hotspot/src/cpu/x86/vm/sharedRuntime_x86_32.cpp
changeset 1 489c9b5090e2
child 363 99d43e8a76ad
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/cpu/x86/vm/sharedRuntime_x86_32.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,2633 @@
+/*
+ * Copyright 2003-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_sharedRuntime_x86_32.cpp.incl"
+
+#define __ masm->
+#ifdef COMPILER2
+UncommonTrapBlob   *SharedRuntime::_uncommon_trap_blob;
+#endif // COMPILER2
+
+DeoptimizationBlob *SharedRuntime::_deopt_blob;
+SafepointBlob      *SharedRuntime::_polling_page_safepoint_handler_blob;
+SafepointBlob      *SharedRuntime::_polling_page_return_handler_blob;
+RuntimeStub*       SharedRuntime::_wrong_method_blob;
+RuntimeStub*       SharedRuntime::_ic_miss_blob;
+RuntimeStub*       SharedRuntime::_resolve_opt_virtual_call_blob;
+RuntimeStub*       SharedRuntime::_resolve_virtual_call_blob;
+RuntimeStub*       SharedRuntime::_resolve_static_call_blob;
+
+class RegisterSaver {
+  enum { FPU_regs_live = 8 /*for the FPU stack*/+8/*eight more for XMM registers*/ };
+  // Capture info about frame layout
+  enum layout {
+                fpu_state_off = 0,
+                fpu_state_end = fpu_state_off+FPUStateSizeInWords-1,
+                st0_off, st0H_off,
+                st1_off, st1H_off,
+                st2_off, st2H_off,
+                st3_off, st3H_off,
+                st4_off, st4H_off,
+                st5_off, st5H_off,
+                st6_off, st6H_off,
+                st7_off, st7H_off,
+
+                xmm0_off, xmm0H_off,
+                xmm1_off, xmm1H_off,
+                xmm2_off, xmm2H_off,
+                xmm3_off, xmm3H_off,
+                xmm4_off, xmm4H_off,
+                xmm5_off, xmm5H_off,
+                xmm6_off, xmm6H_off,
+                xmm7_off, xmm7H_off,
+                flags_off,
+                rdi_off,
+                rsi_off,
+                ignore_off,  // extra copy of rbp,
+                rsp_off,
+                rbx_off,
+                rdx_off,
+                rcx_off,
+                rax_off,
+                // The frame sender code expects that rbp will be in the "natural" place and
+                // will override any oopMap setting for it. We must therefore force the layout
+                // so that it agrees with the frame sender code.
+                rbp_off,
+                return_off,      // slot for return address
+                reg_save_size };
+
+
+  public:
+
+  static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
+                                     int* total_frame_words, bool verify_fpu = true);
+  static void restore_live_registers(MacroAssembler* masm);
+
+  static int rax_offset() { return rax_off; }
+  static int rbx_offset() { return rbx_off; }
+
+  // Offsets into the register save area
+  // Used by deoptimization when it is managing result register
+  // values on its own
+
+  static int raxOffset(void) { return rax_off; }
+  static int rdxOffset(void) { return rdx_off; }
+  static int rbxOffset(void) { return rbx_off; }
+  static int xmm0Offset(void) { return xmm0_off; }
+  // This really returns a slot in the fp save area, which one is not important
+  static int fpResultOffset(void) { return st0_off; }
+
+  // During deoptimization only the result register need to be restored
+  // all the other values have already been extracted.
+
+  static void restore_result_registers(MacroAssembler* masm);
+
+};
+
+OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
+                                           int* total_frame_words, bool verify_fpu) {
+
+  int frame_size_in_bytes =  (reg_save_size + additional_frame_words) * wordSize;
+  int frame_words = frame_size_in_bytes / wordSize;
+  *total_frame_words = frame_words;
+
+  assert(FPUStateSizeInWords == 27, "update stack layout");
+
+  // save registers, fpu state, and flags
+  // We assume caller has already has return address slot on the stack
+  // We push epb twice in this sequence because we want the real rbp,
+  // to be under the return like a normal enter and we want to use pushad
+  // We push by hand instead of pusing push
+  __ enter();
+  __ pushad();
+  __ pushfd();
+  __ subl(rsp,FPU_regs_live*sizeof(jdouble)); // Push FPU registers space
+  __ push_FPU_state();          // Save FPU state & init
+
+  if (verify_fpu) {
+    // Some stubs may have non standard FPU control word settings so
+    // only check and reset the value when it required to be the
+    // standard value.  The safepoint blob in particular can be used
+    // in methods which are using the 24 bit control word for
+    // optimized float math.
+
+#ifdef ASSERT
+    // Make sure the control word has the expected value
+    Label ok;
+    __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
+    __ jccb(Assembler::equal, ok);
+    __ stop("corrupted control word detected");
+    __ bind(ok);
+#endif
+
+    // Reset the control word to guard against exceptions being unmasked
+    // since fstp_d can cause FPU stack underflow exceptions.  Write it
+    // into the on stack copy and then reload that to make sure that the
+    // current and future values are correct.
+    __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
+  }
+
+  __ frstor(Address(rsp, 0));
+  if (!verify_fpu) {
+    // Set the control word so that exceptions are masked for the
+    // following code.
+    __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
+  }
+
+  // Save the FPU registers in de-opt-able form
+
+  __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
+  __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
+  __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
+  __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
+  __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
+  __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
+  __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
+  __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
+
+  if( UseSSE == 1 ) {           // Save the XMM state
+    __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
+    __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
+    __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
+    __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
+    __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
+    __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
+    __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
+    __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
+  } else if( UseSSE >= 2 ) {
+    __ movdbl(Address(rsp,xmm0_off*wordSize),xmm0);
+    __ movdbl(Address(rsp,xmm1_off*wordSize),xmm1);
+    __ movdbl(Address(rsp,xmm2_off*wordSize),xmm2);
+    __ movdbl(Address(rsp,xmm3_off*wordSize),xmm3);
+    __ movdbl(Address(rsp,xmm4_off*wordSize),xmm4);
+    __ movdbl(Address(rsp,xmm5_off*wordSize),xmm5);
+    __ movdbl(Address(rsp,xmm6_off*wordSize),xmm6);
+    __ movdbl(Address(rsp,xmm7_off*wordSize),xmm7);
+  }
+
+  // Set an oopmap for the call site.  This oopmap will map all
+  // oop-registers and debug-info registers as callee-saved.  This
+  // will allow deoptimization at this safepoint to find all possible
+  // debug-info recordings, as well as let GC find all oops.
+
+  OopMapSet *oop_maps = new OopMapSet();
+  OopMap* map =  new OopMap( frame_words, 0 );
+
+#define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
+
+  map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
+  // rbp, location is known implicitly, no oopMap
+  map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
+  // %%% This is really a waste but we'll keep things as they were for now
+  if (true) {
+#define NEXTREG(x) (x)->as_VMReg()->next()
+    map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
+    map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
+    map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
+    map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
+    map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
+    map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
+    map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
+    map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
+    map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
+    map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
+    map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
+    map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
+    map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
+    map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
+    map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
+    map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
+#undef NEXTREG
+#undef STACK_OFFSET
+  }
+
+  return map;
+
+}
+
+void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
+
+  // Recover XMM & FPU state
+  if( UseSSE == 1 ) {
+    __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
+    __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
+    __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
+    __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
+    __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
+    __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
+    __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
+    __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
+  } else if( UseSSE >= 2 ) {
+    __ movdbl(xmm0,Address(rsp,xmm0_off*wordSize));
+    __ movdbl(xmm1,Address(rsp,xmm1_off*wordSize));
+    __ movdbl(xmm2,Address(rsp,xmm2_off*wordSize));
+    __ movdbl(xmm3,Address(rsp,xmm3_off*wordSize));
+    __ movdbl(xmm4,Address(rsp,xmm4_off*wordSize));
+    __ movdbl(xmm5,Address(rsp,xmm5_off*wordSize));
+    __ movdbl(xmm6,Address(rsp,xmm6_off*wordSize));
+    __ movdbl(xmm7,Address(rsp,xmm7_off*wordSize));
+  }
+  __ pop_FPU_state();
+  __ addl(rsp,FPU_regs_live*sizeof(jdouble)); // Pop FPU registers
+
+  __ popfd();
+  __ popad();
+  // Get the rbp, described implicitly by the frame sender code (no oopMap)
+  __ popl(rbp);
+
+}
+
+void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
+
+  // Just restore result register. Only used by deoptimization. By
+  // now any callee save register that needs to be restore to a c2
+  // caller of the deoptee has been extracted into the vframeArray
+  // and will be stuffed into the c2i adapter we create for later
+  // restoration so only result registers need to be restored here.
+  //
+
+  __ frstor(Address(rsp, 0));      // Restore fpu state
+
+  // Recover XMM & FPU state
+  if( UseSSE == 1 ) {
+    __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
+  } else if( UseSSE >= 2 ) {
+    __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
+  }
+  __ movl(rax, Address(rsp, rax_off*wordSize));
+  __ movl(rdx, Address(rsp, rdx_off*wordSize));
+  // Pop all of the register save are off the stack except the return address
+  __ addl(rsp, return_off * wordSize);
+}
+
+// The java_calling_convention describes stack locations as ideal slots on
+// a frame with no abi restrictions. Since we must observe abi restrictions
+// (like the placement of the register window) the slots must be biased by
+// the following value.
+static int reg2offset_in(VMReg r) {
+  // Account for saved rbp, and return address
+  // This should really be in_preserve_stack_slots
+  return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
+}
+
+static int reg2offset_out(VMReg r) {
+  return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
+}
+
+// ---------------------------------------------------------------------------
+// Read the array of BasicTypes from a signature, and compute where the
+// arguments should go.  Values in the VMRegPair regs array refer to 4-byte
+// quantities.  Values less than SharedInfo::stack0 are registers, those above
+// refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
+// as framesizes are fixed.
+// VMRegImpl::stack0 refers to the first slot 0(sp).
+// and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
+// up to RegisterImpl::number_of_registers) are the 32-bit
+// integer registers.
+
+// Pass first two oop/int args in registers ECX and EDX.
+// Pass first two float/double args in registers XMM0 and XMM1.
+// Doubles have precedence, so if you pass a mix of floats and doubles
+// the doubles will grab the registers before the floats will.
+
+// Note: the INPUTS in sig_bt are in units of Java argument words, which are
+// either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
+// units regardless of build. Of course for i486 there is no 64 bit build
+
+
+// ---------------------------------------------------------------------------
+// The compiled Java calling convention.
+// Pass first two oop/int args in registers ECX and EDX.
+// Pass first two float/double args in registers XMM0 and XMM1.
+// Doubles have precedence, so if you pass a mix of floats and doubles
+// the doubles will grab the registers before the floats will.
