hotspot/src/cpu/x86/vm/assembler_x86_32.cpp
changeset 1 489c9b5090e2
child 244 c8ad6f221400
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/cpu/x86/vm/assembler_x86_32.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,4979 @@
+/*
+ * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_assembler_x86_32.cpp.incl"
+
+// Implementation of AddressLiteral
+
+AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
+  _is_lval = false;
+  _target = target;
+  switch (rtype) {
+  case relocInfo::oop_type:
+    // Oops are a special case. Normally they would be their own section
+    // but in cases like icBuffer they are literals in the code stream that
+    // we don't have a section for. We use none so that we get a literal address
+    // which is always patchable.
+    break;
+  case relocInfo::external_word_type:
+    _rspec = external_word_Relocation::spec(target);
+    break;
+  case relocInfo::internal_word_type:
+    _rspec = internal_word_Relocation::spec(target);
+    break;
+  case relocInfo::opt_virtual_call_type:
+    _rspec = opt_virtual_call_Relocation::spec();
+    break;
+  case relocInfo::static_call_type:
+    _rspec = static_call_Relocation::spec();
+    break;
+  case relocInfo::runtime_call_type:
+    _rspec = runtime_call_Relocation::spec();
+    break;
+  case relocInfo::poll_type:
+  case relocInfo::poll_return_type:
+    _rspec = Relocation::spec_simple(rtype);
+    break;
+  case relocInfo::none:
+    break;
+  default:
+    ShouldNotReachHere();
+    break;
+  }
+}
+
+// Implementation of Address
+
+Address Address::make_array(ArrayAddress adr) {
+#ifdef _LP64
+  // Not implementable on 64bit machines
+  // Should have been handled higher up the call chain.
+  ShouldNotReachHere();
+#else
+  AddressLiteral base = adr.base();
+  Address index = adr.index();
+  assert(index._disp == 0, "must not have disp"); // maybe it can?
+  Address array(index._base, index._index, index._scale, (intptr_t) base.target());
+  array._rspec = base._rspec;
+  return array;
+#endif // _LP64
+}
+
+#ifndef _LP64
+
+// exceedingly dangerous constructor
+Address::Address(address loc, RelocationHolder spec) {
+  _base  = noreg;
+  _index = noreg;
+  _scale = no_scale;
+  _disp  = (intptr_t) loc;
+  _rspec = spec;
+}
+#endif // _LP64
+
+// Convert the raw encoding form into the form expected by the constructor for
+// Address.  An index of 4 (rsp) corresponds to having no index, so convert
+// that to noreg for the Address constructor.
+Address Address::make_raw(int base, int index, int scale, int disp) {
+  bool valid_index = index != rsp->encoding();
+  if (valid_index) {
+    Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
+    return madr;
+  } else {
+    Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
+    return madr;
+  }
+}
+
+// Implementation of Assembler
+
+int AbstractAssembler::code_fill_byte() {
+  return (u_char)'\xF4'; // hlt
+}
+
+// make this go away someday
+void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
+  if (rtype == relocInfo::none)
+        emit_long(data);
+  else  emit_data(data, Relocation::spec_simple(rtype), format);
+}
+
+
+void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
+  assert(imm32_operand == 0, "default format must be imm32 in this file");
+  assert(inst_mark() != NULL, "must be inside InstructionMark");
+  if (rspec.type() !=  relocInfo::none) {
+    #ifdef ASSERT
+      check_relocation(rspec, format);
+    #endif
+    // Do not use AbstractAssembler::relocate, which is not intended for
+    // embedded words.  Instead, relocate to the enclosing instruction.
+
+    // hack. call32 is too wide for mask so use disp32
+    if (format == call32_operand)
+      code_section()->relocate(inst_mark(), rspec, disp32_operand);
+    else
+      code_section()->relocate(inst_mark(), rspec, format);
+  }
+  emit_long(data);
+}
+
+
+void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
+  assert(dst->has_byte_register(), "must have byte register");
+  assert(isByte(op1) && isByte(op2), "wrong opcode");
+  assert(isByte(imm8), "not a byte");
+  assert((op1 & 0x01) == 0, "should be 8bit operation");
+  emit_byte(op1);
+  emit_byte(op2 | dst->encoding());
+  emit_byte(imm8);
+}
+
+
+void Assembler::emit_arith(int op1, int op2, Register dst, int imm32) {
+  assert(isByte(op1) && isByte(op2), "wrong opcode");
+  assert((op1 & 0x01) == 1, "should be 32bit operation");
+  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
+  if (is8bit(imm32)) {
+    emit_byte(op1 | 0x02); // set sign bit
+    emit_byte(op2 | dst->encoding());
+    emit_byte(imm32 & 0xFF);
+  } else {
+    emit_byte(op1);
+    emit_byte(op2 | dst->encoding());
+    emit_long(imm32);
+  }
+}
+
+// immediate-to-memory forms
+void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int imm32) {
+  assert((op1 & 0x01) == 1, "should be 32bit operation");
+  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
+  if (is8bit(imm32)) {
+    emit_byte(op1 | 0x02); // set sign bit
+    emit_operand(rm,adr);
+    emit_byte(imm32 & 0xFF);
+  } else {
+    emit_byte(op1);
+    emit_operand(rm,adr);
+    emit_long(imm32);
+  }
+}
+
+void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
+  assert(isByte(op1) && isByte(op2), "wrong opcode");
+  assert((op1 & 0x01) == 1, "should be 32bit operation");
+  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
+  InstructionMark im(this);
+  emit_byte(op1);
+  emit_byte(op2 | dst->encoding());
+  emit_data((int)obj, relocInfo::oop_type, 0);
+}
+
+
+void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
+  assert(isByte(op1) && isByte(op2), "wrong opcode");
+  emit_byte(op1);
+  emit_byte(op2 | dst->encoding() << 3 | src->encoding());
+}
+
+
+void Assembler::emit_operand(Register reg,
+                             Register base,
+                             Register index,
+                             Address::ScaleFactor scale,
+                             int disp,
+                             RelocationHolder const& rspec) {
+
+  relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
+  if (base->is_valid()) {
+    if (index->is_valid()) {
+      assert(scale != Address::no_scale, "inconsistent address");
