {
+    if (errno == ENOMEM) {
+       vm_exit_out_of_memory(SMALLINT, "thr_setspecific: out of swap space");
+    } else {
+      fatal1("os::thread_local_storage_at_put: thr_setspecific failed (%s)", strerror(errno));
+    }
+  } else {
+      ThreadLocalStorage::set_thread_in_slot ((Thread *) value) ;
+  }
+}
+
+// This function could be called before TLS is initialized, for example, when
+// VM receives an async signal or when VM causes a fatal error during
+// initialization. Return NULL if thr_getspecific() fails.
+void* os::thread_local_storage_at(int index) {
+  // %%% this is used only in threadLocalStorage.cpp
+  void* r = NULL;
+  return thr_getspecific((thread_key_t)index, &r) != 0 ? NULL : r;
+}
+
+
+const int NANOSECS_PER_MILLISECS = 1000000;
+// gethrtime can move backwards if read from one cpu and then a different cpu
+// getTimeNanos is guaranteed to not move backward on Solaris
+// local spinloop created as faster for a CAS on an int than
+// a CAS on a 64bit jlong. Also Atomic::cmpxchg for jlong is not
+// supported on sparc v8 or pre supports_cx8 intel boxes.
+// oldgetTimeNanos for systems which do not support CAS on 64bit jlong
+// i.e. sparc v8 and pre supports_cx8 (i486) intel boxes
+inline hrtime_t oldgetTimeNanos() {
+  int gotlock = LOCK_INVALID;
+  hrtime_t newtime = gethrtime();
+
+  for (;;) {
+// grab lock for max_hrtime
+    int curlock = max_hrtime_lock;
+    if (curlock & LOCK_BUSY)  continue;
+    if (gotlock = Atomic::cmpxchg(LOCK_BUSY, &max_hrtime_lock, LOCK_FREE) != LOCK_FREE) continue;
+    if (newtime > max_hrtime) {
+      max_hrtime = newtime;
+    } else {
+      newtime = max_hrtime;
+    }
+    // release lock
+    max_hrtime_lock = LOCK_FREE;
+    return newtime;
+  }
+}
+// gethrtime can move backwards if read from one cpu and then a different cpu
+// getTimeNanos is guaranteed to not move backward on Solaris
+inline hrtime_t getTimeNanos() {
+  if (VM_Version::supports_cx8()) {
+    bool retry = false;
+    hrtime_t newtime = gethrtime();
+    hrtime_t oldmaxtime = max_hrtime;
+    hrtime_t retmaxtime = oldmaxtime;
+    while ((newtime > retmaxtime) && (retry == false || retmaxtime != oldmaxtime)) {
+      oldmaxtime = retmaxtime;
+      retmaxtime = Atomic::cmpxchg(newtime, (volatile jlong *)&max_hrtime, oldmaxtime);
+      retry = true;
+    }
+    return (newtime > retmaxtime) ? newtime : retmaxtime;
+  } else {
+    return oldgetTimeNanos();
+  }
+}
+
+// Time since start-up in seconds to a fine granularity.
+// Used by VMSelfDestructTimer and the MemProfiler.
+double os::elapsedTime() {
+  return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
+}
+
+jlong os::elapsed_counter() {
+  return (jlong)(getTimeNanos() - first_hrtime);
+}
+
+jlong os::elapsed_frequency() {
+   return hrtime_hz;
+}
+
+// Return the real, user, and system times in seconds from an
+// arbitrary fixed point in the past.
+bool os::getTimesSecs(double* process_real_time,
+                  double* process_user_time,
+                  double* process_system_time) {
+  struct tms ticks;
+  clock_t real_ticks = times(&ticks);
+
+  if (real_ticks == (clock_t) (-1)) {
+    return false;
+  } else {
+    double ticks_per_second = (double) clock_tics_per_sec;
+    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
+    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
+    // For consistency return the real time from getTimeNanos()
+    // converted to seconds.
+    *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
+
+    return true;
+  }
+}
+
+// Used internally for comparisons only
+// getTimeMillis guaranteed to not move backwards on Solaris
+jlong getTimeMillis() {
+  jlong nanotime = getTimeNanos();
+  return (jlong)(nanotime / NANOSECS_PER_MILLISECS);
+}
+
+jlong os::timeofday() {
+  timeval t;
+  if (gettimeofday( &t, NULL) == -1)
+    fatal1("timeofday: gettimeofday (%s)", strerror(errno));
+  return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
+}
+
+// Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
+// _use_global_time is only set if CacheTimeMillis is true
+jlong os::javaTimeMillis() {
+  return (_use_global_time ? read_global_time() : timeofday());
+}
+
+jlong os::javaTimeNanos() {
+  return (jlong)getTimeNanos();
+}
+
+void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
+  info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
+  info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
+  info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
+  info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
+}
+
+char * os::local_time_string(char *buf, size_t buflen) {
+  struct tm t;
+  time_t long_time;
+  time(&long_time);
+  localtime_r(&long_time, &t);
+  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
+               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
+               t.tm_hour, t.tm_min, t.tm_sec);
+  return buf;
+}
+
+// Note: os::shutdown() might be called very early during initialization, or
+// called from signal handler. Before adding something to os::shutdown(), make
+// sure it is async-safe and can handle partially initialized VM.
+void os::shutdown() {
+
+  // allow PerfMemory to attempt cleanup of any persistent resources
+  perfMemory_exit();
+
+  // needs to remove object in file system
+  AttachListener::abort();
+
+  // flush buffered output, finish log files
+  ostream_abort();
+
+  // Check for abort hook
+  abort_hook_t abort_hook = Arguments::abort_hook();
+  if (abort_hook != NULL) {
+    abort_hook();
+  }
+}
+
+// Note: os::abort() might be called very early during initialization, or
+// called from signal handler. Before adding something to os::abort(), make
+// sure it is async-safe and can handle partially initialized VM.
+void os::abort(bool dump_core) {
+  os::shutdown();
+  if (dump_core) {
+#ifndef PRODUCT
+    fdStream out(defaultStream::output_fd());
+    out.print_raw("Current thread is ");
+    char buf[16];
+    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
+    out.print_raw_cr(buf);
+    out.print_raw_cr("Dumping core ...");
+#endif
+    ::abort(); // dump core (for debugging)
+  }
+
+  ::exit(1);
+}
+
+// Die immediately, no exit hook, no abort hook, no cleanup.
+void os::die() {
+  _exit(-1);
+}
+
+// unused
+void os::set_error_file(const char *logfile) {}
+
+// DLL functions
+
+const char* os::dll_file_extension() { return ".so"; }
+
+const char* os::get_temp_directory() { return "/tmp/"; }
+
+const char* os::get_current_directory(char *buf, int buflen) {
+  return getcwd(buf, buflen);
+}
+
+// check if addr is inside libjvm[_g].so
+bool os::address_is_in_vm(address addr) {
+  static address libjvm_base_addr;
+  Dl_info dlinfo;
+
+  if (libjvm_base_addr == NULL) {
+    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
+    libjvm_base_addr = (address)dlinfo.dli_fbase;
+    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
+  }
+
+  if (dladdr((void *)addr, &dlinfo)) {
+    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
+  }
+
+  return false;
+}
+
+typedef int (*dladdr1_func_type) (void *, Dl_info *, void **, int);
+static dladdr1_func_type dladdr1_func = NULL;
+
+bool os::dll_address_to_function_name(address addr, char *buf,
+                                      int buflen, int * offset) {
+  Dl_info dlinfo;
+
+  // dladdr1_func was initialized in os::init()
+  if (dladdr1_func){
+      // yes, we have dladdr1
+
+      // Support for dladdr1 is checked at runtime; it may be
+      // available even if the vm is built on a machine that does
+      // not have dladdr1 support.  Make sure there is a value for
+      // RTLD_DL_SYMENT.
+      #ifndef RTLD_DL_SYMENT
+      #define RTLD_DL_SYMENT 1
+      #endif
+      Sym * info;
+      if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
+                       RTLD_DL_SYMENT)) {
+          if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
+          if (offset) *offset = addr - (address)dlinfo.dli_saddr;
+
+          // check if the returned symbol really covers addr
+          return ((char *)dlinfo.dli_saddr + info->st_size > (char *)addr);
+      } else {
+          if (buf) buf[0] = '\0';
+          if (offset) *offset  = -1;
+          return false;
+      }
+  } else {
+      // no, only dladdr is available
+      if(dladdr((void *)addr, &dlinfo)) {
+          if (buf) jio_snprintf(buf, buflen, dlinfo.dli_sname);
+          if (offset) *offset = addr - (address)dlinfo.dli_saddr;
+          return true;
+      } else {
+          if (buf) buf[0] = '\0';
+          if (offset) *offset  = -1;
+          return false;
+      }
+  }
+}
+
+bool os::dll_address_to_library_name(address addr, char* buf,
+                                     int buflen, int* offset) {
+  Dl_info dlinfo;
+
+  if (dladdr((void*)addr, &dlinfo)){
+     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
+     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
+     return true;
+  } else {
+     if (buf) buf[0] = '\0';
+     if (offset) *offset = -1;
+     return false;
+  }
+}
+
+// Prints the names and full paths of all opened dynamic libraries
+// for current process
+void os::print_dll_info(outputStream * st) {
+    Dl_info dli;
+    void *handle;
+    Link_map *map;
+    Link_map *p;
+
+    st->print_cr("Dynamic libraries:"); st->flush();
+
+    if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
+        st->print_cr("Error: Cannot print dynamic libraries.");
+        return;
+    }
+    handle = dlopen(dli.dli_fname, RTLD_LAZY);
+    if (handle == NULL) {
+        st->print_cr("Error: Cannot print dynamic libraries.");
+        return;
+    }
+    dlinfo(handle, RTLD_DI_LINKMAP, &map);
+    if (map == NULL) {
+        st->print_cr("Error: Cannot print dynamic libraries.");
+        return;
+    }
+
+    while (map->l_prev != NULL)
+        map = map->l_prev;
+
+    while (map != NULL) {
+        st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
+        map = map->l_next;
+    }
+
+    dlclose(handle);
+}
+
+  // Loads .dll/.so and
+  // in case of error it checks if .dll/.so was built for the
+  // same architecture as Hotspot is running on
+
+void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
+{
+  void * result= ::dlopen(filename, RTLD_LAZY);
+  if (result != NULL) {
+    // Successful loading
+    return result;
+  }
+
+  Elf32_Ehdr elf_head;
+
+  // Read system error message into ebuf
+  // It may or may not be overwritten below
+  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
+  ebuf[ebuflen-1]='\0';
+  int diag_msg_max_length=ebuflen-strlen(ebuf);
+  char* diag_msg_buf=ebuf+strlen(ebuf);
+
+  if (diag_msg_max_length==0) {
+    // No more space in ebuf for additional diagnostics message
+    return NULL;
+  }
+
+
+  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
+
+  if (file_descriptor < 0) {
+    // Can't open library, report dlerror() message
+    return NULL;
+  }
+
+  bool failed_to_read_elf_head=
+    (sizeof(elf_head)!=
+        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
+
+  ::close(file_descriptor);
+  if (failed_to_read_elf_head) {
+    // file i/o error - report dlerror() msg
+    return NULL;
+  }
+
+  typedef struct {
+    Elf32_Half  code;         // Actual value as defined in elf.h
+    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
+    char        elf_class;    // 32 or 64 bit
+    char        endianess;    // MSB or LSB
+    char*       name;         // String representation
+  } arch_t;
+
+  static const arch_t arch_array[]={
+    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
+    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
+    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
+    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
+    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
+    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
+    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
+    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
+    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"}
+  };
+
+  #if  (defined IA32)
+    static  Elf32_Half running_arch_code=EM_386;
+  #elif   (defined AMD64)
+    static  Elf32_Half running_arch_code=EM_X86_64;
+  #elif  (defined IA64)
+    static  Elf32_Half running_arch_code=EM_IA_64;
+  #elif  (defined __sparc) && (defined _LP64)
+    static  Elf32_Half running_arch_code=EM_SPARCV9;
+  #elif  (defined __sparc) && (!defined _LP64)
+    static  Elf32_Half running_arch_code=EM_SPARC;
+  #elif  (defined __powerpc64__)
+    static  Elf32_Half running_arch_code=EM_PPC64;
+  #elif  (defined __powerpc__)
+    static  Elf32_Half running_arch_code=EM_PPC;
+  #else
+    #error Method os::dll_load requires that one of following is defined:\
+         IA32, AMD64, IA64, __sparc, __powerpc__
+  #endif
+
+  // Identify compatability class for VM's architecture and library's architecture
+  // Obtain string descriptions for architectures
+
+  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
+  int running_arch_index=-1;
+
+  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
+    if (running_arch_code == arch_array[i].code) {
+      running_arch_index    = i;
+    }
+    if (lib_arch.code == arch_array[i].code) {
+      lib_arch.compat_class = arch_array[i].compat_class;
+      lib_arch.name         = arch_array[i].name;
+    }
+  }
+
+  assert(running_arch_index != -1,
+    "Didn't find running architecture code (running_arch_code) in arch_array");
+  if (running_arch_index == -1) {
+    // Even though running architecture detection failed
+    // we may still continue with reporting dlerror() message
+    return NULL;
+  }
+
+  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
+    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
+    return NULL;
+  }
+
+  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
+    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
+    return NULL;
+  }
+
+  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
+    if ( lib_arch.name!=NULL ) {
+      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
+        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
+        lib_arch.name, arch_array[running_arch_index].name);
+    } else {
+      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
+      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
+        lib_arch.code,
+        arch_array[running_arch_index].name);
+    }
+  }
+
+  return NULL;
+}
+
+
+
+bool _print_ascii_file(const char* filename, outputStream* st) {
+  int fd = open(filename, O_RDONLY);
+  if (fd == -1) {
+     return false;
+  }
+
+  char buf[32];
+  int bytes;
+  while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
+    st->print_raw(buf, bytes);
+  }
+
+  close(fd);
+
+  return true;
+}
+
+void os::print_os_info(outputStream* st) {
+  st->print("OS:");
+
+  if (!_print_ascii_file("/etc/release", st)) {
+    st->print("Solaris");
+  }
+  st->cr();
+
+  // kernel
+  st->print("uname:");
+  struct utsname name;
+  uname(&name);
+  st->print(name.sysname); st->print(" ");
+  st->print(name.release); st->print(" ");
+  st->print(name.version); st->print(" ");
+  st->print(name.machine);
+
+  // libthread
+  if (os::Solaris::T2_libthread()) st->print("  (T2 libthread)");
+  else st->print("  (T1 libthread)");
+  st->cr();
+
+  // rlimit
+  st->print("rlimit:");
+  struct rlimit rlim;
+
+  st->print(" STACK ");
+  getrlimit(RLIMIT_STACK, &rlim);
+  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
+  else st->print("%uk", rlim.rlim_cur >> 10);
+
+  st->print(", CORE ");
+  getrlimit(RLIMIT_CORE, &rlim);
+  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
+  else st->print("%uk", rlim.rlim_cur >> 10);
+
+  st->print(", NOFILE ");
+  getrlimit(RLIMIT_NOFILE, &rlim);
+  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
+  else st->print("%d", rlim.rlim_cur);
+
+  st->print(", AS ");
+  getrlimit(RLIMIT_AS, &rlim);
+  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
+  else st->print("%uk", rlim.rlim_cur >> 10);
+  st->cr();
+
+  // load average
+  st->print("load average:");
+  double loadavg[3];
+  os::loadavg(loadavg, 3);
+  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
+  st->cr();
+}
+
+
+static bool check_addr0(outputStream* st) {
+  jboolean status = false;
+  int fd = open("/proc/self/map",O_RDONLY);
+  if (fd >= 0) {
+    prmap_t p;
+    while(read(fd, &p, sizeof(p)) > 0) {
+      if (p.pr_vaddr == 0x0) {
+        st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
+        st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
+        st->print("Access:");
+        st->print("%s",(p.pr_mflags & MA_READ)  ? "r" : "-");
+        st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
+        st->print("%s",(p.pr_mflags & MA_EXEC)  ? "x" : "-");
+        st->cr();
+        status = true;
+      }
+      close(fd);
+    }
+  }
+  return status;
+}
+
+void os::print_memory_info(outputStream* st) {
+  st->print("Memory:");
+  st->print(" %dk page", os::vm_page_size()>>10);
+  st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
+  st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
+  st->cr();
+  (void) check_addr0(st);
+}
+
+// Taken from /usr/include/sys/machsig.h  Supposed to be architecture specific
+// but they're the same for all the solaris architectures that we support.