+int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
+                                           VMRegPair *regs,
+                                           int total_args_passed,
+                                           int is_outgoing) {
+  uint    stack = 0;          // Starting stack position for args on stack
+
+
+  // Pass first two oop/int args in registers ECX and EDX.
+  uint reg_arg0 = 9999;
+  uint reg_arg1 = 9999;
+
+  // Pass first two float/double args in registers XMM0 and XMM1.
+  // Doubles have precedence, so if you pass a mix of floats and doubles
+  // the doubles will grab the registers before the floats will.
+  // CNC - TURNED OFF FOR non-SSE.
+  //       On Intel we have to round all doubles (and most floats) at
+  //       call sites by storing to the stack in any case.
+  // UseSSE=0 ==> Don't Use ==> 9999+0
+  // UseSSE=1 ==> Floats only ==> 9999+1
+  // UseSSE>=2 ==> Floats or doubles ==> 9999+2
+  enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
+  uint fargs = (UseSSE>=2) ? 2 : UseSSE;
+  uint freg_arg0 = 9999+fargs;
+  uint freg_arg1 = 9999+fargs;
+
+  // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
+  int i;
+  for( i = 0; i < total_args_passed; i++) {
+    if( sig_bt[i] == T_DOUBLE ) {
+      // first 2 doubles go in registers
+      if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
+      else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
+      else // Else double is passed low on the stack to be aligned.
+        stack += 2;
+    } else if( sig_bt[i] == T_LONG ) {
+      stack += 2;
+    }
+  }
+  int dstack = 0;             // Separate counter for placing doubles
+
+  // Now pick where all else goes.
+  for( i = 0; i < total_args_passed; i++) {
+    // From the type and the argument number (count) compute the location
+    switch( sig_bt[i] ) {
+    case T_SHORT:
+    case T_CHAR:
+    case T_BYTE:
+    case T_BOOLEAN:
+    case T_INT:
+    case T_ARRAY:
+    case T_OBJECT:
+    case T_ADDRESS:
+      if( reg_arg0 == 9999 )  {
+        reg_arg0 = i;
+        regs[i].set1(rcx->as_VMReg());
+      } else if( reg_arg1 == 9999 )  {
+        reg_arg1 = i;
+        regs[i].set1(rdx->as_VMReg());
+      } else {
+        regs[i].set1(VMRegImpl::stack2reg(stack++));
+      }
+      break;
+    case T_FLOAT:
+      if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
+        freg_arg0 = i;
+        regs[i].set1(xmm0->as_VMReg());
+      } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
+        freg_arg1 = i;
+        regs[i].set1(xmm1->as_VMReg());
+      } else {
+        regs[i].set1(VMRegImpl::stack2reg(stack++));
+      }
+      break;
+    case T_LONG:
+      assert(sig_bt[i+1] == T_VOID, "missing Half" );
+      regs[i].set2(VMRegImpl::stack2reg(dstack));
+      dstack += 2;
+      break;
+    case T_DOUBLE:
+      assert(sig_bt[i+1] == T_VOID, "missing Half" );
+      if( freg_arg0 == (uint)i ) {
+        regs[i].set2(xmm0->as_VMReg());
+      } else if( freg_arg1 == (uint)i ) {
+        regs[i].set2(xmm1->as_VMReg());
+      } else {
+        regs[i].set2(VMRegImpl::stack2reg(dstack));
+        dstack += 2;
+      }
+      break;
+    case T_VOID: regs[i].set_bad(); break;
+      break;
+    default:
+      ShouldNotReachHere();
+      break;
+    }
+  }
+
+  // return value can be odd number of VMRegImpl stack slots make multiple of 2
+  return round_to(stack, 2);
+}
+
+// Patch the callers callsite with entry to compiled code if it exists.
+static void patch_callers_callsite(MacroAssembler *masm) {
+  Label L;
+  __ verify_oop(rbx);
+  __ cmpl(Address(rbx, in_bytes(methodOopDesc::code_offset())), NULL_WORD);
+  __ jcc(Assembler::equal, L);
+  // Schedule the branch target address early.
+  // Call into the VM to patch the caller, then jump to compiled callee
+  // rax, isn't live so capture return address while we easily can
+  __ movl(rax, Address(rsp, 0));
+  __ pushad();
+  __ pushfd();
+
+  if (UseSSE == 1) {
+    __ subl(rsp, 2*wordSize);
+    __ movflt(Address(rsp, 0), xmm0);
+    __ movflt(Address(rsp, wordSize), xmm1);
+  }
+  if (UseSSE >= 2) {
+    __ subl(rsp, 4*wordSize);
+    __ movdbl(Address(rsp, 0), xmm0);
+    __ movdbl(Address(rsp, 2*wordSize), xmm1);
+  }
+#ifdef COMPILER2
+  // C2 may leave the stack dirty if not in SSE2+ mode
+  if (UseSSE >= 2) {
+    __ verify_FPU(0, "c2i transition should have clean FPU stack");
+  } else {
+    __ empty_FPU_stack();
+  }
+#endif /* COMPILER2 */
+
+  // VM needs caller's callsite
+  __ pushl(rax);
+  // VM needs target method
+  __ pushl(rbx);
+  __ verify_oop(rbx);
+  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
+  __ addl(rsp, 2*wordSize);
+
+  if (UseSSE == 1) {
+    __ movflt(xmm0, Address(rsp, 0));
+    __ movflt(xmm1, Address(rsp, wordSize));
+    __ addl(rsp, 2*wordSize);
+  }
+  if (UseSSE >= 2) {
+    __ movdbl(xmm0, Address(rsp, 0));
+    __ movdbl(xmm1, Address(rsp, 2*wordSize));
+    __ addl(rsp, 4*wordSize);
+  }
+
+  __ popfd();
+  __ popad();
+  __ bind(L);
+}
+
+
+// Helper function to put tags in interpreter stack.
+static void  tag_stack(MacroAssembler *masm, const BasicType sig, int st_off) {
+  if (TaggedStackInterpreter) {
+    int tag_offset = st_off + Interpreter::expr_tag_offset_in_bytes(0);
+    if (sig == T_OBJECT || sig == T_ARRAY) {
+      __ movl(Address(rsp, tag_offset), frame::TagReference);
+    } else if (sig == T_LONG || sig == T_DOUBLE) {
+      int next_tag_offset = st_off + Interpreter::expr_tag_offset_in_bytes(1);
+      __ movl(Address(rsp, next_tag_offset), frame::TagValue);
+      __ movl(Address(rsp, tag_offset), frame::TagValue);
+    } else {
+      __ movl(Address(rsp, tag_offset), frame::TagValue);
+    }
+  }
+}
+
+// Double and long values with Tagged stacks are not contiguous.
+static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
+  int next_off = st_off - Interpreter::stackElementSize();
+  if (TaggedStackInterpreter) {
+   __ movdbl(Address(rsp, next_off), r);
+   // Move top half up and put tag in the middle.
+   __ movl(rdi, Address(rsp, next_off+wordSize));
+   __ movl(Address(rsp, st_off), rdi);
+   tag_stack(masm, T_DOUBLE, next_off);
+  } else {
+   __ movdbl(Address(rsp, next_off), r);
+  }
+}
+
+static void gen_c2i_adapter(MacroAssembler *masm,
+                            int total_args_passed,
+                            int comp_args_on_stack,
+                            const BasicType *sig_bt,
+                            const VMRegPair *regs,
+                            Label& skip_fixup) {
+  // Before we get into the guts of the C2I adapter, see if we should be here
+  // at all.  We've come from compiled code and are attempting to jump to the
+  // interpreter, which means the caller made a static call to get here
+  // (vcalls always get a compiled target if there is one).  Check for a
+  // compiled target.  If there is one, we need to patch the caller's call.
+  patch_callers_callsite(masm);
+
+  __ bind(skip_fixup);
+
+#ifdef COMPILER2
+  // C2 may leave the stack dirty if not in SSE2+ mode
+  if (UseSSE >= 2) {
+    __ verify_FPU(0, "c2i transition should have clean FPU stack");
+  } else {
+    __ empty_FPU_stack();
+  }
+#endif /* COMPILER2 */
+
+  // Since all args are passed on the stack, total_args_passed * interpreter_
+  // stack_element_size  is the
+  // space we need.
+  int extraspace = total_args_passed * Interpreter::stackElementSize();
+
+  // Get return address
+  __ popl(rax);
+
+  // set senderSP value
+  __ movl(rsi, rsp);
+
+  __ subl(rsp, extraspace);
+
+  // Now write the args into the outgoing interpreter space
+  for (int i = 0; i < total_args_passed; i++) {
+    if (sig_bt[i] == T_VOID) {
+      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
+      continue;
+    }
+
+    // st_off points to lowest address on stack.
+    int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize();
+    // Say 4 args:
+    // i   st_off
+    // 0   12 T_LONG
+    // 1    8 T_VOID
+    // 2    4 T_OBJECT
+    // 3    0 T_BOOL
+    VMReg r_1 = regs[i].first();
+    VMReg r_2 = regs[i].second();
+    if (!r_1->is_valid()) {
+      assert(!r_2->is_valid(), "");
+      continue;
+    }
+
+    if (r_1->is_stack()) {
+      // memory to memory use fpu stack top
+      int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
+
+      if (!r_2->is_valid()) {
+        __ movl(rdi, Address(rsp, ld_off));
+        __ movl(Address(rsp, st_off), rdi);
+        tag_stack(masm, sig_bt[i], st_off);
+      } else {
+
+        // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
+        // st_off == MSW, st_off-wordSize == LSW
+
+        int next_off = st_off - Interpreter::stackElementSize();
+        __ movl(rdi, Address(rsp, ld_off));
+        __ movl(Address(rsp, next_off), rdi);
+        __ movl(rdi, Address(rsp, ld_off + wordSize));
+        __ movl(Address(rsp, st_off), rdi);
+        tag_stack(masm, sig_bt[i], next_off);
+      }
+    } else if (r_1->is_Register()) {
+      Register r = r_1->as_Register();
+      if (!r_2->is_valid()) {
+        __ movl(Address(rsp, st_off), r);
+        tag_stack(masm, sig_bt[i], st_off);
+      } else {
+        // long/double in gpr
+        ShouldNotReachHere();
+      }
+    } else {
+      assert(r_1->is_XMMRegister(), "");
+      if (!r_2->is_valid()) {
+        __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
+        tag_stack(masm, sig_bt[i], st_off);
+      } else {
+        assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
+        move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
+      }
+    }
+  }
+
+  // Schedule the branch target address early.
