hotspot/src/os/linux/vm/os_linux.cpp
changeset 1 489c9b5090e2
child 234 4da9c1bbc810
child 193 171c404abf72
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/os/linux/vm/os_linux.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,4594 @@
+/*
+ * Copyright 1999-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+// do not include  precompiled  header file
+# include "incls/_os_linux.cpp.incl"
+
+// put OS-includes here
+# include <sys/types.h>
+# include <sys/mman.h>
+# include <pthread.h>
+# include <signal.h>
+# include <errno.h>
+# include <dlfcn.h>
+# include <stdio.h>
+# include <unistd.h>
+# include <sys/resource.h>
+# include <pthread.h>
+# include <sys/stat.h>
+# include <sys/time.h>
+# include <sys/times.h>
+# include <sys/utsname.h>
+# include <sys/socket.h>
+# include <sys/wait.h>
+# include <pwd.h>
+# include <poll.h>
+# include <semaphore.h>
+# include <fcntl.h>
+# include <string.h>
+# include <syscall.h>
+# include <sys/sysinfo.h>
+# include <gnu/libc-version.h>
+# include <sys/ipc.h>
+# include <sys/shm.h>
+# include <link.h>
+
+#define MAX_PATH    (2 * K)
+
+// for timer info max values which include all bits
+#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
+#define SEC_IN_NANOSECS  1000000000LL
+
+////////////////////////////////////////////////////////////////////////////////
+// global variables
+julong os::Linux::_physical_memory = 0;
+
+address   os::Linux::_initial_thread_stack_bottom = NULL;
+uintptr_t os::Linux::_initial_thread_stack_size   = 0;
+
+int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
+int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
+Mutex* os::Linux::_createThread_lock = NULL;
+pthread_t os::Linux::_main_thread;
+int os::Linux::_page_size = -1;
+bool os::Linux::_is_floating_stack = false;
+bool os::Linux::_is_NPTL = false;
+bool os::Linux::_supports_fast_thread_cpu_time = false;
+char * os::Linux::_glibc_version = NULL;
+char * os::Linux::_libpthread_version = NULL;
+
+static jlong initial_time_count=0;
+
+static int clock_tics_per_sec = 100;
+
+// For diagnostics to print a message once. see run_periodic_checks
+static sigset_t check_signal_done;
+static bool check_signals = true;;
+
+static pid_t _initial_pid = 0;
+
+/* Signal number used to suspend/resume a thread */
+
+/* do not use any signal number less than SIGSEGV, see 4355769 */
+static int SR_signum = SIGUSR2;
+sigset_t SR_sigset;
+
+////////////////////////////////////////////////////////////////////////////////
+// utility functions
+
+static int SR_initialize();
+static int SR_finalize();
+
+julong os::available_memory() {
+  return Linux::available_memory();
+}
+
+julong os::Linux::available_memory() {
+  // values in struct sysinfo are "unsigned long"
+  struct sysinfo si;
+  sysinfo(&si);
+
+  return (julong)si.freeram * si.mem_unit;
+}
+
+julong os::physical_memory() {
+  return Linux::physical_memory();
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// environment support
+
+bool os::getenv(const char* name, char* buf, int len) {
+  const char* val = ::getenv(name);
+  if (val != NULL && strlen(val) < (size_t)len) {
+    strcpy(buf, val);
+    return true;
+  }
+  if (len > 0) buf[0] = 0;  // return a null string
+  return false;
+}
+
+
+// Return true if user is running as root.
+
+bool os::have_special_privileges() {
+  static bool init = false;
+  static bool privileges = false;
+  if (!init) {
+    privileges = (getuid() != geteuid()) || (getgid() != getegid());
+    init = true;
+  }
+  return privileges;
+}
+
+
+#ifndef SYS_gettid
+// i386: 224, ia64: 1105, amd64: 186, sparc 143
+#ifdef __ia64__
+#define SYS_gettid 1105
+#elif __i386__
+#define SYS_gettid 224
+#elif __amd64__
+#define SYS_gettid 186
+#elif __sparc__
+#define SYS_gettid 143
+#else
+#error define gettid for the arch
+#endif
+#endif
+
+// Cpu architecture string
+#if   defined(IA64)
+static char cpu_arch[] = "ia64";
+#elif defined(IA32)
+static char cpu_arch[] = "i386";
+#elif defined(AMD64)
+static char cpu_arch[] = "amd64";
+#elif defined(SPARC)
+#  ifdef _LP64
+static char cpu_arch[] = "sparcv9";
+#  else
+static char cpu_arch[] = "sparc";
+#  endif
+#else
+#error Add appropriate cpu_arch setting
+#endif
+
+
+// pid_t gettid()
+//
+// Returns the kernel thread id of the currently running thread. Kernel
+// thread id is used to access /proc.
+//
+// (Note that getpid() on LinuxThreads returns kernel thread id too; but
+// on NPTL, it returns the same pid for all threads, as required by POSIX.)
+//
+pid_t os::Linux::gettid() {
+  int rslt = syscall(SYS_gettid);
+  if (rslt == -1) {
+     // old kernel, no NPTL support
+     return getpid();
+  } else {
+     return (pid_t)rslt;
+  }
+}
+
+// Most versions of linux have a bug where the number of processors are
+// determined by looking at the /proc file system.  In a chroot environment,
+// the system call returns 1.  This causes the VM to act as if it is
+// a single processor and elide locking (see is_MP() call).
+static bool unsafe_chroot_detected = false;
+static char *unstable_chroot_error = "/proc file system not found.\n"
+              "Java may be unstable running multithreaded in a chroot "
+              "environment on Linux when /proc filesystem is not mounted.";
+
+void os::Linux::initialize_system_info() {
+  _processor_count = sysconf(_SC_NPROCESSORS_CONF);
+  if (_processor_count == 1) {
+    pid_t pid = os::Linux::gettid();
+    char fname[32];
+    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
+    FILE *fp = fopen(fname, "r");
+    if (fp == NULL) {
+      unsafe_chroot_detected = true;
+    } else {
+      fclose(fp);
+    }
+  }
+  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
+  assert(_processor_count > 0, "linux error");
+}
+
+void os::init_system_properties_values() {
+//  char arch[12];
+//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
+
+  // The next steps are taken in the product version:
+  //
+  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
+  // This library should be located at:
+  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
+  //
+  // If "/jre/lib/" appears at the right place in the path, then we
+  // assume libjvm[_g].so is installed in a JDK and we use this path.
+  //
+  // Otherwise exit with message: "Could not create the Java virtual machine."
+  //
+  // The following extra steps are taken in the debugging version:
+  //
+  // If "/jre/lib/" does NOT appear at the right place in the path
+  // instead of exit check for $JAVA_HOME environment variable.
+  //
+  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
+  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
+  // it looks like libjvm[_g].so is installed there
+  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
+  //
+  // Otherwise exit.
+  //
+  // Important note: if the location of libjvm.so changes this
+  // code needs to be changed accordingly.
+
+  // The next few definitions allow the code to be verbatim:
+#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
+#define getenv(n) ::getenv(n)
+
+/*
+ * See ld(1):
+ *      The linker uses the following search paths to locate required
+ *      shared libraries:
+ *        1: ...
+ *        ...
+ *        7: The default directories, normally /lib and /usr/lib.
+ */
+#define DEFAULT_LIBPATH "/lib:/usr/lib"
+
+#define EXTENSIONS_DIR  "/lib/ext"
+#define ENDORSED_DIR    "/lib/endorsed"
+#define REG_DIR         "/usr/java/packages"
+
+  {
+    /* sysclasspath, java_home, dll_dir */
+    {
+        char *home_path;
+        char *dll_path;
+        char *pslash;
+        char buf[MAXPATHLEN];
+        os::jvm_path(buf, sizeof(buf));
+
+        // Found the full path to libjvm.so.
+        // Now cut the path to <java_home>/jre if we can.
+        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
+        pslash = strrchr(buf, '/');
+        if (pslash != NULL)
+            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
+        dll_path = malloc(strlen(buf) + 1);
+        if (dll_path == NULL)
+            return;
+        strcpy(dll_path, buf);
+        Arguments::set_dll_dir(dll_path);
+
+        if (pslash != NULL) {
+            pslash = strrchr(buf, '/');
+            if (pslash != NULL) {
+                *pslash = '\0';       /* get rid of /<arch> */
+                pslash = strrchr(buf, '/');
+                if (pslash != NULL)
+                    *pslash = '\0';   /* get rid of /lib */
+            }
+        }
+
+        home_path = malloc(strlen(buf) + 1);
+        if (home_path == NULL)
+            return;
+        strcpy(home_path, buf);
+        Arguments::set_java_home(home_path);
+
+        if (!set_boot_path('/', ':'))
+            return;
+    }
+
+    /*
+     * Where to look for native libraries
+     *
+     * Note: Due to a legacy implementation, most of the library path
+     * is set in the launcher.  This was to accomodate linking restrictions
+     * on legacy Linux implementations (which are no longer supported).
+     * Eventually, all the library path setting will be done here.
+     *
+     * However, to prevent the proliferation of improperly built native
+     * libraries, the new path component /usr/java/packages is added here.
+     * Eventually, all the library path setting will be done here.
+     */
+    {
+        char *ld_library_path;
+
+        /*
+         * Construct the invariant part of ld_library_path. Note that the
+         * space for the colon and the trailing null are provided by the
+         * nulls included by the sizeof operator (so actually we allocate
+         * a byte more than necessary).
+         */
+        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
+            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
+        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
+
+        /*
+         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
+         * should always exist (until the legacy problem cited above is
+         * addressed).
+         */
+        char *v = getenv("LD_LIBRARY_PATH");
+        if (v != NULL) {
+            char *t = ld_library_path;
+            /* That's +1 for the colon and +1 for the trailing '\0' */
+            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
+            sprintf(ld_library_path, "%s:%s", v, t);
+        }
+        Arguments::set_library_path(ld_library_path);
+    }
+
+    /*
+     * Extensions directories.
+     *
+     * Note that the space for the colon and the trailing null are provided
+     * by the nulls included by the sizeof operator (so actually one byte more
+     * than necessary is allocated).
+     */
+    {
+        char *buf = malloc(strlen(Arguments::get_java_home()) +
+            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
+        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
+            Arguments::get_java_home());
+        Arguments::set_ext_dirs(buf);
+    }
+
+    /* Endorsed standards default directory. */
+    {
+        char * buf;
+        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
+        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
+        Arguments::set_endorsed_dirs(buf);
+    }
+  }
+
+#undef malloc
+#undef getenv
+#undef EXTENSIONS_DIR
+#undef ENDORSED_DIR
+
+  // Done
+  return;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// breakpoint support
+
+void os::breakpoint() {
+  BREAKPOINT;
+}
+
+extern "C" void breakpoint() {
+  // use debugger to set breakpoint here
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// signal support
+
+debug_only(static bool signal_sets_initialized = false);
+static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
+
+bool os::Linux::is_sig_ignored(int sig) {
+      struct sigaction oact;
+      sigaction(sig, (struct sigaction*)NULL, &oact);
+      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
+                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
+      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
+           return true;
+      else
+           return false;
+}
+
+void os::Linux::signal_sets_init() {
+  // Should also have an assertion stating we are still single-threaded.
+  assert(!signal_sets_initialized, "Already initialized");
+  // Fill in signals that are necessarily unblocked for all threads in
+  // the VM. Currently, we unblock the following signals:
+  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
+  //                         by -Xrs (=ReduceSignalUsage));
+  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
+  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
+  // the dispositions or masks wrt these signals.
+  // Programs embedding the VM that want to use the above signals for their
+  // own purposes must, at this time, use the "-Xrs" option to prevent
+  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
+  // (See bug 4345157, and other related bugs).
+  // In reality, though, unblocking these signals is really a nop, since
+  // these signals are not blocked by default.
+  sigemptyset(&unblocked_sigs);
+  sigemptyset(&allowdebug_blocked_sigs);
+  sigaddset(&unblocked_sigs, SIGILL);
+  sigaddset(&unblocked_sigs, SIGSEGV);
+  sigaddset(&unblocked_sigs, SIGBUS);
+  sigaddset(&unblocked_sigs, SIGFPE);
+  sigaddset(&unblocked_sigs, SR_signum);
+
+  if (!ReduceSignalUsage) {
+   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
+      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
+      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
+   }
+   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
+      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
+      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
+   }
+   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
+      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
+      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
+   }
+  }
+  // Fill in signals that are blocked by all but the VM thread.
+  sigemptyset(&vm_sigs);
+  if (!ReduceSignalUsage)
+    sigaddset(&vm_sigs, BREAK_SIGNAL);
+  debug_only(signal_sets_initialized = true);
+
+}
+
+// These are signals that are unblocked while a thread is running Java.
+// (For some reason, they get blocked by default.)
+sigset_t* os::Linux::unblocked_signals() {
+  assert(signal_sets_initialized, "Not initialized");
+  return &unblocked_sigs;
+}
+
+// These are the signals that are blocked while a (non-VM) thread is
+// running Java. Only the VM thread handles these signals.
+sigset_t* os::Linux::vm_signals() {
+  assert(signal_sets_initialized, "Not initialized");
+  return &vm_sigs;
+}
+
+// These are signals that are blocked during cond_wait to allow debugger in
+sigset_t* os::Linux::allowdebug_blocked_signals() {
+  assert(signal_sets_initialized, "Not initialized");
+  return &allowdebug_blocked_sigs;
+}
+
+void os::Linux::hotspot_sigmask(Thread* thread) {
+
+  //Save caller's signal mask before setting VM signal mask
+  sigset_t caller_sigmask;
+  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
+
+  OSThread* osthread = thread->osthread();
+  osthread->set_caller_sigmask(caller_sigmask);
+
+  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
+
+  if (!ReduceSignalUsage) {
+    if (thread->is_VM_thread()) {
+      // Only the VM thread handles BREAK_SIGNAL ...
+      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
+    } else {
+      // ... all other threads block BREAK_SIGNAL
+      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
+    }
+  }
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// detecting pthread library
+
+void os::Linux::libpthread_init() {
+  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
+  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
+  // generic name for earlier versions.
+  // Define macros here so we can build HotSpot on old systems.
+# ifndef _CS_GNU_LIBC_VERSION
+# define _CS_GNU_LIBC_VERSION 2
+# endif
+# ifndef _CS_GNU_LIBPTHREAD_VERSION
+# define _CS_GNU_LIBPTHREAD_VERSION 3
+# endif
+
+  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
+  if (n > 0) {
+     char *str = (char *)malloc(n);
+     confstr(_CS_GNU_LIBC_VERSION, str, n);
+     os::Linux::set_glibc_version(str);
+  } else {
+     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
+     static char _gnu_libc_version[32];
+     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
+              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
+     os::Linux::set_glibc_version(_gnu_libc_version);
+  }
+
+  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
+  if (n > 0) {
+     char *str = (char *)malloc(n);
+     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
+
+     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
+     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
+     // is the case:
+     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
+         strstr(str, "NPTL")) {
+        // LinuxThreads has a hard limit on max number of threads. So
+        // sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
+        // On the other hand, NPTL does not have such a limit, sysconf()
+        // will return -1 and errno is not changed. Check if it is really
+        // NPTL:
+        if (sysconf(_SC_THREAD_THREADS_MAX) > 0) {
+           free(str);
+           str = "linuxthreads";
+        }
+     }
+     os::Linux::set_libpthread_version(str);
+  } else {
+     // glibc before 2.3.2 only has LinuxThreads.
+     os::Linux::set_libpthread_version("linuxthreads");
+  }
+
+  if (strstr(libpthread_version(), "NPTL")) {
+     os::Linux::set_is_NPTL();
+  } else {
+     os::Linux::set_is_LinuxThreads();
+  }
+
+  // LinuxThreads have two flavors: floating-stack mode, which allows variable
+  // stack size; and fixed-stack mode. NPTL is always floating-stack.
+  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
+     os::Linux::set_is_floating_stack();
+  }
+}
+
+/////////////////////////////////////////////////////////////////////////////
+// thread stack
+
+// Force Linux kernel to expand current thread stack. If "bottom" is close
+// to the stack guard, caller should block all signals.
+//
+// MAP_GROWSDOWN:
+//   A special mmap() flag that is used to implement thread stacks. It tells
+//   kernel that the memory region should extend downwards when needed. This
+//   allows early versions of LinuxThreads to only mmap the first few pages
+//   when creating a new thread. Linux kernel will automatically expand thread
+//   stack as needed (on page faults).
+//
+//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
+//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
+//   region, it's hard to tell if the fault is due to a legitimate stack
+//   access or because of reading/writing non-exist memory (e.g. buffer
+//   overrun). As a rule, if the fault happens below current stack pointer,
+//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
+//   application (see Linux kernel fault.c).
+//
+//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
+//   stack overflow detection.
+//
+//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
+//   not use this flag. However, the stack of initial thread is not created
+//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
+//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
+//   and then attach the thread to JVM.