+const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
+                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
+                          "ILL_COPROC", "ILL_BADSTK" };
+
+const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
+                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
+                          "FPE_FLTINV", "FPE_FLTSUB" };
+
+const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
+
+const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
+
+void os::print_siginfo(outputStream* st, void* siginfo) {
+  st->print("siginfo:");
+
+  const int buflen = 100;
+  char buf[buflen];
+  siginfo_t *si = (siginfo_t*)siginfo;
+  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
+  char *err = strerror(si->si_errno);
+  if (si->si_errno != 0 && err != NULL) {
+    st->print("si_errno=%s", err);
+  } else {
+    st->print("si_errno=%d", si->si_errno);
+  }
+  const int c = si->si_code;
+  assert(c > 0, "unexpected si_code");
+  switch (si->si_signo) {
+  case SIGILL:
+    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
+    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
+    break;
+  case SIGFPE:
+    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
+    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
+    break;
+  case SIGSEGV:
+    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
+    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
+    break;
+  case SIGBUS:
+    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
+    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
+    break;
+  default:
+    st->print(", si_code=%d", si->si_code);
+    // no si_addr
+  }
+
+  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
+      UseSharedSpaces) {
+    FileMapInfo* mapinfo = FileMapInfo::current_info();
+    if (mapinfo->is_in_shared_space(si->si_addr)) {
+      st->print("\n\nError accessing class data sharing archive."   \
+                " Mapped file inaccessible during execution, "      \
+                " possible disk/network problem.");
+    }
+  }
+  st->cr();
+}
+
+// Moved from whole group, because we need them here for diagnostic
+// prints.
+#define OLDMAXSIGNUM 32
+static int Maxsignum = 0;
+static int *ourSigFlags = NULL;
+
+extern "C" void sigINTRHandler(int, siginfo_t*, void*);
+
+int os::Solaris::get_our_sigflags(int sig) {
+  assert(ourSigFlags!=NULL, "signal data structure not initialized");
+  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
+  return ourSigFlags[sig];
+}
+
+void os::Solaris::set_our_sigflags(int sig, int flags) {
+  assert(ourSigFlags!=NULL, "signal data structure not initialized");
+  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
+  ourSigFlags[sig] = flags;
+}
+
+
+static const char* get_signal_handler_name(address handler,
+                                           char* buf, int buflen) {
+  int offset;
+  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
+  if (found) {
+    // skip directory names
+    const char *p1, *p2;
+    p1 = buf;
+    size_t len = strlen(os::file_separator());
+    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
+    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
+  } else {
+    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
+  }
+  return buf;
+}
+
+static void print_signal_handler(outputStream* st, int sig,
+                                  char* buf, size_t buflen) {
+  struct sigaction sa;
+
+  sigaction(sig, NULL, &sa);
+
+  st->print("%s: ", os::exception_name(sig, buf, buflen));
+
+  address handler = (sa.sa_flags & SA_SIGINFO)
+                  ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
+                  : CAST_FROM_FN_PTR(address, sa.sa_handler);
+
+  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
+    st->print("SIG_DFL");
+  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
+    st->print("SIG_IGN");
+  } else {
+    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
+  }
+
+  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
+
+  address rh = VMError::get_resetted_sighandler(sig);
+  // May be, handler was resetted by VMError?
+  if(rh != NULL) {
+    handler = rh;
+    sa.sa_flags = VMError::get_resetted_sigflags(sig);
+  }
+
+  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
+
+  // Check: is it our handler?
+  if(handler == CAST_FROM_FN_PTR(address, signalHandler) ||
+     handler == CAST_FROM_FN_PTR(address, sigINTRHandler)) {
+    // It is our signal handler
+    // check for flags
+    if(sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
+      st->print(
+        ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
+        os::Solaris::get_our_sigflags(sig));
+    }
+  }
+  st->cr();
+}
+
+void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
+  st->print_cr("Signal Handlers:");
+  print_signal_handler(st, SIGSEGV, buf, buflen);
+  print_signal_handler(st, SIGBUS , buf, buflen);
+  print_signal_handler(st, SIGFPE , buf, buflen);
+  print_signal_handler(st, SIGPIPE, buf, buflen);
+  print_signal_handler(st, SIGXFSZ, buf, buflen);
+  print_signal_handler(st, SIGILL , buf, buflen);
+  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
+  print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
+  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
+  print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
+  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
+  print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
+  print_signal_handler(st, os::Solaris::SIGinterrupt(), buf, buflen);
+  print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
+}
+
+static char saved_jvm_path[MAXPATHLEN] = { 0 };
+
+// Find the full path to the current module, libjvm.so or libjvm_g.so
+void os::jvm_path(char *buf, jint buflen) {
+  // Error checking.
+  if (buflen < MAXPATHLEN) {
+    assert(false, "must use a large-enough buffer");
+    buf[0] = '\0';
+    return;
+  }
+  // Lazy resolve the path to current module.
+  if (saved_jvm_path[0] != 0) {
+    strcpy(buf, saved_jvm_path);
+    return;
+  }
+
+  Dl_info dlinfo;
+  int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
+  assert(ret != 0, "cannot locate libjvm");
+  realpath((char *)dlinfo.dli_fname, buf);
+
+  if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
+    // Support for the gamma launcher.  Typical value for buf is
+    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
+    // the right place in the string, then assume we are installed in a JDK and
+    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
+    // up the path so it looks like libjvm.so is installed there (append a
+    // fake suffix hotspot/libjvm.so).
+    const char *p = buf + strlen(buf) - 1;
+    for (int count = 0; p > buf && count < 5; ++count) {
+      for (--p; p > buf && *p != '/'; --p)
+        /* empty */ ;
+    }
+
+    if (strncmp(p, "/jre/lib/", 9) != 0) {
+      // Look for JAVA_HOME in the environment.
+      char* java_home_var = ::getenv("JAVA_HOME");
+      if (java_home_var != NULL && java_home_var[0] != 0) {
+        char cpu_arch[12];
+        sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
+#ifdef _LP64
+        // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
+        if (strcmp(cpu_arch, "sparc") == 0) {
+          strcat(cpu_arch, "v9");
+        } else if (strcmp(cpu_arch, "i386") == 0) {
+          strcpy(cpu_arch, "amd64");
+        }
+#endif
+        // Check the current module name "libjvm.so" or "libjvm_g.so".
+        p = strrchr(buf, '/');
+        assert(strstr(p, "/libjvm") == p, "invalid library name");
+        p = strstr(p, "_g") ? "_g" : "";
+
+        realpath(java_home_var, buf);
+        sprintf(buf + strlen(buf), "/jre/lib/%s", cpu_arch);
+        if (0 == access(buf, F_OK)) {
+          // Use current module name "libjvm[_g].so" instead of
+          // "libjvm"debug_only("_g")".so" since for fastdebug version
+          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
+          // It is used when we are choosing the HPI library's name
+          // "libhpi[_g].so" in hpi::initialize_get_interface().
+          sprintf(buf + strlen(buf), "/hotspot/libjvm%s.so", p);
+        } else {
+          // Go back to path of .so
+          realpath((char *)dlinfo.dli_fname, buf);
+        }
+      }
+    }
+  }
+
+  strcpy(saved_jvm_path, buf);
+}
+
+
+void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
+  // no prefix required, not even "_"
+}
+
+
+void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
+  // no suffix required
+}
+
+
+// sun.misc.Signal
+
+extern "C" {
+  static void UserHandler(int sig, void *siginfo, void *context) {
+    // Ctrl-C is pressed during error reporting, likely because the error
+    // handler fails to abort. Let VM die immediately.
+    if (sig == SIGINT && is_error_reported()) {
+       os::die();
+    }
+
+    os::signal_notify(sig);
+    // We do not need to reinstate the signal handler each time...
+  }
+}
+
+void* os::user_handler() {
+  return CAST_FROM_FN_PTR(void*, UserHandler);
+}
+
+extern "C" {
+  typedef void (*sa_handler_t)(int);
+  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
+}
+
+void* os::signal(int signal_number, void* handler) {
+  struct sigaction sigAct, oldSigAct;
+  sigfillset(&(sigAct.sa_mask));
+  sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
+  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
+
+  if (sigaction(signal_number, &sigAct, &oldSigAct))
+    // -1 means registration failed
+    return (void *)-1;
+
+  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
+}
+
+void os::signal_raise(int signal_number) {
+  raise(signal_number);
+}
+
+/*
+ * The following code is moved from os.cpp for making this
+ * code platform specific, which it is by its very nature.
+ */
+
+// a counter for each possible signal value
+static int Sigexit = 0;
+static int Maxlibjsigsigs;
+static jint *pending_signals = NULL;
+static int *preinstalled_sigs = NULL;
+static struct sigaction *chainedsigactions = NULL;
+static sema_t sig_sem;
+typedef int (*version_getting_t)();
+version_getting_t os::Solaris::get_libjsig_version = NULL;
+static int libjsigversion = NULL;
+
+int os::sigexitnum_pd() {
+  assert(Sigexit > 0, "signal memory not yet initialized");
+  return Sigexit;
+}
+
+void os::Solaris::init_signal_mem() {
+  // Initialize signal structures
+  Maxsignum = SIGRTMAX;
+  Sigexit = Maxsignum+1;
+  assert(Maxsignum >0, "Unable to obtain max signal number");
+
+  Maxlibjsigsigs = Maxsignum;
+
+  // pending_signals has one int per signal
+  // The additional signal is for SIGEXIT - exit signal to signal_thread
+  pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1));
+  memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
+
+  if (UseSignalChaining) {
+     chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
+       * (Maxsignum + 1));
+     memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
+     preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1));
+     memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
+  }
+  ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1 ));
+  memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
+}
+
+void os::signal_init_pd() {
+  int ret;
+
+  ret = ::sema_init(&sig_sem, 0, NULL, NULL);
+  assert(ret == 0, "sema_init() failed");
+}
+
+void os::signal_notify(int signal_number) {
+  int ret;
+
+  Atomic::inc(&pending_signals[signal_number]);
+  ret = ::sema_post(&sig_sem);
+  assert(ret == 0, "sema_post() failed");
+}
+
+static int check_pending_signals(bool wait_for_signal) {
+  int ret;
+  while (true) {
+    for (int i = 0; i < Sigexit + 1; i++) {
+      jint n = pending_signals[i];
+      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
+        return i;
+      }
+    }
+    if (!wait_for_signal) {
+      return -1;
+    }
+    JavaThread *thread = JavaThread::current();
+    ThreadBlockInVM tbivm(thread);
+
+    bool threadIsSuspended;
+    do {
+      thread->set_suspend_equivalent();
+      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
+      while((ret = ::sema_wait(&sig_sem)) == EINTR)
+          ;
+      assert(ret == 0, "sema_wait() failed");
+
+      // were we externally suspended while we were waiting?
+      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
+      if (threadIsSuspended) {
+        //
+        // The semaphore has been incremented, but while we were waiting
+        // another thread suspended us. We don't want to continue running
+        // while suspended because that would surprise the thread that
+        // suspended us.
+        //
+        ret = ::sema_post(&sig_sem);
+        assert(ret == 0, "sema_post() failed");
+
+        thread->java_suspend_self();
+      }
+    } while (threadIsSuspended);
+  }
+}
+
+int os::signal_lookup() {
+  return check_pending_signals(false);
+}
+
+int os::signal_wait() {
+  return check_pending_signals(true);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Virtual Memory
+
+static int page_size = -1;
+
+// The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
+// clear this var if support is not available.
+static bool has_map_align = true;
+
+int os::vm_page_size() {
+  assert(page_size != -1, "must call os::init");
+  return page_size;
+}
+
+// Solaris allocates memory by pages.
+int os::vm_allocation_granularity() {
+  assert(page_size != -1, "must call os::init");
+  return page_size;
+}
+
+bool os::commit_memory(char* addr, size_t bytes) {
+  size_t size = bytes;
+  return
+     NULL != Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED,
+                                 PROT_READ | PROT_WRITE | PROT_EXEC);
+}
+
+bool os::commit_memory(char* addr, size_t bytes, size_t alignment_hint) {
+  if (commit_memory(addr, bytes)) {
+    if (UseMPSS && alignment_hint > (size_t)vm_page_size()) {
+      // If the large page size has been set and the VM
+      // is using large pages, use the large page size
+      // if it is smaller than the alignment hint. This is
+      // a case where the VM wants to use a larger alignment size
+      // for its own reasons but still want to use large pages
+      // (which is what matters to setting the mpss range.
+      size_t page_size = 0;
+      if (large_page_size() < alignment_hint) {
+        assert(UseLargePages, "Expected to be here for large page use only");
+        page_size = large_page_size();
+      } else {
+        // If the alignment hint is less than the large page
+        // size, the VM wants a particular alignment (thus the hint)
+        // for internal reasons.  Try to set the mpss range using
+        // the alignment_hint.
+        page_size = alignment_hint;
+      }
+      // Since this is a hint, ignore any failures.
+      (void)Solaris::set_mpss_range(addr, bytes, page_size);
+    }
+    return true;
+  }
+  return false;
+}
+
+// Uncommit the pages in a specified region.
+void os::free_memory(char* addr, size_t bytes) {
+  if (madvise(addr, bytes, MADV_FREE) < 0) {
+    debug_only(warning("MADV_FREE failed."));
+    return;
+  }
+}
+
+// Change the page size in a given range.
+void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
+  assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
+  assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
+  Solaris::set_mpss_range(addr, bytes, alignment_hint);
+}
+
+// Tell the OS to make the range local to the first-touching LWP
+void os::numa_make_local(char *addr, size_t bytes) {
+  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
+  if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
+    debug_only(warning("MADV_ACCESS_LWP failed."));
+  }
+}
+
+// Tell the OS that this range would be accessed from different LWPs.
+void os::numa_make_global(char *addr, size_t bytes) {
+  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
+  if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
+    debug_only(warning("MADV_ACCESS_MANY failed."));
+  }
+}
+
+// Get the number of the locality groups.
+size_t os::numa_get_groups_num() {
+  size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
+  return n != -1 ? n : 1;
+}
+
+// Get a list of leaf locality groups. A leaf lgroup is group that
+// doesn't have any children. Typical leaf group is a CPU or a CPU/memory
+// board. An LWP is assigned to one of these groups upon creation.
+size_t os::numa_get_leaf_groups(int *ids, size_t size) {
+   if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
+     ids[0] = 0;
+     return 1;
+   }
+   int result_size = 0, top = 1, bottom = 0, cur = 0;
+   for (int k = 0; k < size; k++) {
+     int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
+                                    (Solaris::lgrp_id_t*)&ids[top], size - top);
+     if (r == -1) {
+       ids[0] = 0;
+       return 1;
+     }
+     if (!r) {
+       assert (bottom <= cur, "Sanity check");
+       ids[bottom++] = ids[cur];
+     }
+     top += r;
+     cur++;
+   }
+   return bottom;
+}
+
+// Detect the topology change. Typically happens during CPU pluggin-unplugging.
+bool os::numa_topology_changed() {
+  int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
+  if (is_stale != -1 && is_stale) {
+    Solaris::lgrp_fini(Solaris::lgrp_cookie());
+    Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
+    assert(c != 0, "Failure to initialize LGRP API");
+    Solaris::set_lgrp_cookie(c);
+    return true;
+  }
+  return false;
+}
+
+// Get the group id of the current LWP.
+int os::numa_get_group_id() {
+  int lgrp_id = os::Solaris::lgrp_home(P_LWPID, P_MYID);
+  if (lgrp_id == -1) {
+    return 0;
+  }
+  return lgrp_id;
+}
+
+// Request information about the page.
+bool os::get_page_info(char *start, page_info* info) {
+  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
+  uint64_t addr = (uintptr_t)start;
+  uint64_t outdata[2];
+  uint_t validity = 0;
+
+  if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
+    return false;
+  }
+
+  info->size = 0;
+  info->lgrp_id = -1;
+
+  if ((validity & 1) != 0) {
+    if ((validity & 2) != 0) {
+      info->lgrp_id = outdata[0];
+    }
+    if ((validity & 4) != 0) {
+      info->size = outdata[1];
+    }
+    return true;
+  }
+  return false;
+}
+
+// Scan the pages from start to end until a page different than
+// the one described in the info parameter is encountered.
+char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
+  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
+  const size_t types = sizeof(info_types) / sizeof(info_types[0]);
+  uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT];
+  uint_t validity[MAX_MEMINFO_CNT];
+
+  size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
+  uint64_t p = (uint64_t)start;
+  while (p < (uint64_t)end) {
+    addrs[0] = p;
+    size_t addrs_count = 1;
+    while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] < (uint64_t)end) {
+      addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
+      addrs_count++;
+    }
+
+    if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
+      return NULL;
+    }
+
+    size_t i = 0;
+    for (; i < addrs_count; i++) {
+      if ((validity[i] & 1) != 0) {
+        if ((validity[i] & 4) != 0) {
+          if (outdata[types * i + 1] != page_expected->size) {
+            break;
+          }
+        } else
+          if (page_expected->size != 0) {
+            break;
+          }
+
+        if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
+          if (outdata[types * i] != page_expected->lgrp_id) {
+            break;
+          }
+        }
+      } else {
+        return NULL;
+      }
+    }
+
+    if (i != addrs_count) {
+      if ((validity[i] & 2) != 0) {
+        page_found->lgrp_id = outdata[types * i];
+      } else {
+        page_found->lgrp_id = -1;
+      }
+      if ((validity[i] & 4) != 0) {
+        page_found->size = outdata[types * i + 1];
+      } else {
+        page_found->size = 0;
+      }
+      return (char*)addrs[i];
+    }
+
+    p = addrs[addrs_count - 1] + page_size;
+  }
+  return end;
+}
+
+bool os::uncommit_memory(char* addr, size_t bytes) {
+  size_t size = bytes;
+  // Map uncommitted pages PROT_NONE so we fail early if we touch an
+  // uncommitted page. Otherwise, the read/write might succeed if we
+  // have enough swap space to back the physical page.