+  __ movl(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
+  // And repush original return address
+  __ pushl(rax);
+  __ jmp(rcx);
+}
+
+
+// For tagged stacks, double or long value aren't contiguous on the stack
+// so get them contiguous for the xmm load
+static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
+  int next_val_off = ld_off - Interpreter::stackElementSize();
+  if (TaggedStackInterpreter) {
+    // use tag slot temporarily for MSW
+    __ movl(rsi, Address(saved_sp, ld_off));
+    __ movl(Address(saved_sp, next_val_off+wordSize), rsi);
+    __ movdbl(r, Address(saved_sp, next_val_off));
+    // restore tag
+    __ movl(Address(saved_sp, next_val_off+wordSize), frame::TagValue);
+  } else {
+    __ movdbl(r, Address(saved_sp, next_val_off));
+  }
+}
+
+static void gen_i2c_adapter(MacroAssembler *masm,
+                            int total_args_passed,
+                            int comp_args_on_stack,
+                            const BasicType *sig_bt,
+                            const VMRegPair *regs) {
+  // we're being called from the interpreter but need to find the
+  // compiled return entry point.  The return address on the stack
+  // should point at it and we just need to pull the old value out.
+  // load up the pointer to the compiled return entry point and
+  // rewrite our return pc. The code is arranged like so:
+  //
+  // .word Interpreter::return_sentinel
+  // .word address_of_compiled_return_point
+  // return_entry_point: blah_blah_blah
+  //
+  // So we can find the appropriate return point by loading up the word
+  // just prior to the current return address we have on the stack.
+  //
+  // We will only enter here from an interpreted frame and never from after
+  // passing thru a c2i. Azul allowed this but we do not. If we lose the
+  // race and use a c2i we will remain interpreted for the race loser(s).
+  // This removes all sorts of headaches on the x86 side and also eliminates
+  // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
+
+
+  // Note: rsi contains the senderSP on entry. We must preserve it since
+  // we may do a i2c -> c2i transition if we lose a race where compiled
+  // code goes non-entrant while we get args ready.
+
+  // Pick up the return address
+  __ movl(rax, Address(rsp, 0));
+
+  // If UseSSE >= 2 then no cleanup is needed on the return to the
+  // interpreter so skip fixing up the return entry point unless
+  // VerifyFPU is enabled.
+  if (UseSSE < 2 || VerifyFPU) {
+    Label skip, chk_int;
+    // If we were called from the call stub we need to do a little bit different
+    // cleanup than if the interpreter returned to the call stub.
+
+    ExternalAddress stub_return_address(StubRoutines::_call_stub_return_address);
+    __ cmp32(rax, stub_return_address.addr());
+    __ jcc(Assembler::notEqual, chk_int);
+    assert(StubRoutines::i486::get_call_stub_compiled_return() != NULL, "must be set");
+    __ lea(rax, ExternalAddress(StubRoutines::i486::get_call_stub_compiled_return()));
+    __ jmp(skip);
+
+    // It must be the interpreter since we never get here via a c2i (unlike Azul)
+
+    __ bind(chk_int);
+#ifdef ASSERT
+    {
+      Label ok;
+      __ cmpl(Address(rax, -8), Interpreter::return_sentinel);
+      __ jcc(Assembler::equal, ok);
+      __ int3();
+      __ bind(ok);
+    }
+#endif // ASSERT
+    __ movl(rax, Address(rax, -4));
+    __ bind(skip);
+  }
+
+  // rax, now contains the compiled return entry point which will do an
+  // cleanup needed for the return from compiled to interpreted.
+
+  // Must preserve original SP for loading incoming arguments because
+  // we need to align the outgoing SP for compiled code.
+  __ movl(rdi, rsp);
+
+  // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
+  // in registers, we will occasionally have no stack args.
+  int comp_words_on_stack = 0;
+  if (comp_args_on_stack) {
+    // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
+    // registers are below.  By subtracting stack0, we either get a negative
+    // number (all values in registers) or the maximum stack slot accessed.
+    // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
+    // Convert 4-byte stack slots to words.
+    comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
+    // Round up to miminum stack alignment, in wordSize
+    comp_words_on_stack = round_to(comp_words_on_stack, 2);
+    __ subl(rsp, comp_words_on_stack * wordSize);
+  }
+
+  // Align the outgoing SP
+  __ andl(rsp, -(StackAlignmentInBytes));
+
+  // push the return address on the stack (note that pushing, rather
+  // than storing it, yields the correct frame alignment for the callee)
+  __ pushl(rax);
+
+  // Put saved SP in another register
+  const Register saved_sp = rax;
+  __ movl(saved_sp, rdi);
+
+
+  // Will jump to the compiled code just as if compiled code was doing it.
+  // Pre-load the register-jump target early, to schedule it better.
+  __ movl(rdi, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
+
+  // Now generate the shuffle code.  Pick up all register args and move the
+  // rest through the floating point stack top.
+  for (int i = 0; i < total_args_passed; i++) {
+    if (sig_bt[i] == T_VOID) {
+      // Longs and doubles are passed in native word order, but misaligned
+      // in the 32-bit build.
+      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
+      continue;
+    }
+
+    // Pick up 0, 1 or 2 words from SP+offset.
+
+    assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
+            "scrambled load targets?");
+    // Load in argument order going down.
+    int ld_off = (total_args_passed - i)*Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
+    // Point to interpreter value (vs. tag)
+    int next_off = ld_off - Interpreter::stackElementSize();
+    //
+    //
+    //
+    VMReg r_1 = regs[i].first();
+    VMReg r_2 = regs[i].second();
+    if (!r_1->is_valid()) {
+      assert(!r_2->is_valid(), "");
+      continue;
+    }
+    if (r_1->is_stack()) {
+      // Convert stack slot to an SP offset (+ wordSize to account for return address )
+      int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
+
+      // We can use rsi as a temp here because compiled code doesn't need rsi as an input
+      // and if we end up going thru a c2i because of a miss a reasonable value of rsi
+      // we be generated.
+      if (!r_2->is_valid()) {
+        // __ fld_s(Address(saved_sp, ld_off));
+        // __ fstp_s(Address(rsp, st_off));
+        __ movl(rsi, Address(saved_sp, ld_off));
+        __ movl(Address(rsp, st_off), rsi);
+      } else {
+        // Interpreter local[n] == MSW, local[n+1] == LSW however locals
+        // are accessed as negative so LSW is at LOW address
+
+        // ld_off is MSW so get LSW
+        // st_off is LSW (i.e. reg.first())
+        // __ fld_d(Address(saved_sp, next_off));
+        // __ fstp_d(Address(rsp, st_off));
+        __ movl(rsi, Address(saved_sp, next_off));
+        __ movl(Address(rsp, st_off), rsi);
+        __ movl(rsi, Address(saved_sp, ld_off));
+        __ movl(Address(rsp, st_off + wordSize), rsi);
+      }
+    } else if (r_1->is_Register()) {  // Register argument
+      Register r = r_1->as_Register();
+      assert(r != rax, "must be different");
+      if (r_2->is_valid()) {
+        assert(r_2->as_Register() != rax, "need another temporary register");
+        // Remember r_1 is low address (and LSB on x86)
+        // So r_2 gets loaded from high address regardless of the platform
+        __ movl(r_2->as_Register(), Address(saved_sp, ld_off));
+        __ movl(r, Address(saved_sp, next_off));
+      } else {
+        __ movl(r, Address(saved_sp, ld_off));
+      }
+    } else {
+      assert(r_1->is_XMMRegister(), "");
+      if (!r_2->is_valid()) {
+        __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
+      } else {
+        move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
+      }
+    }
+  }
+
+  // 6243940 We might end up in handle_wrong_method if
+  // the callee is deoptimized as we race thru here. If that
+  // happens we don't want to take a safepoint because the
+  // caller frame will look interpreted and arguments are now
+  // "compiled" so it is much better to make this transition
+  // invisible to the stack walking code. Unfortunately if
+  // we try and find the callee by normal means a safepoint
+  // is possible. So we stash the desired callee in the thread
+  // and the vm will find there should this case occur.
+
+  __ get_thread(rax);
+  __ movl(Address(rax, JavaThread::callee_target_offset()), rbx);
+
+  // move methodOop to rax, in case we end up in an c2i adapter.
+  // the c2i adapters expect methodOop in rax, (c2) because c2's
+  // resolve stubs return the result (the method) in rax,.
+  // I'd love to fix this.
+  __ movl(rax, rbx);
+
+  __ jmp(rdi);
+}
+
+// ---------------------------------------------------------------
+AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
+                                                            int total_args_passed,
+                                                            int comp_args_on_stack,
+                                                            const BasicType *sig_bt,
+                                                            const VMRegPair *regs) {
+  address i2c_entry = __ pc();
+
+  gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
+
+  // -------------------------------------------------------------------------
+  // Generate a C2I adapter.  On entry we know rbx, holds the methodOop during calls
+  // to the interpreter.  The args start out packed in the compiled layout.  They
+  // need to be unpacked into the interpreter layout.  This will almost always
+  // require some stack space.  We grow the current (compiled) stack, then repack
+  // the args.  We  finally end in a jump to the generic interpreter entry point.
+  // On exit from the interpreter, the interpreter will restore our SP (lest the
+  // compiled code, which relys solely on SP and not EBP, get sick).
+
+  address c2i_unverified_entry = __ pc();
+  Label skip_fixup;
+
+  Register holder = rax;
+  Register receiver = rcx;
+  Register temp = rbx;
+
+  {
+
+    Label missed;
+
+    __ verify_oop(holder);
+    __ movl(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
+    __ verify_oop(temp);
+
+    __ cmpl(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
+    __ movl(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
+    __ jcc(Assembler::notEqual, missed);
+    // Method might have been compiled since the call site was patched to
+    // interpreted if that is the case treat it as a miss so we can get
+    // the call site corrected.
+    __ cmpl(Address(rbx, in_bytes(methodOopDesc::code_offset())), NULL_WORD);
+    __ jcc(Assembler::equal, skip_fixup);
+
+    __ bind(missed);
+    __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
+  }
+
+  address c2i_entry = __ pc();
+
+  gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
+
+  __ flush();
+  return new AdapterHandlerEntry(i2c_entry, c2i_entry, c2i_unverified_entry);
+}
+
+int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
+                                         VMRegPair *regs,
+                                         int total_args_passed) {
+// We return the amount of VMRegImpl stack slots we need to reserve for all
+// the arguments NOT counting out_preserve_stack_slots.