+//
+// To get around the problem and allow stack banging on Linux, we need to
+// manually expand thread stack after receiving the SIGSEGV.
+//
+// There are two ways to expand thread stack to address "bottom", we used
+// both of them in JVM before 1.5:
+//   1. adjust stack pointer first so that it is below "bottom", and then
+//      touch "bottom"
+//   2. mmap() the page in question
+//
+// Now alternate signal stack is gone, it's harder to use 2. For instance,
+// if current sp is already near the lower end of page 101, and we need to
+// call mmap() to map page 100, it is possible that part of the mmap() frame
+// will be placed in page 100. When page 100 is mapped, it is zero-filled.
+// That will destroy the mmap() frame and cause VM to crash.
+//
+// The following code works by adjusting sp first, then accessing the "bottom"
+// page to force a page fault. Linux kernel will then automatically expand the
+// stack mapping.
+//
+// _expand_stack_to() assumes its frame size is less than page size, which
+// should always be true if the function is not inlined.
+
+#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
+#define NOINLINE
+#else
+#define NOINLINE __attribute__ ((noinline))
+#endif
+
+static void _expand_stack_to(address bottom) NOINLINE;
+
+static void _expand_stack_to(address bottom) {
+  address sp;
+  size_t size;
+  volatile char *p;
+
+  // Adjust bottom to point to the largest address within the same page, it
+  // gives us a one-page buffer if alloca() allocates slightly more memory.
+  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
+  bottom += os::Linux::page_size() - 1;
+
+  // sp might be slightly above current stack pointer; if that's the case, we
+  // will alloca() a little more space than necessary, which is OK. Don't use
+  // os::current_stack_pointer(), as its result can be slightly below current
+  // stack pointer, causing us to not alloca enough to reach "bottom".
+  sp = (address)&sp;
+
+  if (sp > bottom) {
+    size = sp - bottom;
+    p = (volatile char *)alloca(size);
+    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
+    p[0] = '\0';
+  }
+}
+
+bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
+  assert(t!=NULL, "just checking");
+  assert(t->osthread()->expanding_stack(), "expand should be set");
+  assert(t->stack_base() != NULL, "stack_base was not initialized");
+
+  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
+    sigset_t mask_all, old_sigset;
+    sigfillset(&mask_all);
+    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
+    _expand_stack_to(addr);
+    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
+    return true;
+  }
+  return false;
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// create new thread
+
+static address highest_vm_reserved_address();
+
+// check if it's safe to start a new thread
+static bool _thread_safety_check(Thread* thread) {
+  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
+    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
+    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
+    //   allocated (MAP_FIXED) from high address space. Every thread stack
+    //   occupies a fixed size slot (usually 2Mbytes, but user can change
+    //   it to other values if they rebuild LinuxThreads).
+    //
+    // Problem with MAP_FIXED is that mmap() can still succeed even part of
+    // the memory region has already been mmap'ed. That means if we have too
+    // many threads and/or very large heap, eventually thread stack will
+    // collide with heap.
+    //
+    // Here we try to prevent heap/stack collision by comparing current
+    // stack bottom with the highest address that has been mmap'ed by JVM
+    // plus a safety margin for memory maps created by native code.
+    //
+    // This feature can be disabled by setting ThreadSafetyMargin to 0
+    //
+    if (ThreadSafetyMargin > 0) {
+      address stack_bottom = os::current_stack_base() - os::current_stack_size();
+
+      // not safe if our stack extends below the safety margin
+      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
+    } else {
+      return true;
+    }
+  } else {
+    // Floating stack LinuxThreads or NPTL:
+    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
+    //   there's not enough space left, pthread_create() will fail. If we come
+    //   here, that means enough space has been reserved for stack.
+    return true;
+  }
+}
+
+// Thread start routine for all newly created threads
+static void *java_start(Thread *thread) {
+  // Try to randomize the cache line index of hot stack frames.
+  // This helps when threads of the same stack traces evict each other's
+  // cache lines. The threads can be either from the same JVM instance, or
+  // from different JVM instances. The benefit is especially true for
+  // processors with hyperthreading technology.
+  static int counter = 0;
+  int pid = os::current_process_id();
+  alloca(((pid ^ counter++) & 7) * 128);
+
+  ThreadLocalStorage::set_thread(thread);
+
+  OSThread* osthread = thread->osthread();
+  Monitor* sync = osthread->startThread_lock();
+
+  // non floating stack LinuxThreads needs extra check, see above
+  if (!_thread_safety_check(thread)) {
+    // notify parent thread
+    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
+    osthread->set_state(ZOMBIE);
+    sync->notify_all();
+    return NULL;
+  }
+
+  // thread_id is kernel thread id (similar to Solaris LWP id)
+  osthread->set_thread_id(os::Linux::gettid());
+
+  if (UseNUMA) {
+    int lgrp_id = os::numa_get_group_id();
+    if (lgrp_id != -1) {
+      thread->set_lgrp_id(lgrp_id);
+    }
+  }
+  // initialize signal mask for this thread
+  os::Linux::hotspot_sigmask(thread);
+
+  // initialize floating point control register
+  os::Linux::init_thread_fpu_state();
+
+  // handshaking with parent thread
+  {
+    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
+
+    // notify parent thread
+    osthread->set_state(INITIALIZED);
+    sync->notify_all();
+
+    // wait until os::start_thread()
+    while (osthread->get_state() == INITIALIZED) {
+      sync->wait(Mutex::_no_safepoint_check_flag);
+    }
+  }
+
+  // call one more level start routine
+  thread->run();
+
+  return 0;
+}
+
+bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
+  assert(thread->osthread() == NULL, "caller responsible");
+
+  // Allocate the OSThread object
+  OSThread* osthread = new OSThread(NULL, NULL);
+  if (osthread == NULL) {
+    return false;
+  }
+
+  // set the correct thread state
+  osthread->set_thread_type(thr_type);
+
+  // Initial state is ALLOCATED but not INITIALIZED
+  osthread->set_state(ALLOCATED);
+
+  thread->set_osthread(osthread);
+
+  // init thread attributes
+  pthread_attr_t attr;
+  pthread_attr_init(&attr);
+  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
+
+  // stack size
+  if (os::Linux::supports_variable_stack_size()) {
+    // calculate stack size if it's not specified by caller
+    if (stack_size == 0) {
+      stack_size = os::Linux::default_stack_size(thr_type);
+
+      switch (thr_type) {
+      case os::java_thread:
+        // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
+        if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
+        break;
+      case os::compiler_thread:
+        if (CompilerThreadStackSize > 0) {
+          stack_size = (size_t)(CompilerThreadStackSize * K);
+          break;
+        } // else fall through:
+          // use VMThreadStackSize if CompilerThreadStackSize is not defined
+      case os::vm_thread:
+      case os::pgc_thread:
+      case os::cgc_thread:
+      case os::watcher_thread:
+        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
+        break;
+      }
+    }
+
+    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
+    pthread_attr_setstacksize(&attr, stack_size);
+  } else {
+    // let pthread_create() pick the default value.
+  }
+
+  // glibc guard page
+  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
+
+  ThreadState state;
+
+  {
+    // Serialize thread creation if we are running with fixed stack LinuxThreads
+    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
+    if (lock) {
+      os::Linux::createThread_lock()->lock_without_safepoint_check();
+    }
+
+    pthread_t tid;
+    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
+
+    pthread_attr_destroy(&attr);
+
+    if (ret != 0) {
+      if (PrintMiscellaneous && (Verbose || WizardMode)) {
+        perror("pthread_create()");
+      }
+      // Need to clean up stuff we've allocated so far
+      thread->set_osthread(NULL);
+      delete osthread;
+      if (lock) os::Linux::createThread_lock()->unlock();
+      return false;
+    }
+
+    // Store pthread info into the OSThread
+    osthread->set_pthread_id(tid);
+
+    // Wait until child thread is either initialized or aborted
+    {
+      Monitor* sync_with_child = osthread->startThread_lock();
+      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
+      while ((state = osthread->get_state()) == ALLOCATED) {
+        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
+      }
+    }
+
+    if (lock) {
+      os::Linux::createThread_lock()->unlock();
+    }
+  }
+
+  // Aborted due to thread limit being reached
+  if (state == ZOMBIE) {
+      thread->set_osthread(NULL);
+      delete osthread;
+      return false;
+  }
+
+  // The thread is returned suspended (in state INITIALIZED),
+  // and is started higher up in the call chain
+  assert(state == INITIALIZED, "race condition");
+  return true;
+}
+
+/////////////////////////////////////////////////////////////////////////////
+// attach existing thread
+
+// bootstrap the main thread
+bool os::create_main_thread(JavaThread* thread) {
+  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
+  return create_attached_thread(thread);
+}
+
+bool os::create_attached_thread(JavaThread* thread) {
+#ifdef ASSERT
+    thread->verify_not_published();
+#endif
+
+  // Allocate the OSThread object
+  OSThread* osthread = new OSThread(NULL, NULL);
+
+  if (osthread == NULL) {
+    return false;
+  }
+
+  // Store pthread info into the OSThread
+  osthread->set_thread_id(os::Linux::gettid());
+  osthread->set_pthread_id(::pthread_self());
+
+  // initialize floating point control register
+  os::Linux::init_thread_fpu_state();
+
+  // Initial thread state is RUNNABLE
+  osthread->set_state(RUNNABLE);
+
+  thread->set_osthread(osthread);
+
+  if (UseNUMA) {
+    int lgrp_id = os::numa_get_group_id();
+    if (lgrp_id != -1) {
+      thread->set_lgrp_id(lgrp_id);
+    }
+  }
+
+  if (os::Linux::is_initial_thread()) {
+    // If current thread is initial thread, its stack is mapped on demand,
+    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
+    // the entire stack region to avoid SEGV in stack banging.
+    // It is also useful to get around the heap-stack-gap problem on SuSE
+    // kernel (see 4821821 for details). We first expand stack to the top
+    // of yellow zone, then enable stack yellow zone (order is significant,
+    // enabling yellow zone first will crash JVM on SuSE Linux), so there
+    // is no gap between the last two virtual memory regions.
+
+    JavaThread *jt = (JavaThread *)thread;
+    address addr = jt->stack_yellow_zone_base();
+    assert(addr != NULL, "initialization problem?");
+    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
+
+    osthread->set_expanding_stack();
+    os::Linux::manually_expand_stack(jt, addr);
+    osthread->clear_expanding_stack();
+  }
+
+  // initialize signal mask for this thread
+  // and save the caller's signal mask
+  os::Linux::hotspot_sigmask(thread);
+
+  return true;
+}
+
+void os::pd_start_thread(Thread* thread) {
+  OSThread * osthread = thread->osthread();
+  assert(osthread->get_state() != INITIALIZED, "just checking");
+  Monitor* sync_with_child = osthread->startThread_lock();
+  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
+  sync_with_child->notify();
+}
+
+// Free Linux resources related to the OSThread
+void os::free_thread(OSThread* osthread) {
+  assert(osthread != NULL, "osthread not set");
+
+  if (Thread::current()->osthread() == osthread) {
+    // Restore caller's signal mask
+    sigset_t sigmask = osthread->caller_sigmask();
+    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
+   }
+
+  delete osthread;
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// thread local storage
+
+int os::allocate_thread_local_storage() {
+  pthread_key_t key;
+  int rslt = pthread_key_create(&key, NULL);
+  assert(rslt == 0, "cannot allocate thread local storage");
+  return (int)key;
+}
+
+// Note: This is currently not used by VM, as we don't destroy TLS key
+// on VM exit.
+void os::free_thread_local_storage(int index) {
+  int rslt = pthread_key_delete((pthread_key_t)index);
+  assert(rslt == 0, "invalid index");
+}
+
+void os::thread_local_storage_at_put(int index, void* value) {
+  int rslt = pthread_setspecific((pthread_key_t)index, value);
+  assert(rslt == 0, "pthread_setspecific failed");
+}
+
+extern "C" Thread* get_thread() {
+  return ThreadLocalStorage::thread();
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// initial thread
+
+// Check if current thread is the initial thread, similar to Solaris thr_main.
+bool os::Linux::is_initial_thread(void) {
+  char dummy;
+  // If called before init complete, thread stack bottom will be null.
+  // Can be called if fatal error occurs before initialization.
+  if (initial_thread_stack_bottom() == NULL) return false;
+  assert(initial_thread_stack_bottom() != NULL &&
+         initial_thread_stack_size()   != 0,
+         "os::init did not locate initial thread's stack region");
+  if ((address)&dummy >= initial_thread_stack_bottom() &&
+      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
+       return true;
+  else return false;
+}
+
+// Find the virtual memory area that contains addr
+static bool find_vma(address addr, address* vma_low, address* vma_high) {
+  FILE *fp = fopen("/proc/self/maps", "r");
+  if (fp) {
+    address low, high;
+    while (!feof(fp)) {
+      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
+        if (low <= addr && addr < high) {
+           if (vma_low)  *vma_low  = low;
+           if (vma_high) *vma_high = high;
+           fclose (fp);
+           return true;
+        }
+      }
+      for (;;) {
+        int ch = fgetc(fp);
+        if (ch == EOF || ch == (int)'\n') break;
+      }
+    }
+    fclose(fp);
+  }
+  return false;
+}
+
+// Locate initial thread stack. This special handling of initial thread stack
+// is needed because pthread_getattr_np() on most (all?) Linux distros returns
+// bogus value for initial thread.
+void os::Linux::capture_initial_stack(size_t max_size) {
+  // stack size is the easy part, get it from RLIMIT_STACK
+  size_t stack_size;
+  struct rlimit rlim;
+  getrlimit(RLIMIT_STACK, &rlim);
+  stack_size = rlim.rlim_cur;
+
+  // 6308388: a bug in ld.so will relocate its own .data section to the
+  //   lower end of primordial stack; reduce ulimit -s value a little bit
+  //   so we won't install guard page on ld.so's data section.
+  stack_size -= 2 * page_size();
+
+  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
+  //   7.1, in both cases we will get 2G in return value.
+  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
+  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
+  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
+  //   in case other parts in glibc still assumes 2M max stack size.
+  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
+#ifndef IA64
+  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
+#else
+  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
+  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
+#endif
+
+  // Try to figure out where the stack base (top) is. This is harder.
+  //
+  // When an application is started, glibc saves the initial stack pointer in
+  // a global variable "__libc_stack_end", which is then used by system
+  // libraries. __libc_stack_end should be pretty close to stack top. The
+  // variable is available since the very early days. However, because it is
+  // a private interface, it could disappear in the future.
+  //
+  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
+  // to __libc_stack_end, it is very close to stack top, but isn't the real
+  // stack top. Note that /proc may not exist if VM is running as a chroot
+  // program, so reading /proc/<pid>/stat could fail. Also the contents of
+  // /proc/<pid>/stat could change in the future (though unlikely).
+  //
+  // We try __libc_stack_end first. If that doesn't work, look for
+  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
+  // as a hint, which should work well in most cases.
+
+  uintptr_t stack_start;
+
+  // try __libc_stack_end first
+  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
+  if (p && *p) {
+    stack_start = *p;
+  } else {
+    // see if we can get the start_stack field from /proc/self/stat
+    FILE *fp;
+    int pid;
+    char state;
+    int ppid;
+    int pgrp;
+    int session;
+    int nr;
+    int tpgrp;
+    unsigned long flags;
+    unsigned long minflt;
+    unsigned long cminflt;
+    unsigned long majflt;
+    unsigned long cmajflt;
+    unsigned long utime;
+    unsigned long stime;
+    long cutime;
+    long cstime;
+    long prio;
+    long nice;
+    long junk;
+    long it_real;
+    uintptr_t start;
+    uintptr_t vsize;
+    uintptr_t rss;
+    unsigned long rsslim;
+    uintptr_t scodes;
+    uintptr_t ecode;
+    int i;
+
+    // Figure what the primordial thread stack base is. Code is inspired
+    // by email from Hans Boehm. /proc/self/stat begins with current pid,
+    // followed by command name surrounded by parentheses, state, etc.
+    char stat[2048];
+    int statlen;
+
+    fp = fopen("/proc/self/stat", "r");
+    if (fp) {
+      statlen = fread(stat, 1, 2047, fp);
+      stat[statlen] = '\0';
+      fclose(fp);
+
+      // Skip pid and the command string. Note that we could be dealing with
+      // weird command names, e.g. user could decide to rename java launcher
+      // to "java 1.4.2 :)", then the stat file would look like
+      //                1234 (java 1.4.2 :)) R ... ...
+      // We don't really need to know the command string, just find the last
+      // occurrence of ")" and then start parsing from there. See bug 4726580.