+  return
+    NULL != Solaris::mmap_chunk(addr, size,
+                                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
+                                PROT_NONE);
+}
+
+char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
+  char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
+
+  if (b == MAP_FAILED) {
+    return NULL;
+  }
+  return b;
+}
+
+char*
+os::reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
+  char* addr = NULL;
+  int   flags;
+
+  flags = MAP_PRIVATE | MAP_NORESERVE;
+  if (requested_addr != NULL) {
+      flags |= MAP_FIXED;
+      addr = requested_addr;
+  } else if (has_map_align && alignment_hint > (size_t) vm_page_size()) {
+    flags |= MAP_ALIGN;
+    addr = (char*) alignment_hint;
+  }
+
+  // Map uncommitted pages PROT_NONE so we fail early if we touch an
+  // uncommitted page. Otherwise, the read/write might succeed if we
+  // have enough swap space to back the physical page.
+  addr = Solaris::mmap_chunk(addr, bytes, flags, PROT_NONE);
+
+  guarantee(requested_addr == NULL || requested_addr == addr,
+            "OS failed to return requested mmap address.");
+
+  return addr;
+}
+
+// Reserve memory at an arbitrary address, only if that area is
+// available (and not reserved for something else).
+
+char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
+  const int max_tries = 10;
+  char* base[max_tries];
+  size_t size[max_tries];
+
+  // Solaris adds a gap between mmap'ed regions.  The size of the gap
+  // is dependent on the requested size and the MMU.  Our initial gap
+  // value here is just a guess and will be corrected later.
+  bool had_top_overlap = false;
+  bool have_adjusted_gap = false;
+  size_t gap = 0x400000;
+
+  // Assert only that the size is a multiple of the page size, since
+  // that's all that mmap requires, and since that's all we really know
+  // about at this low abstraction level.  If we need higher alignment,
+  // we can either pass an alignment to this method or verify alignment
+  // in one of the methods further up the call chain.  See bug 5044738.
+  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
+
+  // Repeatedly allocate blocks until the block is allocated at the
+  // right spot. Give up after max_tries.
+  int i;
+  for (i = 0; i < max_tries; ++i) {
+    base[i] = reserve_memory(bytes);
+
+    if (base[i] != NULL) {
+      // Is this the block we wanted?
+      if (base[i] == requested_addr) {
+        size[i] = bytes;
+        break;
+      }
+
+      // check that the gap value is right
+      if (had_top_overlap && !have_adjusted_gap) {
+        size_t actual_gap = base[i-1] - base[i] - bytes;
+        if (gap != actual_gap) {
+          // adjust the gap value and retry the last 2 allocations
+          assert(i > 0, "gap adjustment code problem");
+          have_adjusted_gap = true;  // adjust the gap only once, just in case
+          gap = actual_gap;
+          if (PrintMiscellaneous && Verbose) {
+            warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
+          }
+          unmap_memory(base[i], bytes);
+          unmap_memory(base[i-1], size[i-1]);
+          i-=2;
+          continue;
+        }
+      }
+
+      // Does this overlap the block we wanted? Give back the overlapped
+      // parts and try again.
+      //
+      // There is still a bug in this code: if top_overlap == bytes,
+      // the overlap is offset from requested region by the value of gap.
+      // In this case giving back the overlapped part will not work,
+      // because we'll give back the entire block at base[i] and
+      // therefore the subsequent allocation will not generate a new gap.
+      // This could be fixed with a new algorithm that used larger
+      // or variable size chunks to find the requested region -
+      // but such a change would introduce additional complications.
+      // It's rare enough that the planets align for this bug,
+      // so we'll just wait for a fix for 6204603/5003415 which
+      // will provide a mmap flag to allow us to avoid this business.
+
+      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
+      if (top_overlap >= 0 && top_overlap < bytes) {
+        had_top_overlap = true;
+        unmap_memory(base[i], top_overlap);
+        base[i] += top_overlap;
+        size[i] = bytes - top_overlap;
+      } else {
+        size_t bottom_overlap = base[i] + bytes - requested_addr;
+        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
+          if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
+            warning("attempt_reserve_memory_at: possible alignment bug");
+          }
+          unmap_memory(requested_addr, bottom_overlap);
+          size[i] = bytes - bottom_overlap;
+        } else {
+          size[i] = bytes;
+        }
+      }
+    }
+  }
+
+  // Give back the unused reserved pieces.
+
+  for (int j = 0; j < i; ++j) {
+    if (base[j] != NULL) {
+      unmap_memory(base[j], size[j]);
+    }
+  }
+
+  return (i < max_tries) ? requested_addr : NULL;
+}
+
+bool os::release_memory(char* addr, size_t bytes) {
+  size_t size = bytes;
+  return munmap(addr, size) == 0;
+}
+
+static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
+  assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
+         "addr must be page aligned");
+  int retVal = mprotect(addr, bytes, prot);
+  return retVal == 0;
+}
+
+// Protect memory (make it read-only. (Used to pass readonly pages through
+// JNI GetArray<type>Elements with empty arrays.)
+bool os::protect_memory(char* addr, size_t bytes) {
+  return solaris_mprotect(addr, bytes, PROT_READ);
+}
+
+// guard_memory and unguard_memory only happens within stack guard pages.
+// Since ISM pertains only to the heap, guard and unguard memory should not
+/// happen with an ISM region.
+bool os::guard_memory(char* addr, size_t bytes) {
+  return solaris_mprotect(addr, bytes, PROT_NONE);
+}
+
+bool os::unguard_memory(char* addr, size_t bytes) {
+  return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE|PROT_EXEC);
+}
+
+// Large page support
+
+// UseLargePages is the master flag to enable/disable large page memory.
+// UseMPSS and UseISM are supported for compatibility reasons. Their combined
+// effects can be described in the following table:
+//
+// UseLargePages UseMPSS UseISM
+//    false         *       *   => UseLargePages is the master switch, turning
+//                                 it off will turn off both UseMPSS and
+//                                 UseISM. VM will not use large page memory
+//                                 regardless the settings of UseMPSS/UseISM.
+//     true      false    false => Unless future Solaris provides other
+//                                 mechanism to use large page memory, this
+//                                 combination is equivalent to -UseLargePages,
+//                                 VM will not use large page memory
+//     true      true     false => JVM will use MPSS for large page memory.
+//                                 This is the default behavior.
+//     true      false    true  => JVM will use ISM for large page memory.
+//     true      true     true  => JVM will use ISM if it is available.
+//                                 Otherwise, JVM will fall back to MPSS.
+//                                 Becaues ISM is now available on all
+//                                 supported Solaris versions, this combination
+//                                 is equivalent to +UseISM -UseMPSS.
+
+typedef int (*getpagesizes_func_type) (size_t[], int);
+static size_t _large_page_size = 0;
+
+bool os::Solaris::ism_sanity_check(bool warn, size_t * page_size) {
+  // x86 uses either 2M or 4M page, depending on whether PAE (Physical Address
+  // Extensions) mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. Sparc
+  // can support multiple page sizes.
+
+  // Don't bother to probe page size because getpagesizes() comes with MPSS.
+  // ISM is only recommended on old Solaris where there is no MPSS support.
+  // Simply choose a conservative value as default.
+  *page_size = LargePageSizeInBytes ? LargePageSizeInBytes :
+               SPARC_ONLY(4 * M) IA32_ONLY(4 * M) AMD64_ONLY(2 * M);
+
+  // ISM is available on all supported Solaris versions
+  return true;
+}
+
+// Insertion sort for small arrays (descending order).
+static void insertion_sort_descending(size_t* array, int len) {
+  for (int i = 0; i < len; i++) {
+    size_t val = array[i];
+    for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
+      size_t tmp = array[key];
+      array[key] = array[key - 1];
+      array[key - 1] = tmp;
+    }
+  }
+}
+
+bool os::Solaris::mpss_sanity_check(bool warn, size_t * page_size) {
+  getpagesizes_func_type getpagesizes_func =
+    CAST_TO_FN_PTR(getpagesizes_func_type, dlsym(RTLD_DEFAULT, "getpagesizes"));
+  if (getpagesizes_func == NULL) {
+    if (warn) {
+      warning("MPSS is not supported by the operating system.");
+    }
+    return false;
+  }
+
+  const unsigned int usable_count = VM_Version::page_size_count();
+  if (usable_count == 1) {
+    return false;
+  }
+
+  // Fill the array of page sizes.
+  int n = getpagesizes_func(_page_sizes, page_sizes_max);
+  assert(n > 0, "Solaris bug?");
+  if (n == page_sizes_max) {
+    // Add a sentinel value (necessary only if the array was completely filled
+    // since it is static (zeroed at initialization)).
+    _page_sizes[--n] = 0;
+    DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
+  }
+  assert(_page_sizes[n] == 0, "missing sentinel");
+
+  if (n == 1) return false;     // Only one page size available.
+
+  // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
+  // select up to usable_count elements.  First sort the array, find the first
+  // acceptable value, then copy the usable sizes to the top of the array and
+  // trim the rest.  Make sure to include the default page size :-).
+  //
+  // A better policy could get rid of the 4M limit by taking the sizes of the
+  // important VM memory regions (java heap and possibly the code cache) into
+  // account.
+  insertion_sort_descending(_page_sizes, n);
+  const size_t size_limit =
+    FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
+  int beg;
+  for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */ ;
+  const int end = MIN2((int)usable_count, n) - 1;
+  for (int cur = 0; cur < end; ++cur, ++beg) {
+    _page_sizes[cur] = _page_sizes[beg];
+  }
+  _page_sizes[end] = vm_page_size();
+  _page_sizes[end + 1] = 0;
+
+  if (_page_sizes[end] > _page_sizes[end - 1]) {
+    // Default page size is not the smallest; sort again.
+    insertion_sort_descending(_page_sizes, end + 1);
+  }
+  *page_size = _page_sizes[0];
+
+  return true;
+}
+
+bool os::large_page_init() {
+  if (!UseLargePages) {
+    UseISM = false;
+    UseMPSS = false;
+    return false;
+  }
+
+  // print a warning if any large page related flag is specified on command line
+  bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
+                         !FLAG_IS_DEFAULT(UseISM)               ||
+                         !FLAG_IS_DEFAULT(UseMPSS)              ||
+                         !FLAG_IS_DEFAULT(LargePageSizeInBytes);
+  UseISM = UseISM &&
+           Solaris::ism_sanity_check(warn_on_failure, &_large_page_size);
+  if (UseISM) {
+    // ISM disables MPSS to be compatible with old JDK behavior
+    UseMPSS = false;
+  }
+
+  UseMPSS = UseMPSS &&
+            Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
+
+  UseLargePages = UseISM || UseMPSS;
+  return UseLargePages;
+}
+
+bool os::Solaris::set_mpss_range(caddr_t start, size_t bytes, size_t align) {
+  // Signal to OS that we want large pages for addresses
+  // from addr, addr + bytes
+  struct memcntl_mha mpss_struct;
+  mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
+  mpss_struct.mha_pagesize = align;
+  mpss_struct.mha_flags = 0;
+  if (memcntl(start, bytes, MC_HAT_ADVISE,
+              (caddr_t) &mpss_struct, 0, 0) < 0) {
+    debug_only(warning("Attempt to use MPSS failed."));
+    return false;
+  }
+  return true;
+}
+
+char* os::reserve_memory_special(size_t bytes) {
+  assert(UseLargePages && UseISM, "only for ISM large pages");
+
+  size_t size = bytes;
+  char* retAddr = NULL;
+  int shmid;
+  key_t ismKey;
+
+  bool warn_on_failure = UseISM &&
+                        (!FLAG_IS_DEFAULT(UseLargePages)         ||
+                         !FLAG_IS_DEFAULT(UseISM)                ||
+                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
+                        );
+  char msg[128];
+
+  ismKey = IPC_PRIVATE;
+
+  // Create a large shared memory region to attach to based on size.
+  // Currently, size is the total size of the heap
+  shmid = shmget(ismKey, size, SHM_R | SHM_W | IPC_CREAT);
+  if (shmid == -1){
+     if (warn_on_failure) {
+       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
+       warning(msg);
+     }
+     return NULL;
+  }
+
+  // Attach to the region
+  retAddr = (char *) shmat(shmid, 0, SHM_SHARE_MMU | SHM_R | SHM_W);
+  int err = errno;
+
+  // Remove shmid. If shmat() is successful, the actual shared memory segment
+  // will be deleted when it's detached by shmdt() or when the process
+  // terminates. If shmat() is not successful this will remove the shared
+  // segment immediately.
+  shmctl(shmid, IPC_RMID, NULL);
+
+  if (retAddr == (char *) -1) {
+    if (warn_on_failure) {
+      jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
+      warning(msg);
+    }
+    return NULL;
+  }
+
+  return retAddr;
+}
+
+bool os::release_memory_special(char* base, size_t bytes) {
+  // detaching the SHM segment will also delete it, see reserve_memory_special()
+  int rslt = shmdt(base);
+  return rslt == 0;
+}
+
+size_t os::large_page_size() {
+  return _large_page_size;
+}
+
+// MPSS allows application to commit large page memory on demand; with ISM
+// the entire memory region must be allocated as shared memory.
+bool os::can_commit_large_page_memory() {
+  return UseISM ? false : true;
+}
+
+static int os_sleep(jlong millis, bool interruptible) {
+  const jlong limit = INT_MAX;
+  jlong prevtime;
+  int res;
+
+  while (millis > limit) {
+    if ((res = os_sleep(limit, interruptible)) != OS_OK)
+      return res;
+    millis -= limit;
+  }
+
+  // Restart interrupted polls with new parameters until the proper delay
+  // has been completed.
+
+  prevtime = getTimeMillis();
+
+  while (millis > 0) {
+    jlong newtime;
+
+    if (!interruptible) {
+      // Following assert fails for os::yield_all:
+      // assert(!thread->is_Java_thread(), "must not be java thread");
+      res = poll(NULL, 0, millis);
+    } else {
+      JavaThread *jt = JavaThread::current();
+
+      INTERRUPTIBLE_NORESTART_VM_ALWAYS(poll(NULL, 0, millis), res, jt,
+        os::Solaris::clear_interrupted);
+    }
+
+    // INTERRUPTIBLE_NORESTART_VM_ALWAYS returns res == OS_INTRPT for
+    // thread.Interrupt.
+
+    if((res == OS_ERR) && (errno == EINTR)) {
+      newtime = getTimeMillis();
+      assert(newtime >= prevtime, "time moving backwards");
+    /* Doing prevtime and newtime in microseconds doesn't help precision,
+       and trying to round up to avoid lost milliseconds can result in a
+       too-short delay. */
+      millis -= newtime - prevtime;
+      if(millis <= 0)
+        return OS_OK;
+      prevtime = newtime;
+    } else
+      return res;
+  }
+
+  return OS_OK;
+}
+
+// Read calls from inside the vm need to perform state transitions
+size_t os::read(int fd, void *buf, unsigned int nBytes) {
+  INTERRUPTIBLE_RETURN_INT_VM(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
+}
+
+int os::sleep(Thread* thread, jlong millis, bool interruptible) {
+  assert(thread == Thread::current(),  "thread consistency check");
+
+  // TODO-FIXME: this should be removed.
+  // On Solaris machines (especially 2.5.1) we found that sometimes the VM gets into a live lock
+  // situation with a JavaThread being starved out of a lwp. The kernel doesn't seem to generate
+  // a SIGWAITING signal which would enable the threads library to create a new lwp for the starving
+  // thread. We suspect that because the Watcher thread keeps waking up at periodic intervals the kernel
+  // is fooled into believing that the system is making progress. In the code below we block the
+  // the watcher thread while safepoint is in progress so that it would not appear as though the
+  // system is making progress.
+  if (!Solaris::T2_libthread() &&
+      thread->is_Watcher_thread() && SafepointSynchronize::is_synchronizing() && !Arguments::has_profile()) {
+    // We now try to acquire the threads lock. Since this lock is held by the VM thread during
+    // the entire safepoint, the watcher thread will  line up here during the safepoint.
+    Threads_lock->lock_without_safepoint_check();
+    Threads_lock->unlock();
+  }
+
+  if (thread->is_Java_thread()) {
+    // This is a JavaThread so we honor the _thread_blocked protocol
+    // even for sleeps of 0 milliseconds. This was originally done
+    // as a workaround for bug 4338139. However, now we also do it
+    // to honor the suspend-equivalent protocol.