+
+  uint    stack = 0;        // All arguments on stack
+
+  for( int i = 0; i < total_args_passed; i++) {
+    // From the type and the argument number (count) compute the location
+    switch( sig_bt[i] ) {
+    case T_BOOLEAN:
+    case T_CHAR:
+    case T_FLOAT:
+    case T_BYTE:
+    case T_SHORT:
+    case T_INT:
+    case T_OBJECT:
+    case T_ARRAY:
+    case T_ADDRESS:
+      regs[i].set1(VMRegImpl::stack2reg(stack++));
+      break;
+    case T_LONG:
+    case T_DOUBLE: // The stack numbering is reversed from Java
+      // Since C arguments do not get reversed, the ordering for
+      // doubles on the stack must be opposite the Java convention
+      assert(sig_bt[i+1] == T_VOID, "missing Half" );
+      regs[i].set2(VMRegImpl::stack2reg(stack));
+      stack += 2;
+      break;
+    case T_VOID: regs[i].set_bad(); break;
+    default:
+      ShouldNotReachHere();
+      break;
+    }
+  }
+  return stack;
+}
+
+// A simple move of integer like type
+static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
+  if (src.first()->is_stack()) {
+    if (dst.first()->is_stack()) {
+      // stack to stack
+      // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
+      // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
+      __ movl(rax, Address(rbp, reg2offset_in(src.first())));
+      __ movl(Address(rsp, reg2offset_out(dst.first())), rax);
+    } else {
+      // stack to reg
+      __ movl(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
+    }
+  } else if (dst.first()->is_stack()) {
+    // reg to stack
+    __ movl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
+  } else {
+    __ movl(dst.first()->as_Register(), src.first()->as_Register());
+  }
+}
+
+// An oop arg. Must pass a handle not the oop itself
+static void object_move(MacroAssembler* masm,
+                        OopMap* map,
+                        int oop_handle_offset,
+                        int framesize_in_slots,
+                        VMRegPair src,
+                        VMRegPair dst,
+                        bool is_receiver,
+                        int* receiver_offset) {
+
+  // Because of the calling conventions we know that src can be a
+  // register or a stack location. dst can only be a stack location.
+
+  assert(dst.first()->is_stack(), "must be stack");
+  // must pass a handle. First figure out the location we use as a handle
+
+  if (src.first()->is_stack()) {
+    // Oop is already on the stack as an argument
+    Register rHandle = rax;
+    Label nil;
+    __ xorl(rHandle, rHandle);
+    __ cmpl(Address(rbp, reg2offset_in(src.first())), NULL_WORD);
+    __ jcc(Assembler::equal, nil);
+    __ leal(rHandle, Address(rbp, reg2offset_in(src.first())));
+    __ bind(nil);
+    __ movl(Address(rsp, reg2offset_out(dst.first())), rHandle);
+
+    int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
+    map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
+    if (is_receiver) {
+      *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
+    }
+  } else {
+    // Oop is in an a register we must store it to the space we reserve
+    // on the stack for oop_handles
+    const Register rOop = src.first()->as_Register();
+    const Register rHandle = rax;
+    int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
+    int offset = oop_slot*VMRegImpl::stack_slot_size;
+    Label skip;
+    __ movl(Address(rsp, offset), rOop);
+    map->set_oop(VMRegImpl::stack2reg(oop_slot));
+    __ xorl(rHandle, rHandle);
+    __ cmpl(rOop, NULL_WORD);
+    __ jcc(Assembler::equal, skip);
+    __ leal(rHandle, Address(rsp, offset));
+    __ bind(skip);
+    // Store the handle parameter
+    __ movl(Address(rsp, reg2offset_out(dst.first())), rHandle);
+    if (is_receiver) {
+      *receiver_offset = offset;
+    }
+  }
+}
+
+// A float arg may have to do float reg int reg conversion
+static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
+  assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
+
+  // Because of the calling convention we know that src is either a stack location
+  // or an xmm register. dst can only be a stack location.
+
+  assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
+
+  if (src.first()->is_stack()) {
+    __ movl(rax, Address(rbp, reg2offset_in(src.first())));
+    __ movl(Address(rsp, reg2offset_out(dst.first())), rax);
+  } else {
+    // reg to stack
+    __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
+  }
+}
+
+// A long move
+static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
+
+  // The only legal possibility for a long_move VMRegPair is:
+  // 1: two stack slots (possibly unaligned)
+  // as neither the java  or C calling convention will use registers
+  // for longs.
+
+  if (src.first()->is_stack() && dst.first()->is_stack()) {
+    assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
+    __ movl(rax, Address(rbp, reg2offset_in(src.first())));
+    __ movl(rbx, Address(rbp, reg2offset_in(src.second())));
+    __ movl(Address(rsp, reg2offset_out(dst.first())), rax);
+    __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+// A double move
+static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
+
+  // The only legal possibilities for a double_move VMRegPair are:
+  // The painful thing here is that like long_move a VMRegPair might be
+
+  // Because of the calling convention we know that src is either
+  //   1: a single physical register (xmm registers only)
+  //   2: two stack slots (possibly unaligned)
+  // dst can only be a pair of stack slots.
+
+  assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
+
+  if (src.first()->is_stack()) {
+    // source is all stack
+    __ movl(rax, Address(rbp, reg2offset_in(src.first())));
+    __ movl(rbx, Address(rbp, reg2offset_in(src.second())));
+    __ movl(Address(rsp, reg2offset_out(dst.first())), rax);
+    __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
+  } else {
+    // reg to stack
+    // No worries about stack alignment
+    __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
+  }
+}
+
+
+void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
+  // We always ignore the frame_slots arg and just use the space just below frame pointer
+  // which by this time is free to use
+  switch (ret_type) {
+  case T_FLOAT:
+    __ fstp_s(Address(rbp, -wordSize));
+    break;
+  case T_DOUBLE:
+    __ fstp_d(Address(rbp, -2*wordSize));
+    break;
+  case T_VOID:  break;
+  case T_LONG:
+    __ movl(Address(rbp, -wordSize), rax);
+    __ movl(Address(rbp, -2*wordSize), rdx);
+    break;
+  default: {
+    __ movl(Address(rbp, -wordSize), rax);
+    }
+  }
+}
+
+void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
+  // We always ignore the frame_slots arg and just use the space just below frame pointer
+  // which by this time is free to use
+  switch (ret_type) {
+  case T_FLOAT:
+    __ fld_s(Address(rbp, -wordSize));
+    break;
+  case T_DOUBLE:
+    __ fld_d(Address(rbp, -2*wordSize));
+    break;
+  case T_LONG:
+    __ movl(rax, Address(rbp, -wordSize));
+    __ movl(rdx, Address(rbp, -2*wordSize));
+    break;
+  case T_VOID:  break;
+  default: {
+    __ movl(rax, Address(rbp, -wordSize));
+    }
+  }
+}
+
+// ---------------------------------------------------------------------------
+// Generate a native wrapper for a given method.  The method takes arguments
+// in the Java compiled code convention, marshals them to the native
+// convention (handlizes oops, etc), transitions to native, makes the call,
+// returns to java state (possibly blocking), unhandlizes any result and
+// returns.
+nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
+                                                methodHandle method,
+                                                int total_in_args,
+                                                int comp_args_on_stack,
+                                                BasicType *in_sig_bt,
+                                                VMRegPair *in_regs,
+                                                BasicType ret_type) {
+
+  // An OopMap for lock (and class if static)
+  OopMapSet *oop_maps = new OopMapSet();
+
+  // We have received a description of where all the java arg are located
+  // on entry to the wrapper. We need to convert these args to where
+  // the jni function will expect them. To figure out where they go
+  // we convert the java signature to a C signature by inserting
+  // the hidden arguments as arg[0] and possibly arg[1] (static method)
+
+  int total_c_args = total_in_args + 1;
+  if (method->is_static()) {
+    total_c_args++;
+  }
+
+  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
+  VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
+
+  int argc = 0;
+  out_sig_bt[argc++] = T_ADDRESS;
+  if (method->is_static()) {
+    out_sig_bt[argc++] = T_OBJECT;
+  }
+
+  int i;
+  for (i = 0; i < total_in_args ; i++ ) {
+    out_sig_bt[argc++] = in_sig_bt[i];
+  }
+
+
+  // Now figure out where the args must be stored and how much stack space
+  // they require (neglecting out_preserve_stack_slots but space for storing
+  // the 1st six register arguments). It's weird see int_stk_helper.
+  //
+  int out_arg_slots;
+  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
+
+  // Compute framesize for the wrapper.  We need to handlize all oops in
+  // registers a max of 2 on x86.
+
+  // Calculate the total number of stack slots we will need.
+
+  // First count the abi requirement plus all of the outgoing args
+  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
+
+  // Now the space for the inbound oop handle area
+
+  int oop_handle_offset = stack_slots;
+  stack_slots += 2*VMRegImpl::slots_per_word;
+
+  // Now any space we need for handlizing a klass if static method
+
+  int klass_slot_offset = 0;
+  int klass_offset = -1;
+  int lock_slot_offset = 0;
+  bool is_static = false;
+  int oop_temp_slot_offset = 0;
+
+  if (method->is_static()) {
+    klass_slot_offset = stack_slots;
+    stack_slots += VMRegImpl::slots_per_word;
+    klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
+    is_static = true;
+  }
+
+  // Plus a lock if needed
+
+  if (method->is_synchronized()) {
+    lock_slot_offset = stack_slots;
+    stack_slots += VMRegImpl::slots_per_word;
+  }
+
+  // Now a place (+2) to save return values or temp during shuffling
+  // + 2 for return address (which we own) and saved rbp,
+  stack_slots += 4;
+
+  // Ok The space we have allocated will look like:
+  //
+  //
+  // FP-> |                     |
+  //      |---------------------|
+  //      | 2 slots for moves   |
+  //      |---------------------|
+  //      | lock box (if sync)  |
+  //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
+  //      | klass (if static)   |
+  //      |---------------------| <- klass_slot_offset
+  //      | oopHandle area      |
+  //      |---------------------| <- oop_handle_offset (a max of 2 registers)
+  //      | outbound memory     |
+  //      | based arguments     |
+  //      |                     |
+  //      |---------------------|
+  //      |                     |
+  // SP-> | out_preserved_slots |
+  //
+  //
+  // ****************************************************************************
+  // WARNING - on Windows Java Natives use pascal calling convention and pop the
+  // arguments off of the stack after the jni call. Before the call we can use
+  // instructions that are SP relative. After the jni call we switch to FP
+  // relative instructions instead of re-adjusting the stack on windows.
+  // ****************************************************************************
+
+
+  // Now compute actual number of stack words we need rounding to make
+  // stack properly aligned.
+  stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
+
+  int stack_size = stack_slots * VMRegImpl::stack_slot_size;
+
+  intptr_t start = (intptr_t)__ pc();
+
+  // First thing make an ic check to see if we should even be here
+
+  // We are free to use all registers as temps without saving them and
+  // restoring them except rbp,. rbp, is the only callee save register
+  // as far as the interpreter and the compiler(s) are concerned.
+
+
+  const Register ic_reg = rax;
+  const Register receiver = rcx;
+  Label hit;
+  Label exception_pending;
+
+
+  __ verify_oop(receiver);
+  __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
+  __ jcc(Assembler::equal, hit);
+
+  __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
+
+  // verified entry must be aligned for code patching.