+      char * s = strrchr(stat, ')');
+
+      i = 0;
+      if (s) {
+        // Skip blank chars
+        do s++; while (isspace(*s));
+
+        /*                                     1   1   1   1   1   1   1   1   1   1   2   2   2   2   2   2   2   2   2 */
+        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1   2   3   4   5   6   7   8 */
+        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld %lu %lu %ld %lu %lu %lu %lu",
+             &state,          /* 3  %c  */
+             &ppid,           /* 4  %d  */
+             &pgrp,           /* 5  %d  */
+             &session,        /* 6  %d  */
+             &nr,             /* 7  %d  */
+             &tpgrp,          /* 8  %d  */
+             &flags,          /* 9  %lu  */
+             &minflt,         /* 10 %lu  */
+             &cminflt,        /* 11 %lu  */
+             &majflt,         /* 12 %lu  */
+             &cmajflt,        /* 13 %lu  */
+             &utime,          /* 14 %lu  */
+             &stime,          /* 15 %lu  */
+             &cutime,         /* 16 %ld  */
+             &cstime,         /* 17 %ld  */
+             &prio,           /* 18 %ld  */
+             &nice,           /* 19 %ld  */
+             &junk,           /* 20 %ld  */
+             &it_real,        /* 21 %ld  */
+             &start,          /* 22 %lu  */
+             &vsize,          /* 23 %lu  */
+             &rss,            /* 24 %ld  */
+             &rsslim,         /* 25 %lu  */
+             &scodes,         /* 26 %lu  */
+             &ecode,          /* 27 %lu  */
+             &stack_start);   /* 28 %lu  */
+      }
+
+      if (i != 28 - 2) {
+         assert(false, "Bad conversion from /proc/self/stat");
+         // product mode - assume we are the initial thread, good luck in the
+         // embedded case.
+         warning("Can't detect initial thread stack location - bad conversion");
+         stack_start = (uintptr_t) &rlim;
+      }
+    } else {
+      // For some reason we can't open /proc/self/stat (for example, running on
+      // FreeBSD with a Linux emulator, or inside chroot), this should work for
+      // most cases, so don't abort:
+      warning("Can't detect initial thread stack location - no /proc/self/stat");
+      stack_start = (uintptr_t) &rlim;
+    }
+  }
+
+  // Now we have a pointer (stack_start) very close to the stack top, the
+  // next thing to do is to figure out the exact location of stack top. We
+  // can find out the virtual memory area that contains stack_start by
+  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
+  // and its upper limit is the real stack top. (again, this would fail if
+  // running inside chroot, because /proc may not exist.)
+
+  uintptr_t stack_top;
+  address low, high;
+  if (find_vma((address)stack_start, &low, &high)) {
+    // success, "high" is the true stack top. (ignore "low", because initial
+    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
+    stack_top = (uintptr_t)high;
+  } else {
+    // failed, likely because /proc/self/maps does not exist
+    warning("Can't detect initial thread stack location - find_vma failed");
+    // best effort: stack_start is normally within a few pages below the real
+    // stack top, use it as stack top, and reduce stack size so we won't put
+    // guard page outside stack.
+    stack_top = stack_start;
+    stack_size -= 16 * page_size();
+  }
+
+  // stack_top could be partially down the page so align it
+  stack_top = align_size_up(stack_top, page_size());
+
+  if (max_size && stack_size > max_size) {
+     _initial_thread_stack_size = max_size;
+  } else {
+     _initial_thread_stack_size = stack_size;
+  }
+
+  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
+  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// time support
+
+// Time since start-up in seconds to a fine granularity.
+// Used by VMSelfDestructTimer and the MemProfiler.
+double os::elapsedTime() {
+
+  return (double)(os::elapsed_counter()) * 0.000001;
+}
+
+jlong os::elapsed_counter() {
+  timeval time;
+  int status = gettimeofday(&time, NULL);
+  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
+}
+
+jlong os::elapsed_frequency() {
+  return (1000 * 1000);
+}
+
+jlong os::timeofday() {
+  timeval time;
+  int status = gettimeofday(&time, NULL);
+  assert(status != -1, "linux error");
+  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
+}
+
+// Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
+// _use_global_time is only set if CacheTimeMillis is true
+jlong os::javaTimeMillis() {
+  return (_use_global_time ? read_global_time() : timeofday());
+}
+
+#ifndef CLOCK_MONOTONIC
+#define CLOCK_MONOTONIC (1)
+#endif
+
+void os::Linux::clock_init() {
+  // we do dlopen's in this particular order due to bug in linux
+  // dynamical loader (see 6348968) leading to crash on exit
+  void* handle = dlopen("librt.so.1", RTLD_LAZY);
+  if (handle == NULL) {
+    handle = dlopen("librt.so", RTLD_LAZY);
+  }
+
+  if (handle) {
+    int (*clock_getres_func)(clockid_t, struct timespec*) =
+           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
+    int (*clock_gettime_func)(clockid_t, struct timespec*) =
+           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
+    if (clock_getres_func && clock_gettime_func) {
+      // See if monotonic clock is supported by the kernel. Note that some
+      // early implementations simply return kernel jiffies (updated every
+      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
+      // for nano time (though the monotonic property is still nice to have).
+      // It's fixed in newer kernels, however clock_getres() still returns
+      // 1/HZ. We check if clock_getres() works, but will ignore its reported
+      // resolution for now. Hopefully as people move to new kernels, this
+      // won't be a problem.
+      struct timespec res;
+      struct timespec tp;
+      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
+          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
+        // yes, monotonic clock is supported
+        _clock_gettime = clock_gettime_func;
+      } else {
+        // close librt if there is no monotonic clock
+        dlclose(handle);
+      }
+    }
+  }
+}
+
+#ifndef SYS_clock_getres
+
+#if defined(IA32) || defined(AMD64)
+#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
+#else
+#error Value of SYS_clock_getres not known on this platform
+#endif
+
+#endif
+
+#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
+
+void os::Linux::fast_thread_clock_init() {
+  if (!UseLinuxPosixThreadCPUClocks) {
+    return;
+  }
+  clockid_t clockid;
+  struct timespec tp;
+  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
+      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
+
+  // Switch to using fast clocks for thread cpu time if
+  // the sys_clock_getres() returns 0 error code.
+  // Note, that some kernels may support the current thread
+  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
+  // returned by the pthread_getcpuclockid().
+  // If the fast Posix clocks are supported then the sys_clock_getres()
+  // must return at least tp.tv_sec == 0 which means a resolution
+  // better than 1 sec. This is extra check for reliability.
+
+  if(pthread_getcpuclockid_func &&
+     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
+     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
+
+    _supports_fast_thread_cpu_time = true;
+    _pthread_getcpuclockid = pthread_getcpuclockid_func;
+  }
+}
+
+jlong os::javaTimeNanos() {
+  if (Linux::supports_monotonic_clock()) {
+    struct timespec tp;
+    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
+    assert(status == 0, "gettime error");
+    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
+    return result;
+  } else {
+    timeval time;
+    int status = gettimeofday(&time, NULL);
+    assert(status != -1, "linux error");
+    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
+    return 1000 * usecs;
+  }
+}
+
+void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
+  if (Linux::supports_monotonic_clock()) {
+    info_ptr->max_value = ALL_64_BITS;
+
+    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
+    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
+    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
+  } else {
+    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
+    info_ptr->max_value = ALL_64_BITS;
+
+    // gettimeofday is a real time clock so it skips
+    info_ptr->may_skip_backward = true;
+    info_ptr->may_skip_forward = true;
+  }
+
+  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
+}
+
+// Return the real, user, and system times in seconds from an
+// arbitrary fixed point in the past.
+bool os::getTimesSecs(double* process_real_time,
+                      double* process_user_time,
+                      double* process_system_time) {
+  struct tms ticks;
+  clock_t real_ticks = times(&ticks);
+
+  if (real_ticks == (clock_t) (-1)) {
+    return false;
+  } else {
+    double ticks_per_second = (double) clock_tics_per_sec;
+    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
+    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
+    *process_real_time = ((double) real_ticks) / ticks_per_second;
+
+    return true;
+  }
+}
+
+
+char * os::local_time_string(char *buf, size_t buflen) {
+  struct tm t;
+  time_t long_time;
+  time(&long_time);
+  localtime_r(&long_time, &t);
+  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
+               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
+               t.tm_hour, t.tm_min, t.tm_sec);
+  return buf;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// runtime exit support
+
+// Note: os::shutdown() might be called very early during initialization, or
+// called from signal handler. Before adding something to os::shutdown(), make
+// sure it is async-safe and can handle partially initialized VM.
+void os::shutdown() {
+
+  // allow PerfMemory to attempt cleanup of any persistent resources
+  perfMemory_exit();
+
+  // needs to remove object in file system
+  AttachListener::abort();
+
+  // flush buffered output, finish log files
+  ostream_abort();
+
+  // Check for abort hook
+  abort_hook_t abort_hook = Arguments::abort_hook();
+  if (abort_hook != NULL) {
+    abort_hook();
+  }
+
+}
+
+// Note: os::abort() might be called very early during initialization, or
+// called from signal handler. Before adding something to os::abort(), make
+// sure it is async-safe and can handle partially initialized VM.
+void os::abort(bool dump_core) {
+  os::shutdown();
+  if (dump_core) {
+#ifndef PRODUCT
+    fdStream out(defaultStream::output_fd());
+    out.print_raw("Current thread is ");
+    char buf[16];
+    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
+    out.print_raw_cr(buf);
+    out.print_raw_cr("Dumping core ...");
+#endif
+    ::abort(); // dump core
+  }
+
+  ::exit(1);
+}
+
+// Die immediately, no exit hook, no abort hook, no cleanup.
+void os::die() {
+  // _exit() on LinuxThreads only kills current thread
+  ::abort();
+}
+
+// unused on linux for now.
+void os::set_error_file(const char *logfile) {}
+
+intx os::current_thread_id() { return (intx)pthread_self(); }
+int os::current_process_id() {
+
+  // Under the old linux thread library, linux gives each thread
+  // its own process id. Because of this each thread will return
+  // a different pid if this method were to return the result
+  // of getpid(2). Linux provides no api that returns the pid
+  // of the launcher thread for the vm. This implementation
+  // returns a unique pid, the pid of the launcher thread
+  // that starts the vm 'process'.
+
+  // Under the NPTL, getpid() returns the same pid as the
+  // launcher thread rather than a unique pid per thread.
+  // Use gettid() if you want the old pre NPTL behaviour.
+
+  // if you are looking for the result of a call to getpid() that
+  // returns a unique pid for the calling thread, then look at the
+  // OSThread::thread_id() method in osThread_linux.hpp file
+
+  return (int)(_initial_pid ? _initial_pid : getpid());
+}
+
+// DLL functions
+
+const char* os::dll_file_extension() { return ".so"; }
+
+const char* os::get_temp_directory() { return "/tmp/"; }
+
+const char* os::get_current_directory(char *buf, int buflen) {
+  return getcwd(buf, buflen);
+}
+
+// check if addr is inside libjvm[_g].so
+bool os::address_is_in_vm(address addr) {
+  static address libjvm_base_addr;
+  Dl_info dlinfo;
+
+  if (libjvm_base_addr == NULL) {
+    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
+    libjvm_base_addr = (address)dlinfo.dli_fbase;
+    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
+  }
+
+  if (dladdr((void *)addr, &dlinfo)) {
+    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
+  }
+
+  return false;
+}
+
+bool os::dll_address_to_function_name(address addr, char *buf,
+                                      int buflen, int *offset) {
+  Dl_info dlinfo;
+
+  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
+    if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
+    if (offset) *offset = addr - (address)dlinfo.dli_saddr;
+    return true;
+  } else {
+    if (buf) buf[0] = '\0';
+    if (offset) *offset = -1;
+    return false;
+  }
+}
+
+struct _address_to_library_name {
+  address addr;          // input : memory address
+  size_t  buflen;        //         size of fname
+  char*   fname;         // output: library name
+  address base;          //         library base addr
+};
+
+static int address_to_library_name_callback(struct dl_phdr_info *info,
+                                            size_t size, void *data) {
+  int i;
+  bool found = false;
+  address libbase = NULL;
+  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
+
+  // iterate through all loadable segments
+  for (i = 0; i < info->dlpi_phnum; i++) {
+    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
+    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
+      // base address of a library is the lowest address of its loaded
+      // segments.
+      if (libbase == NULL || libbase > segbase) {
+        libbase = segbase;
+      }
+      // see if 'addr' is within current segment
+      if (segbase <= d->addr &&
+          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
+        found = true;
+      }
+    }
+  }
+
+  // dlpi_name is NULL or empty if the ELF file is executable, return 0
+  // so dll_address_to_library_name() can fall through to use dladdr() which
+  // can figure out executable name from argv[0].
+  if (found && info->dlpi_name && info->dlpi_name[0]) {
+    d->base = libbase;
+    if (d->fname) {
+      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
+    }
+    return 1;
+  }
+  return 0;
+}
+
+bool os::dll_address_to_library_name(address addr, char* buf,
+                                     int buflen, int* offset) {
+  Dl_info dlinfo;
+  struct _address_to_library_name data;
+
+  // There is a bug in old glibc dladdr() implementation that it could resolve
+  // to wrong library name if the .so file has a base address != NULL. Here
+  // we iterate through the program headers of all loaded libraries to find
+  // out which library 'addr' really belongs to. This workaround can be
+  // removed once the minimum requirement for glibc is moved to 2.3.x.
+  data.addr = addr;
+  data.fname = buf;
+  data.buflen = buflen;
+  data.base = NULL;
+  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
+
+  if (rslt) {
+     // buf already contains library name
+     if (offset) *offset = addr - data.base;
+     return true;
+  } else if (dladdr((void*)addr, &dlinfo)){
+     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
+     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
+     return true;
+  } else {
+     if (buf) buf[0] = '\0';
+     if (offset) *offset = -1;
+     return false;
+  }
+}
+
+  // Loads .dll/.so and
+  // in case of error it checks if .dll/.so was built for the
+  // same architecture as Hotspot is running on
+
+void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
+{
+  void * result= ::dlopen(filename, RTLD_LAZY);
+  if (result != NULL) {
+    // Successful loading
+    return result;
+  }
+
+  Elf32_Ehdr elf_head;
+
+  // Read system error message into ebuf
+  // It may or may not be overwritten below
+  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
+  ebuf[ebuflen-1]='\0';
+  int diag_msg_max_length=ebuflen-strlen(ebuf);
+  char* diag_msg_buf=ebuf+strlen(ebuf);
+
+  if (diag_msg_max_length==0) {
+    // No more space in ebuf for additional diagnostics message
+    return NULL;
+  }
+
+
+  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
+
+  if (file_descriptor < 0) {
+    // Can't open library, report dlerror() message
+    return NULL;
+  }
+
+  bool failed_to_read_elf_head=
+    (sizeof(elf_head)!=
+        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
+
+  ::close(file_descriptor);
+  if (failed_to_read_elf_head) {
+    // file i/o error - report dlerror() msg
+    return NULL;
+  }
+
+  typedef struct {
+    Elf32_Half  code;         // Actual value as defined in elf.h
+    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
+    char        elf_class;    // 32 or 64 bit
+    char        endianess;    // MSB or LSB
+    char*       name;         // String representation
+  } arch_t;
+
+  #ifndef EM_486
+  #define EM_486          6               /* Intel 80486 */
+  #endif
+
+  static const arch_t arch_array[]={
+    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
+    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
+    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
+    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
+    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
+    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
+    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
+    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
+    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"}
+  };
+
+  #if  (defined IA32)
+    static  Elf32_Half running_arch_code=EM_386;
+  #elif   (defined AMD64)
+    static  Elf32_Half running_arch_code=EM_X86_64;
+  #elif  (defined IA64)
+    static  Elf32_Half running_arch_code=EM_IA_64;
+  #elif  (defined __sparc) && (defined _LP64)
+    static  Elf32_Half running_arch_code=EM_SPARCV9;
+  #elif  (defined __sparc) && (!defined _LP64)
+    static  Elf32_Half running_arch_code=EM_SPARC;
+  #elif  (defined __powerpc64__)
+    static  Elf32_Half running_arch_code=EM_PPC64;
+  #elif  (defined __powerpc__)
+    static  Elf32_Half running_arch_code=EM_PPC;
+  #else
+    #error Method os::dll_load requires that one of following is defined:\
+         IA32, AMD64, IA64, __sparc, __powerpc__
+  #endif
+
+  // Identify compatability class for VM's architecture and library's architecture
+  // Obtain string descriptions for architectures
+
+  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
+  int running_arch_index=-1;
+
+  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
+    if (running_arch_code == arch_array[i].code) {
+      running_arch_index    = i;
+    }
+    if (lib_arch.code == arch_array[i].code) {
+      lib_arch.compat_class = arch_array[i].compat_class;
+      lib_arch.name         = arch_array[i].name;
+    }
+  }
+
+  assert(running_arch_index != -1,
+    "Didn't find running architecture code (running_arch_code) in arch_array");
+  if (running_arch_index == -1) {
+    // Even though running architecture detection failed
+    // we may still continue with reporting dlerror() message
+    return NULL;
+  }
+
+  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
+    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
+    return NULL;
+  }
+
+  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
+    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
+    return NULL;
+  }
+
+  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
+    if ( lib_arch.name!=NULL ) {
+      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
+        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
+        lib_arch.name, arch_array[running_arch_index].name);
+    } else {
+      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
+      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
+        lib_arch.code,
+        arch_array[running_arch_index].name);
+    }
+  }
+
+  return NULL;
+}
+
+
+
+
+bool _print_ascii_file(const char* filename, outputStream* st) {
+  int fd = open(filename, O_RDONLY);
+  if (fd == -1) {
+     return false;
+  }
+
+  char buf[32];
+  int bytes;
+  while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
+    st->print_raw(buf, bytes);
+  }
+
+  close(fd);
+
+  return true;
+}
+
+void os::print_dll_info(outputStream *st) {
+   st->print_cr("Dynamic libraries:");
+
+   char fname[32];
+   pid_t pid = os::Linux::gettid();
+
+   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
+
+   if (!_print_ascii_file(fname, st)) {
+     st->print("Can not get library information for pid = %d\n", pid);
+   }
+}
+
+
+void os::print_os_info(outputStream* st) {
+  st->print("OS:");
+
+  // Try to identify popular distros.