+
+    JavaThread *jt = (JavaThread *) thread;
+    ThreadBlockInVM tbivm(jt);
+
+    jt->set_suspend_equivalent();
+    // cleared by handle_special_suspend_equivalent_condition() or
+    // java_suspend_self() via check_and_wait_while_suspended()
+
+    int ret_code;
+    if (millis <= 0) {
+      thr_yield();
+      ret_code = 0;
+    } else {
+      // The original sleep() implementation did not create an
+      // OSThreadWaitState helper for sleeps of 0 milliseconds.
+      // I'm preserving that decision for now.
+      OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
+
+      ret_code = os_sleep(millis, interruptible);
+    }
+
+    // were we externally suspended while we were waiting?
+    jt->check_and_wait_while_suspended();
+
+    return ret_code;
+  }
+
+  // non-JavaThread from this point on:
+
+  if (millis <= 0) {
+    thr_yield();
+    return 0;
+  }
+
+  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
+
+  return os_sleep(millis, interruptible);
+}
+
+int os::naked_sleep() {
+  // %% make the sleep time an integer flag. for now use 1 millisec.
+  return os_sleep(1, false);
+}
+
+// Sleep forever; naked call to OS-specific sleep; use with CAUTION
+void os::infinite_sleep() {
+  while (true) {    // sleep forever ...
+    ::sleep(100);   // ... 100 seconds at a time
+  }
+}
+
+// Used to convert frequent JVM_Yield() to nops
+bool os::dont_yield() {
+  if (DontYieldALot) {
+    static hrtime_t last_time = 0;
+    hrtime_t diff = getTimeNanos() - last_time;
+
+    if (diff < DontYieldALotInterval * 1000000)
+      return true;
+
+    last_time += diff;
+
+    return false;
+  }
+  else {
+    return false;
+  }
+}
+
+// Caveat: Solaris os::yield() causes a thread-state transition whereas
+// the linux and win32 implementations do not.  This should be checked.
+
+void os::yield() {
+  // Yields to all threads with same or greater priority
+  os::sleep(Thread::current(), 0, false);
+}
+
+// Note that yield semantics are defined by the scheduling class to which
+// the thread currently belongs.  Typically, yield will _not yield to
+// other equal or higher priority threads that reside on the dispatch queues
+// of other CPUs.
+
+os::YieldResult os::NakedYield() { thr_yield(); return os::YIELD_UNKNOWN; }
+
+
+// On Solaris we found that yield_all doesn't always yield to all other threads.
+// There have been cases where there is a thread ready to execute but it doesn't
+// get an lwp as the VM thread continues to spin with sleeps of 1 millisecond.
+// The 1 millisecond wait doesn't seem long enough for the kernel to issue a
+// SIGWAITING signal which will cause a new lwp to be created. So we count the
+// number of times yield_all is called in the one loop and increase the sleep
+// time after 8 attempts. If this fails too we increase the concurrency level
+// so that the starving thread would get an lwp
+
+void os::yield_all(int attempts) {
+  // Yields to all threads, including threads with lower priorities
+  if (attempts == 0) {
+    os::sleep(Thread::current(), 1, false);
+  } else {
+    int iterations = attempts % 30;
+    if (iterations == 0 && !os::Solaris::T2_libthread()) {
+      // thr_setconcurrency and _getconcurrency make sense only under T1.
+      int noofLWPS = thr_getconcurrency();
+      if (noofLWPS < (Threads::number_of_threads() + 2)) {
+        thr_setconcurrency(thr_getconcurrency() + 1);
+      }
+    } else if (iterations < 25) {
+      os::sleep(Thread::current(), 1, false);
+    } else {
+      os::sleep(Thread::current(), 10, false);
+    }
+  }
+}
+
+// Called from the tight loops to possibly influence time-sharing heuristics
+void os::loop_breaker(int attempts) {
+  os::yield_all(attempts);
+}
+
+
+// Interface for setting lwp priorities.  If we are using T2 libthread,
+// which forces the use of BoundThreads or we manually set UseBoundThreads,
+// all of our threads will be assigned to real lwp's.  Using the thr_setprio
+// function is meaningless in this mode so we must adjust the real lwp's priority
+// The routines below implement the getting and setting of lwp priorities.
+//
+// Note: There are three priority scales used on Solaris.  Java priotities
+//       which range from 1 to 10, libthread "thr_setprio" scale which range
+//       from 0 to 127, and the current scheduling class of the process we
+//       are running in.  This is typically from -60 to +60.
+//       The setting of the lwp priorities in done after a call to thr_setprio
+//       so Java priorities are mapped to libthread priorities and we map from
+//       the latter to lwp priorities.  We don't keep priorities stored in
+//       Java priorities since some of our worker threads want to set priorities
+//       higher than all Java threads.
+//
+// For related information:
+// (1)  man -s 2 priocntl
+// (2)  man -s 4 priocntl
+// (3)  man dispadmin
+// =    librt.so
+// =    libthread/common/rtsched.c - thrp_setlwpprio().
+// =    ps -cL <pid> ... to validate priority.
+// =    sched_get_priority_min and _max
+//              pthread_create
+//              sched_setparam
+//              pthread_setschedparam
+//
+// Assumptions:
+// +    We assume that all threads in the process belong to the same
+//              scheduling class.   IE. an homogenous process.
+// +    Must be root or in IA group to change change "interactive" attribute.
+//              Priocntl() will fail silently.  The only indication of failure is when
+//              we read-back the value and notice that it hasn't changed.
+// +    Interactive threads enter the runq at the head, non-interactive at the tail.
+// +    For RT, change timeslice as well.  Invariant:
+//              constant "priority integral"
+//              Konst == TimeSlice * (60-Priority)
+//              Given a priority, compute appropriate timeslice.
+// +    Higher numerical values have higher priority.
+
+// sched class attributes
+typedef struct {
+        int   schedPolicy;              // classID
+        int   maxPrio;
+        int   minPrio;
+} SchedInfo;
+
+
+static SchedInfo tsLimits, iaLimits, rtLimits;
+
+#ifdef ASSERT
+static int  ReadBackValidate = 1;
+#endif
+static int  myClass     = 0;
+static int  myMin       = 0;
+static int  myMax       = 0;
+static int  myCur       = 0;
+static bool priocntl_enable = false;
+
+
+// Call the version of priocntl suitable for all supported versions
+// of Solaris. We need to call through this wrapper so that we can
+// build on Solaris 9 and run on Solaris 8, 9 and 10.
+//
+// This code should be removed if we ever stop supporting Solaris 8
+// and earlier releases.
+
+static long priocntl_stub(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg);
+typedef long (*priocntl_type)(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg);
+static priocntl_type priocntl_ptr = priocntl_stub;
+
+// Stub to set the value of the real pointer, and then call the real
+// function.
+
+static long priocntl_stub(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg) {
+  // Try Solaris 8- name only.
+  priocntl_type tmp = (priocntl_type)dlsym(RTLD_DEFAULT, "__priocntl");
+  guarantee(tmp != NULL, "priocntl function not found.");
+  priocntl_ptr = tmp;
+  return (*priocntl_ptr)(PC_VERSION, idtype, id, cmd, arg);
+}
+
+
+// lwp_priocntl_init
+//
+// Try to determine the priority scale for our process.
+//
+// Return errno or 0 if OK.
+//
+static
+int     lwp_priocntl_init ()
+{
+  int rslt;
+  pcinfo_t ClassInfo;
+  pcparms_t ParmInfo;
+  int i;
+
+  if (!UseThreadPriorities) return 0;
+
+  // We are using Bound threads, we need to determine our priority ranges
+  if (os::Solaris::T2_libthread() || UseBoundThreads) {
+    // If ThreadPriorityPolicy is 1, switch tables
+    if (ThreadPriorityPolicy == 1) {
+      for (i = 0 ; i < MaxPriority+1; i++)
+        os::java_to_os_priority[i] = prio_policy1[i];
+    }
+  }
+  // Not using Bound Threads, set to ThreadPolicy 1
+  else {
+    for ( i = 0 ; i < MaxPriority+1; i++ ) {
+      os::java_to_os_priority[i] = prio_policy1[i];
+    }
+    return 0;
+  }
+
+
+  // Get IDs for a set of well-known scheduling classes.
+  // TODO-FIXME: GETCLINFO returns the current # of classes in the
+  // the system.  We should have a loop that iterates over the
+  // classID values, which are known to be "small" integers.
+
+  strcpy(ClassInfo.pc_clname, "TS");
+  ClassInfo.pc_cid = -1;
+  rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
+  if (rslt < 0) return errno;
+  assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
+  tsLimits.schedPolicy = ClassInfo.pc_cid;
+  tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
+  tsLimits.minPrio = -tsLimits.maxPrio;
+
+  strcpy(ClassInfo.pc_clname, "IA");
+  ClassInfo.pc_cid = -1;
+  rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
+  if (rslt < 0) return errno;
+  assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
+  iaLimits.schedPolicy = ClassInfo.pc_cid;
+  iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
+  iaLimits.minPrio = -iaLimits.maxPrio;
+
+  strcpy(ClassInfo.pc_clname, "RT");
+  ClassInfo.pc_cid = -1;
+  rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
+  if (rslt < 0) return errno;
+  assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
+  rtLimits.schedPolicy = ClassInfo.pc_cid;
+  rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
+  rtLimits.minPrio = 0;
+
+
+  // Query our "current" scheduling class.
+  // This will normally be IA,TS or, rarely, RT.
+  memset (&ParmInfo, 0, sizeof(ParmInfo));
+  ParmInfo.pc_cid = PC_CLNULL;
+  rslt = (*priocntl_ptr) (PC_VERSION, P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo );
+  if ( rslt < 0 ) return errno;
+  myClass = ParmInfo.pc_cid;
+
+  // We now know our scheduling classId, get specific information
+  // the class.
+  ClassInfo.pc_cid = myClass;
+  ClassInfo.pc_clname[0] = 0;
+  rslt = (*priocntl_ptr) (PC_VERSION, (idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo );
+  if ( rslt < 0 ) return errno;
+
+  if (ThreadPriorityVerbose)
+    tty->print_cr ("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
+
+  memset(&ParmInfo, 0, sizeof(pcparms_t));
+  ParmInfo.pc_cid = PC_CLNULL;
+  rslt = (*priocntl_ptr)(PC_VERSION, P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
+  if (rslt < 0) return errno;
+
+  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
+    myMin = rtLimits.minPrio;
+    myMax = rtLimits.maxPrio;
+  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
+    iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
+    myMin = iaLimits.minPrio;
+    myMax = iaLimits.maxPrio;
+    myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
+  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
+    tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
+    myMin = tsLimits.minPrio;
+    myMax = tsLimits.maxPrio;
+    myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
+  } else {
+    // No clue - punt
+    if (ThreadPriorityVerbose)
+      tty->print_cr ("Unknown scheduling class: %s ... \n", ClassInfo.pc_clname);
+    return EINVAL;      // no clue, punt
+  }
+
+  if (ThreadPriorityVerbose)
+        tty->print_cr ("Thread priority Range: [%d..%d]\n", myMin, myMax);
+
+  priocntl_enable = true;  // Enable changing priorities
+  return 0;
+}
+
+#define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
+#define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
+#define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
+
+
+// scale_to_lwp_priority
+//
+// Convert from the libthread "thr_setprio" scale to our current
+// lwp scheduling class scale.
+//
+static
+int     scale_to_lwp_priority (int rMin, int rMax, int x)
+{
+  int v;
+
+  if (x == 127) return rMax;            // avoid round-down
+    v = (((x*(rMax-rMin)))/128)+rMin;
+  return v;
+}
+
+
+// set_lwp_priority
+//
+// Set the priority of the lwp.  This call should only be made
+// when using bound threads (T2 threads are bound by default).
+//
+int     set_lwp_priority (int ThreadID, int lwpid, int newPrio )
+{
+  int rslt;
+  int Actual, Expected, prv;
+  pcparms_t ParmInfo;                   // for GET-SET
+#ifdef ASSERT
+  pcparms_t ReadBack;                   // for readback
+#endif
+
+  // Set priority via PC_GETPARMS, update, PC_SETPARMS
+  // Query current values.
+  // TODO: accelerate this by eliminating the PC_GETPARMS call.
+  // Cache "pcparms_t" in global ParmCache.
+  // TODO: elide set-to-same-value
+
+  // If something went wrong on init, don't change priorities.
+  if ( !priocntl_enable ) {
+    if (ThreadPriorityVerbose)
+      tty->print_cr("Trying to set priority but init failed, ignoring");
+    return EINVAL;
+  }
+
+
+  // If lwp hasn't started yet, just return
+  // the _start routine will call us again.
+  if ( lwpid <= 0 ) {
+    if (ThreadPriorityVerbose) {
+      tty->print_cr ("deferring the set_lwp_priority of thread " INTPTR_FORMAT " to %d, lwpid not set",
+                     ThreadID, newPrio);
+    }
+    return 0;
+  }
+
+  if (ThreadPriorityVerbose) {
+    tty->print_cr ("set_lwp_priority(" INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
+                   ThreadID, lwpid, newPrio);
+  }
+
+  memset(&ParmInfo, 0, sizeof(pcparms_t));
+  ParmInfo.pc_cid = PC_CLNULL;
+  rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
+  if (rslt < 0) return errno;
+
+  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
+    rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
+    rtInfo->rt_pri     = scale_to_lwp_priority (rtLimits.minPrio, rtLimits.maxPrio, newPrio);
+    rtInfo->rt_tqsecs  = RT_NOCHANGE;
+    rtInfo->rt_tqnsecs = RT_NOCHANGE;
+    if (ThreadPriorityVerbose) {
+      tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
+    }
+  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
+    iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
+    int maxClamped     = MIN2(iaLimits.maxPrio, (int)iaInfo->ia_uprilim);
+    iaInfo->ia_upri    = scale_to_lwp_priority(iaLimits.minPrio, maxClamped, newPrio);
+    iaInfo->ia_uprilim = IA_NOCHANGE;
+    iaInfo->ia_nice    = IA_NOCHANGE;
+    iaInfo->ia_mode    = IA_NOCHANGE;
+    if (ThreadPriorityVerbose) {
+      tty->print_cr ("IA: [%d...%d] %d->%d\n",
+               iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
+    }
+  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
+    tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
+    int maxClamped     = MIN2(tsLimits.maxPrio, (int)tsInfo->ts_uprilim);
+    prv                = tsInfo->ts_upri;
+    tsInfo->ts_upri    = scale_to_lwp_priority(tsLimits.minPrio, maxClamped, newPrio);
+    tsInfo->ts_uprilim = IA_NOCHANGE;
+    if (ThreadPriorityVerbose) {
+      tty->print_cr ("TS: %d [%d...%d] %d->%d\n",
+               prv, tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
+    }
+    if (prv == tsInfo->ts_upri) return 0;
+  } else {
+    if ( ThreadPriorityVerbose ) {
+      tty->print_cr ("Unknown scheduling class\n");
+    }
+      return EINVAL;    // no clue, punt
+  }
+
+  rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
+  if (ThreadPriorityVerbose && rslt) {
+    tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
+  }
+  if (rslt < 0) return errno;
+
+#ifdef ASSERT
+  // Sanity check: read back what we just attempted to set.
+  // In theory it could have changed in the interim ...
+  //
+  // The priocntl system call is tricky.
+  // Sometimes it'll validate the priority value argument and
+  // return EINVAL if unhappy.  At other times it fails silently.
+  // Readbacks are prudent.
+
+  if (!ReadBackValidate) return 0;
+
+  memset(&ReadBack, 0, sizeof(pcparms_t));
+  ReadBack.pc_cid = PC_CLNULL;
+  rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
+  assert(rslt >= 0, "priocntl failed");
+  Actual = Expected = 0xBAD;
+  assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
+  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
+    Actual   = RTPRI(ReadBack)->rt_pri;
+    Expected = RTPRI(ParmInfo)->rt_pri;
+  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
+    Actual   = IAPRI(ReadBack)->ia_upri;
+    Expected = IAPRI(ParmInfo)->ia_upri;
+  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
+    Actual   = TSPRI(ReadBack)->ts_upri;
+    Expected = TSPRI(ParmInfo)->ts_upri;
+  } else {
+    if ( ThreadPriorityVerbose ) {
+      tty->print_cr("set_lwp_priority: unexpected class in readback: %d\n", ParmInfo.pc_cid);
+    }
+  }
+
+  if (Actual != Expected) {
+    if ( ThreadPriorityVerbose ) {
+      tty->print_cr ("set_lwp_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
+             lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
+    }
+  }
+#endif
+
+  return 0;
+}
+
+
+
+// Solaris only gives access to 128 real priorities at a time,
+// so we expand Java's ten to fill this range.  This would be better
+// if we dynamically adjusted relative priorities.
+//
+// The ThreadPriorityPolicy option allows us to select 2 different
+// priority scales.
+//
+// ThreadPriorityPolicy=0
+// Since the Solaris' default priority is MaximumPriority, we do not
+// set a priority lower than Max unless a priority lower than
+// NormPriority is requested.
+//
+// ThreadPriorityPolicy=1
+// This mode causes the priority table to get filled with
+// linear values.  NormPriority get's mapped to 50% of the
+// Maximum priority an so on.  This will cause VM threads
+// to get unfair treatment against other Solaris processes
+// which do not explicitly alter their thread priorities.