+      // [base + index*scale + disp]
+      if (disp == 0 && rtype == relocInfo::none && base != rbp) {
+        // [base + index*scale]
+        // [00 reg 100][ss index base]
+        assert(index != rsp, "illegal addressing mode");
+        emit_byte(0x04 | reg->encoding() << 3);
+        emit_byte(scale << 6 | index->encoding() << 3 | base->encoding());
+      } else if (is8bit(disp) && rtype == relocInfo::none) {
+        // [base + index*scale + imm8]
+        // [01 reg 100][ss index base] imm8
+        assert(index != rsp, "illegal addressing mode");
+        emit_byte(0x44 | reg->encoding() << 3);
+        emit_byte(scale << 6 | index->encoding() << 3 | base->encoding());
+        emit_byte(disp & 0xFF);
+      } else {
+        // [base + index*scale + imm32]
+        // [10 reg 100][ss index base] imm32
+        assert(index != rsp, "illegal addressing mode");
+        emit_byte(0x84 | reg->encoding() << 3);
+        emit_byte(scale << 6 | index->encoding() << 3 | base->encoding());
+        emit_data(disp, rspec, disp32_operand);
+      }
+    } else if (base == rsp) {
+      // [esp + disp]
+      if (disp == 0 && rtype == relocInfo::none) {
+        // [esp]
+        // [00 reg 100][00 100 100]
+        emit_byte(0x04 | reg->encoding() << 3);
+        emit_byte(0x24);
+      } else if (is8bit(disp) && rtype == relocInfo::none) {
+        // [esp + imm8]
+        // [01 reg 100][00 100 100] imm8
+        emit_byte(0x44 | reg->encoding() << 3);
+        emit_byte(0x24);
+        emit_byte(disp & 0xFF);
+      } else {
+        // [esp + imm32]
+        // [10 reg 100][00 100 100] imm32
+        emit_byte(0x84 | reg->encoding() << 3);
+        emit_byte(0x24);
+        emit_data(disp, rspec, disp32_operand);
+      }
+    } else {
+      // [base + disp]
+      assert(base != rsp, "illegal addressing mode");
+      if (disp == 0 && rtype == relocInfo::none && base != rbp) {
+        // [base]
+        // [00 reg base]
+        assert(base != rbp, "illegal addressing mode");
+        emit_byte(0x00 | reg->encoding() << 3 | base->encoding());
+      } else if (is8bit(disp) && rtype == relocInfo::none) {
+        // [base + imm8]
+        // [01 reg base] imm8
+        emit_byte(0x40 | reg->encoding() << 3 | base->encoding());
+        emit_byte(disp & 0xFF);
+      } else {
+        // [base + imm32]
+        // [10 reg base] imm32
+        emit_byte(0x80 | reg->encoding() << 3 | base->encoding());
+        emit_data(disp, rspec, disp32_operand);
+      }
+    }
+  } else {
+    if (index->is_valid()) {
+      assert(scale != Address::no_scale, "inconsistent address");
+      // [index*scale + disp]
+      // [00 reg 100][ss index 101] imm32
+      assert(index != rsp, "illegal addressing mode");
+      emit_byte(0x04 | reg->encoding() << 3);
+      emit_byte(scale << 6 | index->encoding() << 3 | 0x05);
+      emit_data(disp, rspec, disp32_operand);
+    } else {
+      // [disp]
+      // [00 reg 101] imm32
+      emit_byte(0x05 | reg->encoding() << 3);
+      emit_data(disp, rspec, disp32_operand);
+    }
+  }
+}
+
+// Secret local extension to Assembler::WhichOperand:
+#define end_pc_operand (_WhichOperand_limit)
+
+address Assembler::locate_operand(address inst, WhichOperand which) {
+  // Decode the given instruction, and return the address of
+  // an embedded 32-bit operand word.
+
+  // If "which" is disp32_operand, selects the displacement portion
+  // of an effective address specifier.
+  // If "which" is imm32_operand, selects the trailing immediate constant.
+  // If "which" is call32_operand, selects the displacement of a call or jump.
+  // Caller is responsible for ensuring that there is such an operand,
+  // and that it is 32 bits wide.
+
+  // If "which" is end_pc_operand, find the end of the instruction.
+
+  address ip = inst;
+
+  debug_only(bool has_imm32 = false);
+  int tail_size = 0;    // other random bytes (#32, #16, etc.) at end of insn
+
+ again_after_prefix:
+  switch (0xFF & *ip++) {
+
+  // These convenience macros generate groups of "case" labels for the switch.
+  #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
+  #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
+             case (x)+4: case (x)+5: case (x)+6: case (x)+7
+  #define REP16(x) REP8((x)+0): \
+              case REP8((x)+8)
+
+  case CS_segment:
+  case SS_segment:
+  case DS_segment:
+  case ES_segment:
+  case FS_segment:
+  case GS_segment:
+    assert(ip == inst+1, "only one prefix allowed");
+    goto again_after_prefix;
+
+  case 0xFF: // pushl a; decl a; incl a; call a; jmp a
+  case 0x88: // movb a, r
+  case 0x89: // movl a, r
+  case 0x8A: // movb r, a
+  case 0x8B: // movl r, a
+  case 0x8F: // popl a
+    break;
+
+  case 0x68: // pushl #32(oop?)
+    if (which == end_pc_operand)  return ip + 4;
+    assert(which == imm32_operand, "pushl has no disp32");
+    return ip;                  // not produced by emit_operand
+
+  case 0x66: // movw ... (size prefix)
+    switch (0xFF & *ip++) {
+    case 0x8B: // movw r, a
+    case 0x89: // movw a, r
+      break;
+    case 0xC7: // movw a, #16
+      tail_size = 2;  // the imm16
+      break;
+    case 0x0F: // several SSE/SSE2 variants
+      ip--;    // reparse the 0x0F
+      goto again_after_prefix;
+    default:
+      ShouldNotReachHere();
+    }
+    break;
+
+  case REP8(0xB8): // movl r, #32(oop?)
+    if (which == end_pc_operand)  return ip + 4;
+    assert(which == imm32_operand || which == disp32_operand, "");
+    return ip;
+
+  case 0x69: // imul r, a, #32
+  case 0xC7: // movl a, #32(oop?)
+    tail_size = 4;
+    debug_only(has_imm32 = true); // has both kinds of operands!
+    break;
+
+  case 0x0F: // movx..., etc.
+    switch (0xFF & *ip++) {
+    case 0x12: // movlps
+    case 0x28: // movaps
+    case 0x2E: // ucomiss
+    case 0x2F: // comiss
+    case 0x54: // andps
+    case 0x55: // andnps
+    case 0x56: // orps
+    case 0x57: // xorps
+    case 0x6E: // movd
+    case 0x7E: // movd
+    case 0xAE: // ldmxcsr   a
+      // amd side says it these have both operands but that doesn't
+      // appear to be true.
+      // debug_only(has_imm32 = true); // has both kinds of operands!