+  // and the first 5 bytes must be in the same cache line
+  // if we align at 8 then we will be sure 5 bytes are in the same line
+  __ align(8);
+
+  __ bind(hit);
+
+  int vep_offset = ((intptr_t)__ pc()) - start;
+
+#ifdef COMPILER1
+  if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
+    // Object.hashCode can pull the hashCode from the header word
+    // instead of doing a full VM transition once it's been computed.
+    // Since hashCode is usually polymorphic at call sites we can't do
+    // this optimization at the call site without a lot of work.
+    Label slowCase;
+    Register receiver = rcx;
+    Register result = rax;
+    __ movl(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
+
+    // check if locked
+    __ testl (result, markOopDesc::unlocked_value);
+    __ jcc (Assembler::zero, slowCase);
+
+    if (UseBiasedLocking) {
+      // Check if biased and fall through to runtime if so
+      __ testl (result, markOopDesc::biased_lock_bit_in_place);
+      __ jcc (Assembler::notZero, slowCase);
+    }
+
+    // get hash
+    __ andl (result, markOopDesc::hash_mask_in_place);
+    // test if hashCode exists
+    __ jcc  (Assembler::zero, slowCase);
+    __ shrl (result, markOopDesc::hash_shift);
+    __ ret(0);
+    __ bind (slowCase);
+  }
+#endif // COMPILER1
+
+  // The instruction at the verified entry point must be 5 bytes or longer
+  // because it can be patched on the fly by make_non_entrant. The stack bang
+  // instruction fits that requirement.
+
+  // Generate stack overflow check
+
+  if (UseStackBanging) {
+    __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
+  } else {
+    // need a 5 byte instruction to allow MT safe patching to non-entrant
+    __ fat_nop();
+  }
+
+  // Generate a new frame for the wrapper.
+  __ enter();
+  // -2 because return address is already present and so is saved rbp,
+  __ subl(rsp, stack_size - 2*wordSize);
+
+  // Frame is now completed as far a size and linkage.
+
+  int frame_complete = ((intptr_t)__ pc()) - start;
+
+  // Calculate the difference between rsp and rbp,. We need to know it
+  // after the native call because on windows Java Natives will pop
+  // the arguments and it is painful to do rsp relative addressing
+  // in a platform independent way. So after the call we switch to
+  // rbp, relative addressing.
+
+  int fp_adjustment = stack_size - 2*wordSize;
+
+#ifdef COMPILER2
+  // C2 may leave the stack dirty if not in SSE2+ mode
+  if (UseSSE >= 2) {
+    __ verify_FPU(0, "c2i transition should have clean FPU stack");
+  } else {
+    __ empty_FPU_stack();
+  }
+#endif /* COMPILER2 */
+
+  // Compute the rbp, offset for any slots used after the jni call
+
+  int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
+  int oop_temp_slot_rbp_offset = (oop_temp_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
+
+  // We use rdi as a thread pointer because it is callee save and
+  // if we load it once it is usable thru the entire wrapper
+  const Register thread = rdi;
+
+  // We use rsi as the oop handle for the receiver/klass
+  // It is callee save so it survives the call to native
+
+  const Register oop_handle_reg = rsi;
+
+  __ get_thread(thread);
+
+
+  //
+  // We immediately shuffle the arguments so that any vm call we have to
+  // make from here on out (sync slow path, jvmti, etc.) we will have
+  // captured the oops from our caller and have a valid oopMap for
+  // them.
+
+  // -----------------
+  // The Grand Shuffle
+  //
+  // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
+  // and, if static, the class mirror instead of a receiver.  This pretty much
+  // guarantees that register layout will not match (and x86 doesn't use reg
+  // parms though amd does).  Since the native abi doesn't use register args
+  // and the java conventions does we don't have to worry about collisions.
+  // All of our moved are reg->stack or stack->stack.
+  // We ignore the extra arguments during the shuffle and handle them at the
+  // last moment. The shuffle is described by the two calling convention
+  // vectors we have in our possession. We simply walk the java vector to
+  // get the source locations and the c vector to get the destinations.
+
+  int c_arg = method->is_static() ? 2 : 1 ;
+
+  // Record rsp-based slot for receiver on stack for non-static methods
+  int receiver_offset = -1;
+
+  // This is a trick. We double the stack slots so we can claim
+  // the oops in the caller's frame. Since we are sure to have
+  // more args than the caller doubling is enough to make
+  // sure we can capture all the incoming oop args from the
+  // caller.
+  //
+  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
+
+  // Mark location of rbp,
+  // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
+
+  // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
+  // Are free to temporaries if we have to do  stack to steck moves.
+  // All inbound args are referenced based on rbp, and all outbound args via rsp.
+
+  for (i = 0; i < total_in_args ; i++, c_arg++ ) {
+    switch (in_sig_bt[i]) {
+      case T_ARRAY:
+      case T_OBJECT:
+        object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
+                    ((i == 0) && (!is_static)),
+                    &receiver_offset);
+        break;
+      case T_VOID:
+        break;
+
+      case T_FLOAT:
+        float_move(masm, in_regs[i], out_regs[c_arg]);
+          break;
+
+      case T_DOUBLE:
+        assert( i + 1 < total_in_args &&
+                in_sig_bt[i + 1] == T_VOID &&
+                out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
+        double_move(masm, in_regs[i], out_regs[c_arg]);
+        break;
+
+      case T_LONG :
+        long_move(masm, in_regs[i], out_regs[c_arg]);
+        break;
+
+      case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
+
+      default:
+        simple_move32(masm, in_regs[i], out_regs[c_arg]);
+    }
+  }
+
+  // Pre-load a static method's oop into rsi.  Used both by locking code and
+  // the normal JNI call code.
+  if (method->is_static()) {
+
+    //  load opp into a register
+    __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
+
+    // Now handlize the static class mirror it's known not-null.
+    __ movl(Address(rsp, klass_offset), oop_handle_reg);
+    map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
+
+    // Now get the handle
+    __ leal(oop_handle_reg, Address(rsp, klass_offset));
+    // store the klass handle as second argument
+    __ movl(Address(rsp, wordSize), oop_handle_reg);
+  }
+
+  // Change state to native (we save the return address in the thread, since it might not
+  // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
+  // points into the right code segment. It does not have to be the correct return pc.
+  // We use the same pc/oopMap repeatedly when we call out
+
+  intptr_t the_pc = (intptr_t) __ pc();
+  oop_maps->add_gc_map(the_pc - start, map);
+
+  __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
+
+
+  // We have all of the arguments setup at this point. We must not touch any register
+  // argument registers at this point (what if we save/restore them there are no oop?
+
+  {
+    SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
+    __ movoop(rax, JNIHandles::make_local(method()));
+    __ call_VM_leaf(
+         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
+         thread, rax);
+  }
+
+
+  // These are register definitions we need for locking/unlocking
+  const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
+  const Register obj_reg  = rcx;  // Will contain the oop
+  const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
+
+  Label slow_path_lock;
+  Label lock_done;
+
+  // Lock a synchronized method
+  if (method->is_synchronized()) {
+
+
+    const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
+
+    // Get the handle (the 2nd argument)
+    __ movl(oop_handle_reg, Address(rsp, wordSize));
+
+    // Get address of the box
+
+    __ leal(lock_reg, Address(rbp, lock_slot_rbp_offset));
+
+    // Load the oop from the handle
+    __ movl(obj_reg, Address(oop_handle_reg, 0));
+
+    if (UseBiasedLocking) {
+      // Note that oop_handle_reg is trashed during this call
+      __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
+    }
+
+    // Load immediate 1 into swap_reg %rax,
+    __ movl(swap_reg, 1);
+
+    // Load (object->mark() | 1) into swap_reg %rax,
+    __ orl(swap_reg, Address(obj_reg, 0));
+
+    // Save (object->mark() | 1) into BasicLock's displaced header
+    __ movl(Address(lock_reg, mark_word_offset), swap_reg);
+
+    if (os::is_MP()) {
+      __ lock();
+    }
+
+    // src -> dest iff dest == rax, else rax, <- dest
+    // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
+    __ cmpxchg(lock_reg, Address(obj_reg, 0));
+    __ jcc(Assembler::equal, lock_done);
+
+    // Test if the oopMark is an obvious stack pointer, i.e.,
+    //  1) (mark & 3) == 0, and
+    //  2) rsp <= mark < mark + os::pagesize()
+    // These 3 tests can be done by evaluating the following
+    // expression: ((mark - rsp) & (3 - os::vm_page_size())),
+    // assuming both stack pointer and pagesize have their
+    // least significant 2 bits clear.
+    // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
+
+    __ subl(swap_reg, rsp);
+    __ andl(swap_reg, 3 - os::vm_page_size());
+
+    // Save the test result, for recursive case, the result is zero
+    __ movl(Address(lock_reg, mark_word_offset), swap_reg);
+    __ jcc(Assembler::notEqual, slow_path_lock);
+    // Slow path will re-enter here
+    __ bind(lock_done);
+
+    if (UseBiasedLocking) {
+      // Re-fetch oop_handle_reg as we trashed it above
+      __ movl(oop_handle_reg, Address(rsp, wordSize));
+    }
+  }
+
+
+  // Finally just about ready to make the JNI call
+
+
+  // get JNIEnv* which is first argument to native
+
+  __ leal(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
+  __ movl(Address(rsp, 0), rdx);
+
+  // Now set thread in native
+  __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
+
+  __ call(RuntimeAddress(method->native_function()));
+
+  // WARNING - on Windows Java Natives use pascal calling convention and pop the
+  // arguments off of the stack. We could just re-adjust the stack pointer here
+  // and continue to do SP relative addressing but we instead switch to FP
+  // relative addressing.
+
+  // Unpack native results.
+  switch (ret_type) {
+  case T_BOOLEAN: __ c2bool(rax);            break;
+  case T_CHAR   : __ andl(rax, 0xFFFF);      break;
+  case T_BYTE   : __ sign_extend_byte (rax); break;
+  case T_SHORT  : __ sign_extend_short(rax); break;
+  case T_INT    : /* nothing to do */        break;
+  case T_DOUBLE :
+  case T_FLOAT  :
+    // Result is in st0 we'll save as needed
+    break;
+  case T_ARRAY:                 // Really a handle
+  case T_OBJECT:                // Really a handle
+      break; // can't de-handlize until after safepoint check
+  case T_VOID: break;
+  case T_LONG: break;
+  default       : ShouldNotReachHere();
+  }
+
+  // Switch thread to "native transition" state before reading the synchronization state.
+  // This additional state is necessary because reading and testing the synchronization
+  // state is not atomic w.r.t. GC, as this scenario demonstrates:
+  //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
+  //     VM thread changes sync state to synchronizing and suspends threads for GC.