+//
+
+
+int os::java_to_os_priority[MaxPriority + 1] = {
+  -99999,         // 0 Entry should never be used
+
+  0,              // 1 MinPriority
+  32,             // 2
+  64,             // 3
+
+  96,             // 4
+  127,            // 5 NormPriority
+  127,            // 6
+
+  127,            // 7
+  127,            // 8
+  127,            // 9 NearMaxPriority
+
+  127             // 10 MaxPriority
+};
+
+
+OSReturn os::set_native_priority(Thread* thread, int newpri) {
+  assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
+  if ( !UseThreadPriorities ) return OS_OK;
+  int status = thr_setprio(thread->osthread()->thread_id(), newpri);
+  if ( os::Solaris::T2_libthread() || (UseBoundThreads && thread->osthread()->is_vm_created()) )
+    status |= (set_lwp_priority (thread->osthread()->thread_id(),
+                    thread->osthread()->lwp_id(), newpri ));
+  return (status == 0) ? OS_OK : OS_ERR;
+}
+
+
+OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
+  int p;
+  if ( !UseThreadPriorities ) {
+    *priority_ptr = NormalPriority;
+    return OS_OK;
+  }
+  int status = thr_getprio(thread->osthread()->thread_id(), &p);
+  if (status != 0) {
+    return OS_ERR;
+  }
+  *priority_ptr = p;
+  return OS_OK;
+}
+
+
+// Hint to the underlying OS that a task switch would not be good.
+// Void return because it's a hint and can fail.
+void os::hint_no_preempt() {
+  schedctl_start(schedctl_init());
+}
+
+void os::interrupt(Thread* thread) {
+  assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
+
+  OSThread* osthread = thread->osthread();
+
+  int isInterrupted = osthread->interrupted();
+  if (!isInterrupted) {
+      osthread->set_interrupted(true);
+      OrderAccess::fence();
+      // os::sleep() is implemented with either poll (NULL,0,timeout) or
+      // by parking on _SleepEvent.  If the former, thr_kill will unwedge
+      // the sleeper by SIGINTR, otherwise the unpark() will wake the sleeper.
+      ParkEvent * const slp = thread->_SleepEvent ;
+      if (slp != NULL) slp->unpark() ;
+  }
+
+  // For JSR166:  unpark after setting status but before thr_kill -dl
+  if (thread->is_Java_thread()) {
+    ((JavaThread*)thread)->parker()->unpark();
+  }
+
+  // Handle interruptible wait() ...
+  ParkEvent * const ev = thread->_ParkEvent ;
+  if (ev != NULL) ev->unpark() ;
+
+  // When events are used everywhere for os::sleep, then this thr_kill
+  // will only be needed if UseVMInterruptibleIO is true.
+
+  if (!isInterrupted) {
+    int status = thr_kill(osthread->thread_id(), os::Solaris::SIGinterrupt());
+    assert_status(status == 0, status, "thr_kill");
+
+    // Bump thread interruption counter
+    RuntimeService::record_thread_interrupt_signaled_count();
+  }
+}
+
+
+bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
+  assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
+
+  OSThread* osthread = thread->osthread();
+
+  bool res = osthread->interrupted();
+
+  // NOTE that since there is no "lock" around these two operations,
+  // there is the possibility that the interrupted flag will be
+  // "false" but that the interrupt event will be set. This is
+  // intentional. The effect of this is that Object.wait() will appear
+  // to have a spurious wakeup, which is not harmful, and the
+  // possibility is so rare that it is not worth the added complexity
+  // to add yet another lock. It has also been recommended not to put
+  // the interrupted flag into the os::Solaris::Event structure,
+  // because it hides the issue.
+  if (res && clear_interrupted) {
+    osthread->set_interrupted(false);
+  }
+  return res;
+}
+
+
+void os::print_statistics() {
+}
+
+int os::message_box(const char* title, const char* message) {
+  int i;
+  fdStream err(defaultStream::error_fd());
+  for (i = 0; i < 78; i++) err.print_raw("=");
+  err.cr();
+  err.print_raw_cr(title);
+  for (i = 0; i < 78; i++) err.print_raw("-");
+  err.cr();
+  err.print_raw_cr(message);
+  for (i = 0; i < 78; i++) err.print_raw("=");
+  err.cr();
+
+  char buf[16];
+  // Prevent process from exiting upon "read error" without consuming all CPU
+  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
+
+  return buf[0] == 'y' || buf[0] == 'Y';
+}
+
+// A lightweight implementation that does not suspend the target thread and
+// thus returns only a hint. Used for profiling only!
+ExtendedPC os::get_thread_pc(Thread* thread) {
+  // Make sure that it is called by the watcher and the Threads lock is owned.
+  assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
+  // For now, is only used to profile the VM Thread
+  assert(thread->is_VM_thread(), "Can only be called for VMThread");
+  ExtendedPC epc;
+
+  GetThreadPC_Callback  cb(ProfileVM_lock);
+  OSThread *osthread = thread->osthread();
+  const int time_to_wait = 400; // 400ms wait for initial response
+  int status = cb.interrupt(thread, time_to_wait);
+
+  if (cb.is_done() ) {
+    epc = cb.addr();
+  } else {
+    DEBUG_ONLY(tty->print_cr("Failed to get pc for thread: %d got %d status",
+                              osthread->thread_id(), status););
+    // epc is already NULL
+  }
+  return epc;
+}
+
+
+// This does not do anything on Solaris. This is basically a hook for being
+// able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
+void os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method, JavaCallArguments* args, Thread* thread) {
+  f(value, method, args, thread);
+}
+
+// This routine may be used by user applications as a "hook" to catch signals.
+// The user-defined signal handler must pass unrecognized signals to this
+// routine, and if it returns true (non-zero), then the signal handler must
+// return immediately.  If the flag "abort_if_unrecognized" is true, then this
+// routine will never retun false (zero), but instead will execute a VM panic
+// routine kill the process.
+//
+// If this routine returns false, it is OK to call it again.  This allows
+// the user-defined signal handler to perform checks either before or after
+// the VM performs its own checks.  Naturally, the user code would be making
+// a serious error if it tried to handle an exception (such as a null check
+// or breakpoint) that the VM was generating for its own correct operation.
+//
+// This routine may recognize any of the following kinds of signals:
+// SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
+// os::Solaris::SIGasync
+// It should be consulted by handlers for any of those signals.
+// It explicitly does not recognize os::Solaris::SIGinterrupt
+//
+// The caller of this routine must pass in the three arguments supplied
+// to the function referred to in the "sa_sigaction" (not the "sa_handler")
+// field of the structure passed to sigaction().  This routine assumes that
+// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
+//
+// Note that the VM will print warnings if it detects conflicting signal
+// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
+//
+extern "C" int JVM_handle_solaris_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
+
+
+void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
+  JVM_handle_solaris_signal(sig, info, ucVoid, true);
+}
+
+/* Do not delete - if guarantee is ever removed,  a signal handler (even empty)
+   is needed to provoke threads blocked on IO to return an EINTR
+   Note: this explicitly does NOT call JVM_handle_solaris_signal and
+   does NOT participate in signal chaining due to requirement for
+   NOT setting SA_RESTART to make EINTR work. */
+extern "C" void sigINTRHandler(int sig, siginfo_t* info, void* ucVoid) {
+   if (UseSignalChaining) {
+      struct sigaction *actp = os::Solaris::get_chained_signal_action(sig);
+      if (actp && actp->sa_handler) {
+        vm_exit_during_initialization("Signal chaining detected for VM interrupt signal, try -XX:+UseAltSigs");
+      }
+   }
+}
+
+// This boolean allows users to forward their own non-matching signals
+// to JVM_handle_solaris_signal, harmlessly.
+bool os::Solaris::signal_handlers_are_installed = false;
+
+// For signal-chaining
+bool os::Solaris::libjsig_is_loaded = false;
+typedef struct sigaction *(*get_signal_t)(int);
+get_signal_t os::Solaris::get_signal_action = NULL;
+
+struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
+  struct sigaction *actp = NULL;
+
+  if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
+    // Retrieve the old signal handler from libjsig
+    actp = (*get_signal_action)(sig);
+  }
+  if (actp == NULL) {
+    // Retrieve the preinstalled signal handler from jvm
+    actp = get_preinstalled_handler(sig);
+  }
+
+  return actp;
+}
+
+static bool call_chained_handler(struct sigaction *actp, int sig,
+                                 siginfo_t *siginfo, void *context) {
+  // Call the old signal handler
+  if (actp->sa_handler == SIG_DFL) {
+    // It's more reasonable to let jvm treat it as an unexpected exception
+    // instead of taking the default action.
+    return false;
+  } else if (actp->sa_handler != SIG_IGN) {
+    if ((actp->sa_flags & SA_NODEFER) == 0) {
+      // automaticlly block the signal
+      sigaddset(&(actp->sa_mask), sig);
+    }
+
+    sa_handler_t hand;
+    sa_sigaction_t sa;
+    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
+    // retrieve the chained handler
+    if (siginfo_flag_set) {
+      sa = actp->sa_sigaction;
+    } else {
+      hand = actp->sa_handler;
+    }
+
+    if ((actp->sa_flags & SA_RESETHAND) != 0) {
+      actp->sa_handler = SIG_DFL;
+    }
+
+    // try to honor the signal mask
+    sigset_t oset;
+    thr_sigsetmask(SIG_SETMASK, &(actp->sa_mask), &oset);
+
+    // call into the chained handler
+    if (siginfo_flag_set) {
+      (*sa)(sig, siginfo, context);
+    } else {
+      (*hand)(sig);
+    }
+
+    // restore the signal mask
+    thr_sigsetmask(SIG_SETMASK, &oset, 0);
+  }
+  // Tell jvm's signal handler the signal is taken care of.
+  return true;
+}
+
+bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
+  bool chained = false;
+  // signal-chaining
+  if (UseSignalChaining) {
+    struct sigaction *actp = get_chained_signal_action(sig);
+    if (actp != NULL) {
+      chained = call_chained_handler(actp, sig, siginfo, context);
+    }
+  }
+  return chained;
+}
+
+struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
+  assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
+  if (preinstalled_sigs[sig] != 0) {
+    return &chainedsigactions[sig];
+  }
+  return NULL;
+}
+
+void os::Solaris::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
+
+  assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
+  assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
+  chainedsigactions[sig] = oldAct;
+  preinstalled_sigs[sig] = 1;
+}
+
+void os::Solaris::set_signal_handler(int sig, bool set_installed, bool oktochain) {
+  // Check for overwrite.
+  struct sigaction oldAct;
+  sigaction(sig, (struct sigaction*)NULL, &oldAct);
+  void* oldhand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
+                                      : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
+  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
+      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
+      oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
+    if (AllowUserSignalHandlers || !set_installed) {
+      // Do not overwrite; user takes responsibility to forward to us.
+      return;
+    } else if (UseSignalChaining) {
+      if (oktochain) {
+        // save the old handler in jvm
+        save_preinstalled_handler(sig, oldAct);
+      } else {
+        vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal, try -XX:+UseAltSigs.");
+      }
+      // libjsig also interposes the sigaction() call below and saves the
+      // old sigaction on it own.
+    } else {
+      fatal2("Encountered unexpected pre-existing sigaction handler %#lx for signal %d.", (long)oldhand, sig);
+    }
+  }
+
+  struct sigaction sigAct;
+  sigfillset(&(sigAct.sa_mask));
+  sigAct.sa_handler = SIG_DFL;
+
+  sigAct.sa_sigaction = signalHandler;
+  // Handle SIGSEGV on alternate signal stack if
+  // not using stack banging
+  if (!UseStackBanging && sig == SIGSEGV) {
+    sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
+  // Interruptible i/o requires SA_RESTART cleared so EINTR
+  // is returned instead of restarting system calls
+  } else if (sig == os::Solaris::SIGinterrupt()) {
+    sigemptyset(&sigAct.sa_mask);
+    sigAct.sa_handler = NULL;
+    sigAct.sa_flags = SA_SIGINFO;
+    sigAct.sa_sigaction = sigINTRHandler;
+  } else {
+    sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
+  }
+  os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
+
+  sigaction(sig, &sigAct, &oldAct);
+
+  void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
+                                       : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
+  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
+}
+
+
+#define DO_SIGNAL_CHECK(sig) \
+  if (!sigismember(&check_signal_done, sig)) \
+    os::Solaris::check_signal_handler(sig)
+
+// This method is a periodic task to check for misbehaving JNI applications
+// under CheckJNI, we can add any periodic checks here
+
+void os::run_periodic_checks() {
+  // A big source of grief is hijacking virt. addr 0x0 on Solaris,
+  // thereby preventing a NULL checks.
+  if(!check_addr0_done) check_addr0_done = check_addr0(tty);
+
+  if (check_signals == false) return;
+
+  // SEGV and BUS if overridden could potentially prevent
+  // generation of hs*.log in the event of a crash, debugging
+  // such a case can be very challenging, so we absolutely
+  // check for the following for a good measure:
+  DO_SIGNAL_CHECK(SIGSEGV);
+  DO_SIGNAL_CHECK(SIGILL);
+  DO_SIGNAL_CHECK(SIGFPE);
+  DO_SIGNAL_CHECK(SIGBUS);
+  DO_SIGNAL_CHECK(SIGPIPE);
+  DO_SIGNAL_CHECK(SIGXFSZ);
+
+  // ReduceSignalUsage allows the user to override these handlers
+  // see comments at the very top and jvm_solaris.h
+  if (!ReduceSignalUsage) {
+    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
+    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
+    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
+    DO_SIGNAL_CHECK(BREAK_SIGNAL);
+  }
+
+  // See comments above for using JVM1/JVM2 and UseAltSigs
+  DO_SIGNAL_CHECK(os::Solaris::SIGinterrupt());
+  DO_SIGNAL_CHECK(os::Solaris::SIGasync());
+
+}
+
+typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
+
+static os_sigaction_t os_sigaction = NULL;
+
+void os::Solaris::check_signal_handler(int sig) {
+  char buf[O_BUFLEN];
+  address jvmHandler = NULL;
+
+  struct sigaction act;
+  if (os_sigaction == NULL) {
+    // only trust the default sigaction, in case it has been interposed
+    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
+    if (os_sigaction == NULL) return;
+  }
+
+  os_sigaction(sig, (struct sigaction*)NULL, &act);
+
+  address thisHandler = (act.sa_flags & SA_SIGINFO)
+    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
+    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
+
+
+  switch(sig) {
+    case SIGSEGV:
+    case SIGBUS:
+    case SIGFPE:
+    case SIGPIPE:
+    case SIGXFSZ:
+    case SIGILL:
+      jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
+      break;
+
+    case SHUTDOWN1_SIGNAL:
+    case SHUTDOWN2_SIGNAL:
+    case SHUTDOWN3_SIGNAL:
+    case BREAK_SIGNAL:
+      jvmHandler = (address)user_handler();
+      break;
+
+    default:
+      int intrsig = os::Solaris::SIGinterrupt();
+      int asynsig = os::Solaris::SIGasync();
+
+      if (sig == intrsig) {
+        jvmHandler = CAST_FROM_FN_PTR(address, sigINTRHandler);
+      } else if (sig == asynsig) {
+        jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
+      } else {
+        return;
+      }
+      break;
+  }
+
+
+  if (thisHandler != jvmHandler) {
+    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
+    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
+    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
+    // No need to check this sig any longer
+    sigaddset(&check_signal_done, sig);
+  } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
+    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
+    tty->print("expected:" PTR32_FORMAT, os::Solaris::get_our_sigflags(sig));
+    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
+    // No need to check this sig any longer
+    sigaddset(&check_signal_done, sig);
+  }
+
+  // Print all the signal handler state
+  if (sigismember(&check_signal_done, sig)) {
+    print_signal_handlers(tty, buf, O_BUFLEN);
+  }
+
+}
+
+void os::Solaris::install_signal_handlers() {
+  bool libjsigdone = false;
+  signal_handlers_are_installed = true;
+
+  // signal-chaining
+  typedef void (*signal_setting_t)();
+  signal_setting_t begin_signal_setting = NULL;
+  signal_setting_t end_signal_setting = NULL;
+  begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
+                                        dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
+  if (begin_signal_setting != NULL) {
+    end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
+                                        dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
+    get_signal_action = CAST_TO_FN_PTR(get_signal_t,
+                                       dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
+    get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
+                                         dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
+    libjsig_is_loaded = true;
+    if (os::Solaris::get_libjsig_version != NULL) {
+      libjsigversion =  (*os::Solaris::get_libjsig_version)();
+    }
+    assert(UseSignalChaining, "should enable signal-chaining");
+  }
+  if (libjsig_is_loaded) {
+    // Tell libjsig jvm is setting signal handlers
+    (*begin_signal_setting)();
+  }
+
+  set_signal_handler(SIGSEGV, true, true);
+  set_signal_handler(SIGPIPE, true, true);
+  set_signal_handler(SIGXFSZ, true, true);
+  set_signal_handler(SIGBUS, true, true);
+  set_signal_handler(SIGILL, true, true);
+  set_signal_handler(SIGFPE, true, true);
+
+
+  if (os::Solaris::SIGinterrupt() > OLDMAXSIGNUM || os::Solaris::SIGasync() > OLDMAXSIGNUM) {
+
+    // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
+    // can not register overridable signals which might be > 32
+    if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
+    // Tell libjsig jvm has finished setting signal handlers
+      (*end_signal_setting)();
+      libjsigdone = true;
+    }
+  }
+
+  // Never ok to chain our SIGinterrupt
+  set_signal_handler(os::Solaris::SIGinterrupt(), true, false);
+  set_signal_handler(os::Solaris::SIGasync(), true, true);
+
+  if (libjsig_is_loaded && !libjsigdone) {
+    // Tell libjsig jvm finishes setting signal handlers
+    (*end_signal_setting)();
+  }
+
+  // We don't activate signal checker if libjsig is in place, we trust ourselves
+  // and if UserSignalHandler is installed all bets are off
+  if (CheckJNICalls) {
+    if (libjsig_is_loaded) {
+      tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
+      check_signals = false;
+    }
+    if (AllowUserSignalHandlers) {
+      tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
+      check_signals = false;
+    }
+  }
+}
+
+
+void report_error(const char* file_name, int line_no, const char* title, const char* format, ...);
+
+const char * signames[] = {
+  "SIG0",
+  "SIGHUP", "SIGINT", "SIGQUIT", "SIGILL", "SIGTRAP",
+  "SIGABRT", "SIGEMT", "SIGFPE", "SIGKILL", "SIGBUS",
+  "SIGSEGV", "SIGSYS", "SIGPIPE", "SIGALRM", "SIGTERM",
+  "SIGUSR1", "SIGUSR2", "SIGCLD", "SIGPWR", "SIGWINCH",
+  "SIGURG", "SIGPOLL", "SIGSTOP", "SIGTSTP", "SIGCONT",
+  "SIGTTIN", "SIGTTOU", "SIGVTALRM", "SIGPROF", "SIGXCPU",
+  "SIGXFSZ", "SIGWAITING", "SIGLWP", "SIGFREEZE", "SIGTHAW",
+  "SIGCANCEL", "SIGLOST"
+};
+
+const char* os::exception_name(int exception_code, char* buf, size_t size) {
+  if (0 < exception_code && exception_code <= SIGRTMAX) {
+    // signal
+    if (exception_code < sizeof(signames)/sizeof(const char*)) {
+       jio_snprintf(buf, size, "%s", signames[exception_code]);
+    } else {
+       jio_snprintf(buf, size, "SIG%d", exception_code);
+    }
+    return buf;
+  } else {
+    return NULL;
+  }
+}
+
+// (Static) wrappers for the new libthread API
+int_fnP_thread_t_iP_uP_stack_tP_gregset_t os::Solaris::_thr_getstate;
+int_fnP_thread_t_i_gregset_t os::Solaris::_thr_setstate;
+int_fnP_thread_t_i os::Solaris::_thr_setmutator;
+int_fnP_thread_t os::Solaris::_thr_suspend_mutator;
+int_fnP_thread_t os::Solaris::_thr_continue_mutator;
+
+// (Static) wrappers for the liblgrp API
+os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
+os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
+os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
+os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
+os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
+os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
+os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
+os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
+
+// (Static) wrapper for meminfo() call.