+      break;
+
+    case 0xAD: // shrd r, a, %cl
+    case 0xAF: // imul r, a
+    case 0xBE: // movsxb r, a
+    case 0xBF: // movsxw r, a
+    case 0xB6: // movzxb r, a
+    case 0xB7: // movzxw r, a
+    case REP16(0x40): // cmovl cc, r, a
+    case 0xB0: // cmpxchgb
+    case 0xB1: // cmpxchg
+    case 0xC1: // xaddl
+    case 0xC7: // cmpxchg8
+    case REP16(0x90): // setcc a
+      // fall out of the switch to decode the address
+      break;
+    case 0xAC: // shrd r, a, #8
+      tail_size = 1;  // the imm8
+      break;
+    case REP16(0x80): // jcc rdisp32
+      if (which == end_pc_operand)  return ip + 4;
+      assert(which == call32_operand, "jcc has no disp32 or imm32");
+      return ip;
+    default:
+      ShouldNotReachHere();
+    }
+    break;
+
+  case 0x81: // addl a, #32; addl r, #32
+    // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
+    // in the case of cmpl, the imm32 might be an oop
+    tail_size = 4;
+    debug_only(has_imm32 = true); // has both kinds of operands!
+    break;
+
+  case 0x85: // test r/m, r
+    break;
+
+  case 0x83: // addl a, #8; addl r, #8
+    // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
+    tail_size = 1;
+    break;
+
+  case 0x9B:
+    switch (0xFF & *ip++) {
+    case 0xD9: // fnstcw a
+      break;
+    default:
+      ShouldNotReachHere();
+    }
+    break;
+
+  case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
+  case REP4(0x10): // adc...
+  case REP4(0x20): // and...
+  case REP4(0x30): // xor...
+  case REP4(0x08): // or...
+  case REP4(0x18): // sbb...
+  case REP4(0x28): // sub...
+  case REP4(0x38): // cmp...
+  case 0xF7: // mull a
+  case 0x8D: // leal r, a
+  case 0x87: // xchg r, a
+    break;
+
+  case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
+  case 0xC6: // movb a, #8
+  case 0x80: // cmpb a, #8
+  case 0x6B: // imul r, a, #8
+    tail_size = 1; // the imm8
+    break;
+
+  case 0xE8: // call rdisp32
+  case 0xE9: // jmp  rdisp32
+    if (which == end_pc_operand)  return ip + 4;
+    assert(which == call32_operand, "call has no disp32 or imm32");
+    return ip;
+
+  case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
+  case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
+  case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
+  case 0xDD: // fld_d a; fst_d a; fstp_d a
+  case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
+  case 0xDF: // fild_d a; fistp_d a
+  case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
+  case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
+  case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
+    break;
+
+  case 0xF3:                    // For SSE
+  case 0xF2:                    // For SSE2
+    ip++; ip++;
+    break;
+
+  default:
+    ShouldNotReachHere();
+
+  #undef REP8
+  #undef REP16
+  }
+
+  assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
+  assert(which != imm32_operand || has_imm32, "instruction has no imm32 field");
+
+  // parse the output of emit_operand
+  int op2 = 0xFF & *ip++;
+  int base = op2 & 0x07;
+  int op3 = -1;
+  const int b100 = 4;
+  const int b101 = 5;
+  if (base == b100 && (op2 >> 6) != 3) {
+    op3 = 0xFF & *ip++;
+    base = op3 & 0x07;   // refetch the base
+  }
+  // now ip points at the disp (if any)
+
+  switch (op2 >> 6) {
+  case 0:
+    // [00 reg  100][ss index base]
+    // [00 reg  100][00   100  rsp]
+    // [00 reg base]
+    // [00 reg  100][ss index  101][disp32]
+    // [00 reg  101]               [disp32]
+
+    if (base == b101) {
+      if (which == disp32_operand)
+        return ip;              // caller wants the disp32
+      ip += 4;                  // skip the disp32
+    }
+    break;
+
+  case 1:
+    // [01 reg  100][ss index base][disp8]
+    // [01 reg  100][00   100  rsp][disp8]
+    // [01 reg base]               [disp8]
+    ip += 1;                    // skip the disp8
+    break;
+
+  case 2:
+    // [10 reg  100][ss index base][disp32]
+    // [10 reg  100][00   100  rsp][disp32]
+    // [10 reg base]               [disp32]
+    if (which == disp32_operand)
+      return ip;                // caller wants the disp32
+    ip += 4;                    // skip the disp32
+    break;
+
+  case 3:
+    // [11 reg base]  (not a memory addressing mode)
+    break;
+  }
+
+  if (which == end_pc_operand) {
+    return ip + tail_size;
+  }
+
+  assert(which == imm32_operand, "instruction has only an imm32 field");
+  return ip;
+}
+
+address Assembler::locate_next_instruction(address inst) {
+  // Secretly share code with locate_operand:
+  return locate_operand(inst, end_pc_operand);
+}
+
+
+#ifdef ASSERT
+void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
+  address inst = inst_mark();
+  assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
+  address opnd;
+
+  Relocation* r = rspec.reloc();
+  if (r->type() == relocInfo::none) {
+    return;
+  } else if (r->is_call() || format == call32_operand) {
+    // assert(format == imm32_operand, "cannot specify a nonzero format");
+    opnd = locate_operand(inst, call32_operand);
+  } else if (r->is_data()) {
+    assert(format == imm32_operand || format == disp32_operand, "format ok");
+    opnd = locate_operand(inst, (WhichOperand)format);
+  } else {
+    assert(format == imm32_operand, "cannot specify a format");
+    return;
+  }