+  // Most Linux distributions have /etc/XXX-release file, which contains
+  // the OS version string. Some have more than one /etc/XXX-release file
+  // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
+  // so the order is important.
+  if (!_print_ascii_file("/etc/mandrake-release", st) &&
+      !_print_ascii_file("/etc/sun-release", st) &&
+      !_print_ascii_file("/etc/redhat-release", st) &&
+      !_print_ascii_file("/etc/SuSE-release", st) &&
+      !_print_ascii_file("/etc/turbolinux-release", st) &&
+      !_print_ascii_file("/etc/gentoo-release", st) &&
+      !_print_ascii_file("/etc/debian_version", st)) {
+      st->print("Linux");
+  }
+  st->cr();
+
+  // kernel
+  st->print("uname:");
+  struct utsname name;
+  uname(&name);
+  st->print(name.sysname); st->print(" ");
+  st->print(name.release); st->print(" ");
+  st->print(name.version); st->print(" ");
+  st->print(name.machine);
+  st->cr();
+
+  // Print warning if unsafe chroot environment detected
+  if (unsafe_chroot_detected) {
+    st->print("WARNING!! ");
+    st->print_cr(unstable_chroot_error);
+  }
+
+  // libc, pthread
+  st->print("libc:");
+  st->print(os::Linux::glibc_version()); st->print(" ");
+  st->print(os::Linux::libpthread_version()); st->print(" ");
+  if (os::Linux::is_LinuxThreads()) {
+     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
+  }
+  st->cr();
+
+  // rlimit
+  st->print("rlimit:");
+  struct rlimit rlim;
+
+  st->print(" STACK ");
+  getrlimit(RLIMIT_STACK, &rlim);
+  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
+  else st->print("%uk", rlim.rlim_cur >> 10);
+
+  st->print(", CORE ");
+  getrlimit(RLIMIT_CORE, &rlim);
+  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
+  else st->print("%uk", rlim.rlim_cur >> 10);
+
+  st->print(", NPROC ");
+  getrlimit(RLIMIT_NPROC, &rlim);
+  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
+  else st->print("%d", rlim.rlim_cur);
+
+  st->print(", NOFILE ");
+  getrlimit(RLIMIT_NOFILE, &rlim);
+  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
+  else st->print("%d", rlim.rlim_cur);
+
+  st->print(", AS ");
+  getrlimit(RLIMIT_AS, &rlim);
+  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
+  else st->print("%uk", rlim.rlim_cur >> 10);
+  st->cr();
+
+  // load average
+  st->print("load average:");
+  double loadavg[3];
+  os::loadavg(loadavg, 3);
+  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
+  st->cr();
+}
+
+void os::print_memory_info(outputStream* st) {
+
+  st->print("Memory:");
+  st->print(" %dk page", os::vm_page_size()>>10);
+
+  // values in struct sysinfo are "unsigned long"
+  struct sysinfo si;
+  sysinfo(&si);
+
+  st->print(", physical " UINT64_FORMAT "k",
+            os::physical_memory() >> 10);
+  st->print("(" UINT64_FORMAT "k free)",
+            os::available_memory() >> 10);
+  st->print(", swap " UINT64_FORMAT "k",
+            ((jlong)si.totalswap * si.mem_unit) >> 10);
+  st->print("(" UINT64_FORMAT "k free)",
+            ((jlong)si.freeswap * si.mem_unit) >> 10);
+  st->cr();
+}
+
+// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
+// but they're the same for all the linux arch that we support
+// and they're the same for solaris but there's no common place to put this.
+const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
+                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
+                          "ILL_COPROC", "ILL_BADSTK" };
+
+const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
+                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
+                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
+
+const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
+
+const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
+
+void os::print_siginfo(outputStream* st, void* siginfo) {
+  st->print("siginfo:");
+
+  const int buflen = 100;
+  char buf[buflen];
+  siginfo_t *si = (siginfo_t*)siginfo;
+  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
+  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
+    st->print("si_errno=%s", buf);
+  } else {
+    st->print("si_errno=%d", si->si_errno);
+  }
+  const int c = si->si_code;
+  assert(c > 0, "unexpected si_code");
+  switch (si->si_signo) {
+  case SIGILL:
+    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
+    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
+    break;
+  case SIGFPE:
+    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
+    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
+    break;
+  case SIGSEGV:
+    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
+    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
+    break;
+  case SIGBUS:
+    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
+    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
+    break;
+  default:
+    st->print(", si_code=%d", si->si_code);
+    // no si_addr
+  }
+
+  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
+      UseSharedSpaces) {
+    FileMapInfo* mapinfo = FileMapInfo::current_info();
+    if (mapinfo->is_in_shared_space(si->si_addr)) {
+      st->print("\n\nError accessing class data sharing archive."   \
+                " Mapped file inaccessible during execution, "      \
+                " possible disk/network problem.");
+    }
+  }
+  st->cr();
+}
+
+
+static void print_signal_handler(outputStream* st, int sig,
+                                 char* buf, size_t buflen);
+
+void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
+  st->print_cr("Signal Handlers:");
+  print_signal_handler(st, SIGSEGV, buf, buflen);
+  print_signal_handler(st, SIGBUS , buf, buflen);
+  print_signal_handler(st, SIGFPE , buf, buflen);
+  print_signal_handler(st, SIGPIPE, buf, buflen);
+  print_signal_handler(st, SIGXFSZ, buf, buflen);
+  print_signal_handler(st, SIGILL , buf, buflen);
+  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
+  print_signal_handler(st, SR_signum, buf, buflen);
+  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
+  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
+  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
+  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
+}
+
+static char saved_jvm_path[MAXPATHLEN] = {0};
+
+// Find the full path to the current module, libjvm.so or libjvm_g.so
+void os::jvm_path(char *buf, jint len) {
+  // Error checking.
+  if (len < MAXPATHLEN) {
+    assert(false, "must use a large-enough buffer");
+    buf[0] = '\0';
+    return;
+  }
+  // Lazy resolve the path to current module.
+  if (saved_jvm_path[0] != 0) {
+    strcpy(buf, saved_jvm_path);
+    return;
+  }
+
+  char dli_fname[MAXPATHLEN];
+  bool ret = dll_address_to_library_name(
+                CAST_FROM_FN_PTR(address, os::jvm_path),
+                dli_fname, sizeof(dli_fname), NULL);
+  assert(ret != 0, "cannot locate libjvm");
+  realpath(dli_fname, buf);
+
+  if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
+    // Support for the gamma launcher.  Typical value for buf is
+    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
+    // the right place in the string, then assume we are installed in a JDK and
+    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
+    // up the path so it looks like libjvm.so is installed there (append a
+    // fake suffix hotspot/libjvm.so).
+    const char *p = buf + strlen(buf) - 1;
+    for (int count = 0; p > buf && count < 5; ++count) {
+      for (--p; p > buf && *p != '/'; --p)
+        /* empty */ ;
+    }
+
+    if (strncmp(p, "/jre/lib/", 9) != 0) {
+      // Look for JAVA_HOME in the environment.
+      char* java_home_var = ::getenv("JAVA_HOME");
+      if (java_home_var != NULL && java_home_var[0] != 0) {
+        // Check the current module name "libjvm.so" or "libjvm_g.so".
+        p = strrchr(buf, '/');
+        assert(strstr(p, "/libjvm") == p, "invalid library name");
+        p = strstr(p, "_g") ? "_g" : "";
+
+        realpath(java_home_var, buf);
+        sprintf(buf + strlen(buf), "/jre/lib/%s", cpu_arch);
+        if (0 == access(buf, F_OK)) {
+          // Use current module name "libjvm[_g].so" instead of
+          // "libjvm"debug_only("_g")".so" since for fastdebug version
+          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
+          // It is used when we are choosing the HPI library's name
+          // "libhpi[_g].so" in hpi::initialize_get_interface().
+          sprintf(buf + strlen(buf), "/hotspot/libjvm%s.so", p);
+        } else {
+          // Go back to path of .so
+          realpath(dli_fname, buf);
+        }
+      }
+    }
+  }
+
+  strcpy(saved_jvm_path, buf);
+}
+
+void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
+  // no prefix required, not even "_"
+}
+
+void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
+  // no suffix required
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// sun.misc.Signal support
+
+static volatile jint sigint_count = 0;
+
+static void
+UserHandler(int sig, void *siginfo, void *context) {
+  // 4511530 - sem_post is serialized and handled by the manager thread. When
+  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
+  // don't want to flood the manager thread with sem_post requests.
+  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
+      return;
+
+  // Ctrl-C is pressed during error reporting, likely because the error
+  // handler fails to abort. Let VM die immediately.
+  if (sig == SIGINT && is_error_reported()) {
+     os::die();
+  }
+
+  os::signal_notify(sig);
+}
+
+void* os::user_handler() {
+  return CAST_FROM_FN_PTR(void*, UserHandler);
+}
+
+extern "C" {
+  typedef void (*sa_handler_t)(int);
+  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
+}
+
+void* os::signal(int signal_number, void* handler) {
+  struct sigaction sigAct, oldSigAct;
+
+  sigfillset(&(sigAct.sa_mask));
+  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
+  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
+
+  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
+    // -1 means registration failed
+    return (void *)-1;
+  }
+
+  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
+}
+
+void os::signal_raise(int signal_number) {
+  ::raise(signal_number);
+}
+
+/*
+ * The following code is moved from os.cpp for making this
+ * code platform specific, which it is by its very nature.
+ */
+
+// Will be modified when max signal is changed to be dynamic
+int os::sigexitnum_pd() {
+  return NSIG;
+}
+
+// a counter for each possible signal value
+static volatile jint pending_signals[NSIG+1] = { 0 };
+
+// Linux(POSIX) specific hand shaking semaphore.
+static sem_t sig_sem;
+
+void os::signal_init_pd() {
+  // Initialize signal structures
+  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
+
+  // Initialize signal semaphore
+  ::sem_init(&sig_sem, 0, 0);
+}
+
+void os::signal_notify(int sig) {
+  Atomic::inc(&pending_signals[sig]);
+  ::sem_post(&sig_sem);
+}
+
+static int check_pending_signals(bool wait) {
+  Atomic::store(0, &sigint_count);
+  for (;;) {
+    for (int i = 0; i < NSIG + 1; i++) {
+      jint n = pending_signals[i];
+      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
+        return i;
+      }
+    }
+    if (!wait) {
+      return -1;
+    }
+    JavaThread *thread = JavaThread::current();
+    ThreadBlockInVM tbivm(thread);
+
+    bool threadIsSuspended;
+    do {
+      thread->set_suspend_equivalent();
+      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
+      ::sem_wait(&sig_sem);
+
+      // were we externally suspended while we were waiting?
+      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
+      if (threadIsSuspended) {
+        //
+        // The semaphore has been incremented, but while we were waiting
+        // another thread suspended us. We don't want to continue running
+        // while suspended because that would surprise the thread that
+        // suspended us.
+        //
+        ::sem_post(&sig_sem);
+
+        thread->java_suspend_self();
+      }
+    } while (threadIsSuspended);
+  }
+}
+
+int os::signal_lookup() {
+  return check_pending_signals(false);
+}
+
+int os::signal_wait() {
+  return check_pending_signals(true);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Virtual Memory
+
+int os::vm_page_size() {
+  // Seems redundant as all get out
+  assert(os::Linux::page_size() != -1, "must call os::init");
+  return os::Linux::page_size();
+}
+
+// Solaris allocates memory by pages.
+int os::vm_allocation_granularity() {
+  assert(os::Linux::page_size() != -1, "must call os::init");
+  return os::Linux::page_size();
+}
+
+// Rationale behind this function:
+//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
+//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
+//  samples for JITted code. Here we create private executable mapping over the code cache
+//  and then we can use standard (well, almost, as mapping can change) way to provide
+//  info for the reporting script by storing timestamp and location of symbol
+void linux_wrap_code(char* base, size_t size) {
+  static volatile jint cnt = 0;
+
+  if (!UseOprofile) {
+    return;
+  }
+
+  char buf[40];
+  int num = Atomic::add(1, &cnt);
+
+  sprintf(buf, "/tmp/hs-vm-%d-%d", os::current_process_id(), num);
+  unlink(buf);
+
+  int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
+
+  if (fd != -1) {
+    off_t rv = lseek(fd, size-2, SEEK_SET);
+    if (rv != (off_t)-1) {
+      if (write(fd, "", 1) == 1) {
+        mmap(base, size,
+             PROT_READ|PROT_WRITE|PROT_EXEC,
+             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
+      }
+    }
+    close(fd);
+    unlink(buf);
+  }
+}
+
+// NOTE: Linux kernel does not really reserve the pages for us.
+//       All it does is to check if there are enough free pages
+//       left at the time of mmap(). This could be a potential
+//       problem.
+bool os::commit_memory(char* addr, size_t size) {
+  uintptr_t res = (uintptr_t) ::mmap(addr, size,
+                                   PROT_READ|PROT_WRITE|PROT_EXEC,
+                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
+  return res != (uintptr_t) MAP_FAILED;
+}
+
+bool os::commit_memory(char* addr, size_t size, size_t alignment_hint) {
+  return commit_memory(addr, size);
+}
+
+void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
+void os::free_memory(char *addr, size_t bytes)         { }
+void os::numa_make_global(char *addr, size_t bytes)    { }
+void os::numa_make_local(char *addr, size_t bytes)     { }
+bool os::numa_topology_changed()                       { return false; }
+size_t os::numa_get_groups_num()                       { return 1; }
+int os::numa_get_group_id()                            { return 0; }
+size_t os::numa_get_leaf_groups(int *ids, size_t size) {
+  if (size > 0) {
+    ids[0] = 0;
+    return 1;
+  }
+  return 0;
+}
+
+bool os::get_page_info(char *start, page_info* info) {
+  return false;
+}
+
+char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
+  return end;
+}
+
+bool os::uncommit_memory(char* addr, size_t size) {
+  return ::mmap(addr, size,
+                PROT_READ|PROT_WRITE|PROT_EXEC,
+                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0)
+    != MAP_FAILED;
+}
+
+static address _highest_vm_reserved_address = NULL;
+
+// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
+// at 'requested_addr'. If there are existing memory mappings at the same
+// location, however, they will be overwritten. If 'fixed' is false,
+// 'requested_addr' is only treated as a hint, the return value may or
+// may not start from the requested address. Unlike Linux mmap(), this
+// function returns NULL to indicate failure.
+static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
+  char * addr;
+  int flags;
+
+  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
+  if (fixed) {
+    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
+    flags |= MAP_FIXED;
+  }
+
+  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE|PROT_EXEC,
+                       flags, -1, 0);
+
+  if (addr != MAP_FAILED) {
+    // anon_mmap() should only get called during VM initialization,
+    // don't need lock (actually we can skip locking even it can be called
+    // from multiple threads, because _highest_vm_reserved_address is just a
+    // hint about the upper limit of non-stack memory regions.)
+    if ((address)addr + bytes > _highest_vm_reserved_address) {
+      _highest_vm_reserved_address = (address)addr + bytes;
+    }
+  }
+
+  return addr == MAP_FAILED ? NULL : addr;
+}
+
+// Don't update _highest_vm_reserved_address, because there might be memory
+// regions above addr + size. If so, releasing a memory region only creates
+// a hole in the address space, it doesn't help prevent heap-stack collision.
+//
+static int anon_munmap(char * addr, size_t size) {
+  return ::munmap(addr, size) == 0;
+}
+
+char* os::reserve_memory(size_t bytes, char* requested_addr,
+                         size_t alignment_hint) {
+  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
+}
+
+bool os::release_memory(char* addr, size_t size) {
+  return anon_munmap(addr, size);
+}
+
+static address highest_vm_reserved_address() {
+  return _highest_vm_reserved_address;
+}
+
+static bool linux_mprotect(char* addr, size_t size, int prot) {
+  // Linux wants the mprotect address argument to be page aligned.