+os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
+
+static address resolve_symbol(const char *name) {
+  address addr;
+
+  addr = (address) dlsym(RTLD_DEFAULT, name);
+  if(addr == NULL) {
+    // RTLD_DEFAULT was not defined on some early versions of 2.5.1
+    addr = (address) dlsym(RTLD_NEXT, name);
+    if(addr == NULL) {
+      fatal(dlerror());
+    }
+  }
+  return addr;
+}
+
+
+
+// isT2_libthread()
+//
+// Routine to determine if we are currently using the new T2 libthread.
+//
+// We determine if we are using T2 by reading /proc/self/lstatus and
+// looking for a thread with the ASLWP bit set.  If we find this status
+// bit set, we must assume that we are NOT using T2.  The T2 team
+// has approved this algorithm.
+//
+// We need to determine if we are running with the new T2 libthread
+// since setting native thread priorities is handled differently
+// when using this library.  All threads created using T2 are bound
+// threads. Calling thr_setprio is meaningless in this case.
+//
+bool isT2_libthread() {
+  int i, rslt;
+  static prheader_t * lwpArray = NULL;
+  static int lwpSize = 0;
+  static int lwpFile = -1;
+  lwpstatus_t * that;
+  int aslwpcount;
+  char lwpName [128];
+  bool isT2 = false;
+
+#define ADR(x)  ((uintptr_t)(x))
+#define LWPINDEX(ary,ix)   ((lwpstatus_t *)(((ary)->pr_entsize * (ix)) + (ADR((ary) + 1))))
+
+  aslwpcount = 0;
+  lwpSize = 16*1024;
+  lwpArray = ( prheader_t *)NEW_C_HEAP_ARRAY (char, lwpSize);
+  lwpFile = open ("/proc/self/lstatus", O_RDONLY, 0);
+  if (lwpArray == NULL) {
+      if ( ThreadPriorityVerbose ) warning ("Couldn't allocate T2 Check array\n");
+      return(isT2);
+  }
+  if (lwpFile < 0) {
+      if ( ThreadPriorityVerbose ) warning ("Couldn't open /proc/self/lstatus\n");
+      return(isT2);
+  }
+  for (;;) {
+    lseek (lwpFile, 0, SEEK_SET);
+    rslt = read (lwpFile, lwpArray, lwpSize);
+    if ((lwpArray->pr_nent * lwpArray->pr_entsize) <= lwpSize) {
+      break;
+    }
+    FREE_C_HEAP_ARRAY(char, lwpArray);
+    lwpSize = lwpArray->pr_nent * lwpArray->pr_entsize;
+    lwpArray = ( prheader_t *)NEW_C_HEAP_ARRAY (char, lwpSize);
+    if (lwpArray == NULL) {
+        if ( ThreadPriorityVerbose ) warning ("Couldn't allocate T2 Check array\n");
+        return(isT2);
+    }
+  }
+
+  // We got a good snapshot - now iterate over the list.
+  for (i = 0; i < lwpArray->pr_nent; i++ ) {
+    that = LWPINDEX(lwpArray,i);
+    if (that->pr_flags & PR_ASLWP) {
+      aslwpcount++;
+    }
+  }
+  if ( aslwpcount == 0 ) isT2 = true;
+
+  FREE_C_HEAP_ARRAY(char, lwpArray);
+  close (lwpFile);
+  if ( ThreadPriorityVerbose ) {
+    if ( isT2 ) tty->print_cr("We are running with a T2 libthread\n");
+    else tty->print_cr("We are not running with a T2 libthread\n");
+  }
+  return (isT2);
+}
+
+
+void os::Solaris::libthread_init() {
+  address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
+
+  // Determine if we are running with the new T2 libthread
+  os::Solaris::set_T2_libthread(isT2_libthread());
+
+  lwp_priocntl_init();
+
+  // RTLD_DEFAULT was not defined on some early versions of 5.5.1
+  if(func == NULL) {
+    func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
+    // Guarantee that this VM is running on an new enough OS (5.6 or
+    // later) that it will have a new enough libthread.so.
+    guarantee(func != NULL, "libthread.so is too old.");
+  }
+
+  // Initialize the new libthread getstate API wrappers
+  func = resolve_symbol("thr_getstate");
+  os::Solaris::set_thr_getstate(CAST_TO_FN_PTR(int_fnP_thread_t_iP_uP_stack_tP_gregset_t, func));
+
+  func = resolve_symbol("thr_setstate");
+  os::Solaris::set_thr_setstate(CAST_TO_FN_PTR(int_fnP_thread_t_i_gregset_t, func));
+
+  func = resolve_symbol("thr_setmutator");
+  os::Solaris::set_thr_setmutator(CAST_TO_FN_PTR(int_fnP_thread_t_i, func));
+
+  func = resolve_symbol("thr_suspend_mutator");
+  os::Solaris::set_thr_suspend_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
+
+  func = resolve_symbol("thr_continue_mutator");
+  os::Solaris::set_thr_continue_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
+
+  int size;
+  void (*handler_info_func)(address *, int *);
+  handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
+  handler_info_func(&handler_start, &size);
+  handler_end = handler_start + size;
+}
+
+
+int_fnP_mutex_tP os::Solaris::_mutex_lock;
+int_fnP_mutex_tP os::Solaris::_mutex_trylock;
+int_fnP_mutex_tP os::Solaris::_mutex_unlock;
+int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
+int_fnP_mutex_tP os::Solaris::_mutex_destroy;
+int os::Solaris::_mutex_scope = USYNC_THREAD;
+
+int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
+int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
+int_fnP_cond_tP os::Solaris::_cond_signal;
+int_fnP_cond_tP os::Solaris::_cond_broadcast;
+int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
+int_fnP_cond_tP os::Solaris::_cond_destroy;
+int os::Solaris::_cond_scope = USYNC_THREAD;
+
+void os::Solaris::synchronization_init() {
+  if(UseLWPSynchronization) {
+    os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
+    os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
+    os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
+    os::Solaris::set_mutex_init(lwp_mutex_init);
+    os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
+    os::Solaris::set_mutex_scope(USYNC_THREAD);
+
+    os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
+    os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
+    os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
+    os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
+    os::Solaris::set_cond_init(lwp_cond_init);
+    os::Solaris::set_cond_destroy(lwp_cond_destroy);
+    os::Solaris::set_cond_scope(USYNC_THREAD);
+  }
+  else {
+    os::Solaris::set_mutex_scope(USYNC_THREAD);
+    os::Solaris::set_cond_scope(USYNC_THREAD);
+
+    if(UsePthreads) {
+      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
+      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
+      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
+      os::Solaris::set_mutex_init(pthread_mutex_default_init);
+      os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
+
+      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
+      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
+      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
+      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
+      os::Solaris::set_cond_init(pthread_cond_default_init);
+      os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
+    }
+    else {
+      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
+      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
+      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
+      os::Solaris::set_mutex_init(::mutex_init);
+      os::Solaris::set_mutex_destroy(::mutex_destroy);
+
+      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
+      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
+      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
+      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
+      os::Solaris::set_cond_init(::cond_init);
+      os::Solaris::set_cond_destroy(::cond_destroy);
+    }
+  }
+}
+
+void os::Solaris::liblgrp_init() {
+  void *handle = dlopen("liblgrp.so", RTLD_LAZY);
+  if (handle != NULL) {
+    os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
+    os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
+    os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
+    os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
+    os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
+    os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
+    os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
+                                       dlsym(handle, "lgrp_cookie_stale")));
+
+    lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
+    set_lgrp_cookie(c);
+  } else {
+    warning("your OS does not support NUMA");
+  }
+}
+
+void os::Solaris::misc_sym_init() {
+  address func = (address)dlsym(RTLD_DEFAULT, "meminfo");
+  if(func == NULL) {
+    func = (address) dlsym(RTLD_NEXT, "meminfo");
+  }
+  if (func != NULL) {
+    os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
+  }
+}
+
+// Symbol doesn't exist in Solaris 8 pset.h
+#ifndef PS_MYID
+#define PS_MYID -3
+#endif
+
+// int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
+typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
+static pset_getloadavg_type pset_getloadavg_ptr = NULL;
+
+void init_pset_getloadavg_ptr(void) {
+  pset_getloadavg_ptr =
+    (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
+  if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
+    warning("pset_getloadavg function not found");
+  }
+}
+
+int os::Solaris::_dev_zero_fd = -1;
+
+// this is called _before_ the global arguments have been parsed
+void os::init(void) {
+  _initial_pid = getpid();
+
+  max_hrtime = first_hrtime = gethrtime();
+
+  init_random(1234567);
+
+  page_size = sysconf(_SC_PAGESIZE);
+  if (page_size == -1)
+    fatal1("os_solaris.cpp: os::init: sysconf failed (%s)", strerror(errno));
+  init_page_sizes((size_t) page_size);
+
+  Solaris::initialize_system_info();
+
+  int fd = open("/dev/zero", O_RDWR);
+  if (fd < 0) {
+    fatal1("os::init: cannot open /dev/zero (%s)", strerror(errno));
+  } else {
+    Solaris::set_dev_zero_fd(fd);
+
+    // Close on exec, child won't inherit.
+    fcntl(fd, F_SETFD, FD_CLOEXEC);
+  }
+
+  clock_tics_per_sec = CLK_TCK;
+
+  // check if dladdr1() exists; dladdr1 can provide more information than
+  // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
+  // and is available on linker patches for 5.7 and 5.8.
+  // libdl.so must have been loaded, this call is just an entry lookup
+  void * hdl = dlopen("libdl.so", RTLD_NOW);
+  if (hdl)
+    dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
+
+  // (Solaris only) this switches to calls that actually do locking.
+  ThreadCritical::initialize();
+
+  main_thread = thr_self();
+
+  // Constant minimum stack size allowed. It must be at least
+  // the minimum of what the OS supports (thr_min_stack()), and
+  // enough to allow the thread to get to user bytecode execution.
+  Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
+  // If the pagesize of the VM is greater than 8K determine the appropriate
+  // number of initial guard pages.  The user can change this with the
+  // command line arguments, if needed.
+  if (vm_page_size() > 8*K) {
+    StackYellowPages = 1;
+    StackRedPages = 1;
+    StackShadowPages = round_to((StackShadowPages*8*K), vm_page_size()) / vm_page_size();
+  }
+}
+
+// To install functions for atexit system call
+extern "C" {
+  static void perfMemory_exit_helper() {
+    perfMemory_exit();
+  }
+}
+
+// this is called _after_ the global arguments have been parsed
+jint os::init_2(void) {
+  // try to enable extended file IO ASAP, see 6431278
+  os::Solaris::try_enable_extended_io();
+
+  // Allocate a single page and mark it as readable for safepoint polling.  Also
+  // use this first mmap call to check support for MAP_ALIGN.
+  address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
+                                                      page_size,
+                                                      MAP_PRIVATE | MAP_ALIGN,
+                                                      PROT_READ);
+  if (polling_page == NULL) {
+    has_map_align = false;
+    polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
+                                                PROT_READ);
+  }
+
+  os::set_polling_page(polling_page);
+
+#ifndef PRODUCT
+  if( Verbose && PrintMiscellaneous )
+    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
+#endif
+
+  if (!UseMembar) {
+    address mem_serialize_page = (address)Solaris::mmap_chunk( NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE );
+    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
+    os::set_memory_serialize_page( mem_serialize_page );
+
+#ifndef PRODUCT
+    if(Verbose && PrintMiscellaneous)
+      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
+#endif
+}
+
+  FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
+
+  // Check minimum allowable stack size for thread creation and to initialize
+  // the java system classes, including StackOverflowError - depends on page
+  // size.  Add a page for compiler2 recursion in main thread.
+  // Add in BytesPerWord times page size to account for VM stack during
+  // class initialization depending on 32 or 64 bit VM.
+  guarantee((Solaris::min_stack_allowed >=
+    (StackYellowPages+StackRedPages+StackShadowPages+BytesPerWord
+     COMPILER2_PRESENT(+1)) * page_size),
+    "need to increase Solaris::min_stack_allowed on this platform");
+
+  size_t threadStackSizeInBytes = ThreadStackSize * K;
+  if (threadStackSizeInBytes != 0 &&
+    threadStackSizeInBytes < Solaris::min_stack_allowed) {
+    tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
+                  Solaris::min_stack_allowed/K);
+    return JNI_ERR;
+  }
+
+  // For 64kbps there will be a 64kb page size, which makes
+  // the usable default stack size quite a bit less.  Increase the
+  // stack for 64kb (or any > than 8kb) pages, this increases
+  // virtual memory fragmentation (since we're not creating the
+  // stack on a power of 2 boundary.  The real fix for this
+  // should be to fix the guard page mechanism.
+
+  if (vm_page_size() > 8*K) {
+      threadStackSizeInBytes = (threadStackSizeInBytes != 0)
+         ? threadStackSizeInBytes +
+           ((StackYellowPages + StackRedPages) * vm_page_size())
+         : 0;
+      ThreadStackSize = threadStackSizeInBytes/K;
+  }
+
+  // Make the stack size a multiple of the page size so that
+  // the yellow/red zones can be guarded.
+  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
+        vm_page_size()));
+
+  Solaris::libthread_init();
+  if (UseNUMA) {
+    Solaris::liblgrp_init();
+  }
+  Solaris::misc_sym_init();
+  Solaris::signal_sets_init();
+  Solaris::init_signal_mem();
+  Solaris::install_signal_handlers();
+
+  if (libjsigversion < JSIG_VERSION_1_4_1) {
+    Maxlibjsigsigs = OLDMAXSIGNUM;
+  }
+
+  // initialize synchronization primitives to use either thread or
+  // lwp synchronization (controlled by UseLWPSynchronization)
+  Solaris::synchronization_init();
+
+  if (MaxFDLimit) {
+    // set the number of file descriptors to max. print out error
+    // if getrlimit/setrlimit fails but continue regardless.