+  assert(opnd == pc(), "must put operand where relocs can find it");
+}
+#endif
+
+
+
+void Assembler::emit_operand(Register reg, Address adr) {
+  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
+}
+
+
+void Assembler::emit_farith(int b1, int b2, int i) {
+  assert(isByte(b1) && isByte(b2), "wrong opcode");
+  assert(0 <= i &&  i < 8, "illegal stack offset");
+  emit_byte(b1);
+  emit_byte(b2 + i);
+}
+
+
+void Assembler::pushad() {
+  emit_byte(0x60);
+}
+
+void Assembler::popad() {
+  emit_byte(0x61);
+}
+
+void Assembler::pushfd() {
+  emit_byte(0x9C);
+}
+
+void Assembler::popfd() {
+  emit_byte(0x9D);
+}
+
+void Assembler::pushl(int imm32) {
+  emit_byte(0x68);
+  emit_long(imm32);
+}
+
+#ifndef _LP64
+void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
+  InstructionMark im(this);
+  emit_byte(0x68);
+  emit_data(imm32, rspec, 0);
+}
+#endif // _LP64
+
+void Assembler::pushl(Register src) {
+  emit_byte(0x50 | src->encoding());
+}
+
+
+void Assembler::pushl(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xFF);
+  emit_operand(rsi, src);
+}
+
+void Assembler::popl(Register dst) {
+  emit_byte(0x58 | dst->encoding());
+}
+
+
+void Assembler::popl(Address dst) {
+  InstructionMark im(this);
+  emit_byte(0x8F);
+  emit_operand(rax, dst);
+}
+
+
+void Assembler::prefix(Prefix p) {
+  a_byte(p);
+}
+
+
+void Assembler::movb(Register dst, Address src) {
+  assert(dst->has_byte_register(), "must have byte register");
+  InstructionMark im(this);
+  emit_byte(0x8A);
+  emit_operand(dst, src);
+}
+
+
+void Assembler::movb(Address dst, int imm8) {
+  InstructionMark im(this);
+  emit_byte(0xC6);
+  emit_operand(rax, dst);
+  emit_byte(imm8);
+}
+
+
+void Assembler::movb(Address dst, Register src) {
+  assert(src->has_byte_register(), "must have byte register");
+  InstructionMark im(this);
+  emit_byte(0x88);
+  emit_operand(src, dst);
+}
+
+
+void Assembler::movw(Address dst, int imm16) {
+  InstructionMark im(this);
+
+  emit_byte(0x66); // switch to 16-bit mode
+  emit_byte(0xC7);
+  emit_operand(rax, dst);
+  emit_word(imm16);
+}
+
+
+void Assembler::movw(Register dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0x66);
+  emit_byte(0x8B);
+  emit_operand(dst, src);
+}
+
+
+void Assembler::movw(Address dst, Register src) {
+  InstructionMark im(this);
+  emit_byte(0x66);
+  emit_byte(0x89);
+  emit_operand(src, dst);
+}
+
+
+void Assembler::movl(Register dst, int imm32) {
+  emit_byte(0xB8 | dst->encoding());
+  emit_long(imm32);
+}
+
+#ifndef _LP64
+void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
+
+  InstructionMark im(this);
+  emit_byte(0xB8 | dst->encoding());
+  emit_data((int)imm32, rspec, 0);
+}
+#endif // _LP64
+
+void Assembler::movl(Register dst, Register src) {
+  emit_byte(0x8B);
+  emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
+}
+
+
+void Assembler::movl(Register dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0x8B);
+  emit_operand(dst, src);
+}
+
+
+void Assembler::movl(Address dst, int imm32) {
+  InstructionMark im(this);
+  emit_byte(0xC7);
+  emit_operand(rax, dst);
+  emit_long(imm32);
+}
+
+#ifndef _LP64
+void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
+  InstructionMark im(this);
+  emit_byte(0xC7);
+  emit_operand(rax, dst);
+  emit_data((int)imm32, rspec, 0);
+}
+#endif // _LP64
+
+void Assembler::movl(Address dst, Register src) {
+  InstructionMark im(this);
+  emit_byte(0x89);
+  emit_operand(src, dst);
+}
+
+void Assembler::movsxb(Register dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0x0F);
+  emit_byte(0xBE);
+  emit_operand(dst, src);
+}
+
+void Assembler::movsxb(Register dst, Register src) {
+  assert(src->has_byte_register(), "must have byte register");
+  emit_byte(0x0F);
+  emit_byte(0xBE);
+  emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
+}
+
+
+void Assembler::movsxw(Register dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0x0F);
+  emit_byte(0xBF);
+  emit_operand(dst, src);
+}
+
+
+void Assembler::movsxw(Register dst, Register src) {
+  emit_byte(0x0F);
+  emit_byte(0xBF);
+  emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
+}
+
+
+void Assembler::movzxb(Register dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0x0F);
+  emit_byte(0xB6);
+  emit_operand(dst, src);
+}
+
+
+void Assembler::movzxb(Register dst, Register src) {
+  assert(src->has_byte_register(), "must have byte register");
+  emit_byte(0x0F);
+  emit_byte(0xB6);
+  emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
+}
+
+
+void Assembler::movzxw(Register dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0x0F);
+  emit_byte(0xB7);
+  emit_operand(dst, src);
+}
+
+
+void Assembler::movzxw(Register dst, Register src) {
+  emit_byte(0x0F);
+  emit_byte(0xB7);
+  emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
+}
+
+
+void Assembler::cmovl(Condition cc, Register dst, Register src) {
+  guarantee(VM_Version::supports_cmov(), "illegal instruction");
+  emit_byte(0x0F);
+  emit_byte(0x40 | cc);
+  emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
+}
+
+
+void Assembler::cmovl(Condition cc, Register dst, Address src) {
+  guarantee(VM_Version::supports_cmov(), "illegal instruction");
+  // The code below seems to be wrong - however the manual is inconclusive
+  // do not use for now (remember to enable all callers when fixing this)
+  Unimplemented();
+  // wrong bytes?