+  //     Thread A is resumed to finish this native method, but doesn't block here since it
+  //     didn't see any synchronization is progress, and escapes.
+  __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
+
+  if(os::is_MP()) {
+    if (UseMembar) {
+      __ membar(); // Force this write out before the read below
+    } else {
+      // Write serialization page so VM thread can do a pseudo remote membar.
+      // We use the current thread pointer to calculate a thread specific
+      // offset to write to within the page. This minimizes bus traffic
+      // due to cache line collision.
+      __ serialize_memory(thread, rcx);
+    }
+  }
+
+  if (AlwaysRestoreFPU) {
+    // Make sure the control word is correct.
+    __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
+  }
+
+  // check for safepoint operation in progress and/or pending suspend requests
+  { Label Continue;
+
+    __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
+             SafepointSynchronize::_not_synchronized);
+
+    Label L;
+    __ jcc(Assembler::notEqual, L);
+    __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
+    __ jcc(Assembler::equal, Continue);
+    __ bind(L);
+
+    // Don't use call_VM as it will see a possible pending exception and forward it
+    // and never return here preventing us from clearing _last_native_pc down below.
+    // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
+    // preserved and correspond to the bcp/locals pointers. So we do a runtime call
+    // by hand.
+    //
+    save_native_result(masm, ret_type, stack_slots);
+    __ pushl(thread);
+    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
+                                            JavaThread::check_special_condition_for_native_trans)));
+    __ increment(rsp, wordSize);
+    // Restore any method result value
+    restore_native_result(masm, ret_type, stack_slots);
+
+    __ bind(Continue);
+  }
+
+  // change thread state
+  __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
+
+  Label reguard;
+  Label reguard_done;
+  __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
+  __ jcc(Assembler::equal, reguard);
+
+  // slow path reguard  re-enters here
+  __ bind(reguard_done);
+
+  // Handle possible exception (will unlock if necessary)
+
+  // native result if any is live
+
+  // Unlock
+  Label slow_path_unlock;
+  Label unlock_done;
+  if (method->is_synchronized()) {
+
+    Label done;
+
+    // Get locked oop from the handle we passed to jni
+    __ movl(obj_reg, Address(oop_handle_reg, 0));
+
+    if (UseBiasedLocking) {
+      __ biased_locking_exit(obj_reg, rbx, done);
+    }
+
+    // Simple recursive lock?
+
+    __ cmpl(Address(rbp, lock_slot_rbp_offset), NULL_WORD);
+    __ jcc(Assembler::equal, done);
+
+    // Must save rax, if if it is live now because cmpxchg must use it
+    if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
+      save_native_result(masm, ret_type, stack_slots);
+    }
+
+    //  get old displaced header
+    __ movl(rbx, Address(rbp, lock_slot_rbp_offset));
+
+    // get address of the stack lock
+    __ leal(rax, Address(rbp, lock_slot_rbp_offset));
+
+    // Atomic swap old header if oop still contains the stack lock
+    if (os::is_MP()) {
+    __ lock();
+    }
+
+    // src -> dest iff dest == rax, else rax, <- dest
+    // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
+    __ cmpxchg(rbx, Address(obj_reg, 0));
+    __ jcc(Assembler::notEqual, slow_path_unlock);
+
+    // slow path re-enters here
+    __ bind(unlock_done);
+    if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
+      restore_native_result(masm, ret_type, stack_slots);
+    }
+
+    __ bind(done);
+
+  }
+
+  {
+    SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
+    // Tell dtrace about this method exit
+    save_native_result(masm, ret_type, stack_slots);
+    __ movoop(rax, JNIHandles::make_local(method()));
+    __ call_VM_leaf(
+         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
+         thread, rax);
+    restore_native_result(masm, ret_type, stack_slots);
+  }
+
+  // We can finally stop using that last_Java_frame we setup ages ago
+
+  __ reset_last_Java_frame(thread, false, true);
+
+  // Unpack oop result
+  if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
+      Label L;
+      __ cmpl(rax, NULL_WORD);
+      __ jcc(Assembler::equal, L);
+      __ movl(rax, Address(rax, 0));
+      __ bind(L);
+      __ verify_oop(rax);
+  }
+
+  // reset handle block
+  __ movl(rcx, Address(thread, JavaThread::active_handles_offset()));
+
+  __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), 0);
+
+  // Any exception pending?
+  __ cmpl(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
+  __ jcc(Assembler::notEqual, exception_pending);
+
+
+  // no exception, we're almost done
+
+  // check that only result value is on FPU stack
+  __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
+
+  // Fixup floating pointer results so that result looks like a return from a compiled method
+  if (ret_type == T_FLOAT) {
+    if (UseSSE >= 1) {
+      // Pop st0 and store as float and reload into xmm register
+      __ fstp_s(Address(rbp, -4));
+      __ movflt(xmm0, Address(rbp, -4));
+    }
+  } else if (ret_type == T_DOUBLE) {
+    if (UseSSE >= 2) {
+      // Pop st0 and store as double and reload into xmm register
+      __ fstp_d(Address(rbp, -8));
+      __ movdbl(xmm0, Address(rbp, -8));
+    }
+  }
+
+  // Return
+
+  __ leave();
+  __ ret(0);
+
+  // Unexpected paths are out of line and go here
+
+  // Slow path locking & unlocking
+  if (method->is_synchronized()) {
+
+    // BEGIN Slow path lock
+
+    __ bind(slow_path_lock);
+
+    // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
+    // args are (oop obj, BasicLock* lock, JavaThread* thread)
+    __ pushl(thread);
+    __ pushl(lock_reg);
+    __ pushl(obj_reg);
+    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
+    __ addl(rsp, 3*wordSize);
+
+#ifdef ASSERT
+    { Label L;
+    __ cmpl(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
+    __ jcc(Assembler::equal, L);
+    __ stop("no pending exception allowed on exit from monitorenter");
+    __ bind(L);
+    }
+#endif
+    __ jmp(lock_done);
+
+    // END Slow path lock
+
+    // BEGIN Slow path unlock
+    __ bind(slow_path_unlock);
+
+    // Slow path unlock
+
+    if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
+      save_native_result(masm, ret_type, stack_slots);
+    }
+    // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
+
+    __ pushl(Address(thread, in_bytes(Thread::pending_exception_offset())));
+    __ movl(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
+
+
+    // should be a peal
+    // +wordSize because of the push above
+    __ leal(rax, Address(rbp, lock_slot_rbp_offset));
+    __ pushl(rax);
+
+    __ pushl(obj_reg);
+    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
+    __ addl(rsp, 2*wordSize);
+#ifdef ASSERT
+    {
+      Label L;
+      __ cmpl(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
+      __ jcc(Assembler::equal, L);
+      __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
+      __ bind(L);
+    }
+#endif /* ASSERT */
+
+    __ popl(Address(thread, in_bytes(Thread::pending_exception_offset())));
+
+    if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
+      restore_native_result(masm, ret_type, stack_slots);
+    }
+    __ jmp(unlock_done);
+    // END Slow path unlock
+
+  }
+
+  // SLOW PATH Reguard the stack if needed
+
+  __ bind(reguard);
+  save_native_result(masm, ret_type, stack_slots);
+  {
+    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
+  }
+  restore_native_result(masm, ret_type, stack_slots);
+  __ jmp(reguard_done);
+
+
+  // BEGIN EXCEPTION PROCESSING
+
+  // Forward  the exception
+  __ bind(exception_pending);
+
+  // remove possible return value from FPU register stack
+  __ empty_FPU_stack();
+
+  // pop our frame
+  __ leave();
+  // and forward the exception
+  __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
+
+  __ flush();
+
+  nmethod *nm = nmethod::new_native_nmethod(method,
+                                            masm->code(),
+                                            vep_offset,
+                                            frame_complete,
+                                            stack_slots / VMRegImpl::slots_per_word,
+                                            (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
+                                            in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
+                                            oop_maps);
+  return nm;
+
+}
+
+// this function returns the adjust size (in number of words) to a c2i adapter
+// activation for use during deoptimization
+int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
+  return (callee_locals - callee_parameters) * Interpreter::stackElementWords();
+}
+
+
+uint SharedRuntime::out_preserve_stack_slots() {
+  return 0;
+}
+
+
+//------------------------------generate_deopt_blob----------------------------
+void SharedRuntime::generate_deopt_blob() {
+  // allocate space for the code
+  ResourceMark rm;
+  // setup code generation tools
+  CodeBuffer   buffer("deopt_blob", 1024, 1024);
+  MacroAssembler* masm = new MacroAssembler(&buffer);
+  int frame_size_in_words;
+  OopMap* map = NULL;
+  // Account for the extra args we place on the stack
+  // by the time we call fetch_unroll_info
+  const int additional_words = 2; // deopt kind, thread
+
+  OopMapSet *oop_maps = new OopMapSet();
+
+  // -------------
+  // This code enters when returning to a de-optimized nmethod.  A return
+  // address has been pushed on the the stack, and return values are in
+  // registers.
+  // If we are doing a normal deopt then we were called from the patched
+  // nmethod from the point we returned to the nmethod. So the return
+  // address on the stack is wrong by NativeCall::instruction_size
+  // We will adjust the value to it looks like we have the original return
+  // address on the stack (like when we eagerly deoptimized).
+  // In the case of an exception pending with deoptimized then we enter
+  // with a return address on the stack that points after the call we patched
+  // into the exception handler. We have the following register state:
+  //    rax,: exception
+  //    rbx,: exception handler
+  //    rdx: throwing pc
+  // So in this case we simply jam rdx into the useless return address and
+  // the stack looks just like we want.
+  //
+  // At this point we need to de-opt.  We save the argument return
+  // registers.  We call the first C routine, fetch_unroll_info().  This
+  // routine captures the return values and returns a structure which
+  // describes the current frame size and the sizes of all replacement frames.
+  // The current frame is compiled code and may contain many inlined
+  // functions, each with their own JVM state.  We pop the current frame, then
+  // push all the new frames.  Then we call the C routine unpack_frames() to
+  // populate these frames.  Finally unpack_frames() returns us the new target
+  // address.  Notice that callee-save registers are BLOWN here; they have
+  // already been captured in the vframeArray at the time the return PC was
+  // patched.
+  address start = __ pc();
+  Label cont;
+
+  // Prolog for non exception case!
+
+  // Save everything in sight.
+
+  map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words);
+  // Normal deoptimization
+  __ pushl(Deoptimization::Unpack_deopt);
+  __ jmp(cont);
+
+  int reexecute_offset = __ pc() - start;
+
+  // Reexecute case
+  // return address is the pc describes what bci to do re-execute at
+
+  // No need to update map as each call to save_live_registers will produce identical oopmap
+  (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words);
+
+  __ pushl(Deoptimization::Unpack_reexecute);
+  __ jmp(cont);
+
+  int exception_offset = __ pc() - start;
+
+  // Prolog for exception case
+
+  // all registers are dead at this entry point, except for rax, and
+  // rdx which contain the exception oop and exception pc
+  // respectively.  Set them in TLS and fall thru to the
+  // unpack_with_exception_in_tls entry point.