+  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
+
+  // According to SUSv3, mprotect() should only be used with mappings
+  // established by mmap(), and mmap() always maps whole pages. Unaligned
+  // 'addr' likely indicates problem in the VM (e.g. trying to change
+  // protection of malloc'ed or statically allocated memory). Check the
+  // caller if you hit this assert.
+  assert(addr == bottom, "sanity check");
+
+  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
+  return ::mprotect(bottom, size, prot) == 0;
+}
+
+bool os::protect_memory(char* addr, size_t size) {
+  return linux_mprotect(addr, size, PROT_READ);
+}
+
+bool os::guard_memory(char* addr, size_t size) {
+  return linux_mprotect(addr, size, PROT_NONE);
+}
+
+bool os::unguard_memory(char* addr, size_t size) {
+  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
+}
+
+// Large page support
+
+static size_t _large_page_size = 0;
+
+bool os::large_page_init() {
+  if (!UseLargePages) return false;
+
+  if (LargePageSizeInBytes) {
+    _large_page_size = LargePageSizeInBytes;
+  } else {
+    // large_page_size on Linux is used to round up heap size. x86 uses either
+    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
+    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
+    // page as large as 256M.
+    //
+    // Here we try to figure out page size by parsing /proc/meminfo and looking
+    // for a line with the following format:
+    //    Hugepagesize:     2048 kB
+    //
+    // If we can't determine the value (e.g. /proc is not mounted, or the text
+    // format has been changed), we'll use the largest page size supported by
+    // the processor.
+
+    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M);
+
+    FILE *fp = fopen("/proc/meminfo", "r");
+    if (fp) {
+      while (!feof(fp)) {
+        int x = 0;
+        char buf[16];
+        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
+          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
+            _large_page_size = x * K;
+            break;
+          }
+        } else {
+          // skip to next line
+          for (;;) {
+            int ch = fgetc(fp);
+            if (ch == EOF || ch == (int)'\n') break;
+          }
+        }
+      }
+      fclose(fp);
+    }
+  }
+
+  const size_t default_page_size = (size_t)Linux::page_size();
+  if (_large_page_size > default_page_size) {
+    _page_sizes[0] = _large_page_size;
+    _page_sizes[1] = default_page_size;
+    _page_sizes[2] = 0;
+  }
+
+  // Large page support is available on 2.6 or newer kernel, some vendors
+  // (e.g. Redhat) have backported it to their 2.4 based distributions.
+  // We optimistically assume the support is available. If later it turns out
+  // not true, VM will automatically switch to use regular page size.
+  return true;
+}
+
+#ifndef SHM_HUGETLB
+#define SHM_HUGETLB 04000
+#endif
+
+char* os::reserve_memory_special(size_t bytes) {
+  assert(UseLargePages, "only for large pages");
+
+  key_t key = IPC_PRIVATE;
+  char *addr;
+
+  bool warn_on_failure = UseLargePages &&
+                        (!FLAG_IS_DEFAULT(UseLargePages) ||
+                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
+                        );
+  char msg[128];
+
+  // Create a large shared memory region to attach to based on size.
+  // Currently, size is the total size of the heap
+  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
+  if (shmid == -1) {
+     // Possible reasons for shmget failure:
+     // 1. shmmax is too small for Java heap.
+     //    > check shmmax value: cat /proc/sys/kernel/shmmax
+     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
+     // 2. not enough large page memory.
+     //    > check available large pages: cat /proc/meminfo
+     //    > increase amount of large pages:
+     //          echo new_value > /proc/sys/vm/nr_hugepages
+     //      Note 1: different Linux may use different name for this property,
+     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
+     //      Note 2: it's possible there's enough physical memory available but
+     //            they are so fragmented after a long run that they can't
+     //            coalesce into large pages. Try to reserve large pages when
+     //            the system is still "fresh".
+     if (warn_on_failure) {
+       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
+       warning(msg);
+     }
+     return NULL;
+  }
+
+  // attach to the region
+  addr = (char*)shmat(shmid, NULL, 0);
+  int err = errno;
+
+  // Remove shmid. If shmat() is successful, the actual shared memory segment
+  // will be deleted when it's detached by shmdt() or when the process
+  // terminates. If shmat() is not successful this will remove the shared
+  // segment immediately.
+  shmctl(shmid, IPC_RMID, NULL);
+
+  if ((intptr_t)addr == -1) {
+     if (warn_on_failure) {
+       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
+       warning(msg);
+     }
+     return NULL;
+  }
+
+  return addr;
+}
+
+bool os::release_memory_special(char* base, size_t bytes) {
+  // detaching the SHM segment will also delete it, see reserve_memory_special()
+  int rslt = shmdt(base);
+  return rslt == 0;
+}
+
+size_t os::large_page_size() {
+  return _large_page_size;
+}
+
+// Linux does not support anonymous mmap with large page memory. The only way
+// to reserve large page memory without file backing is through SysV shared
+// memory API. The entire memory region is committed and pinned upfront.
+// Hopefully this will change in the future...
+bool os::can_commit_large_page_memory() {
+  return false;
+}
+
+// Reserve memory at an arbitrary address, only if that area is
+// available (and not reserved for something else).
+
+char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
+  const int max_tries = 10;
+  char* base[max_tries];
+  size_t size[max_tries];
+  const size_t gap = 0x000000;
+
+  // Assert only that the size is a multiple of the page size, since
+  // that's all that mmap requires, and since that's all we really know
+  // about at this low abstraction level.  If we need higher alignment,
+  // we can either pass an alignment to this method or verify alignment
+  // in one of the methods further up the call chain.  See bug 5044738.
+  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
+
+  // Repeatedly allocate blocks until the block is allocated at the
+  // right spot. Give up after max_tries. Note that reserve_memory() will
+  // automatically update _highest_vm_reserved_address if the call is
+  // successful. The variable tracks the highest memory address every reserved
+  // by JVM. It is used to detect heap-stack collision if running with
+  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
+  // space than needed, it could confuse the collision detecting code. To
+  // solve the problem, save current _highest_vm_reserved_address and
+  // calculate the correct value before return.
+  address old_highest = _highest_vm_reserved_address;
+
+  // Linux mmap allows caller to pass an address as hint; give it a try first,
+  // if kernel honors the hint then we can return immediately.
+  char * addr = anon_mmap(requested_addr, bytes, false);
+  if (addr == requested_addr) {
+     return requested_addr;
+  }
+
+  if (addr != NULL) {
+     // mmap() is successful but it fails to reserve at the requested address
+     anon_munmap(addr, bytes);
+  }
+
+  int i;
+  for (i = 0; i < max_tries; ++i) {
+    base[i] = reserve_memory(bytes);
+
+    if (base[i] != NULL) {
+      // Is this the block we wanted?
+      if (base[i] == requested_addr) {
+        size[i] = bytes;
+        break;
+      }
+
+      // Does this overlap the block we wanted? Give back the overlapped
+      // parts and try again.
+
+      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
+      if (top_overlap >= 0 && top_overlap < bytes) {
+        unmap_memory(base[i], top_overlap);
+        base[i] += top_overlap;
+        size[i] = bytes - top_overlap;
+      } else {
+        size_t bottom_overlap = base[i] + bytes - requested_addr;
+        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
+          unmap_memory(requested_addr, bottom_overlap);
+          size[i] = bytes - bottom_overlap;
+        } else {
+          size[i] = bytes;
+        }
+      }
+    }
+  }
+
+  // Give back the unused reserved pieces.
+
+  for (int j = 0; j < i; ++j) {
+    if (base[j] != NULL) {
+      unmap_memory(base[j], size[j]);
+    }
+  }
+
+  if (i < max_tries) {
+    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
+    return requested_addr;
+  } else {
+    _highest_vm_reserved_address = old_highest;
+    return NULL;
+  }
+}
+
+size_t os::read(int fd, void *buf, unsigned int nBytes) {
+  return ::read(fd, buf, nBytes);
+}
+
+// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
+// Solaris uses poll(), linux uses park().
+// Poll() is likely a better choice, assuming that Thread.interrupt()
+// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
+// SIGSEGV, see 4355769.
+
+const int NANOSECS_PER_MILLISECS = 1000000;
+
+int os::sleep(Thread* thread, jlong millis, bool interruptible) {
+  assert(thread == Thread::current(),  "thread consistency check");
+
+  ParkEvent * const slp = thread->_SleepEvent ;
+  slp->reset() ;
+  OrderAccess::fence() ;
+
+  if (interruptible) {
+    jlong prevtime = javaTimeNanos();
+
+    for (;;) {
+      if (os::is_interrupted(thread, true)) {
+        return OS_INTRPT;
+      }
+
+      jlong newtime = javaTimeNanos();
+
+      if (newtime - prevtime < 0) {
+        // time moving backwards, should only happen if no monotonic clock
+        // not a guarantee() because JVM should not abort on kernel/glibc bugs
+        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
+      } else {
+        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
+      }
+
+      if(millis <= 0) {
+        return OS_OK;
+      }
+
+      prevtime = newtime;
+
+      {
+        assert(thread->is_Java_thread(), "sanity check");
+        JavaThread *jt = (JavaThread *) thread;
+        ThreadBlockInVM tbivm(jt);
+        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
+
+        jt->set_suspend_equivalent();
+        // cleared by handle_special_suspend_equivalent_condition() or
+        // java_suspend_self() via check_and_wait_while_suspended()
+
+        slp->park(millis);
+
+        // were we externally suspended while we were waiting?
+        jt->check_and_wait_while_suspended();
+      }
+    }
+  } else {
+    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
+    jlong prevtime = javaTimeNanos();
+
+    for (;;) {
+      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
+      // the 1st iteration ...
+      jlong newtime = javaTimeNanos();
+
+      if (newtime - prevtime < 0) {
+        // time moving backwards, should only happen if no monotonic clock
+        // not a guarantee() because JVM should not abort on kernel/glibc bugs
+        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
+      } else {
+        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
+      }
+
+      if(millis <= 0) break ;
+
+      prevtime = newtime;
+      slp->park(millis);
+    }
+    return OS_OK ;
+  }
+}
+
+int os::naked_sleep() {
+  // %% make the sleep time an integer flag. for now use 1 millisec.
+  return os::sleep(Thread::current(), 1, false);
+}
+
+// Sleep forever; naked call to OS-specific sleep; use with CAUTION
+void os::infinite_sleep() {
+  while (true) {    // sleep forever ...
+    ::sleep(100);   // ... 100 seconds at a time
+  }
+}
+
+// Used to convert frequent JVM_Yield() to nops
+bool os::dont_yield() {
+  return DontYieldALot;
+}
+
+void os::yield() {
+  sched_yield();
+}
+
+os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
+
+void os::yield_all(int attempts) {
+  // Yields to all threads, including threads with lower priorities
+  // Threads on Linux are all with same priority. The Solaris style
+  // os::yield_all() with nanosleep(1ms) is not necessary.
+  sched_yield();
+}
+
+// Called from the tight loops to possibly influence time-sharing heuristics
+void os::loop_breaker(int attempts) {
+  os::yield_all(attempts);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// thread priority support
+
+// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
+// only supports dynamic priority, static priority must be zero. For real-time
+// applications, Linux supports SCHED_RR which allows static priority (1-99).
+// However, for large multi-threaded applications, SCHED_RR is not only slower
+// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
+// of 5 runs - Sep 2005).
+//
+// The following code actually changes the niceness of kernel-thread/LWP. It
+// has an assumption that setpriority() only modifies one kernel-thread/LWP,
+// not the entire user process, and user level threads are 1:1 mapped to kernel
+// threads. It has always been the case, but could change in the future. For
+// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
+// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
+
+int os::java_to_os_priority[MaxPriority + 1] = {
+  19,              // 0 Entry should never be used
+
+   4,              // 1 MinPriority
+   3,              // 2
+   2,              // 3
+
+   1,              // 4
+   0,              // 5 NormPriority
+  -1,              // 6
+
+  -2,              // 7
+  -3,              // 8
+  -4,              // 9 NearMaxPriority
+
+  -5               // 10 MaxPriority
+};
+
+static int prio_init() {
+  if (ThreadPriorityPolicy == 1) {
+    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
+    // if effective uid is not root. Perhaps, a more elegant way of doing
+    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
+    if (geteuid() != 0) {
+      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
+        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
+      }
+      ThreadPriorityPolicy = 0;
+    }
+  }
+  return 0;
+}
+
+OSReturn os::set_native_priority(Thread* thread, int newpri) {
+  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
+
+  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
+  return (ret == 0) ? OS_OK : OS_ERR;
+}
+
+OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
+  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
+    *priority_ptr = java_to_os_priority[NormPriority];
+    return OS_OK;
+  }
+
+  errno = 0;
+  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
+  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
+}
+
+// Hint to the underlying OS that a task switch would not be good.
+// Void return because it's a hint and can fail.
+void os::hint_no_preempt() {}
+
+////////////////////////////////////////////////////////////////////////////////
+// suspend/resume support
+
+//  the low-level signal-based suspend/resume support is a remnant from the
+//  old VM-suspension that used to be for java-suspension, safepoints etc,
+//  within hotspot. Now there is a single use-case for this:
+//    - calling get_thread_pc() on the VMThread by the flat-profiler task
+//      that runs in the watcher thread.
+//  The remaining code is greatly simplified from the more general suspension
+//  code that used to be used.
+//
+//  The protocol is quite simple:
+//  - suspend:
+//      - sends a signal to the target thread
+//      - polls the suspend state of the osthread using a yield loop
+//      - target thread signal handler (SR_handler) sets suspend state
+//        and blocks in sigsuspend until continued
+//  - resume:
+//      - sets target osthread state to continue
+//      - sends signal to end the sigsuspend loop in the SR_handler
+//
+//  Note that the SR_lock plays no role in this suspend/resume protocol.
+//
+
+static void resume_clear_context(OSThread *osthread) {
+  osthread->set_ucontext(NULL);
+  osthread->set_siginfo(NULL);
+
+  // notify the suspend action is completed, we have now resumed
+  osthread->sr.clear_suspended();
+}
+
+static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
+  osthread->set_ucontext(context);
+  osthread->set_siginfo(siginfo);
+}
+
+//
+// Handler function invoked when a thread's execution is suspended or
+// resumed. We have to be careful that only async-safe functions are
+// called here (Note: most pthread functions are not async safe and
+// should be avoided.)
+//
+// Note: sigwait() is a more natural fit than sigsuspend() from an
+// interface point of view, but sigwait() prevents the signal hander
+// from being run. libpthread would get very confused by not having
+// its signal handlers run and prevents sigwait()'s use with the
+// mutex granting granting signal.
+//
+// Currently only ever called on the VMThread
+//
+static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
+  // Save and restore errno to avoid confusing native code with EINTR
+  // after sigsuspend.
+  int old_errno = errno;
+
+  Thread* thread = Thread::current();
+  OSThread* osthread = thread->osthread();
+  assert(thread->is_VM_thread(), "Must be VMThread");
+  // read current suspend action
+  int action = osthread->sr.suspend_action();
+  if (action == SR_SUSPEND) {
+    suspend_save_context(osthread, siginfo, context);
+
+    // Notify the suspend action is about to be completed. do_suspend()
+    // waits until SR_SUSPENDED is set and then returns. We will wait
+    // here for a resume signal and that completes the suspend-other
+    // action. do_suspend/do_resume is always called as a pair from
+    // the same thread - so there are no races
+
+    // notify the caller
+    osthread->sr.set_suspended();
+
+    sigset_t suspend_set;  // signals for sigsuspend()
+
+    // get current set of blocked signals and unblock resume signal
+    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
+    sigdelset(&suspend_set, SR_signum);
+
+    // wait here until we are resumed
+    do {
+      sigsuspend(&suspend_set);
+      // ignore all returns until we get a resume signal
+    } while (osthread->sr.suspend_action() != SR_CONTINUE);
+
+    resume_clear_context(osthread);
+
+  } else {
+    assert(action == SR_CONTINUE, "unexpected sr action");
+    // nothing special to do - just leave the handler
+  }
+
+  errno = old_errno;
+}
+
+
+static int SR_initialize() {
+  struct sigaction act;
+  char *s;
+  /* Get signal number to use for suspend/resume */
+  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
+    int sig = ::strtol(s, 0, 10);
+    if (sig > 0 || sig < _NSIG) {
+        SR_signum = sig;
+    }
+  }
+
+  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
+        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
+
+  sigemptyset(&SR_sigset);
+  sigaddset(&SR_sigset, SR_signum);
+
+  /* Set up signal handler for suspend/resume */
+  act.sa_flags = SA_RESTART|SA_SIGINFO;
+  act.sa_handler = (void (*)(int)) SR_handler;
+
+  // SR_signum is blocked by default.