+  InstructionMark im(this);
+  emit_byte(0x0F);
+  emit_byte(0x40 | cc);
+  emit_operand(dst, src);
+}
+
+
+void Assembler::prefetcht0(Address src) {
+  assert(VM_Version::supports_sse(), "must support");
+  InstructionMark im(this);
+  emit_byte(0x0F);
+  emit_byte(0x18);
+  emit_operand(rcx, src); // 1, src
+}
+
+
+void Assembler::prefetcht1(Address src) {
+  assert(VM_Version::supports_sse(), "must support");
+  InstructionMark im(this);
+  emit_byte(0x0F);
+  emit_byte(0x18);
+  emit_operand(rdx, src); // 2, src
+}
+
+
+void Assembler::prefetcht2(Address src) {
+  assert(VM_Version::supports_sse(), "must support");
+  InstructionMark im(this);
+  emit_byte(0x0F);
+  emit_byte(0x18);
+  emit_operand(rbx, src); // 3, src
+}
+
+
+void Assembler::prefetchnta(Address src) {
+  assert(VM_Version::supports_sse2(), "must support");
+  InstructionMark im(this);
+  emit_byte(0x0F);
+  emit_byte(0x18);
+  emit_operand(rax, src); // 0, src
+}
+
+
+void Assembler::prefetchw(Address src) {
+  assert(VM_Version::supports_3dnow(), "must support");
+  InstructionMark im(this);
+  emit_byte(0x0F);
+  emit_byte(0x0D);
+  emit_operand(rcx, src); // 1, src
+}
+
+
+void Assembler::prefetchr(Address src) {
+  assert(VM_Version::supports_3dnow(), "must support");
+  InstructionMark im(this);
+  emit_byte(0x0F);
+  emit_byte(0x0D);
+  emit_operand(rax, src); // 0, src
+}
+
+
+void Assembler::adcl(Register dst, int imm32) {
+  emit_arith(0x81, 0xD0, dst, imm32);
+}
+
+
+void Assembler::adcl(Register dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0x13);
+  emit_operand(dst, src);
+}
+
+
+void Assembler::adcl(Register dst, Register src) {
+  emit_arith(0x13, 0xC0, dst, src);
+}
+
+
+void Assembler::addl(Address dst, int imm32) {
+  InstructionMark im(this);
+  emit_arith_operand(0x81,rax,dst,imm32);
+}
+
+
+void Assembler::addl(Address dst, Register src) {
+  InstructionMark im(this);
+  emit_byte(0x01);
+  emit_operand(src, dst);
+}
+
+
+void Assembler::addl(Register dst, int imm32) {
+  emit_arith(0x81, 0xC0, dst, imm32);
+}
+
+
+void Assembler::addl(Register dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0x03);
+  emit_operand(dst, src);
+}
+
+
+void Assembler::addl(Register dst, Register src) {
+  emit_arith(0x03, 0xC0, dst, src);
+}
+
+
+void Assembler::andl(Register dst, int imm32) {
+  emit_arith(0x81, 0xE0, dst, imm32);
+}
+
+
+void Assembler::andl(Register dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0x23);
+  emit_operand(dst, src);
+}
+
+
+void Assembler::andl(Register dst, Register src) {
+  emit_arith(0x23, 0xC0, dst, src);
+}
+
+
+void Assembler::cmpb(Address dst, int imm8) {
+  InstructionMark im(this);
+  emit_byte(0x80);
+  emit_operand(rdi, dst);
+  emit_byte(imm8);
+}
+
+void Assembler::cmpw(Address dst, int imm16) {
+  InstructionMark im(this);
+  emit_byte(0x66);
+  emit_byte(0x81);
+  emit_operand(rdi, dst);
+  emit_word(imm16);
+}
+
+void Assembler::cmpl(Address dst, int imm32) {
+  InstructionMark im(this);
+  emit_byte(0x81);
+  emit_operand(rdi, dst);
+  emit_long(imm32);
+}
+
+#ifndef _LP64
+void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
+  InstructionMark im(this);
+  emit_byte(0x81);
+  emit_byte(0xF8 | src1->encoding());
+  emit_data(imm32, rspec, 0);
+}
+
+void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
+  InstructionMark im(this);
+  emit_byte(0x81);
+  emit_operand(rdi, src1);
+  emit_data(imm32, rspec, 0);
+}
+#endif // _LP64
+
+
+void Assembler::cmpl(Register dst, int imm32) {
+  emit_arith(0x81, 0xF8, dst, imm32);
+}
+
+
+void Assembler::cmpl(Register dst, Register src) {
+  emit_arith(0x3B, 0xC0, dst, src);
+}
+
+
+void Assembler::cmpl(Register dst, Address  src) {
+  InstructionMark im(this);
+  emit_byte(0x3B);
+  emit_operand(dst, src);
+}
+
+
+void Assembler::decl(Register dst) {
+  // Don't use it directly. Use MacroAssembler::decrement() instead.
+  emit_byte(0x48 | dst->encoding());
+}
+
+
+void Assembler::decl(Address dst) {
+  // Don't use it directly. Use MacroAssembler::decrement() instead.
+  InstructionMark im(this);
+  emit_byte(0xFF);
+  emit_operand(rcx, dst);
+}
+
+
+void Assembler::idivl(Register src) {
+  emit_byte(0xF7);
+  emit_byte(0xF8 | src->encoding());
+}
+
+
+void Assembler::cdql() {
+  emit_byte(0x99);
+}
+
+
+void Assembler::imull(Register dst, Register src) {
+  emit_byte(0x0F);
+  emit_byte(0xAF);
+  emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
+}
+
+
+void Assembler::imull(Register dst, Register src, int value) {
+  if (is8bit(value)) {
+    emit_byte(0x6B);
+    emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
+    emit_byte(value);
+  } else {
+    emit_byte(0x69);
+    emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
+    emit_long(value);
+  }
+}
+
+
+void Assembler::incl(Register dst) {
+  // Don't use it directly. Use MacroAssembler::increment() instead.
+  emit_byte(0x40 | dst->encoding());
+}
+
+
+void Assembler::incl(Address dst) {
+  // Don't use it directly. Use MacroAssembler::increment() instead.
+  InstructionMark im(this);
+  emit_byte(0xFF);
+  emit_operand(rax, dst);
+}
+
+
+void Assembler::leal(Register dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0x8D);
+  emit_operand(dst, src);
+}
+
+void Assembler::mull(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xF7);
+  emit_operand(rsp, src);
+}
+
+
+void Assembler::mull(Register src) {
+  emit_byte(0xF7);
+  emit_byte(0xE0 | src->encoding());
+}
+
+
+void Assembler::negl(Register dst) {
+  emit_byte(0xF7);
+  emit_byte(0xD8 | dst->encoding());
+}
+
+
+void Assembler::notl(Register dst) {
+  emit_byte(0xF7);