+    struct rlimit nbr_files;
+    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
+    if (status != 0) {
+      if (PrintMiscellaneous && (Verbose || WizardMode))
+        perror("os::init_2 getrlimit failed");
+    } else {
+      nbr_files.rlim_cur = nbr_files.rlim_max;
+      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
+      if (status != 0) {
+        if (PrintMiscellaneous && (Verbose || WizardMode))
+          perror("os::init_2 setrlimit failed");
+      }
+    }
+  }
+
+  // Initialize HPI.
+  jint hpi_result = hpi::initialize();
+  if (hpi_result != JNI_OK) {
+    tty->print_cr("There was an error trying to initialize the HPI library.");
+    return hpi_result;
+  }
+
+  // Calculate theoretical max. size of Threads to guard gainst
+  // artifical out-of-memory situations, where all available address-
+  // space has been reserved by thread stacks. Default stack size is 1Mb.
+  size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
+    JavaThread::stack_size_at_create() : (1*K*K);
+  assert(pre_thread_stack_size != 0, "Must have a stack");
+  // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
+  // we should start doing Virtual Memory banging. Currently when the threads will
+  // have used all but 200Mb of space.
+  size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
+  Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
+
+  // at-exit methods are called in the reverse order of their registration.
+  // In Solaris 7 and earlier, atexit functions are called on return from
+  // main or as a result of a call to exit(3C). There can be only 32 of
+  // these functions registered and atexit() does not set errno. In Solaris
+  // 8 and later, there is no limit to the number of functions registered
+  // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
+  // functions are called upon dlclose(3DL) in addition to return from main
+  // and exit(3C).
+
+  if (PerfAllowAtExitRegistration) {
+    // only register atexit functions if PerfAllowAtExitRegistration is set.
+    // atexit functions can be delayed until process exit time, which
+    // can be problematic for embedded VM situations. Embedded VMs should
+    // call DestroyJavaVM() to assure that VM resources are released.
+
+    // note: perfMemory_exit_helper atexit function may be removed in
+    // the future if the appropriate cleanup code can be added to the
+    // VM_Exit VMOperation's doit method.
+    if (atexit(perfMemory_exit_helper) != 0) {
+      warning("os::init2 atexit(perfMemory_exit_helper) failed");
+    }
+  }
+
+  // Init pset_loadavg function pointer
+  init_pset_getloadavg_ptr();
+
+  return JNI_OK;
+}
+
+
+// Mark the polling page as unreadable
+void os::make_polling_page_unreadable(void) {
+  if( mprotect((char *)_polling_page, page_size, PROT_NONE) != 0 )
+    fatal("Could not disable polling page");
+};
+
+// Mark the polling page as readable
+void os::make_polling_page_readable(void) {
+  if( mprotect((char *)_polling_page, page_size, PROT_READ) != 0 )
+    fatal("Could not enable polling page");
+};
+
+// OS interface.
+
+int os::stat(const char *path, struct stat *sbuf) {
+  char pathbuf[MAX_PATH];
+  if (strlen(path) > MAX_PATH - 1) {
+    errno = ENAMETOOLONG;
+    return -1;
+  }
+  hpi::native_path(strcpy(pathbuf, path));
+  return ::stat(pathbuf, sbuf);
+}
+
+
+bool os::check_heap(bool force) { return true; }
+
+typedef int (*vsnprintf_t)(char* buf, size_t count, const char* fmt, va_list argptr);
+static vsnprintf_t sol_vsnprintf = NULL;
+
+int local_vsnprintf(char* buf, size_t count, const char* fmt, va_list argptr) {
+  if (!sol_vsnprintf) {
+    //search  for the named symbol in the objects that were loaded after libjvm
+    void* where = RTLD_NEXT;
+    if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
+        sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
+    if (!sol_vsnprintf){
+      //search  for the named symbol in the objects that were loaded before libjvm
+      where = RTLD_DEFAULT;
+      if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
+        sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
+      assert(sol_vsnprintf != NULL, "vsnprintf not found");
+    }
+  }
+  return (*sol_vsnprintf)(buf, count, fmt, argptr);
+}
+
+
+// Is a (classpath) directory empty?
+bool os::dir_is_empty(const char* path) {
+  DIR *dir = NULL;
+  struct dirent *ptr;
+
+  dir = opendir(path);
+  if (dir == NULL) return true;
+
+  /* Scan the directory */
+  bool result = true;
+  char buf[sizeof(struct dirent) + MAX_PATH];
+  struct dirent *dbuf = (struct dirent *) buf;
+  while (result && (ptr = readdir(dir, dbuf)) != NULL) {
+    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
+      result = false;
+    }
+  }
+  closedir(dir);
+  return result;
+}
+
+// create binary file, rewriting existing file if required
+int os::create_binary_file(const char* path, bool rewrite_existing) {
+  int oflags = O_WRONLY | O_CREAT;
+  if (!rewrite_existing) {
+    oflags |= O_EXCL;
+  }
+  return ::open64(path, oflags, S_IREAD | S_IWRITE);
+}
+
+// return current position of file pointer
+jlong os::current_file_offset(int fd) {
+  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
+}
+
+// move file pointer to the specified offset
+jlong os::seek_to_file_offset(int fd, jlong offset) {
+  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
+}
+
+// Map a block of memory.
+char* os::map_memory(int fd, const char* file_name, size_t file_offset,
+                     char *addr, size_t bytes, bool read_only,
+                     bool allow_exec) {
+  int prot;
+  int flags;
+
+  if (read_only) {
+    prot = PROT_READ;
+    flags = MAP_SHARED;
+  } else {
+    prot = PROT_READ | PROT_WRITE;
+    flags = MAP_PRIVATE;
+  }
+
+  if (allow_exec) {
+    prot |= PROT_EXEC;
+  }
+
+  if (addr != NULL) {
+    flags |= MAP_FIXED;
+  }
+
+  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
+                                     fd, file_offset);
+  if (mapped_address == MAP_FAILED) {
+    return NULL;
+  }
+  return mapped_address;
+}
+
+
+// Remap a block of memory.
+char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
+                       char *addr, size_t bytes, bool read_only,
+                       bool allow_exec) {
+  // same as map_memory() on this OS
+  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
+                        allow_exec);
+}
+
+
+// Unmap a block of memory.
+bool os::unmap_memory(char* addr, size_t bytes) {
+  return munmap(addr, bytes) == 0;
+}
+
+void os::pause() {
+  char filename[MAX_PATH];
+  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
+    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
+  } else {
+    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
+  }
+
+  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
+  if (fd != -1) {
+    struct stat buf;
+    close(fd);
+    while (::stat(filename, &buf) == 0) {
+      (void)::poll(NULL, 0, 100);
+    }
+  } else {
+    jio_fprintf(stderr,
+      "Could not open pause file '%s', continuing immediately.\n", filename);
+  }
+}
+
+#ifndef PRODUCT
+#ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
+// Turn this on if you need to trace synch operations.
+// Set RECORD_SYNCH_LIMIT to a large-enough value,
+// and call record_synch_enable and record_synch_disable
+// around the computation of interest.
+
+void record_synch(char* name, bool returning);  // defined below
+
+class RecordSynch {
+  char* _name;
+ public:
+  RecordSynch(char* name) :_name(name)
+                 { record_synch(_name, false); }
+  ~RecordSynch() { record_synch(_name,   true);  }
+};
+
+#define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
+extern "C" ret name params {                                    \
+  typedef ret name##_t params;                                  \
+  static name##_t* implem = NULL;                               \
+  static int callcount = 0;                                     \
+  if (implem == NULL) {                                         \
+    implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
+    if (implem == NULL)  fatal(dlerror());                      \
+  }                                                             \
+  ++callcount;                                                  \
+  RecordSynch _rs(#name);                                       \
+  inner;                                                        \
+  return implem args;                                           \
+}
+// in dbx, examine callcounts this way:
+// for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
+
+#define CHECK_POINTER_OK(p) \
+  (Universe::perm_gen() == NULL || !Universe::is_reserved_heap((oop)(p)))
+#define CHECK_MU \
+  if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
+#define CHECK_CV \
+  if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
+#define CHECK_P(p) \
+  if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
+
+#define CHECK_MUTEX(mutex_op) \
+CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
+
+CHECK_MUTEX(   mutex_lock)
+CHECK_MUTEX(  _mutex_lock)
+CHECK_MUTEX( mutex_unlock)
+CHECK_MUTEX(_mutex_unlock)
+CHECK_MUTEX( mutex_trylock)
+CHECK_MUTEX(_mutex_trylock)
+
+#define CHECK_COND(cond_op) \
+CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU;CHECK_CV);
+
+CHECK_COND( cond_wait);
+CHECK_COND(_cond_wait);
+CHECK_COND(_cond_wait_cancel);
+
+#define CHECK_COND2(cond_op) \
+CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU;CHECK_CV);
+
+CHECK_COND2( cond_timedwait);
+CHECK_COND2(_cond_timedwait);
+CHECK_COND2(_cond_timedwait_cancel);
+
+// do the _lwp_* versions too
+#define mutex_t lwp_mutex_t
+#define cond_t  lwp_cond_t
+CHECK_MUTEX(  _lwp_mutex_lock)
+CHECK_MUTEX(  _lwp_mutex_unlock)
+CHECK_MUTEX(  _lwp_mutex_trylock)
+CHECK_MUTEX( __lwp_mutex_lock)
+CHECK_MUTEX( __lwp_mutex_unlock)
+CHECK_MUTEX( __lwp_mutex_trylock)
+CHECK_MUTEX(___lwp_mutex_lock)
+CHECK_MUTEX(___lwp_mutex_unlock)
+
+CHECK_COND(  _lwp_cond_wait);
+CHECK_COND( __lwp_cond_wait);
+CHECK_COND(___lwp_cond_wait);
+
+CHECK_COND2(  _lwp_cond_timedwait);
+CHECK_COND2( __lwp_cond_timedwait);
+#undef mutex_t
+#undef cond_t
+
+CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
+CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
+CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
+CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
+CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
+CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
+CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
+CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
+
+
+// recording machinery:
+
+enum { RECORD_SYNCH_LIMIT = 200 };
+char* record_synch_name[RECORD_SYNCH_LIMIT];
+void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
+bool record_synch_returning[RECORD_SYNCH_LIMIT];
+thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
+int record_synch_count = 0;
+bool record_synch_enabled = false;
+
+// in dbx, examine recorded data this way:
+// for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
+
+void record_synch(char* name, bool returning) {
+  if (record_synch_enabled) {
+    if (record_synch_count < RECORD_SYNCH_LIMIT) {
+      record_synch_name[record_synch_count] = name;
+      record_synch_returning[record_synch_count] = returning;
+      record_synch_thread[record_synch_count] = thr_self();
+      record_synch_arg0ptr[record_synch_count] = &name;
+      record_synch_count++;
+    }
+    // put more checking code here:
+    // ...
+  }
+}
+
+void record_synch_enable() {
+  // start collecting trace data, if not already doing so
+  if (!record_synch_enabled)  record_synch_count = 0;
+  record_synch_enabled = true;
+}
+
+void record_synch_disable() {
+  // stop collecting trace data
+  record_synch_enabled = false;
+}
+
+#endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
+#endif // PRODUCT
+
+const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
+const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
+                               (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
+
+
+// JVMTI & JVM monitoring and management support
+// The thread_cpu_time() and current_thread_cpu_time() are only
+// supported if is_thread_cpu_time_supported() returns true.
+// They are not supported on Solaris T1.
+
+// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
+// are used by JVM M&M and JVMTI to get user+sys or user CPU time
+// of a thread.
+//
+// current_thread_cpu_time() and thread_cpu_time(Thread *)
+// returns the fast estimate available on the platform.
+
+// hrtime_t gethrvtime() return value includes
+// user time but does not include system time
+jlong os::current_thread_cpu_time() {
+  return (jlong) gethrvtime();
+}
+
+jlong os::thread_cpu_time(Thread *thread) {
+  // return user level CPU time only to be consistent with
+  // what current_thread_cpu_time returns.
+  // thread_cpu_time_info() must be changed if this changes
+  return os::thread_cpu_time(thread, false /* user time only */);
+}
+
+jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
+  if (user_sys_cpu_time) {
+    return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
+  } else {
+    return os::current_thread_cpu_time();
+  }
+}
+
+jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
+  char proc_name[64];
+  int count;
+  prusage_t prusage;
+  jlong lwp_time;
+  int fd;
+
+  sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
+                     getpid(),
+                     thread->osthread()->lwp_id());
+  fd = open(proc_name, O_RDONLY);
+  if ( fd == -1 ) return -1;
+
+  do {
+    count = pread(fd,
+                  (void *)&prusage.pr_utime,
+                  thr_time_size,
+                  thr_time_off);
+  } while (count < 0 && errno == EINTR);
+  close(fd);
+  if ( count < 0 ) return -1;
+
+  if (user_sys_cpu_time) {
+    // user + system CPU time
+    lwp_time = (((jlong)prusage.pr_stime.tv_sec +
+                 (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
+                 (jlong)prusage.pr_stime.tv_nsec +
+                 (jlong)prusage.pr_utime.tv_nsec;
+  } else {
+    // user level CPU time only
+    lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
+                (jlong)prusage.pr_utime.tv_nsec;
+  }
+
+  return(lwp_time);
+}
+
+void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
+  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
+  info_ptr->may_skip_backward = false;    // elapsed time not wall time
+  info_ptr->may_skip_forward = false;     // elapsed time not wall time
+  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
+}
+
+void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
+  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
+  info_ptr->may_skip_backward = false;    // elapsed time not wall time
+  info_ptr->may_skip_forward = false;     // elapsed time not wall time
+  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
+}
+
+bool os::is_thread_cpu_time_supported() {
+  if ( os::Solaris::T2_libthread() || UseBoundThreads ) {
+    return true;
+  } else {
+    return false;
+  }
+}
+
+// System loadavg support.  Returns -1 if load average cannot be obtained.
+// Return the load average for our processor set if the primitive exists
+// (Solaris 9 and later).  Otherwise just return system wide loadavg.
+int os::loadavg(double loadavg[], int nelem) {
+  if (pset_getloadavg_ptr != NULL) {
+    return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
+  } else {
+    return ::getloadavg(loadavg, nelem);
+  }
+}
+
+//---------------------------------------------------------------------------------
+#ifndef PRODUCT
+
+static address same_page(address x, address y) {
+  intptr_t page_bits = -os::vm_page_size();
+  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
+    return x;
+  else if (x > y)
+    return (address)(intptr_t(y) | ~page_bits) + 1;
+  else
+    return (address)(intptr_t(y) & page_bits);
+}
+
+bool os::find(address addr) {
+  Dl_info dlinfo;
+  memset(&dlinfo, 0, sizeof(dlinfo));
+  if (dladdr(addr, &dlinfo)) {
+#ifdef _LP64
+    tty->print("0x%016lx: ", addr);
+#else
+    tty->print("0x%08x: ", addr);
+#endif
+    if (dlinfo.dli_sname != NULL)
+      tty->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
+    else if (dlinfo.dli_fname)
+      tty->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
+    else
+      tty->print("<absolute address>");
+    if (dlinfo.dli_fname)  tty->print(" in %s", dlinfo.dli_fname);
+#ifdef _LP64
+    if (dlinfo.dli_fbase)  tty->print(" at 0x%016lx", dlinfo.dli_fbase);
+#else
+    if (dlinfo.dli_fbase)  tty->print(" at 0x%08x", dlinfo.dli_fbase);
+#endif
+    tty->cr();
+
+    if (Verbose) {
+      // decode some bytes around the PC
+      address begin = same_page(addr-40, addr);
+      address end   = same_page(addr+40, addr);
+      address       lowest = (address) dlinfo.dli_sname;
+      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
+      if (begin < lowest)  begin = lowest;
+      Dl_info dlinfo2;
+      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
+          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
+        end = (address) dlinfo2.dli_saddr;
+      Disassembler::decode(begin, end);
+    }
+    return true;
+  }
+  return false;
+}
+
+#endif
+
+
+// Following function has been added to support HotSparc's libjvm.so running
+// under Solaris production JDK 1.2.2 / 1.3.0.  These came from
+// src/solaris/hpi/native_threads in the EVM codebase.
+//
+// NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
+// libraries and should thus be removed. We will leave it behind for a while
+// until we no longer want to able to run on top of 1.3.0 Solaris production
+// JDK. See 4341971.
+
+#define STACK_SLACK 0x800
+
+extern "C" {
+  intptr_t sysThreadAvailableStackWithSlack() {
+    stack_t st;
+    intptr_t retval, stack_top;
+    retval = thr_stksegment(&st);
+    assert(retval == 0, "incorrect return value from thr_stksegment");
+    assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
+    assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
+    stack_top=(intptr_t)st.ss_sp-st.ss_size;
+    return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
+  }
+}
+
+// Just to get the Kernel build to link on solaris for testing.
