hotspot/src/cpu/x86/vm/nativeInst_x86.cpp
changeset 1 489c9b5090e2
child 363 99d43e8a76ad
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/cpu/x86/vm/nativeInst_x86.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,474 @@
+/*
+ * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+# include "incls/_precompiled.incl"
+# include "incls/_nativeInst_x86.cpp.incl"
+
+void NativeInstruction::wrote(int offset) {
+  ICache::invalidate_word(addr_at(offset));
+}
+
+
+void NativeCall::verify() {
+  // Make sure code pattern is actually a call imm32 instruction.
+  int inst = ubyte_at(0);
+  if (inst != instruction_code) {
+    tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x", instruction_address(),
+                                                        inst);
+    fatal("not a call disp32");
+  }
+}
+
+address NativeCall::destination() const {
+  // Getting the destination of a call isn't safe because that call can
+  // be getting patched while you're calling this.  There's only special
+  // places where this can be called but not automatically verifiable by
+  // checking which locks are held.  The solution is true atomic patching
+  // on x86, nyi.
+  return return_address() + displacement();
+}
+
+void NativeCall::print() {
+  tty->print_cr(PTR_FORMAT ": call " PTR_FORMAT,
+                instruction_address(), destination());
+}
+
+// Inserts a native call instruction at a given pc
+void NativeCall::insert(address code_pos, address entry) {
+  intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
+#ifdef AMD64
+  guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
+#endif // AMD64
+  *code_pos = instruction_code;
+  *((int32_t *)(code_pos+1)) = (int32_t) disp;
+  ICache::invalidate_range(code_pos, instruction_size);
+}
+
+// MT-safe patching of a call instruction.
+// First patches first word of instruction to two jmp's that jmps to them
+// selfs (spinlock). Then patches the last byte, and then atomicly replaces
+// the jmp's with the first 4 byte of the new instruction.
+void NativeCall::replace_mt_safe(address instr_addr, address code_buffer) {
+  assert(Patching_lock->is_locked() ||
+         SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
+  assert (instr_addr != NULL, "illegal address for code patching");
+
+  NativeCall* n_call =  nativeCall_at (instr_addr); // checking that it is a call
+  if (os::is_MP()) {
+    guarantee((intptr_t)instr_addr % BytesPerWord == 0, "must be aligned");
+  }
+
+  // First patch dummy jmp in place
+  unsigned char patch[4];
+  assert(sizeof(patch)==sizeof(jint), "sanity check");
+  patch[0] = 0xEB;       // jmp rel8
+  patch[1] = 0xFE;       // jmp to self
+  patch[2] = 0xEB;
+  patch[3] = 0xFE;
+
+  // First patch dummy jmp in place
+  *(jint*)instr_addr = *(jint *)patch;
+
+  // Invalidate.  Opteron requires a flush after every write.
+  n_call->wrote(0);
+
+  // Patch 4th byte
+  instr_addr[4] = code_buffer[4];
+
+  n_call->wrote(4);
+
+  // Patch bytes 0-3
+  *(jint*)instr_addr = *(jint *)code_buffer;
+
+  n_call->wrote(0);
+
+#ifdef ASSERT
+   // verify patching
+   for ( int i = 0; i < instruction_size; i++) {
+     address ptr = (address)((intptr_t)code_buffer + i);
+     int a_byte = (*ptr) & 0xFF;
+     assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
+   }
+#endif
+
+}
+
+
+// Similar to replace_mt_safe, but just changes the destination.  The
+// important thing is that free-running threads are able to execute this
+// call instruction at all times.  If the displacement field is aligned
+// we can simply rely on atomicity of 32-bit writes to make sure other threads
+// will see no intermediate states.  Otherwise, the first two bytes of the
+// call are guaranteed to be aligned, and can be atomically patched to a
+// self-loop to guard the instruction while we change the other bytes.
+
+// We cannot rely on locks here, since the free-running threads must run at
+// full speed.
+//
+// Used in the runtime linkage of calls; see class CompiledIC.
+// (Cf. 4506997 and 4479829, where threads witnessed garbage displacements.)
+void NativeCall::set_destination_mt_safe(address dest) {
+  debug_only(verify());
+  // Make sure patching code is locked.  No two threads can patch at the same
+  // time but one may be executing this code.
+  assert(Patching_lock->is_locked() ||
+         SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
+  // Both C1 and C2 should now be generating code which aligns the patched address
+  // to be within a single cache line except that C1 does not do the alignment on
+  // uniprocessor systems.