+  emit_byte(0xD0 | dst->encoding());
+}
+
+
+void Assembler::orl(Address dst, int imm32) {
+  InstructionMark im(this);
+  emit_byte(0x81);
+  emit_operand(rcx, dst);
+  emit_long(imm32);
+}
+
+void Assembler::orl(Register dst, int imm32) {
+  emit_arith(0x81, 0xC8, dst, imm32);
+}
+
+
+void Assembler::orl(Register dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0x0B);
+  emit_operand(dst, src);
+}
+
+
+void Assembler::orl(Register dst, Register src) {
+  emit_arith(0x0B, 0xC0, dst, src);
+}
+
+
+void Assembler::rcll(Register dst, int imm8) {
+  assert(isShiftCount(imm8), "illegal shift count");
+  if (imm8 == 1) {
+    emit_byte(0xD1);
+    emit_byte(0xD0 | dst->encoding());
+  } else {
+    emit_byte(0xC1);
+    emit_byte(0xD0 | dst->encoding());
+    emit_byte(imm8);
+  }
+}
+
+
+void Assembler::sarl(Register dst, int imm8) {
+  assert(isShiftCount(imm8), "illegal shift count");
+  if (imm8 == 1) {
+    emit_byte(0xD1);
+    emit_byte(0xF8 | dst->encoding());
+  } else {
+    emit_byte(0xC1);
+    emit_byte(0xF8 | dst->encoding());
+    emit_byte(imm8);
+  }
+}
+
+
+void Assembler::sarl(Register dst) {
+  emit_byte(0xD3);
+  emit_byte(0xF8 | dst->encoding());
+}
+
+
+void Assembler::sbbl(Address dst, int imm32) {
+  InstructionMark im(this);
+  emit_arith_operand(0x81,rbx,dst,imm32);
+}
+
+
+void Assembler::sbbl(Register dst, int imm32) {
+  emit_arith(0x81, 0xD8, dst, imm32);
+}
+
+
+void Assembler::sbbl(Register dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0x1B);
+  emit_operand(dst, src);
+}
+
+
+void Assembler::sbbl(Register dst, Register src) {
+  emit_arith(0x1B, 0xC0, dst, src);
+}
+
+
+void Assembler::shldl(Register dst, Register src) {
+  emit_byte(0x0F);
+  emit_byte(0xA5);
+  emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
+}
+
+
+void Assembler::shll(Register dst, int imm8) {
+  assert(isShiftCount(imm8), "illegal shift count");
+  if (imm8 == 1 ) {
+    emit_byte(0xD1);
+    emit_byte(0xE0 | dst->encoding());
+  } else {
+    emit_byte(0xC1);
+    emit_byte(0xE0 | dst->encoding());
+    emit_byte(imm8);
+  }
+}
+
+
+void Assembler::shll(Register dst) {
+  emit_byte(0xD3);
+  emit_byte(0xE0 | dst->encoding());
+}
+
+
+void Assembler::shrdl(Register dst, Register src) {
+  emit_byte(0x0F);
+  emit_byte(0xAD);
+  emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
+}
+
+
+void Assembler::shrl(Register dst, int imm8) {
+  assert(isShiftCount(imm8), "illegal shift count");
+  emit_byte(0xC1);
+  emit_byte(0xE8 | dst->encoding());
+  emit_byte(imm8);
+}
+
+
+void Assembler::shrl(Register dst) {
+  emit_byte(0xD3);
+  emit_byte(0xE8 | dst->encoding());
+}
+
+
+void Assembler::subl(Address dst, int imm32) {
+  if (is8bit(imm32)) {
+    InstructionMark im(this);
+    emit_byte(0x83);
+    emit_operand(rbp, dst);
+    emit_byte(imm32 & 0xFF);
+  } else {
+    InstructionMark im(this);
+    emit_byte(0x81);
+    emit_operand(rbp, dst);
+    emit_long(imm32);
+  }
+}
+
+
+void Assembler::subl(Register dst, int imm32) {
+  emit_arith(0x81, 0xE8, dst, imm32);
+}
+
+
+void Assembler::subl(Address dst, Register src) {
+  InstructionMark im(this);
+  emit_byte(0x29);
+  emit_operand(src, dst);
+}
+
+
+void Assembler::subl(Register dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0x2B);
+  emit_operand(dst, src);
+}
+
+
+void Assembler::subl(Register dst, Register src) {
+  emit_arith(0x2B, 0xC0, dst, src);
+}
+
+
+void Assembler::testb(Register dst, int imm8) {
+  assert(dst->has_byte_register(), "must have byte register");
+  emit_arith_b(0xF6, 0xC0, dst, imm8);
+}
+
+
+void Assembler::testl(Register dst, int imm32) {
+  // not using emit_arith because test
+  // doesn't support sign-extension of
+  // 8bit operands
+  if (dst->encoding() == 0) {
+    emit_byte(0xA9);
+  } else {
+    emit_byte(0xF7);
+    emit_byte(0xC0 | dst->encoding());
+  }
+  emit_long(imm32);
+}
+
+
+void Assembler::testl(Register dst, Register src) {
+  emit_arith(0x85, 0xC0, dst, src);
+}
+
+void Assembler::testl(Register dst, Address  src) {
+  InstructionMark im(this);
+  emit_byte(0x85);
+  emit_operand(dst, src);
+}
+
+void Assembler::xaddl(Address dst, Register src) {
+  InstructionMark im(this);
+  emit_byte(0x0F);
+  emit_byte(0xC1);
+  emit_operand(src, dst);
+}
+
+void Assembler::xorl(Register dst, int imm32) {
+  emit_arith(0x81, 0xF0, dst, imm32);
+}
+
+
+void Assembler::xorl(Register dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0x33);
+  emit_operand(dst, src);
+}
+
+
+void Assembler::xorl(Register dst, Register src) {
+  emit_arith(0x33, 0xC0, dst, src);
+}
+
+
+void Assembler::bswap(Register reg) {
+  emit_byte(0x0F);
+  emit_byte(0xC8 | reg->encoding());
+}
+
+
+void Assembler::lock() {
+  if (Atomics & 1) {
+     // Emit either nothing, a NOP, or a NOP: prefix
+     emit_byte(0x90) ;
+  } else {
+     emit_byte(0xF0);
+  }
+}
+
+
+void Assembler::xchg(Register reg, Address adr) {
+  InstructionMark im(this);
+  emit_byte(0x87);
+  emit_operand(reg, adr);
+}
+
+
+void Assembler::xchgl(Register dst, Register src) {
+  emit_byte(0x87);
+  emit_byte(0xc0 | dst->encoding() << 3 | src->encoding());
+}
+
+
+// The 32-bit cmpxchg compares the value at adr with the contents of rax,
+// and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
+// The ZF is set if the compared values were equal, and cleared otherwise.
+void Assembler::cmpxchg(Register reg, Address adr) {
+  if (Atomics & 2) {
+     // caveat: no instructionmark, so this isn't relocatable.
+     // Emit a synthetic, non-atomic, CAS equivalent.
+     // Beware.  The synthetic form sets all ICCs, not just ZF.