+
+extern "C" {
+class ASGCT_CallTrace;
+void AsyncGetCallTrace(ASGCT_CallTrace *trace, jint depth, void* ucontext)
+  KERNEL_RETURN;
+}
+
+
+// ObjectMonitor park-unpark infrastructure ...
+//
+// We implement Solaris and Linux PlatformEvents with the
+// obvious condvar-mutex-flag triple.
+// Another alternative that works quite well is pipes:
+// Each PlatformEvent consists of a pipe-pair.
+// The thread associated with the PlatformEvent
+// calls park(), which reads from the input end of the pipe.
+// Unpark() writes into the other end of the pipe.
+// The write-side of the pipe must be set NDELAY.
+// Unfortunately pipes consume a large # of handles.
+// Native solaris lwp_park() and lwp_unpark() work nicely, too.
+// Using pipes for the 1st few threads might be workable, however.
+//
+// park() is permitted to return spuriously.
+// Callers of park() should wrap the call to park() in
+// an appropriate loop.  A litmus test for the correct
+// usage of park is the following: if park() were modified
+// to immediately return 0 your code should still work,
+// albeit degenerating to a spin loop.
+//
+// An interesting optimization for park() is to use a trylock()
+// to attempt to acquire the mutex.  If the trylock() fails
+// then we know that a concurrent unpark() operation is in-progress.
+// in that case the park() code could simply set _count to 0
+// and return immediately.  The subsequent park() operation *might*
+// return immediately.  That's harmless as the caller of park() is
+// expected to loop.  By using trylock() we will have avoided a
+// avoided a context switch caused by contention on the per-thread mutex.
+//
+// TODO-FIXME:
+// 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the
+//     objectmonitor implementation.
+// 2.  Collapse the JSR166 parker event, and the
+//     objectmonitor ParkEvent into a single "Event" construct.
+// 3.  In park() and unpark() add:
+//     assert (Thread::current() == AssociatedWith).
+// 4.  add spurious wakeup injection on a -XX:EarlyParkReturn=N switch.
+//     1-out-of-N park() operations will return immediately.
+//
+// _Event transitions in park()
+//   -1 => -1 : illegal
+//    1 =>  0 : pass - return immediately
+//    0 => -1 : block
+//
+// _Event serves as a restricted-range semaphore.
+//
+// Another possible encoding of _Event would be with
+// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
+//
+// TODO-FIXME: add DTRACE probes for:
+// 1.   Tx parks
+// 2.   Ty unparks Tx
+// 3.   Tx resumes from park
+
+
+// value determined through experimentation
+#define ROUNDINGFIX 11
+
+// utility to compute the abstime argument to timedwait.
+// TODO-FIXME: switch from compute_abstime() to unpackTime().
+
+static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
+  // millis is the relative timeout time
+  // abstime will be the absolute timeout time
+  if (millis < 0)  millis = 0;
+  struct timeval now;
+  int status = gettimeofday(&now, NULL);
+  assert(status == 0, "gettimeofday");
+  jlong seconds = millis / 1000;
+  jlong max_wait_period;
+
+  if (UseLWPSynchronization) {
+    // forward port of fix for 4275818 (not sleeping long enough)
+    // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
+    // _lwp_cond_timedwait() used a round_down algorithm rather
+    // than a round_up. For millis less than our roundfactor
+    // it rounded down to 0 which doesn't meet the spec.
+    // For millis > roundfactor we may return a bit sooner, but
+    // since we can not accurately identify the patch level and
+    // this has already been fixed in Solaris 9 and 8 we will
+    // leave it alone rather than always rounding down.
+
+    if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
+       // It appears that when we go directly through Solaris _lwp_cond_timedwait()
+           // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
+           max_wait_period = 21000000;
+  } else {
+    max_wait_period = 50000000;
+  }
+  millis %= 1000;
+  if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
+     seconds = max_wait_period;
+  }
+  abstime->tv_sec = now.tv_sec  + seconds;
+  long       usec = now.tv_usec + millis * 1000;
+  if (usec >= 1000000) {
+    abstime->tv_sec += 1;
+    usec -= 1000000;
+  }
+  abstime->tv_nsec = usec * 1000;
+  return abstime;
+}
+
+// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
+// Conceptually TryPark() should be equivalent to park(0).
+
+int os::PlatformEvent::TryPark() {
+  for (;;) {
+    const int v = _Event ;
+    guarantee ((v == 0) || (v == 1), "invariant") ;
+    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
+  }
+}
+
+void os::PlatformEvent::park() {           // AKA: down()
+  // Invariant: Only the thread associated with the Event/PlatformEvent
+  // may call park().
+  int v ;
+  for (;;) {
+      v = _Event ;
+      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
+  }
+  guarantee (v >= 0, "invariant") ;
+  if (v == 0) {
+     // Do this the hard way by blocking ...
+     // See http://monaco.sfbay/detail.jsf?cr=5094058.
+     // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
+     // Only for SPARC >= V8PlusA
+#if defined(__sparc) && defined(COMPILER2)
+     if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
+#endif
+     int status = os::Solaris::mutex_lock(_mutex);
+     assert_status(status == 0, status,  "mutex_lock");
+     guarantee (_nParked == 0, "invariant") ;
+     ++ _nParked ;
+     while (_Event < 0) {
+        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
+        // Treat this the same as if the wait was interrupted
+        // With usr/lib/lwp going to kernel, always handle ETIME
+        status = os::Solaris::cond_wait(_cond, _mutex);
+        if (status == ETIME) status = EINTR ;
+        assert_status(status == 0 || status == EINTR, status, "cond_wait");
+     }
+     -- _nParked ;
+     _Event = 0 ;
+     status = os::Solaris::mutex_unlock(_mutex);
+     assert_status(status == 0, status, "mutex_unlock");
+  }
+}
+
+int os::PlatformEvent::park(jlong millis) {
+  guarantee (_nParked == 0, "invariant") ;
+  int v ;
+  for (;;) {
+      v = _Event ;
+      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
+  }
+  guarantee (v >= 0, "invariant") ;
+  if (v != 0) return OS_OK ;
+
+  int ret = OS_TIMEOUT;
+  timestruc_t abst;
+  compute_abstime (&abst, millis);
+
+  // See http://monaco.sfbay/detail.jsf?cr=5094058.
+  // For Solaris SPARC set fprs.FEF=0 prior to parking.
+  // Only for SPARC >= V8PlusA
+#if defined(__sparc) && defined(COMPILER2)
+ if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
+#endif
+  int status = os::Solaris::mutex_lock(_mutex);
+  assert_status(status == 0, status, "mutex_lock");
+  guarantee (_nParked == 0, "invariant") ;
+  ++ _nParked ;
+  while (_Event < 0) {
+     int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
+     assert_status(status == 0 || status == EINTR ||
+                   status == ETIME || status == ETIMEDOUT,
+                   status, "cond_timedwait");
+     if (!FilterSpuriousWakeups) break ;                // previous semantics
+     if (status == ETIME || status == ETIMEDOUT) break ;
+     // We consume and ignore EINTR and spurious wakeups.
+  }
+  -- _nParked ;
+  if (_Event >= 0) ret = OS_OK ;
+  _Event = 0 ;
+  status = os::Solaris::mutex_unlock(_mutex);
+  assert_status(status == 0, status, "mutex_unlock");
+  return ret;
+}
+
+void os::PlatformEvent::unpark() {
+  int v, AnyWaiters;
+
+  // Increment _Event.
+  // Another acceptable implementation would be to simply swap 1
+  // into _Event:
+  //   if (Swap (&_Event, 1) < 0) {
+  //      mutex_lock (_mutex) ; AnyWaiters = nParked; mutex_unlock (_mutex) ;
+  //      if (AnyWaiters) cond_signal (_cond) ;
+  //   }
+
+  for (;;) {
+    v = _Event ;
+    if (v > 0) {
+       // The LD of _Event could have reordered or be satisfied
+       // by a read-aside from this processor's write buffer.
+       // To avoid problems execute a barrier and then
+       // ratify the value.  A degenerate CAS() would also work.
+       // Viz., CAS (v+0, &_Event, v) == v).
+       OrderAccess::fence() ;
+       if (_Event == v) return ;
+       continue ;
+    }
+    if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
+  }
+
+  // If the thread associated with the event was parked, wake it.
+  if (v < 0) {
+     int status ;
+     // Wait for the thread assoc with the PlatformEvent to vacate.
+     status = os::Solaris::mutex_lock(_mutex);
+     assert_status(status == 0, status, "mutex_lock");
+     AnyWaiters = _nParked ;
+     status = os::Solaris::mutex_unlock(_mutex);
+     assert_status(status == 0, status, "mutex_unlock");
+     guarantee (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
+     if (AnyWaiters != 0) {
+       // We intentional signal *after* dropping the lock
+       // to avoid a common class of futile wakeups.
+       status = os::Solaris::cond_signal(_cond);
+       assert_status(status == 0, status, "cond_signal");
+     }
+  }
+}
+
+// JSR166
+// -------------------------------------------------------
+
+/*
+ * The solaris and linux implementations of park/unpark are fairly
+ * conservative for now, but can be improved. They currently use a
+ * mutex/condvar pair, plus _counter.
+ * Park decrements _counter if > 0, else does a condvar wait.  Unpark
+ * sets count to 1 and signals condvar.  Only one thread ever waits
+ * on the condvar. Contention seen when trying to park implies that someone
+ * is unparking you, so don't wait. And spurious returns are fine, so there
+ * is no need to track notifications.
+ */
+
+#define NANOSECS_PER_SEC 1000000000
+#define NANOSECS_PER_MILLISEC 1000000
+#define MAX_SECS 100000000
+
+/*
+ * This code is common to linux and solaris and will be moved to a
+ * common place in dolphin.
+ *
+ * The passed in time value is either a relative time in nanoseconds
+ * or an absolute time in milliseconds. Either way it has to be unpacked
+ * into suitable seconds and nanoseconds components and stored in the
+ * given timespec structure.
+ * Given time is a 64-bit value and the time_t used in the timespec is only
+ * a signed-32-bit value (except on 64-bit Linux) we have to watch for
+ * overflow if times way in the future are given. Further on Solaris versions
+ * prior to 10 there is a restriction (see cond_timedwait) that the specified
+ * number of seconds, in abstime, is less than current_time  + 100,000,000.
+ * As it will be 28 years before "now + 100000000" will overflow we can
+ * ignore overflow and just impose a hard-limit on seconds using the value
+ * of "now + 100,000,000". This places a limit on the timeout of about 3.17
+ * years from "now".
+ */
+static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
+  assert (time > 0, "convertTime");
+
+  struct timeval now;
+  int status = gettimeofday(&now, NULL);
+  assert(status == 0, "gettimeofday");
+
+  time_t max_secs = now.tv_sec + MAX_SECS;
+
+  if (isAbsolute) {
+    jlong secs = time / 1000;
+    if (secs > max_secs) {
+      absTime->tv_sec = max_secs;
+    }
+    else {
+      absTime->tv_sec = secs;
+    }
+    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
+  }
+  else {
+    jlong secs = time / NANOSECS_PER_SEC;
+    if (secs >= MAX_SECS) {
+      absTime->tv_sec = max_secs;
+      absTime->tv_nsec = 0;
+    }
+    else {
+      absTime->tv_sec = now.tv_sec + secs;
+      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
+      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
+        absTime->tv_nsec -= NANOSECS_PER_SEC;
+        ++absTime->tv_sec; // note: this must be <= max_secs
+      }
+    }
+  }
+  assert(absTime->tv_sec >= 0, "tv_sec < 0");
+  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
+  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
+  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
+}
+
+void Parker::park(bool isAbsolute, jlong time) {
+
+  // Optional fast-path check:
+  // Return immediately if a permit is available.
+  if (_counter > 0) {
+      _counter = 0 ;
+      return ;
+  }
+
+  // Optional fast-exit: Check interrupt before trying to wait
+  Thread* thread = Thread::current();
+  assert(thread->is_Java_thread(), "Must be JavaThread");
+  JavaThread *jt = (JavaThread *)thread;
+  if (Thread::is_interrupted(thread, false)) {
+    return;
+  }
+
+  // First, demultiplex/decode time arguments
+  timespec absTime;
+  if (time < 0) { // don't wait at all
+    return;
+  }
+  if (time > 0) {
+    // Warning: this code might be exposed to the old Solaris time
+    // round-down bugs.  Grep "roundingFix" for details.
+    unpackTime(&absTime, isAbsolute, time);
+  }
+
+  // Enter safepoint region
+  // Beware of deadlocks such as 6317397.
+  // The per-thread Parker:: _mutex is a classic leaf-lock.
+  // In particular a thread must never block on the Threads_lock while
+  // holding the Parker:: mutex.  If safepoints are pending both the
+  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
+  ThreadBlockInVM tbivm(jt);
+
+  // Don't wait if cannot get lock since interference arises from
+  // unblocking.  Also. check interrupt before trying wait
+  if (Thread::is_interrupted(thread, false) ||
+      os::Solaris::mutex_trylock(_mutex) != 0) {
+    return;
+  }
+
+  int status ;
+
+  if (_counter > 0)  { // no wait needed
+    _counter = 0;
+    status = os::Solaris::mutex_unlock(_mutex);
+    assert (status == 0, "invariant") ;
+    return;
+  }
+
+#ifdef ASSERT
+  // Don't catch signals while blocked; let the running threads have the signals.
+  // (This allows a debugger to break into the running thread.)
+  sigset_t oldsigs;
+  sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
+  thr_sigsetmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
+#endif
+
+  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
+  jt->set_suspend_equivalent();
+  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
+
+  // Do this the hard way by blocking ...
+  // See http://monaco.sfbay/detail.jsf?cr=5094058.
+  // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
+  // Only for SPARC >= V8PlusA
+#if defined(__sparc) && defined(COMPILER2)
+  if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
+#endif
+
+  if (time == 0) {
+    status = os::Solaris::cond_wait (_cond, _mutex) ;
+  } else {
+    status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
+  }
+  // Note that an untimed cond_wait() can sometimes return ETIME on older
+  // versions of the Solaris.
+  assert_status(status == 0 || status == EINTR ||
+                status == ETIME || status == ETIMEDOUT,
+                status, "cond_timedwait");
+
+#ifdef ASSERT
+  thr_sigsetmask(SIG_SETMASK, &oldsigs, NULL);
+#endif
+  _counter = 0 ;
+  status = os::Solaris::mutex_unlock(_mutex);
+  assert_status(status == 0, status, "mutex_unlock") ;
+
+  // If externally suspended while waiting, re-suspend
+  if (jt->handle_special_suspend_equivalent_condition()) {
+    jt->java_suspend_self();
+  }
+
+}
+
+void Parker::unpark() {
+  int s, status ;
+  status = os::Solaris::mutex_lock (_mutex) ;
+  assert (status == 0, "invariant") ;
+  s = _counter;
+  _counter = 1;
+  status = os::Solaris::mutex_unlock (_mutex) ;
+  assert (status == 0, "invariant") ;
+
+  if (s < 1) {
+    status = os::Solaris::cond_signal (_cond) ;
+    assert (status == 0, "invariant") ;
+  }
+}
+
+extern char** environ;
+
+// Run the specified command in a separate process. Return its exit value,
+// or -1 on failure (e.g. can't fork a new process).
+// Unlike system(), this function can be called from signal handler. It
+// doesn't block SIGINT et al.
+int os::fork_and_exec(char* cmd) {
+  char * argv[4];
+  argv[0] = (char *)"sh";
+  argv[1] = (char *)"-c";
+  argv[2] = cmd;
+  argv[3] = NULL;
+
+  // fork is async-safe, fork1 is not so can't use in signal handler
+  pid_t pid;
+  Thread* t = ThreadLocalStorage::get_thread_slow();
+  if (t != NULL && t->is_inside_signal_handler()) {
+    pid = fork();
+  } else {
+    pid = fork1();
+  }
+
+  if (pid < 0) {
+    // fork failed
+    warning("fork failed: %s", strerror(errno));
+    return -1;
+
+  } else if (pid == 0) {
+    // child process
+
+    // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
+    execve("/usr/bin/sh", argv, environ);
+
+    // execve failed
+    _exit(-1);
+
+  } else  {
+    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
+    // care about the actual exit code, for now.
+
+    int status;
+
+    // Wait for the child process to exit.  This returns immediately if
+    // the child has already exited. */
+    while (waitpid(pid, &status, 0) < 0) {
+        switch (errno) {
+        case ECHILD: return 0;
+        case EINTR: break;
+        default: return -1;
+        }
+    }
+
+    if (WIFEXITED(status)) {
+       // The child exited normally; get its exit code.
+       return WEXITSTATUS(status);
+    } else if (WIFSIGNALED(status)) {
+       // The child exited because of a signal
+       // The best value to return is 0x80 + signal number,
+       // because that is what all Unix shells do, and because
+       // it allows callers to distinguish between process exit and
+       // process death by signal.
+       return 0x80 + WTERMSIG(status);
+    } else {
+       // Unknown exit code; pass it through
+       return status;
+    }
+  }
+}