+
+  __ get_thread(rdi);
+  __ movl(Address(rdi, JavaThread::exception_pc_offset()), rdx);
+  __ movl(Address(rdi, JavaThread::exception_oop_offset()), rax);
+
+  int exception_in_tls_offset = __ pc() - start;
+
+  // new implementation because exception oop is now passed in JavaThread
+
+  // Prolog for exception case
+  // All registers must be preserved because they might be used by LinearScan
+  // Exceptiop oop and throwing PC are passed in JavaThread
+  // tos: stack at point of call to method that threw the exception (i.e. only
+  // args are on the stack, no return address)
+
+  // make room on stack for the return address
+  // It will be patched later with the throwing pc. The correct value is not
+  // available now because loading it from memory would destroy registers.
+  __ pushl(0);
+
+  // Save everything in sight.
+
+  // No need to update map as each call to save_live_registers will produce identical oopmap
+  (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words);
+
+  // Now it is safe to overwrite any register
+
+  // store the correct deoptimization type
+  __ pushl(Deoptimization::Unpack_exception);
+
+  // load throwing pc from JavaThread and patch it as the return address
+  // of the current frame. Then clear the field in JavaThread
+  __ get_thread(rdi);
+  __ movl(rdx, Address(rdi, JavaThread::exception_pc_offset()));
+  __ movl(Address(rbp, wordSize), rdx);
+  __ movl(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
+
+#ifdef ASSERT
+  // verify that there is really an exception oop in JavaThread
+  __ movl(rax, Address(rdi, JavaThread::exception_oop_offset()));
+  __ verify_oop(rax);
+
+  // verify that there is no pending exception
+  Label no_pending_exception;
+  __ movl(rax, Address(rdi, Thread::pending_exception_offset()));
+  __ testl(rax, rax);
+  __ jcc(Assembler::zero, no_pending_exception);
+  __ stop("must not have pending exception here");
+  __ bind(no_pending_exception);
+#endif
+
+  __ bind(cont);
+
+  // Compiled code leaves the floating point stack dirty, empty it.
+  __ empty_FPU_stack();
+
+
+  // Call C code.  Need thread and this frame, but NOT official VM entry
+  // crud.  We cannot block on this call, no GC can happen.
+  __ get_thread(rcx);
+  __ pushl(rcx);
+  // fetch_unroll_info needs to call last_java_frame()
+  __ set_last_Java_frame(rcx, noreg, noreg, NULL);
+
+  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
+
+  // Need to have an oopmap that tells fetch_unroll_info where to
+  // find any register it might need.
+
+  oop_maps->add_gc_map( __ pc()-start, map);
+
+  // Discard arg to fetch_unroll_info
+  __ popl(rcx);
+
+  __ get_thread(rcx);
+  __ reset_last_Java_frame(rcx, false, false);
+
+  // Load UnrollBlock into EDI
+  __ movl(rdi, rax);
+
+  // Move the unpack kind to a safe place in the UnrollBlock because
+  // we are very short of registers
+
+  Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
+  // retrieve the deopt kind from where we left it.
+  __ popl(rax);
+  __ movl(unpack_kind, rax);                      // save the unpack_kind value
+
+   Label noException;
+  __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
+  __ jcc(Assembler::notEqual, noException);
+  __ movl(rax, Address(rcx, JavaThread::exception_oop_offset()));
+  __ movl(rdx, Address(rcx, JavaThread::exception_pc_offset()));
+  __ movl(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
+  __ movl(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
+
+  __ verify_oop(rax);
+
+  // Overwrite the result registers with the exception results.
+  __ movl(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
+  __ movl(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
+
+  __ bind(noException);
+
+  // Stack is back to only having register save data on the stack.
+  // Now restore the result registers. Everything else is either dead or captured
+  // in the vframeArray.
+
+  RegisterSaver::restore_result_registers(masm);
+
+  // All of the register save area has been popped of the stack. Only the
+  // return address remains.
+
+  // Pop all the frames we must move/replace.
+  //
+  // Frame picture (youngest to oldest)
+  // 1: self-frame (no frame link)
+  // 2: deopting frame  (no frame link)
+  // 3: caller of deopting frame (could be compiled/interpreted).
+  //
+  // Note: by leaving the return address of self-frame on the stack
+  // and using the size of frame 2 to adjust the stack
+  // when we are done the return to frame 3 will still be on the stack.
+
+  // Pop deoptimized frame
+  __ addl(rsp,Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
+
+  // sp should be pointing at the return address to the caller (3)
+
+  // Stack bang to make sure there's enough room for these interpreter frames.
+  if (UseStackBanging) {
+    __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
+    __ bang_stack_size(rbx, rcx);
+  }
+
+  // Load array of frame pcs into ECX
+  __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
+
+  __ popl(rsi); // trash the old pc
+
+  // Load array of frame sizes into ESI
+  __ movl(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
+
+  Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
+
+  __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
+  __ movl(counter, rbx);
+
+  // Pick up the initial fp we should save
+  __ movl(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
+
+  // Now adjust the caller's stack to make up for the extra locals
+  // but record the original sp so that we can save it in the skeletal interpreter
+  // frame and the stack walking of interpreter_sender will get the unextended sp
+  // value and not the "real" sp value.
+
+  Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
+  __ movl(sp_temp, rsp);
+  __ subl(rsp, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
+
+  // Push interpreter frames in a loop
+  Label loop;
+  __ bind(loop);
+  __ movl(rbx, Address(rsi, 0));        // Load frame size
+#ifdef CC_INTERP
+  __ subl(rbx, 4*wordSize);             // we'll push pc and ebp by hand and
+#ifdef ASSERT
+  __ pushl(0xDEADDEAD);                 // Make a recognizable pattern
+  __ pushl(0xDEADDEAD);
+#else /* ASSERT */
+  __ subl(rsp, 2*wordSize);             // skip the "static long no_param"
+#endif /* ASSERT */
+#else /* CC_INTERP */
+  __ subl(rbx, 2*wordSize);             // we'll push pc and rbp, by hand
+#endif /* CC_INTERP */
+  __ pushl(Address(rcx, 0));            // save return address
+  __ enter();                           // save old & set new rbp,
+  __ subl(rsp, rbx);                    // Prolog!
+  __ movl(rbx, sp_temp);                // sender's sp
+#ifdef CC_INTERP
+  __ movl(Address(rbp,
+                  -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
+          rbx); // Make it walkable
+#else /* CC_INTERP */
+  // This value is corrected by layout_activation_impl
+  __ movl(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
+  __ movl(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
+#endif /* CC_INTERP */
+  __ movl(sp_temp, rsp);                // pass to next frame
+  __ addl(rsi, 4);                      // Bump array pointer (sizes)
+  __ addl(rcx, 4);                      // Bump array pointer (pcs)
+  __ decrement(counter);                // decrement counter
+  __ jcc(Assembler::notZero, loop);
+  __ pushl(Address(rcx, 0));            // save final return address
+
+  // Re-push self-frame
+  __ enter();                           // save old & set new rbp,
+
+  //  Return address and rbp, are in place
+  // We'll push additional args later. Just allocate a full sized
+  // register save area
+  __ subl(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
+
+  // Restore frame locals after moving the frame
+  __ movl(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
+  __ movl(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
+  __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
+  if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
+  if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
+
+  // Set up the args to unpack_frame
+
+  __ pushl(unpack_kind);                     // get the unpack_kind value
+  __ get_thread(rcx);
+  __ pushl(rcx);
+
+  // set last_Java_sp, last_Java_fp
+  __ set_last_Java_frame(rcx, noreg, rbp, NULL);
+
+  // Call C code.  Need thread but NOT official VM entry
+  // crud.  We cannot block on this call, no GC can happen.  Call should
+  // restore return values to their stack-slots with the new SP.
+  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
+  // Set an oopmap for the call site
+  oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
+
+  // rax, contains the return result type
+  __ pushl(rax);
+
+  __ get_thread(rcx);
+  __ reset_last_Java_frame(rcx, false, false);
+
+  // Collect return values
+  __ movl(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
+  __ movl(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
+
+  // Clear floating point stack before returning to interpreter
+  __ empty_FPU_stack();
+
+  // Check if we should push the float or double return value.
+  Label results_done, yes_double_value;
+  __ cmpl(Address(rsp, 0), T_DOUBLE);
+  __ jcc (Assembler::zero, yes_double_value);
+  __ cmpl(Address(rsp, 0), T_FLOAT);
+  __ jcc (Assembler::notZero, results_done);
+
+  // return float value as expected by interpreter
+  if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
+  else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
+  __ jmp(results_done);
+
+  // return double value as expected by interpreter
+  __ bind(yes_double_value);
+  if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
+  else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
+
+  __ bind(results_done);
+
+  // Pop self-frame.
+  __ leave();                              // Epilog!
+
+  // Jump to interpreter
+  __ ret(0);
+
+  // -------------
+  // make sure all code is generated
+  masm->flush();
+
+  _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
+  _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
+}
+
+
+#ifdef COMPILER2
+//------------------------------generate_uncommon_trap_blob--------------------
+void SharedRuntime::generate_uncommon_trap_blob() {
+  // allocate space for the code
+  ResourceMark rm;
+  // setup code generation tools
+  CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
+  MacroAssembler* masm = new MacroAssembler(&buffer);
+
+  enum frame_layout {
+    arg0_off,      // thread                     sp + 0 // Arg location for
+    arg1_off,      // unloaded_class_index       sp + 1 // calling C
+    // The frame sender code expects that rbp will be in the "natural" place and
+    // will override any oopMap setting for it. We must therefore force the layout
+    // so that it agrees with the frame sender code.
+    rbp_off,       // callee saved register      sp + 2
+    return_off,    // slot for return address    sp + 3
+    framesize
+  };
+
+  address start = __ pc();
+  // Push self-frame.
+  __ subl(rsp, return_off*wordSize);     // Epilog!
+
+  // rbp, is an implicitly saved callee saved register (i.e. the calling
+  // convention will save restore it in prolog/epilog) Other than that
+  // there are no callee save registers no that adapter frames are gone.
+  __ movl(Address(rsp, rbp_off*wordSize),rbp);
+
+  // Clear the floating point exception stack
+  __ empty_FPU_stack();
+
+  // set last_Java_sp
+  __ get_thread(rdx);
+  __ set_last_Java_frame(rdx, noreg, noreg, NULL);
+
+  // Call C code.  Need thread but NOT official VM entry
+  // crud.  We cannot block on this call, no GC can happen.  Call should
+  // capture callee-saved registers as well as return values.