+     // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
+     cmpl (rax, adr) ;
+     movl (rax, adr) ;
+     if (reg != rax) {
+        Label L ;
+        jcc (Assembler::notEqual, L) ;
+        movl (adr, reg) ;
+        bind (L) ;
+     }
+  } else {
+     InstructionMark im(this);
+     emit_byte(0x0F);
+     emit_byte(0xB1);
+     emit_operand(reg, adr);
+  }
+}
+
+// The 64-bit cmpxchg compares the value at adr with the contents of rdx:rax,
+// and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
+// into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
+void Assembler::cmpxchg8(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0x0F);
+  emit_byte(0xc7);
+  emit_operand(rcx, adr);
+}
+
+void Assembler::hlt() {
+  emit_byte(0xF4);
+}
+
+
+void Assembler::addr_nop_4() {
+  // 4 bytes: NOP DWORD PTR [EAX+0]
+  emit_byte(0x0F);
+  emit_byte(0x1F);
+  emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
+  emit_byte(0);    // 8-bits offset (1 byte)
+}
+
+void Assembler::addr_nop_5() {
+  // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
+  emit_byte(0x0F);
+  emit_byte(0x1F);
+  emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
+  emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
+  emit_byte(0);    // 8-bits offset (1 byte)
+}
+
+void Assembler::addr_nop_7() {
+  // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
+  emit_byte(0x0F);
+  emit_byte(0x1F);
+  emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
+  emit_long(0);    // 32-bits offset (4 bytes)
+}
+
+void Assembler::addr_nop_8() {
+  // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
+  emit_byte(0x0F);
+  emit_byte(0x1F);
+  emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
+  emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
+  emit_long(0);    // 32-bits offset (4 bytes)
+}
+
+void Assembler::nop(int i) {
+  assert(i > 0, " ");
+  if (UseAddressNop && VM_Version::is_intel()) {
+    //
+    // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
+    //  1: 0x90
+    //  2: 0x66 0x90
+    //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
+    //  4: 0x0F 0x1F 0x40 0x00
+    //  5: 0x0F 0x1F 0x44 0x00 0x00
+    //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
+    //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
+    //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+    //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+    // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+    // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+
+    // The rest coding is Intel specific - don't use consecutive address nops
+
+    // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
+    // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
+    // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
+    // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
+
+    while(i >= 15) {
+      // For Intel don't generate consecutive addess nops (mix with regular nops)
+      i -= 15;
+      emit_byte(0x66);   // size prefix
+      emit_byte(0x66);   // size prefix
+      emit_byte(0x66);   // size prefix
+      addr_nop_8();
+      emit_byte(0x66);   // size prefix
+      emit_byte(0x66);   // size prefix
+      emit_byte(0x66);   // size prefix
+      emit_byte(0x90);   // nop
+    }
+    switch (i) {
+      case 14:
+        emit_byte(0x66); // size prefix
+      case 13:
+        emit_byte(0x66); // size prefix
+      case 12:
+        addr_nop_8();
+        emit_byte(0x66); // size prefix
+        emit_byte(0x66); // size prefix
+        emit_byte(0x66); // size prefix
+        emit_byte(0x90); // nop
+        break;
+      case 11:
+        emit_byte(0x66); // size prefix
+      case 10:
+        emit_byte(0x66); // size prefix
+      case 9:
+        emit_byte(0x66); // size prefix
+      case 8:
+        addr_nop_8();
+        break;
+      case 7:
+        addr_nop_7();
+        break;
+      case 6:
+        emit_byte(0x66); // size prefix
+      case 5:
+        addr_nop_5();
+        break;
+      case 4:
+        addr_nop_4();
+        break;
+      case 3:
+        // Don't use "0x0F 0x1F 0x00" - need patching safe padding
+        emit_byte(0x66); // size prefix
+      case 2:
+        emit_byte(0x66); // size prefix
+      case 1:
+        emit_byte(0x90); // nop
+        break;
+      default:
+        assert(i == 0, " ");
+    }
+    return;
+  }
+  if (UseAddressNop && VM_Version::is_amd()) {
+    //
+    // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
+    //  1: 0x90
+    //  2: 0x66 0x90
+    //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
+    //  4: 0x0F 0x1F 0x40 0x00
+    //  5: 0x0F 0x1F 0x44 0x00 0x00
+    //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
+    //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
+    //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+    //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+    // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+    // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+
+    // The rest coding is AMD specific - use consecutive address nops
+
+    // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
+    // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
+    // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
+    // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
+    // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+    //     Size prefixes (0x66) are added for larger sizes
+
+    while(i >= 22) {
+      i -= 11;
+      emit_byte(0x66); // size prefix
+      emit_byte(0x66); // size prefix
+      emit_byte(0x66); // size prefix
+      addr_nop_8();
+    }
+    // Generate first nop for size between 21-12
+    switch (i) {
+      case 21:
+        i -= 1;
+        emit_byte(0x66); // size prefix
+      case 20:
+      case 19:
+        i -= 1;
+        emit_byte(0x66); // size prefix
+      case 18:
+      case 17:
+        i -= 1;
+        emit_byte(0x66); // size prefix
+      case 16:
+      case 15:
+        i -= 8;
+        addr_nop_8();
+        break;
+      case 14:
+      case 13:
+        i -= 7;
+        addr_nop_7();
+        break;
+      case 12:
+        i -= 6;
+        emit_byte(0x66); // size prefix
+        addr_nop_5();
+        break;
+      default:
+        assert(i < 12, " ");
+    }
+
+    // Generate second nop for size between 11-1
+    switch (i) {
+      case 11:
+        emit_byte(0x66); // size prefix
+      case 10:
+        emit_byte(0x66); // size prefix
+      case 9:
+        emit_byte(0x66); // size prefix
+      case 8:
+        addr_nop_8();
+        break;
+      case 7:
+        addr_nop_7();
+        break;
+      case 6:
+        emit_byte(0x66); // size prefix
+      case 5:
+        addr_nop_5();
+        break;
+      case 4:
+        addr_nop_4();
+        break;
+      case 3:
+        // Don't use "0x0F 0x1F 0x00" - need patching safe padding
+        emit_byte(0x66); // size prefix
+      case 2:
+        emit_byte(0x66); // size prefix
+      case 1:
+        emit_byte(0x90); // nop
+        break;
+      default:
+        assert(i == 0, " ");
+    }
+    return;
+  }
+
+  // Using nops with size prefixes "0x66 0x90".