+  // 4528190 - We also need to block pthread restart signal (32 on all
+  // supported Linux platforms). Note that LinuxThreads need to block
+  // this signal for all threads to work properly. So we don't have
+  // to use hard-coded signal number when setting up the mask.
+  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
+
+  if (sigaction(SR_signum, &act, 0) == -1) {
+    return -1;
+  }
+
+  // Save signal flag
+  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
+  return 0;
+}
+
+static int SR_finalize() {
+  return 0;
+}
+
+
+// returns true on success and false on error - really an error is fatal
+// but this seems the normal response to library errors
+static bool do_suspend(OSThread* osthread) {
+  // mark as suspended and send signal
+  osthread->sr.set_suspend_action(SR_SUSPEND);
+  int status = pthread_kill(osthread->pthread_id(), SR_signum);
+  assert_status(status == 0, status, "pthread_kill");
+
+  // check status and wait until notified of suspension
+  if (status == 0) {
+    for (int i = 0; !osthread->sr.is_suspended(); i++) {
+      os::yield_all(i);
+    }
+    osthread->sr.set_suspend_action(SR_NONE);
+    return true;
+  }
+  else {
+    osthread->sr.set_suspend_action(SR_NONE);
+    return false;
+  }
+}
+
+static void do_resume(OSThread* osthread) {
+  assert(osthread->sr.is_suspended(), "thread should be suspended");
+  osthread->sr.set_suspend_action(SR_CONTINUE);
+
+  int status = pthread_kill(osthread->pthread_id(), SR_signum);
+  assert_status(status == 0, status, "pthread_kill");
+  // check status and wait unit notified of resumption
+  if (status == 0) {
+    for (int i = 0; osthread->sr.is_suspended(); i++) {
+      os::yield_all(i);
+    }
+  }
+  osthread->sr.set_suspend_action(SR_NONE);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// interrupt support
+
+void os::interrupt(Thread* thread) {
+  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
+    "possibility of dangling Thread pointer");
+
+  OSThread* osthread = thread->osthread();
+
+  if (!osthread->interrupted()) {
+    osthread->set_interrupted(true);
+    // More than one thread can get here with the same value of osthread,
+    // resulting in multiple notifications.  We do, however, want the store
+    // to interrupted() to be visible to other threads before we execute unpark().
+    OrderAccess::fence();
+    ParkEvent * const slp = thread->_SleepEvent ;
+    if (slp != NULL) slp->unpark() ;
+  }
+
+  // For JSR166. Unpark even if interrupt status already was set
+  if (thread->is_Java_thread())
+    ((JavaThread*)thread)->parker()->unpark();
+
+  ParkEvent * ev = thread->_ParkEvent ;
+  if (ev != NULL) ev->unpark() ;
+
+}
+
+bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
+  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
+    "possibility of dangling Thread pointer");
+
+  OSThread* osthread = thread->osthread();
+
+  bool interrupted = osthread->interrupted();
+
+  if (interrupted && clear_interrupted) {
+    osthread->set_interrupted(false);
+    // consider thread->_SleepEvent->reset() ... optional optimization
+  }
+
+  return interrupted;
+}
+
+///////////////////////////////////////////////////////////////////////////////////
+// signal handling (except suspend/resume)
+
+// This routine may be used by user applications as a "hook" to catch signals.
+// The user-defined signal handler must pass unrecognized signals to this
+// routine, and if it returns true (non-zero), then the signal handler must
+// return immediately.  If the flag "abort_if_unrecognized" is true, then this
+// routine will never retun false (zero), but instead will execute a VM panic
+// routine kill the process.
+//
+// If this routine returns false, it is OK to call it again.  This allows
+// the user-defined signal handler to perform checks either before or after
+// the VM performs its own checks.  Naturally, the user code would be making
+// a serious error if it tried to handle an exception (such as a null check
+// or breakpoint) that the VM was generating for its own correct operation.
+//
+// This routine may recognize any of the following kinds of signals:
+//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
+// It should be consulted by handlers for any of those signals.
+//
+// The caller of this routine must pass in the three arguments supplied
+// to the function referred to in the "sa_sigaction" (not the "sa_handler")
+// field of the structure passed to sigaction().  This routine assumes that
+// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
+//
+// Note that the VM will print warnings if it detects conflicting signal
+// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
+//
+extern "C" int
+JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
+                        void* ucontext, int abort_if_unrecognized);
+
+void signalHandler(int sig, siginfo_t* info, void* uc) {
+  assert(info != NULL && uc != NULL, "it must be old kernel");
+  JVM_handle_linux_signal(sig, info, uc, true);
+}
+
+
+// This boolean allows users to forward their own non-matching signals
+// to JVM_handle_linux_signal, harmlessly.
+bool os::Linux::signal_handlers_are_installed = false;
+
+// For signal-chaining
+struct sigaction os::Linux::sigact[MAXSIGNUM];
+unsigned int os::Linux::sigs = 0;
+bool os::Linux::libjsig_is_loaded = false;
+typedef struct sigaction *(*get_signal_t)(int);
+get_signal_t os::Linux::get_signal_action = NULL;
+
+struct sigaction* os::Linux::get_chained_signal_action(int sig) {
+  struct sigaction *actp = NULL;
+
+  if (libjsig_is_loaded) {
+    // Retrieve the old signal handler from libjsig
+    actp = (*get_signal_action)(sig);
+  }
+  if (actp == NULL) {
+    // Retrieve the preinstalled signal handler from jvm
+    actp = get_preinstalled_handler(sig);
+  }
+
+  return actp;
+}
+
+static bool call_chained_handler(struct sigaction *actp, int sig,
+                                 siginfo_t *siginfo, void *context) {
+  // Call the old signal handler
+  if (actp->sa_handler == SIG_DFL) {
+    // It's more reasonable to let jvm treat it as an unexpected exception
+    // instead of taking the default action.
+    return false;
+  } else if (actp->sa_handler != SIG_IGN) {
+    if ((actp->sa_flags & SA_NODEFER) == 0) {
+      // automaticlly block the signal
+      sigaddset(&(actp->sa_mask), sig);
+    }
+
+    sa_handler_t hand;
+    sa_sigaction_t sa;
+    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
+    // retrieve the chained handler
+    if (siginfo_flag_set) {
+      sa = actp->sa_sigaction;
+    } else {
+      hand = actp->sa_handler;
+    }
+
+    if ((actp->sa_flags & SA_RESETHAND) != 0) {
+      actp->sa_handler = SIG_DFL;
+    }
+
+    // try to honor the signal mask
+    sigset_t oset;
+    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
+
+    // call into the chained handler
+    if (siginfo_flag_set) {
+      (*sa)(sig, siginfo, context);
+    } else {
+      (*hand)(sig);
+    }
+
+    // restore the signal mask
+    pthread_sigmask(SIG_SETMASK, &oset, 0);
+  }
+  // Tell jvm's signal handler the signal is taken care of.
+  return true;
+}
+
+bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
+  bool chained = false;
+  // signal-chaining
+  if (UseSignalChaining) {
+    struct sigaction *actp = get_chained_signal_action(sig);
+    if (actp != NULL) {
+      chained = call_chained_handler(actp, sig, siginfo, context);
+    }
+  }
+  return chained;
+}
+
+struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
+  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
+    return &sigact[sig];
+  }
+  return NULL;
+}
+
+void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
+  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
+  sigact[sig] = oldAct;
+  sigs |= (unsigned int)1 << sig;
+}
+
+// for diagnostic
+int os::Linux::sigflags[MAXSIGNUM];
+
+int os::Linux::get_our_sigflags(int sig) {
+  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
+  return sigflags[sig];
+}
+
+void os::Linux::set_our_sigflags(int sig, int flags) {
+  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
+  sigflags[sig] = flags;
+}
+
+void os::Linux::set_signal_handler(int sig, bool set_installed) {
+  // Check for overwrite.
+  struct sigaction oldAct;
+  sigaction(sig, (struct sigaction*)NULL, &oldAct);
+
+  void* oldhand = oldAct.sa_sigaction
+                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
+                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
+  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
+      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
+      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
+    if (AllowUserSignalHandlers || !set_installed) {
+      // Do not overwrite; user takes responsibility to forward to us.
+      return;
+    } else if (UseSignalChaining) {
+      // save the old handler in jvm
+      save_preinstalled_handler(sig, oldAct);
+      // libjsig also interposes the sigaction() call below and saves the
+      // old sigaction on it own.
+    } else {
+      fatal2("Encountered unexpected pre-existing sigaction handler %#lx for signal %d.", (long)oldhand, sig);
+    }
+  }
+
+  struct sigaction sigAct;
+  sigfillset(&(sigAct.sa_mask));
+  sigAct.sa_handler = SIG_DFL;
+  if (!set_installed) {
+    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
+  } else {
+    sigAct.sa_sigaction = signalHandler;
+    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
+  }
+  // Save flags, which are set by ours
+  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
+  sigflags[sig] = sigAct.sa_flags;
+
+  int ret = sigaction(sig, &sigAct, &oldAct);
+  assert(ret == 0, "check");
+
+  void* oldhand2  = oldAct.sa_sigaction
+                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
+                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
+  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
+}
+
+// install signal handlers for signals that HotSpot needs to
+// handle in order to support Java-level exception handling.
+
+void os::Linux::install_signal_handlers() {
+  if (!signal_handlers_are_installed) {
+    signal_handlers_are_installed = true;
+
+    // signal-chaining
+    typedef void (*signal_setting_t)();
+    signal_setting_t begin_signal_setting = NULL;
+    signal_setting_t end_signal_setting = NULL;
+    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
+                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
+    if (begin_signal_setting != NULL) {
+      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
+                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
+      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
+                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
+      libjsig_is_loaded = true;
+      assert(UseSignalChaining, "should enable signal-chaining");
+    }
+    if (libjsig_is_loaded) {
+      // Tell libjsig jvm is setting signal handlers
+      (*begin_signal_setting)();
+    }
+
+    set_signal_handler(SIGSEGV, true);
+    set_signal_handler(SIGPIPE, true);
+    set_signal_handler(SIGBUS, true);
+    set_signal_handler(SIGILL, true);
+    set_signal_handler(SIGFPE, true);
+    set_signal_handler(SIGXFSZ, true);
+
+    if (libjsig_is_loaded) {
+      // Tell libjsig jvm finishes setting signal handlers
+      (*end_signal_setting)();
+    }
+
+    // We don't activate signal checker if libjsig is in place, we trust ourselves
+    // and if UserSignalHandler is installed all bets are off
+    if (CheckJNICalls) {
+      if (libjsig_is_loaded) {
+        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
+        check_signals = false;
+      }
+      if (AllowUserSignalHandlers) {
+        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
+        check_signals = false;
+      }
+    }
+  }
+}
+
+// This is the fastest way to get thread cpu time on Linux.
+// Returns cpu time (user+sys) for any thread, not only for current.
+// POSIX compliant clocks are implemented in the kernels 2.6.16+.
+// It might work on 2.6.10+ with a special kernel/glibc patch.
+// For reference, please, see IEEE Std 1003.1-2004:
+//   http://www.unix.org/single_unix_specification
+
+jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
+  struct timespec tp;
+  int rc = os::Linux::clock_gettime(clockid, &tp);
+  assert(rc == 0, "clock_gettime is expected to return 0 code");
+
+  return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
+}
+
+/////
+// glibc on Linux platform uses non-documented flag
+// to indicate, that some special sort of signal
+// trampoline is used.
+// We will never set this flag, and we should
+// ignore this flag in our diagnostic
+#ifdef SIGNIFICANT_SIGNAL_MASK
+#undef SIGNIFICANT_SIGNAL_MASK
+#endif
+#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
+
+static const char* get_signal_handler_name(address handler,
+                                           char* buf, int buflen) {
+  int offset;
+  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
+  if (found) {
+    // skip directory names
+    const char *p1, *p2;
+    p1 = buf;
+    size_t len = strlen(os::file_separator());
+    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
+    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
+  } else {
+    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
+  }
+  return buf;
+}
+
+static void print_signal_handler(outputStream* st, int sig,
+                                 char* buf, size_t buflen) {
+  struct sigaction sa;
+
+  sigaction(sig, NULL, &sa);
+
+  // See comment for SIGNIFICANT_SIGNAL_MASK define
+  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
+
+  st->print("%s: ", os::exception_name(sig, buf, buflen));
+
+  address handler = (sa.sa_flags & SA_SIGINFO)
+    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
+    : CAST_FROM_FN_PTR(address, sa.sa_handler);
+
+  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
+    st->print("SIG_DFL");
+  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
+    st->print("SIG_IGN");
+  } else {
+    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
+  }
+
+  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
+
+  address rh = VMError::get_resetted_sighandler(sig);
+  // May be, handler was resetted by VMError?
+  if(rh != NULL) {
+    handler = rh;
+    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
+  }
+
+  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
+
+  // Check: is it our handler?
+  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
+     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
+    // It is our signal handler
+    // check for flags, reset system-used one!
+    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
+      st->print(
+                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
+                os::Linux::get_our_sigflags(sig));
+    }
+  }
+  st->cr();
+}
+
+
+#define DO_SIGNAL_CHECK(sig) \
+  if (!sigismember(&check_signal_done, sig)) \
+    os::Linux::check_signal_handler(sig)
+
+// This method is a periodic task to check for misbehaving JNI applications
+// under CheckJNI, we can add any periodic checks here
+
+void os::run_periodic_checks() {
+
+  if (check_signals == false) return;
+
+  // SEGV and BUS if overridden could potentially prevent
+  // generation of hs*.log in the event of a crash, debugging
+  // such a case can be very challenging, so we absolutely
+  // check the following for a good measure:
+  DO_SIGNAL_CHECK(SIGSEGV);
+  DO_SIGNAL_CHECK(SIGILL);
+  DO_SIGNAL_CHECK(SIGFPE);
+  DO_SIGNAL_CHECK(SIGBUS);
+  DO_SIGNAL_CHECK(SIGPIPE);
+  DO_SIGNAL_CHECK(SIGXFSZ);
+
+
+  // ReduceSignalUsage allows the user to override these handlers
+  // see comments at the very top and jvm_solaris.h
+  if (!ReduceSignalUsage) {
+    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
+    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
+    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
+    DO_SIGNAL_CHECK(BREAK_SIGNAL);
+  }
+
+  DO_SIGNAL_CHECK(SR_signum);
+  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
+}
+
+typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
+
+static os_sigaction_t os_sigaction = NULL;
+
+void os::Linux::check_signal_handler(int sig) {
+  char buf[O_BUFLEN];
+  address jvmHandler = NULL;
+
+
+  struct sigaction act;
+  if (os_sigaction == NULL) {
+    // only trust the default sigaction, in case it has been interposed
+    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
+    if (os_sigaction == NULL) return;
+  }
+
+  os_sigaction(sig, (struct sigaction*)NULL, &act);
+
+
+  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
+
+  address thisHandler = (act.sa_flags & SA_SIGINFO)
+    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
+    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
+
+
+  switch(sig) {
+  case SIGSEGV:
+  case SIGBUS:
+  case SIGFPE:
+  case SIGPIPE:
+  case SIGILL:
+  case SIGXFSZ:
+    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
+    break;
+
+  case SHUTDOWN1_SIGNAL:
+  case SHUTDOWN2_SIGNAL:
+  case SHUTDOWN3_SIGNAL:
+  case BREAK_SIGNAL:
+    jvmHandler = (address)user_handler();
+    break;
+
+  case INTERRUPT_SIGNAL:
+    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
+    break;
+
+  default:
+    if (sig == SR_signum) {
+      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
+    } else {
+      return;
+    }
+    break;
+  }
+
+  if (thisHandler != jvmHandler) {
+    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
+    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
+    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
+    // No need to check this sig any longer
+    sigaddset(&check_signal_done, sig);
+  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
+    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
+    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
+    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
+    // No need to check this sig any longer
+    sigaddset(&check_signal_done, sig);
+  }
+
+  // Dump all the signal
+  if (sigismember(&check_signal_done, sig)) {
+    print_signal_handlers(tty, buf, O_BUFLEN);
+  }
+}
+
+extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
+
+extern bool signal_name(int signo, char* buf, size_t len);
+
+const char* os::exception_name(int exception_code, char* buf, size_t size) {
+  if (0 < exception_code && exception_code <= SIGRTMAX) {
+    // signal
+    if (!signal_name(exception_code, buf, size)) {
+      jio_snprintf(buf, size, "SIG%d", exception_code);
+    }
+    return buf;
+  } else {
+    return NULL;
+  }
+}
+
+// this is called _before_ the most of global arguments have been parsed
+void os::init(void) {
+  char dummy;   /* used to get a guess on initial stack address */
+//  first_hrtime = gethrtime();
+
+  // With LinuxThreads the JavaMain thread pid (primordial thread)
+  // is different than the pid of the java launcher thread.
+  // So, on Linux, the launcher thread pid is passed to the VM
+  // via the sun.java.launcher.pid property.