+  bool is_aligned = ((uintptr_t)displacement_address() + 0) / cache_line_size ==
+                    ((uintptr_t)displacement_address() + 3) / cache_line_size;
+
+  guarantee(!os::is_MP() || is_aligned, "destination must be aligned");
+
+  if (is_aligned) {
+    // Simple case:  The destination lies within a single cache line.
+    set_destination(dest);
+  } else if ((uintptr_t)instruction_address() / cache_line_size ==
+             ((uintptr_t)instruction_address()+1) / cache_line_size) {
+    // Tricky case:  The instruction prefix lies within a single cache line.
+    intptr_t disp = dest - return_address();
+#ifdef AMD64
+    guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
+#endif // AMD64
+
+    int call_opcode = instruction_address()[0];
+
+    // First patch dummy jump in place:
+    {
+      u_char patch_jump[2];
+      patch_jump[0] = 0xEB;       // jmp rel8
+      patch_jump[1] = 0xFE;       // jmp to self
+
+      assert(sizeof(patch_jump)==sizeof(short), "sanity check");
+      *(short*)instruction_address() = *(short*)patch_jump;
+    }
+    // Invalidate.  Opteron requires a flush after every write.
+    wrote(0);
+
+    // (Note: We assume any reader which has already started to read
+    // the unpatched call will completely read the whole unpatched call
+    // without seeing the next writes we are about to make.)
+
+    // Next, patch the last three bytes:
+    u_char patch_disp[5];
+    patch_disp[0] = call_opcode;
+    *(int32_t*)&patch_disp[1] = (int32_t)disp;
+    assert(sizeof(patch_disp)==instruction_size, "sanity check");
+    for (int i = sizeof(short); i < instruction_size; i++)
+      instruction_address()[i] = patch_disp[i];
+
+    // Invalidate.  Opteron requires a flush after every write.
+    wrote(sizeof(short));
+
+    // (Note: We assume that any reader which reads the opcode we are
+    // about to repatch will also read the writes we just made.)
+
+    // Finally, overwrite the jump:
+    *(short*)instruction_address() = *(short*)patch_disp;
+    // Invalidate.  Opteron requires a flush after every write.
+    wrote(0);
+
+    debug_only(verify());
+    guarantee(destination() == dest, "patch succeeded");
+  } else {
+    // Impossible:  One or the other must be atomically writable.
+    ShouldNotReachHere();
+  }
+}
+
+
+void NativeMovConstReg::verify() {
+#ifdef AMD64
+  // make sure code pattern is actually a mov reg64, imm64 instruction
+  if ((ubyte_at(0) != Assembler::REX_W && ubyte_at(0) != Assembler::REX_WB) ||
+      (ubyte_at(1) & (0xff ^ register_mask)) != 0xB8) {
+    print();
+    fatal("not a REX.W[B] mov reg64, imm64");
+  }
+#else
+  // make sure code pattern is actually a mov reg, imm32 instruction
+  u_char test_byte = *(u_char*)instruction_address();
+  u_char test_byte_2 = test_byte & ( 0xff ^ register_mask);
+  if (test_byte_2 != instruction_code) fatal("not a mov reg, imm32");
+#endif // AMD64
+}
+
+
+void NativeMovConstReg::print() {
+  tty->print_cr(PTR_FORMAT ": mov reg, " INTPTR_FORMAT,
+                instruction_address(), data());
+}
+
+//-------------------------------------------------------------------
+
+#ifndef AMD64
+
+void NativeMovRegMem::copy_instruction_to(address new_instruction_address) {
+  int inst_size = instruction_size;
+
+  // See if there's an instruction size prefix override.