+  __ movl(Address(rsp, arg0_off*wordSize),rdx);
+  // argument already in ECX
+  __ movl(Address(rsp, arg1_off*wordSize),rcx);
+  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
+
+  // Set an oopmap for the call site
+  OopMapSet *oop_maps = new OopMapSet();
+  OopMap* map =  new OopMap( framesize, 0 );
+  // No oopMap for rbp, it is known implicitly
+
+  oop_maps->add_gc_map( __ pc()-start, map);
+
+  __ get_thread(rcx);
+
+  __ reset_last_Java_frame(rcx, false, false);
+
+  // Load UnrollBlock into EDI
+  __ movl(rdi, rax);
+
+  // Pop all the frames we must move/replace.
+  //
+  // Frame picture (youngest to oldest)
+  // 1: self-frame (no frame link)
+  // 2: deopting frame  (no frame link)
+  // 3: caller of deopting frame (could be compiled/interpreted).
+
+  // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
+  __ addl(rsp,(framesize-1)*wordSize);     // Epilog!
+
+  // Pop deoptimized frame
+  __ addl(rsp,Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
+
+  // sp should be pointing at the return address to the caller (3)
+
+  // Stack bang to make sure there's enough room for these interpreter frames.
+  if (UseStackBanging) {
+    __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
+    __ bang_stack_size(rbx, rcx);
+  }
+
+
+  // Load array of frame pcs into ECX
+  __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
+
+  __ popl(rsi); // trash the pc
+
+  // Load array of frame sizes into ESI
+  __ movl(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
+
+  Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
+
+  __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
+  __ movl(counter, rbx);
+
+  // Pick up the initial fp we should save
+  __ movl(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
+
+  // Now adjust the caller's stack to make up for the extra locals
+  // but record the original sp so that we can save it in the skeletal interpreter
+  // frame and the stack walking of interpreter_sender will get the unextended sp
+  // value and not the "real" sp value.
+
+  Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
+  __ movl(sp_temp, rsp);
+  __ subl(rsp, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
+
+  // Push interpreter frames in a loop
+  Label loop;
+  __ bind(loop);
+  __ movl(rbx, Address(rsi, 0));        // Load frame size
+#ifdef CC_INTERP
+  __ subl(rbx, 4*wordSize);             // we'll push pc and ebp by hand and
+#ifdef ASSERT
+  __ pushl(0xDEADDEAD);                 // Make a recognizable pattern
+  __ pushl(0xDEADDEAD);                 // (parm to RecursiveInterpreter...)
+#else /* ASSERT */
+  __ subl(rsp, 2*wordSize);             // skip the "static long no_param"
+#endif /* ASSERT */
+#else /* CC_INTERP */
+  __ subl(rbx, 2*wordSize);             // we'll push pc and rbp, by hand
+#endif /* CC_INTERP */
+  __ pushl(Address(rcx, 0));            // save return address
+  __ enter();                           // save old & set new rbp,
+  __ subl(rsp, rbx);                    // Prolog!
+  __ movl(rbx, sp_temp);                // sender's sp
+#ifdef CC_INTERP
+  __ movl(Address(rbp,
+                  -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
+          rbx); // Make it walkable
+#else /* CC_INTERP */
+  // This value is corrected by layout_activation_impl
+  __ movl(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
+  __ movl(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
+#endif /* CC_INTERP */
+  __ movl(sp_temp, rsp);                // pass to next frame
+  __ addl(rsi, 4);                      // Bump array pointer (sizes)
+  __ addl(rcx, 4);                      // Bump array pointer (pcs)
+  __ decrement(counter);                // decrement counter
+  __ jcc(Assembler::notZero, loop);
+  __ pushl(Address(rcx, 0));            // save final return address
+
+  // Re-push self-frame
+  __ enter();                           // save old & set new rbp,
+  __ subl(rsp, (framesize-2) * wordSize);   // Prolog!
+
+
+  // set last_Java_sp, last_Java_fp
+  __ get_thread(rdi);
+  __ set_last_Java_frame(rdi, noreg, rbp, NULL);
+
+  // Call C code.  Need thread but NOT official VM entry
+  // crud.  We cannot block on this call, no GC can happen.  Call should
+  // restore return values to their stack-slots with the new SP.
+  __ movl(Address(rsp,arg0_off*wordSize),rdi);
+  __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
+  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
+  // Set an oopmap for the call site
+  oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
+
+  __ get_thread(rdi);
+  __ reset_last_Java_frame(rdi, true, false);
+
+  // Pop self-frame.
+  __ leave();     // Epilog!
+
+  // Jump to interpreter
+  __ ret(0);
+
+  // -------------
+  // make sure all code is generated
+  masm->flush();
+
+   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
+}
+#endif // COMPILER2
+
+//------------------------------generate_handler_blob------
+//
+// Generate a special Compile2Runtime blob that saves all registers,
+// setup oopmap, and calls safepoint code to stop the compiled code for
+// a safepoint.
+//
+static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
+
+  // Account for thread arg in our frame
+  const int additional_words = 1;
+  int frame_size_in_words;
+
+  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
+
+  ResourceMark rm;
+  OopMapSet *oop_maps = new OopMapSet();
+  OopMap* map;
+
+  // allocate space for the code
+  // setup code generation tools
+  CodeBuffer   buffer("handler_blob", 1024, 512);
+  MacroAssembler* masm = new MacroAssembler(&buffer);
+
+  const Register java_thread = rdi; // callee-saved for VC++
+  address start   = __ pc();
+  address call_pc = NULL;
+
+  // If cause_return is true we are at a poll_return and there is
+  // the return address on the stack to the caller on the nmethod
+  // that is safepoint. We can leave this return on the stack and
+  // effectively complete the return and safepoint in the caller.
+  // Otherwise we push space for a return address that the safepoint
+  // handler will install later to make the stack walking sensible.
+  if( !cause_return )
+    __ pushl(rbx);                // Make room for return address (or push it again)
+
+  map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
+
+  // The following is basically a call_VM. However, we need the precise
+  // address of the call in order to generate an oopmap. Hence, we do all the
+  // work ourselves.
+
+  // Push thread argument and setup last_Java_sp
+  __ get_thread(java_thread);
+  __ pushl(java_thread);
+  __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
+
+  // if this was not a poll_return then we need to correct the return address now.
+  if( !cause_return ) {
+    __ movl(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
+    __ movl(Address(rbp, wordSize), rax);
+  }
+
+  // do the call
+  __ call(RuntimeAddress(call_ptr));
+
+  // Set an oopmap for the call site.  This oopmap will map all
+  // oop-registers and debug-info registers as callee-saved.  This
+  // will allow deoptimization at this safepoint to find all possible
+  // debug-info recordings, as well as let GC find all oops.
+
+  oop_maps->add_gc_map( __ pc() - start, map);
+
+  // Discard arg
+  __ popl(rcx);
+
+  Label noException;
+
+  // Clear last_Java_sp again
+  __ get_thread(java_thread);
+  __ reset_last_Java_frame(java_thread, false, false);
+
+  __ cmpl(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD);
+  __ jcc(Assembler::equal, noException);
+
+  // Exception pending
+
+  RegisterSaver::restore_live_registers(masm);
+
+  __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
+
+  __ bind(noException);
+
+  // Normal exit, register restoring and exit
+  RegisterSaver::restore_live_registers(masm);
+
+  __ ret(0);
+
+  // make sure all code is generated
+  masm->flush();
+
+  // Fill-out other meta info
+  return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
+}
+
+//
+// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
+//
+// Generate a stub that calls into vm to find out the proper destination
+// of a java call. All the argument registers are live at this point
+// but since this is generic code we don't know what they are and the caller
+// must do any gc of the args.
+//
+static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
+  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
+
+  // allocate space for the code
+  ResourceMark rm;
+
+  CodeBuffer buffer(name, 1000, 512);
+  MacroAssembler* masm                = new MacroAssembler(&buffer);
+
+  int frame_size_words;
+  enum frame_layout {
+                thread_off,
+                extra_words };
+
+  OopMapSet *oop_maps = new OopMapSet();
+  OopMap* map = NULL;
+
+  int start = __ offset();
+
+  map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
+
+  int frame_complete = __ offset();
+
+  const Register thread = rdi;
+  __ get_thread(rdi);
+
+  __ pushl(thread);
+  __ set_last_Java_frame(thread, noreg, rbp, NULL);
+
+  __ call(RuntimeAddress(destination));
+
+
+  // Set an oopmap for the call site.
+  // We need this not only for callee-saved registers, but also for volatile
+  // registers that the compiler might be keeping live across a safepoint.
+
+  oop_maps->add_gc_map( __ offset() - start, map);
+
+  // rax, contains the address we are going to jump to assuming no exception got installed
+
+  __ addl(rsp, wordSize);
+
+  // clear last_Java_sp
+  __ reset_last_Java_frame(thread, true, false);
+  // check for pending exceptions
+  Label pending;
+  __ cmpl(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
+  __ jcc(Assembler::notEqual, pending);
+
+  // get the returned methodOop
+  __ movl(rbx, Address(thread, JavaThread::vm_result_offset()));
+  __ movl(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
+
+  __ movl(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
+
+  RegisterSaver::restore_live_registers(masm);
+
+  // We are back the the original state on entry and ready to go.
+
+  __ jmp(rax);
+
+  // Pending exception after the safepoint
+
+  __ bind(pending);
+
+  RegisterSaver::restore_live_registers(masm);
+
+  // exception pending => remove activation and forward to exception handler
+
+  __ get_thread(thread);
+  __ movl(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
+  __ movl(rax, Address(thread, Thread::pending_exception_offset()));
+  __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
+
+  // -------------
+  // make sure all code is generated
+  masm->flush();
+
+  // return the  blob
+  // frame_size_words or bytes??
+  return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
+}
+
+void SharedRuntime::generate_stubs() {
+
+  _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
+                                        "wrong_method_stub");
+
+  _ic_miss_blob      = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
+                                        "ic_miss_stub");
+
+  _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
+                                        "resolve_opt_virtual_call");
+
+  _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
+                                        "resolve_virtual_call");
+
+  _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
+                                        "resolve_static_call");
+
+  _polling_page_safepoint_handler_blob =
+    generate_handler_blob(CAST_FROM_FN_PTR(address,
+                   SafepointSynchronize::handle_polling_page_exception), false);
+
+  _polling_page_return_handler_blob =
+    generate_handler_blob(CAST_FROM_FN_PTR(address,
+                   SafepointSynchronize::handle_polling_page_exception), true);
+
+  generate_deopt_blob();
+#ifdef COMPILER2
+  generate_uncommon_trap_blob();
+#endif // COMPILER2
+}