+  // Use this property instead of getpid() if it was correctly passed.
+  // See bug 6351349.
+  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
+
+  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
+
+  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
+
+  init_random(1234567);
+
+  ThreadCritical::initialize();
+
+  Linux::set_page_size(sysconf(_SC_PAGESIZE));
+  if (Linux::page_size() == -1) {
+    fatal1("os_linux.cpp: os::init: sysconf failed (%s)", strerror(errno));
+  }
+  init_page_sizes((size_t) Linux::page_size());
+
+  Linux::initialize_system_info();
+
+  // main_thread points to the aboriginal thread
+  Linux::_main_thread = pthread_self();
+
+  Linux::clock_init();
+  initial_time_count = os::elapsed_counter();
+}
+
+// To install functions for atexit system call
+extern "C" {
+  static void perfMemory_exit_helper() {
+    perfMemory_exit();
+  }
+}
+
+// this is called _after_ the global arguments have been parsed
+jint os::init_2(void)
+{
+  Linux::fast_thread_clock_init();
+
+  // Allocate a single page and mark it as readable for safepoint polling
+  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
+  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
+
+  os::set_polling_page( polling_page );
+
+#ifndef PRODUCT
+  if(Verbose && PrintMiscellaneous)
+    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
+#endif
+
+  if (!UseMembar) {
+    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
+    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
+    os::set_memory_serialize_page( mem_serialize_page );
+
+#ifndef PRODUCT
+    if(Verbose && PrintMiscellaneous)
+      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
+#endif
+  }
+
+  FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
+
+  // initialize suspend/resume support - must do this before signal_sets_init()
+  if (SR_initialize() != 0) {
+    perror("SR_initialize failed");
+    return JNI_ERR;
+  }
+
+  Linux::signal_sets_init();
+  Linux::install_signal_handlers();
+
+  size_t threadStackSizeInBytes = ThreadStackSize * K;
+  if (threadStackSizeInBytes != 0 &&
+      threadStackSizeInBytes < Linux::min_stack_allowed) {
+        tty->print_cr("\nThe stack size specified is too small, "
+                      "Specify at least %dk",
+                      Linux::min_stack_allowed / K);
+        return JNI_ERR;
+  }
+
+  // Make the stack size a multiple of the page size so that
+  // the yellow/red zones can be guarded.
+  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
+        vm_page_size()));
+
+  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
+
+  Linux::libpthread_init();
+  if (PrintMiscellaneous && (Verbose || WizardMode)) {
+     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
+          Linux::glibc_version(), Linux::libpthread_version(),
+          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
+  }
+
+  if (MaxFDLimit) {
+    // set the number of file descriptors to max. print out error
+    // if getrlimit/setrlimit fails but continue regardless.
+    struct rlimit nbr_files;
+    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
+    if (status != 0) {
+      if (PrintMiscellaneous && (Verbose || WizardMode))
+        perror("os::init_2 getrlimit failed");
+    } else {
+      nbr_files.rlim_cur = nbr_files.rlim_max;
+      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
+      if (status != 0) {
+        if (PrintMiscellaneous && (Verbose || WizardMode))
+          perror("os::init_2 setrlimit failed");
+      }
+    }
+  }
+
+  // Initialize lock used to serialize thread creation (see os::create_thread)
+  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
+
+  // Initialize HPI.
+  jint hpi_result = hpi::initialize();
+  if (hpi_result != JNI_OK) {
+    tty->print_cr("There was an error trying to initialize the HPI library.");
+    return hpi_result;
+  }
+
+  // at-exit methods are called in the reverse order of their registration.
+  // atexit functions are called on return from main or as a result of a
+  // call to exit(3C). There can be only 32 of these functions registered
+  // and atexit() does not set errno.
+
+  if (PerfAllowAtExitRegistration) {
+    // only register atexit functions if PerfAllowAtExitRegistration is set.
+    // atexit functions can be delayed until process exit time, which
+    // can be problematic for embedded VM situations. Embedded VMs should
+    // call DestroyJavaVM() to assure that VM resources are released.
+
+    // note: perfMemory_exit_helper atexit function may be removed in
+    // the future if the appropriate cleanup code can be added to the
+    // VM_Exit VMOperation's doit method.
+    if (atexit(perfMemory_exit_helper) != 0) {
+      warning("os::init2 atexit(perfMemory_exit_helper) failed");
+    }
+  }
+
+  // initialize thread priority policy
+  prio_init();
+
+  return JNI_OK;
+}
+
+// Mark the polling page as unreadable
+void os::make_polling_page_unreadable(void) {
+  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
+    fatal("Could not disable polling page");
+};
+
+// Mark the polling page as readable
+void os::make_polling_page_readable(void) {
+  if( !protect_memory((char *)_polling_page, Linux::page_size()) )
+    fatal("Could not enable polling page");
+};
+
+int os::active_processor_count() {
+  // Linux doesn't yet have a (official) notion of processor sets,
+  // so just return the number of online processors.
+  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
+  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
+  return online_cpus;
+}
+
+bool os::distribute_processes(uint length, uint* distribution) {
+  // Not yet implemented.
+  return false;
+}
+
+bool os::bind_to_processor(uint processor_id) {
+  // Not yet implemented.
+  return false;
+}
+
+///
+
+// Suspends the target using the signal mechanism and then grabs the PC before
+// resuming the target. Used by the flat-profiler only
+ExtendedPC os::get_thread_pc(Thread* thread) {
+  // Make sure that it is called by the watcher for the VMThread
+  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
+  assert(thread->is_VM_thread(), "Can only be called for VMThread");
+
+  ExtendedPC epc;
+
+  OSThread* osthread = thread->osthread();
+  if (do_suspend(osthread)) {
+    if (osthread->ucontext() != NULL) {
+      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
+    } else {
+      // NULL context is unexpected, double-check this is the VMThread
+      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
+    }
+    do_resume(osthread);
+  }
+  // failure means pthread_kill failed for some reason - arguably this is
+  // a fatal problem, but such problems are ignored elsewhere
+
+  return epc;
+}
+
+int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
+{
+   if (is_NPTL()) {
+      return pthread_cond_timedwait(_cond, _mutex, _abstime);
+   } else {
+#ifndef IA64
+      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
+      // word back to default 64bit precision if condvar is signaled. Java
+      // wants 53bit precision.  Save and restore current value.
+      int fpu = get_fpu_control_word();
+#endif // IA64
+      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
+#ifndef IA64
+      set_fpu_control_word(fpu);
+#endif // IA64
+      return status;
+   }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// debug support
+
+#ifndef PRODUCT
+static address same_page(address x, address y) {
+  int page_bits = -os::vm_page_size();
+  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
+    return x;
+  else if (x > y)
+    return (address)(intptr_t(y) | ~page_bits) + 1;
+  else
+    return (address)(intptr_t(y) & page_bits);
+}
+
+bool os::find(address addr) {
+  Dl_info dlinfo;
+  memset(&dlinfo, 0, sizeof(dlinfo));
+  if (dladdr(addr, &dlinfo)) {
+    tty->print(PTR_FORMAT ": ", addr);
+    if (dlinfo.dli_sname != NULL) {
+      tty->print("%s+%#x", dlinfo.dli_sname,
+                 addr - (intptr_t)dlinfo.dli_saddr);
+    } else if (dlinfo.dli_fname) {
+      tty->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
+    } else {
+      tty->print("<absolute address>");
+    }
+    if (dlinfo.dli_fname) {
+      tty->print(" in %s", dlinfo.dli_fname);
+    }
+    if (dlinfo.dli_fbase) {
+      tty->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
+    }
+    tty->cr();
+
+    if (Verbose) {
+      // decode some bytes around the PC
+      address begin = same_page(addr-40, addr);
+      address end   = same_page(addr+40, addr);
+      address       lowest = (address) dlinfo.dli_sname;
+      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
+      if (begin < lowest)  begin = lowest;
+      Dl_info dlinfo2;
+      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
+          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
+        end = (address) dlinfo2.dli_saddr;
+      Disassembler::decode(begin, end);
+    }
+    return true;
+  }
+  return false;
+}
+
+#endif
+
+////////////////////////////////////////////////////////////////////////////////
+// misc
+
+// This does not do anything on Linux. This is basically a hook for being
+// able to use structured exception handling (thread-local exception filters)
+// on, e.g., Win32.
+void
+os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
+                         JavaCallArguments* args, Thread* thread) {
+  f(value, method, args, thread);
+}
+
+void os::print_statistics() {
+}
+
+int os::message_box(const char* title, const char* message) {
+  int i;
+  fdStream err(defaultStream::error_fd());
+  for (i = 0; i < 78; i++) err.print_raw("=");
+  err.cr();
+  err.print_raw_cr(title);
+  for (i = 0; i < 78; i++) err.print_raw("-");
+  err.cr();
+  err.print_raw_cr(message);
+  for (i = 0; i < 78; i++) err.print_raw("=");
+  err.cr();
+
+  char buf[16];
+  // Prevent process from exiting upon "read error" without consuming all CPU
+  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
+
+  return buf[0] == 'y' || buf[0] == 'Y';
+}
+
+int os::stat(const char *path, struct stat *sbuf) {
+  char pathbuf[MAX_PATH];
+  if (strlen(path) > MAX_PATH - 1) {
+    errno = ENAMETOOLONG;
+    return -1;
+  }
+  hpi::native_path(strcpy(pathbuf, path));
+  return ::stat(pathbuf, sbuf);
+}
+
+bool os::check_heap(bool force) {
+  return true;
+}
+
+int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
+  return ::vsnprintf(buf, count, format, args);
+}
+
+// Is a (classpath) directory empty?
+bool os::dir_is_empty(const char* path) {
+  DIR *dir = NULL;
+  struct dirent *ptr;
+
+  dir = opendir(path);
+  if (dir == NULL) return true;
+
+  /* Scan the directory */
+  bool result = true;
+  char buf[sizeof(struct dirent) + MAX_PATH];
+  while (result && (ptr = ::readdir(dir)) != NULL) {
+    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
+      result = false;
+    }
+  }
+  closedir(dir);
+  return result;
+}
+
+// create binary file, rewriting existing file if required
+int os::create_binary_file(const char* path, bool rewrite_existing) {
+  int oflags = O_WRONLY | O_CREAT;
+  if (!rewrite_existing) {
+    oflags |= O_EXCL;
+  }
+  return ::open64(path, oflags, S_IREAD | S_IWRITE);
+}
+
+// return current position of file pointer
+jlong os::current_file_offset(int fd) {
+  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
+}
+
+// move file pointer to the specified offset
+jlong os::seek_to_file_offset(int fd, jlong offset) {
+  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
+}
+
+// Map a block of memory.
+char* os::map_memory(int fd, const char* file_name, size_t file_offset,
+                     char *addr, size_t bytes, bool read_only,
+                     bool allow_exec) {
+  int prot;
+  int flags;
+
+  if (read_only) {
+    prot = PROT_READ;
+    flags = MAP_SHARED;
+  } else {
+    prot = PROT_READ | PROT_WRITE;
+    flags = MAP_PRIVATE;
+  }
+
+  if (allow_exec) {
+    prot |= PROT_EXEC;
+  }
+
+  if (addr != NULL) {
+    flags |= MAP_FIXED;
+  }
+
+  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
+                                     fd, file_offset);
+  if (mapped_address == MAP_FAILED) {
+    return NULL;
+  }
+  return mapped_address;
+}
+
+
+// Remap a block of memory.
+char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
+                       char *addr, size_t bytes, bool read_only,
+                       bool allow_exec) {
+  // same as map_memory() on this OS
+  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
+                        allow_exec);
+}
+
+
+// Unmap a block of memory.
+bool os::unmap_memory(char* addr, size_t bytes) {
+  return munmap(addr, bytes) == 0;
+}
+
+static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
+
+static clockid_t thread_cpu_clockid(Thread* thread) {
+  pthread_t tid = thread->osthread()->pthread_id();
+  clockid_t clockid;
+
+  // Get thread clockid
+  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
+  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
+  return clockid;
+}
+
+// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
+// are used by JVM M&M and JVMTI to get user+sys or user CPU time
+// of a thread.
+//
+// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
+// the fast estimate available on the platform.
+
+jlong os::current_thread_cpu_time() {
+  if (os::Linux::supports_fast_thread_cpu_time()) {
+    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
+  } else {
+    // return user + sys since the cost is the same
+    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
+  }
+}
+
+jlong os::thread_cpu_time(Thread* thread) {
+  // consistent with what current_thread_cpu_time() returns
+  if (os::Linux::supports_fast_thread_cpu_time()) {
+    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
+  } else {
+    return slow_thread_cpu_time(thread, true /* user + sys */);
+  }
+}
+
+jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
+  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
+    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
+  } else {
+    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
+  }
+}
+
+jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
+  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
+    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
+  } else {
+    return slow_thread_cpu_time(thread, user_sys_cpu_time);
+  }
+}
+
+//
+//  -1 on error.
+//
+
+static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
+  static bool proc_pid_cpu_avail = true;
+  static bool proc_task_unchecked = true;
+  static const char *proc_stat_path = "/proc/%d/stat";
+  pid_t  tid = thread->osthread()->thread_id();
+  int i;
+  char *s;
+  char stat[2048];
+  int statlen;
+  char proc_name[64];
+  int count;
+  long sys_time, user_time;
+  char string[64];
+  int idummy;
+  long ldummy;
+  FILE *fp;
+
+  // We first try accessing /proc/<pid>/cpu since this is faster to
+  // process.  If this file is not present (linux kernels 2.5 and above)
+  // then we open /proc/<pid>/stat.
+  if ( proc_pid_cpu_avail ) {
+    sprintf(proc_name, "/proc/%d/cpu", tid);
+    fp =  fopen(proc_name, "r");
+    if ( fp != NULL ) {
+      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
+      fclose(fp);
+      if ( count != 3 ) return -1;
+
+      if (user_sys_cpu_time) {
+        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
+      } else {
+        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
+      }
+    }
+    else proc_pid_cpu_avail = false;
+  }
+
+  // The /proc/<tid>/stat aggregates per-process usage on
+  // new Linux kernels 2.6+ where NPTL is supported.
+  // The /proc/self/task/<tid>/stat still has the per-thread usage.
+  // See bug 6328462.
+  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
+  // and possibly in some other cases, so we check its availability.
+  if (proc_task_unchecked && os::Linux::is_NPTL()) {
+    // This is executed only once
+    proc_task_unchecked = false;
+    fp = fopen("/proc/self/task", "r");
+    if (fp != NULL) {
+      proc_stat_path = "/proc/self/task/%d/stat";
+      fclose(fp);
+    }
+  }
+
+  sprintf(proc_name, proc_stat_path, tid);
+  fp = fopen(proc_name, "r");
+  if ( fp == NULL ) return -1;
+  statlen = fread(stat, 1, 2047, fp);
+  stat[statlen] = '\0';
+  fclose(fp);
+
+  // Skip pid and the command string. Note that we could be dealing with
+  // weird command names, e.g. user could decide to rename java launcher
+  // to "java 1.4.2 :)", then the stat file would look like
+  //                1234 (java 1.4.2 :)) R ... ...
+  // We don't really need to know the command string, just find the last
+  // occurrence of ")" and then start parsing from there. See bug 4726580.
+  s = strrchr(stat, ')');
+  i = 0;
+  if (s == NULL ) return -1;
+
+  // Skip blank chars
+  do s++; while (isspace(*s));
+
+  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
+                 &idummy, &idummy, &idummy, &idummy, &idummy, &idummy,
+                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
+                 &user_time, &sys_time);
+  if ( count != 13 ) return -1;
+  if (user_sys_cpu_time) {
+    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
+  } else {
+    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
+  }
+}
+
+void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
+  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
+  info_ptr->may_skip_backward = false;     // elapsed time not wall time
+  info_ptr->may_skip_forward = false;      // elapsed time not wall time
+  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
+}
+
+void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
+  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
+  info_ptr->may_skip_backward = false;     // elapsed time not wall time
+  info_ptr->may_skip_forward = false;      // elapsed time not wall time
+  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
+}
+
+bool os::is_thread_cpu_time_supported() {
+  return true;
+}
+
+// System loadavg support.  Returns -1 if load average cannot be obtained.
+// Linux doesn't yet have a (official) notion of processor sets,
+// so just return the system wide load average.
+int os::loadavg(double loadavg[], int nelem) {
+  return ::getloadavg(loadavg, nelem);
+}
+
+void os::pause() {
+  char filename[MAX_PATH];
+  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
+    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
+  } else {
+    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
+  }
+
+  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
+  if (fd != -1) {
+    struct stat buf;
+    close(fd);
+    while (::stat(filename, &buf) == 0) {
+      (void)::poll(NULL, 0, 100);
+    }
+  } else {
+    jio_fprintf(stderr,
+      "Could not open pause file '%s', continuing immediately.\n", filename);
+  }
+}
+
+extern "C" {
+
+/**
+ * NOTE: the following code is to keep the green threads code
+ * in the libjava.so happy. Once the green threads is removed,
+ * these code will no longer be needed.