+  if ( *(address(this))   == instruction_operandsize_prefix &&
+       *(address(this)+1) != instruction_code_xmm_code ) { // Not SSE instr
+    inst_size += 1;
+  }
+  if ( *(address(this)) == instruction_extended_prefix ) inst_size += 1;
+
+  for (int i = 0; i < instruction_size; i++) {
+    *(new_instruction_address + i) = *(address(this) + i);
+  }
+}
+
+void NativeMovRegMem::verify() {
+  // make sure code pattern is actually a mov [reg+offset], reg instruction
+  u_char test_byte = *(u_char*)instruction_address();
+  if ( ! ( (test_byte == instruction_code_reg2memb)
+      || (test_byte == instruction_code_mem2regb)
+      || (test_byte == instruction_code_mem2regl)
+      || (test_byte == instruction_code_reg2meml)
+      || (test_byte == instruction_code_mem2reg_movzxb )
+      || (test_byte == instruction_code_mem2reg_movzxw )
+      || (test_byte == instruction_code_mem2reg_movsxb )
+      || (test_byte == instruction_code_mem2reg_movsxw )
+      || (test_byte == instruction_code_float_s)
+      || (test_byte == instruction_code_float_d)
+      || (test_byte == instruction_code_long_volatile) ) )
+  {
+    u_char byte1 = ((u_char*)instruction_address())[1];
+    u_char byte2 = ((u_char*)instruction_address())[2];
+    if ((test_byte != instruction_code_xmm_ss_prefix &&
+         test_byte != instruction_code_xmm_sd_prefix &&
+         test_byte != instruction_operandsize_prefix) ||
+        byte1 != instruction_code_xmm_code ||
+        (byte2 != instruction_code_xmm_load &&
+         byte2 != instruction_code_xmm_lpd  &&
+         byte2 != instruction_code_xmm_store)) {
+          fatal ("not a mov [reg+offs], reg instruction");
+    }
+  }
+}
+
+
+void NativeMovRegMem::print() {
+  tty->print_cr("0x%x: mov reg, [reg + %x]", instruction_address(), offset());
+}
+
+//-------------------------------------------------------------------
+
+void NativeLoadAddress::verify() {
+  // make sure code pattern is actually a mov [reg+offset], reg instruction
+  u_char test_byte = *(u_char*)instruction_address();
+  if ( ! (test_byte == instruction_code) ) {
+    fatal ("not a lea reg, [reg+offs] instruction");
+  }
+}
+
+
+void NativeLoadAddress::print() {
+  tty->print_cr("0x%x: lea [reg + %x], reg", instruction_address(), offset());
+}
+
+#endif // !AMD64
+
+//--------------------------------------------------------------------------------
+
+void NativeJump::verify() {
+  if (*(u_char*)instruction_address() != instruction_code) {
+    fatal("not a jump instruction");
+  }
+}
+
+
+void NativeJump::insert(address code_pos, address entry) {
+  intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
+#ifdef AMD64
+  guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
+#endif // AMD64
+
+  *code_pos = instruction_code;
+  *((int32_t*)(code_pos + 1)) = (int32_t)disp;
+
+  ICache::invalidate_range(code_pos, instruction_size);
+}
+
+void NativeJump::check_verified_entry_alignment(address entry, address verified_entry) {
+  // Patching to not_entrant can happen while activations of the method are
+  // in use. The patching in that instance must happen only when certain
+  // alignment restrictions are true. These guarantees check those
+  // conditions.
+#ifdef AMD64
+  const int linesize = 64;
+#else
+  const int linesize = 32;
+#endif // AMD64
+
+  // Must be wordSize aligned
+  guarantee(((uintptr_t) verified_entry & (wordSize -1)) == 0,
+            "illegal address for code patching 2");
+  // First 5 bytes must be within the same cache line - 4827828
+  guarantee((uintptr_t) verified_entry / linesize ==
+            ((uintptr_t) verified_entry + 4) / linesize,
+            "illegal address for code patching 3");
+}
+
+
+// MT safe inserting of a jump over an unknown instruction sequence (used by nmethod::makeZombie)
+// The problem: jmp <dest> is a 5-byte instruction. Atomical write can be only with 4 bytes.
+// First patches the first word atomically to be a jump to itself.
+// Then patches the last byte  and then atomically patches the first word (4-bytes),
+// thus inserting the desired jump
+// This code is mt-safe with the following conditions: entry point is 4 byte aligned,
+// entry point is in same cache line as unverified entry point, and the instruction being
+// patched is >= 5 byte (size of patch).
+//
+// In C2 the 5+ byte sized instruction is enforced by code in MachPrologNode::emit.