+ */
+int
+jdk_waitpid(pid_t pid, int* status, int options) {
+    return waitpid(pid, status, options);
+}
+
+int
+fork1() {
+    return fork();
+}
+
+int
+jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
+    return sem_init(sem, pshared, value);
+}
+
+int
+jdk_sem_post(sem_t *sem) {
+    return sem_post(sem);
+}
+
+int
+jdk_sem_wait(sem_t *sem) {
+    return sem_wait(sem);
+}
+
+int
+jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
+    return pthread_sigmask(how , newmask, oldmask);
+}
+
+}
+
+// Refer to the comments in os_solaris.cpp park-unpark.
+//
+// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
+// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
+// For specifics regarding the bug see GLIBC BUGID 261237 :
+//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
+// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
+// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
+// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
+// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
+// and monitorenter when we're using 1-0 locking.  All those operations may result in
+// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
+// of libpthread avoids the problem, but isn't practical.
+//
+// Possible remedies:
+//
+// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
+//      This is palliative and probabilistic, however.  If the thread is preempted
+//      between the call to compute_abstime() and pthread_cond_timedwait(), more
+//      than the minimum period may have passed, and the abstime may be stale (in the
+//      past) resultin in a hang.   Using this technique reduces the odds of a hang
+//      but the JVM is still vulnerable, particularly on heavily loaded systems.
+//
+// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
+//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
+//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
+//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
+//      thread.
+//
+// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
+//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
+//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
+//      This also works well.  In fact it avoids kernel-level scalability impediments
+//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
+//      timers in a graceful fashion.
+//
+// 4.   When the abstime value is in the past it appears that control returns
+//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
+//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
+//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
+//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
+//      It may be possible to avoid reinitialization by checking the return
+//      value from pthread_cond_timedwait().  In addition to reinitializing the
+//      condvar we must establish the invariant that cond_signal() is only called
+//      within critical sections protected by the adjunct mutex.  This prevents
+//      cond_signal() from "seeing" a condvar that's in the midst of being
+//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
+//      desirable signal-after-unlock optimization that avoids futile context switching.
+//
+//      I'm also concerned that some versions of NTPL might allocate an auxilliary
+//      structure when a condvar is used or initialized.  cond_destroy()  would
+//      release the helper structure.  Our reinitialize-after-timedwait fix
+//      put excessive stress on malloc/free and locks protecting the c-heap.
+//
+// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
+// It may be possible to refine (4) by checking the kernel and NTPL verisons
+// and only enabling the work-around for vulnerable environments.
+
+// utility to compute the abstime argument to timedwait:
+// millis is the relative timeout time
+// abstime will be the absolute timeout time
+// TODO: replace compute_abstime() with unpackTime()
+
+static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
+  if (millis < 0)  millis = 0;
+  struct timeval now;
+  int status = gettimeofday(&now, NULL);
+  assert(status == 0, "gettimeofday");
+  jlong seconds = millis / 1000;
+  millis %= 1000;
+  if (seconds > 50000000) { // see man cond_timedwait(3T)
+    seconds = 50000000;
+  }
+  abstime->tv_sec = now.tv_sec  + seconds;
+  long       usec = now.tv_usec + millis * 1000;
+  if (usec >= 1000000) {
+    abstime->tv_sec += 1;
+    usec -= 1000000;
+  }
+  abstime->tv_nsec = usec * 1000;
+  return abstime;
+}
+
+
+// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
+// Conceptually TryPark() should be equivalent to park(0).
+
+int os::PlatformEvent::TryPark() {
+  for (;;) {
+    const int v = _Event ;
+    guarantee ((v == 0) || (v == 1), "invariant") ;
+    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
+  }
+}
+
+void os::PlatformEvent::park() {       // AKA "down()"
+  // Invariant: Only the thread associated with the Event/PlatformEvent
+  // may call park().
+  // TODO: assert that _Assoc != NULL or _Assoc == Self
+  int v ;
+  for (;;) {
+      v = _Event ;
+      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
+  }
+  guarantee (v >= 0, "invariant") ;
+  if (v == 0) {
+     // Do this the hard way by blocking ...
+     int status = pthread_mutex_lock(_mutex);
+     assert_status(status == 0, status, "mutex_lock");
+     guarantee (_nParked == 0, "invariant") ;
+     ++ _nParked ;
+     while (_Event < 0) {
+        status = pthread_cond_wait(_cond, _mutex);
+        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
+        // Treat this the same as if the wait was interrupted
+        if (status == ETIME) { status = EINTR; }
+        assert_status(status == 0 || status == EINTR, status, "cond_wait");
+     }
+     -- _nParked ;
+
+    // In theory we could move the ST of 0 into _Event past the unlock(),
+    // but then we'd need a MEMBAR after the ST.
+    _Event = 0 ;
+     status = pthread_mutex_unlock(_mutex);
+     assert_status(status == 0, status, "mutex_unlock");
+  }
+  guarantee (_Event >= 0, "invariant") ;
+}
+
+int os::PlatformEvent::park(jlong millis) {
+  guarantee (_nParked == 0, "invariant") ;
+
+  int v ;
+  for (;;) {
+      v = _Event ;
+      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
+  }
+  guarantee (v >= 0, "invariant") ;
+  if (v != 0) return OS_OK ;
+
+  // We do this the hard way, by blocking the thread.
+  // Consider enforcing a minimum timeout value.
+  struct timespec abst;
+  compute_abstime(&abst, millis);
+
+  int ret = OS_TIMEOUT;
+  int status = pthread_mutex_lock(_mutex);
+  assert_status(status == 0, status, "mutex_lock");
+  guarantee (_nParked == 0, "invariant") ;
+  ++_nParked ;
+
+  // Object.wait(timo) will return because of
+  // (a) notification
+  // (b) timeout
+  // (c) thread.interrupt
+  //
+  // Thread.interrupt and object.notify{All} both call Event::set.
+  // That is, we treat thread.interrupt as a special case of notification.
+  // The underlying Solaris implementation, cond_timedwait, admits
+  // spurious/premature wakeups, but the JLS/JVM spec prevents the
+  // JVM from making those visible to Java code.  As such, we must
+  // filter out spurious wakeups.  We assume all ETIME returns are valid.
+  //
+  // TODO: properly differentiate simultaneous notify+interrupt.
+  // In that case, we should propagate the notify to another waiter.
+
+  while (_Event < 0) {
+    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
+    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
+      pthread_cond_destroy (_cond);
+      pthread_cond_init (_cond, NULL) ;
+    }
+    assert_status(status == 0 || status == EINTR ||
+                  status == ETIME || status == ETIMEDOUT,
+                  status, "cond_timedwait");
+    if (!FilterSpuriousWakeups) break ;                 // previous semantics
+    if (status == ETIME || status == ETIMEDOUT) break ;
+    // We consume and ignore EINTR and spurious wakeups.
+  }
+  --_nParked ;
+  if (_Event >= 0) {
+     ret = OS_OK;
+  }
+  _Event = 0 ;
+  status = pthread_mutex_unlock(_mutex);
+  assert_status(status == 0, status, "mutex_unlock");
+  assert (_nParked == 0, "invariant") ;
+  return ret;
+}
+
+void os::PlatformEvent::unpark() {
+  int v, AnyWaiters ;
+  for (;;) {
+      v = _Event ;
+      if (v > 0) {
+         // The LD of _Event could have reordered or be satisfied
+         // by a read-aside from this processor's write buffer.
+         // To avoid problems execute a barrier and then
+         // ratify the value.
+         OrderAccess::fence() ;
+         if (_Event == v) return ;
+         continue ;
+      }
+      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
+  }
+  if (v < 0) {
+     // Wait for the thread associated with the event to vacate
+     int status = pthread_mutex_lock(_mutex);
+     assert_status(status == 0, status, "mutex_lock");
+     AnyWaiters = _nParked ;
+     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
+     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
+        AnyWaiters = 0 ;
+        pthread_cond_signal (_cond);
+     }
+     status = pthread_mutex_unlock(_mutex);
+     assert_status(status == 0, status, "mutex_unlock");
+     if (AnyWaiters != 0) {
+        status = pthread_cond_signal(_cond);
+        assert_status(status == 0, status, "cond_signal");
+     }
+  }
+
+  // Note that we signal() _after dropping the lock for "immortal" Events.
+  // This is safe and avoids a common class of  futile wakeups.  In rare
+  // circumstances this can cause a thread to return prematurely from
+  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
+  // simply re-test the condition and re-park itself.
+}
+
+
+// JSR166
+// -------------------------------------------------------
+
+/*
+ * The solaris and linux implementations of park/unpark are fairly
+ * conservative for now, but can be improved. They currently use a
+ * mutex/condvar pair, plus a a count.
+ * Park decrements count if > 0, else does a condvar wait.  Unpark
+ * sets count to 1 and signals condvar.  Only one thread ever waits
+ * on the condvar. Contention seen when trying to park implies that someone
+ * is unparking you, so don't wait. And spurious returns are fine, so there
+ * is no need to track notifications.
+ */
+
+
+#define NANOSECS_PER_SEC 1000000000
+#define NANOSECS_PER_MILLISEC 1000000
+#define MAX_SECS 100000000
+/*
+ * This code is common to linux and solaris and will be moved to a
+ * common place in dolphin.
+ *
+ * The passed in time value is either a relative time in nanoseconds
+ * or an absolute time in milliseconds. Either way it has to be unpacked
+ * into suitable seconds and nanoseconds components and stored in the
+ * given timespec structure.
+ * Given time is a 64-bit value and the time_t used in the timespec is only
+ * a signed-32-bit value (except on 64-bit Linux) we have to watch for
+ * overflow if times way in the future are given. Further on Solaris versions
+ * prior to 10 there is a restriction (see cond_timedwait) that the specified
+ * number of seconds, in abstime, is less than current_time  + 100,000,000.
+ * As it will be 28 years before "now + 100000000" will overflow we can
+ * ignore overflow and just impose a hard-limit on seconds using the value
+ * of "now + 100,000,000". This places a limit on the timeout of about 3.17
+ * years from "now".
+ */
+
+static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
+  assert (time > 0, "convertTime");
+
+  struct timeval now;
+  int status = gettimeofday(&now, NULL);
+  assert(status == 0, "gettimeofday");
+
+  time_t max_secs = now.tv_sec + MAX_SECS;
+
+  if (isAbsolute) {
+    jlong secs = time / 1000;
+    if (secs > max_secs) {
+      absTime->tv_sec = max_secs;
+    }
+    else {
+      absTime->tv_sec = secs;
+    }
+    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
+  }
+  else {
+    jlong secs = time / NANOSECS_PER_SEC;
+    if (secs >= MAX_SECS) {
+      absTime->tv_sec = max_secs;
+      absTime->tv_nsec = 0;
+    }
+    else {
+      absTime->tv_sec = now.tv_sec + secs;
+      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
+      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
+        absTime->tv_nsec -= NANOSECS_PER_SEC;
+        ++absTime->tv_sec; // note: this must be <= max_secs
+      }
+    }
+  }
+  assert(absTime->tv_sec >= 0, "tv_sec < 0");
+  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
+  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
+  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
+}
+
+void Parker::park(bool isAbsolute, jlong time) {
+  // Optional fast-path check:
+  // Return immediately if a permit is available.
+  if (_counter > 0) {
+      _counter = 0 ;
+      return ;
+  }
+
+  Thread* thread = Thread::current();
+  assert(thread->is_Java_thread(), "Must be JavaThread");
+  JavaThread *jt = (JavaThread *)thread;
+
+  // Optional optimization -- avoid state transitions if there's an interrupt pending.
+  // Check interrupt before trying to wait
+  if (Thread::is_interrupted(thread, false)) {
+    return;
+  }
+
+  // Next, demultiplex/decode time arguments
+  timespec absTime;
+  if (time < 0) { // don't wait at all
+    return;
+  }
+  if (time > 0) {
+    unpackTime(&absTime, isAbsolute, time);
+  }
+
+
+  // Enter safepoint region
+  // Beware of deadlocks such as 6317397.
+  // The per-thread Parker:: mutex is a classic leaf-lock.
+  // In particular a thread must never block on the Threads_lock while
+  // holding the Parker:: mutex.  If safepoints are pending both the
+  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
+  ThreadBlockInVM tbivm(jt);
+
+  // Don't wait if cannot get lock since interference arises from
+  // unblocking.  Also. check interrupt before trying wait
+  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
+    return;
+  }
+
+  int status ;
+  if (_counter > 0)  { // no wait needed
+    _counter = 0;
+    status = pthread_mutex_unlock(_mutex);
+    assert (status == 0, "invariant") ;
+    return;
+  }
+
+#ifdef ASSERT
+  // Don't catch signals while blocked; let the running threads have the signals.
+  // (This allows a debugger to break into the running thread.)
+  sigset_t oldsigs;
+  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
+  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
+#endif
+
+  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
+  jt->set_suspend_equivalent();
+  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
+
+  if (time == 0) {
+    status = pthread_cond_wait (_cond, _mutex) ;
+  } else {
+    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
+    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
+      pthread_cond_destroy (_cond) ;
+      pthread_cond_init    (_cond, NULL);
+    }
+  }
+  assert_status(status == 0 || status == EINTR ||
+                status == ETIME || status == ETIMEDOUT,
+                status, "cond_timedwait");
+
+#ifdef ASSERT
+  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
+#endif
+
+  _counter = 0 ;
+  status = pthread_mutex_unlock(_mutex) ;
+  assert_status(status == 0, status, "invariant") ;
+  // If externally suspended while waiting, re-suspend
+  if (jt->handle_special_suspend_equivalent_condition()) {
+    jt->java_suspend_self();
+  }
+
+}
+
+void Parker::unpark() {
+  int s, status ;
+  status = pthread_mutex_lock(_mutex);
+  assert (status == 0, "invariant") ;
+  s = _counter;
+  _counter = 1;
+  if (s < 1) {
+     if (WorkAroundNPTLTimedWaitHang) {
+        status = pthread_cond_signal (_cond) ;
+        assert (status == 0, "invariant") ;
+        status = pthread_mutex_unlock(_mutex);
+        assert (status == 0, "invariant") ;
+     } else {
+        status = pthread_mutex_unlock(_mutex);
+        assert (status == 0, "invariant") ;
+        status = pthread_cond_signal (_cond) ;
+        assert (status == 0, "invariant") ;
+     }
+  } else {
+    pthread_mutex_unlock(_mutex);
+    assert (status == 0, "invariant") ;
+  }
+}
+
+
+extern char** environ;
+
+#ifndef __NR_fork
+#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
+#endif
+
+#ifndef __NR_execve
+#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
+#endif
+
+// Run the specified command in a separate process. Return its exit value,
+// or -1 on failure (e.g. can't fork a new process).
+// Unlike system(), this function can be called from signal handler. It
+// doesn't block SIGINT et al.
+int os::fork_and_exec(char* cmd) {
+  char * argv[4];
+  argv[0] = "sh";
+  argv[1] = "-c";
+  argv[2] = cmd;
+  argv[3] = NULL;
+
+  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
+  // pthread_atfork handlers and reset pthread library. All we need is a
+  // separate process to execve. Make a direct syscall to fork process.
+  // On IA64 there's no fork syscall, we have to use fork() and hope for
+  // the best...
+  pid_t pid = NOT_IA64(syscall(__NR_fork);)
+              IA64_ONLY(fork();)
+
+  if (pid < 0) {
+    // fork failed
+    return -1;
+
+  } else if (pid == 0) {
+    // child process
+
+    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
+    // first to kill every thread on the thread list. Because this list is
+    // not reset by fork() (see notes above), execve() will instead kill
+    // every thread in the parent process. We know this is the only thread
+    // in the new process, so make a system call directly.
+    // IA64 should use normal execve() from glibc to match the glibc fork()
+    // above.
+    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
+    IA64_ONLY(execve("/bin/sh", argv, environ);)
+
+    // execve failed
+    _exit(-1);
+
+  } else  {
+    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
+    // care about the actual exit code, for now.
+
+    int status;
+
+    // Wait for the child process to exit.  This returns immediately if
+    // the child has already exited. */
+    while (waitpid(pid, &status, 0) < 0) {
+        switch (errno) {
+        case ECHILD: return 0;
+        case EINTR: break;
+        default: return -1;
+        }
+    }
+
+    if (WIFEXITED(status)) {
+       // The child exited normally; get its exit code.
+       return WEXITSTATUS(status);
+    } else if (WIFSIGNALED(status)) {
+       // The child exited because of a signal
+       // The best value to return is 0x80 + signal number,
+       // because that is what all Unix shells do, and because
+       // it allows callers to distinguish between process exit and
+       // process death by signal.
+       return 0x80 + WTERMSIG(status);
+    } else {
+       // Unknown exit code; pass it through
+       return status;
+    }
+  }
+}