+// In C1 the restriction is enforced by CodeEmitter::method_entry
+//
+void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) {
+  // complete jump instruction (to be inserted) is in code_buffer;
+  unsigned char code_buffer[5];
+  code_buffer[0] = instruction_code;
+  intptr_t disp = (intptr_t)dest - ((intptr_t)verified_entry + 1 + 4);
+#ifdef AMD64
+  guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
+#endif // AMD64
+  *(int32_t*)(code_buffer + 1) = (int32_t)disp;
+
+  check_verified_entry_alignment(entry, verified_entry);
+
+  // Can't call nativeJump_at() because it's asserts jump exists
+  NativeJump* n_jump = (NativeJump*) verified_entry;
+
+  //First patch dummy jmp in place
+
+  unsigned char patch[4];
+  assert(sizeof(patch)==sizeof(int32_t), "sanity check");
+  patch[0] = 0xEB;       // jmp rel8
+  patch[1] = 0xFE;       // jmp to self
+  patch[2] = 0xEB;
+  patch[3] = 0xFE;
+
+  // First patch dummy jmp in place
+  *(int32_t*)verified_entry = *(int32_t *)patch;
+
+  n_jump->wrote(0);
+
+  // Patch 5th byte (from jump instruction)
+  verified_entry[4] = code_buffer[4];
+
+  n_jump->wrote(4);
+
+  // Patch bytes 0-3 (from jump instruction)
+  *(int32_t*)verified_entry = *(int32_t *)code_buffer;
+  // Invalidate.  Opteron requires a flush after every write.
+  n_jump->wrote(0);
+
+}
+
+void NativePopReg::insert(address code_pos, Register reg) {
+  assert(reg->encoding() < 8, "no space for REX");
+  assert(NativePopReg::instruction_size == sizeof(char), "right address unit for update");
+  *code_pos = (u_char)(instruction_code | reg->encoding());
+  ICache::invalidate_range(code_pos, instruction_size);
+}
+
+
+void NativeIllegalInstruction::insert(address code_pos) {
+  assert(NativeIllegalInstruction::instruction_size == sizeof(short), "right address unit for update");
+  *(short *)code_pos = instruction_code;
+  ICache::invalidate_range(code_pos, instruction_size);
+}
+
+void NativeGeneralJump::verify() {
+  assert(((NativeInstruction *)this)->is_jump() ||
+         ((NativeInstruction *)this)->is_cond_jump(), "not a general jump instruction");
+}
+
+
+void NativeGeneralJump::insert_unconditional(address code_pos, address entry) {
+  intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
+#ifdef AMD64
+  guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
+#endif // AMD64
+
+  *code_pos = unconditional_long_jump;
+  *((int32_t *)(code_pos+1)) = (int32_t) disp;
+  ICache::invalidate_range(code_pos, instruction_size);
+}
+
+
+// MT-safe patching of a long jump instruction.
+// First patches first word of instruction to two jmp's that jmps to them
+// selfs (spinlock). Then patches the last byte, and then atomicly replaces
+// the jmp's with the first 4 byte of the new instruction.
+void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) {
+   assert (instr_addr != NULL, "illegal address for code patching (4)");
+   NativeGeneralJump* n_jump =  nativeGeneralJump_at (instr_addr); // checking that it is a jump
+
+   // Temporary code
+   unsigned char patch[4];
+   assert(sizeof(patch)==sizeof(int32_t), "sanity check");
+   patch[0] = 0xEB;       // jmp rel8
+   patch[1] = 0xFE;       // jmp to self
+   patch[2] = 0xEB;
+   patch[3] = 0xFE;
+
+   // First patch dummy jmp in place
+   *(int32_t*)instr_addr = *(int32_t *)patch;
+    n_jump->wrote(0);
+
+   // Patch 4th byte
+   instr_addr[4] = code_buffer[4];
+
+    n_jump->wrote(4);
+
+   // Patch bytes 0-3
+   *(jint*)instr_addr = *(jint *)code_buffer;
+
+    n_jump->wrote(0);
+
+#ifdef ASSERT
+   // verify patching
+   for ( int i = 0; i < instruction_size; i++) {
+     address ptr = (address)((intptr_t)code_buffer + i);
+     int a_byte = (*ptr) & 0xFF;
+     assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
+   }
+#endif
+
+}
+
+
+
+address NativeGeneralJump::jump_destination() const {
+  int op_code = ubyte_at(0);
+  bool is_rel32off = (op_code == 0xE9 || op_code == 0x0F);
+  int  offset  = (op_code == 0x0F)  ? 2 : 1;
+  int  length  = offset + ((is_rel32off) ? 4 : 1);
+
+  if (is_rel32off)
+    return addr_at(0) + length + int_at(offset);
+  else
+    return addr_at(0) + length + sbyte_at(offset);
+}