+  // From AMD Optimization Guide:
+  //  1: 0x90
+  //  2: 0x66 0x90
+  //  3: 0x66 0x66 0x90
+  //  4: 0x66 0x66 0x66 0x90
+  //  5: 0x66 0x66 0x90 0x66 0x90
+  //  6: 0x66 0x66 0x90 0x66 0x66 0x90
+  //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
+  //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
+  //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
+  // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
+  //
+  while(i > 12) {
+    i -= 4;
+    emit_byte(0x66); // size prefix
+    emit_byte(0x66);
+    emit_byte(0x66);
+    emit_byte(0x90); // nop
+  }
+  // 1 - 12 nops
+  if(i > 8) {
+    if(i > 9) {
+      i -= 1;
+      emit_byte(0x66);
+    }
+    i -= 3;
+    emit_byte(0x66);
+    emit_byte(0x66);
+    emit_byte(0x90);
+  }
+  // 1 - 8 nops
+  if(i > 4) {
+    if(i > 6) {
+      i -= 1;
+      emit_byte(0x66);
+    }
+    i -= 3;
+    emit_byte(0x66);
+    emit_byte(0x66);
+    emit_byte(0x90);
+  }
+  switch (i) {
+    case 4:
+      emit_byte(0x66);
+    case 3:
+      emit_byte(0x66);
+    case 2:
+      emit_byte(0x66);
+    case 1:
+      emit_byte(0x90);
+      break;
+    default:
+      assert(i == 0, " ");
+  }
+}
+
+void Assembler::ret(int imm16) {
+  if (imm16 == 0) {
+    emit_byte(0xC3);
+  } else {
+    emit_byte(0xC2);
+    emit_word(imm16);
+  }
+}
+
+
+void Assembler::set_byte_if_not_zero(Register dst) {
+  emit_byte(0x0F);
+  emit_byte(0x95);
+  emit_byte(0xE0 | dst->encoding());
+}
+
+
+// copies a single word from [esi] to [edi]
+void Assembler::smovl() {
+  emit_byte(0xA5);
+}
+
+// copies data from [esi] to [edi] using rcx double words (m32)
+void Assembler::rep_movl() {
+  emit_byte(0xF3);
+  emit_byte(0xA5);
+}
+
+
+// sets rcx double words (m32) with rax, value at [edi]
+void Assembler::rep_set() {
+  emit_byte(0xF3);
+  emit_byte(0xAB);
+}
+
+// scans rcx double words (m32) at [edi] for occurance of rax,
+void Assembler::repne_scan() {
+  emit_byte(0xF2);
+  emit_byte(0xAF);
+}
+
+
+void Assembler::setb(Condition cc, Register dst) {
+  assert(0 <= cc && cc < 16, "illegal cc");
+  emit_byte(0x0F);
+  emit_byte(0x90 | cc);
+  emit_byte(0xC0 | dst->encoding());
+}
+
+void Assembler::cld() {
+  emit_byte(0xfc);
+}
+
+void Assembler::std() {
+  emit_byte(0xfd);
+}
+
+void Assembler::emit_raw (unsigned char b) {
+  emit_byte (b) ;
+}
+
+// Serializes memory.
+void Assembler::membar() {
+    // Memory barriers are only needed on multiprocessors
+  if (os::is_MP()) {
+    if( VM_Version::supports_sse2() ) {
+      emit_byte( 0x0F );                // MFENCE; faster blows no regs
+      emit_byte( 0xAE );
+      emit_byte( 0xF0 );
+    } else {
+      // All usable chips support "locked" instructions which suffice
+      // as barriers, and are much faster than the alternative of
+      // using cpuid instruction. We use here a locked add [esp],0.
+      // This is conveniently otherwise a no-op except for blowing
+      // flags (which we save and restore.)
+      pushfd();                // Save eflags register
+      lock();
+      addl(Address(rsp, 0), 0);// Assert the lock# signal here
+      popfd();                 // Restore eflags register
+    }
+  }
+}
+
+// Identify processor type and features
+void Assembler::cpuid() {
+  // Note: we can't assert VM_Version::supports_cpuid() here
+  //       because this instruction is used in the processor
+  //       identification code.
+  emit_byte( 0x0F );
+  emit_byte( 0xA2 );
+}
+
+void Assembler::call(Label& L, relocInfo::relocType rtype) {
+  if (L.is_bound()) {
+    const int long_size = 5;
+    int offs = target(L) - pc();
+    assert(offs <= 0, "assembler error");
+    InstructionMark im(this);
+    // 1110 1000 #32-bit disp
+    emit_byte(0xE8);
+    emit_data(offs - long_size, rtype, 0);
+  } else {
+    InstructionMark im(this);
+    // 1110 1000 #32-bit disp
+    L.add_patch_at(code(), locator());
+    emit_byte(0xE8);
+    emit_data(int(0), rtype, 0);
+  }
+}
+
+void Assembler::call(Register dst) {
+  emit_byte(0xFF);
+  emit_byte(0xD0 | dst->encoding());
+}
+
+
+void Assembler::call(Address adr) {
+  InstructionMark im(this);
+  relocInfo::relocType rtype = adr.reloc();
+  if (rtype !=  relocInfo::runtime_call_type) {
+    emit_byte(0xFF);
+    emit_operand(rdx, adr);
+  } else {
+    assert(false, "ack");
+  }
+
+}
+
+void Assembler::call_literal(address dest, RelocationHolder const& rspec) {
+  InstructionMark im(this);
+  emit_byte(0xE8);
+  intptr_t disp = dest - (_code_pos + sizeof(int32_t));
+  assert(dest != NULL, "must have a target");
+  emit_data(disp, rspec, call32_operand);
+
+}
+
+void Assembler::jmp(Register entry) {
+  emit_byte(0xFF);
+  emit_byte(0xE0 | entry->encoding());
+}
+
+
+void Assembler::jmp(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xFF);
+  emit_operand(rsp, adr);
+}
+
+void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
+  InstructionMark im(this);
+  emit_byte(0xE9);
+  assert(dest != NULL, "must have a target");
+  intptr_t disp = dest - (_code_pos + sizeof(int32_t));
+  emit_data(disp, rspec.reloc(), call32_operand);
+}
+
+void Assembler::jmp(Label& L, relocInfo::relocType rtype) {
+  if (L.is_bound()) {
+    address entry = target(L);
+    assert(entry != NULL, "jmp most probably wrong");
+    InstructionMark im(this);
+    const int short_size = 2;
+    const int long_size = 5;
+    intptr_t offs = entry - _code_pos;
+    if (rtype == relocInfo::none && is8bit(offs - short_size)) {
+      emit_byte(0xEB);
+      emit_byte((offs - short_size) & 0xFF);
+    } else {
+      emit_byte(0xE9);
+      emit_long(offs - long_size);
+    }
+  } else {
+    // By default, forward jumps are always 32-bit displacements, since
+    // we can't yet know where the label will be bound.  If you're sure that
+    // the forward jump will not run beyond 256 bytes, use jmpb to
+    // force an 8-bit displacement.
+    InstructionMark im(this);
+    relocate(rtype);
+    L.add_patch_at(code(), locator());
+    emit_byte(0xE9);
+    emit_long(0);
+  }
+}
+
+void Assembler::jmpb(Label& L) {
+  if (L.is_bound()) {
+    const int short_size = 2;
+    address entry = target(L);
+    assert(is8bit((entry - _code_pos) + short_size),
+           "Dispacement too large for a short jmp");
+    assert(entry != NULL, "jmp most probably wrong");
+    intptr_t offs = entry - _code_pos;
+    emit_byte(0xEB);
+    emit_byte((offs - short_size) & 0xFF);
+  } else {
+    InstructionMark im(this);
+    L.add_patch_at(code(), locator());
+    emit_byte(0xEB);
+    emit_byte(0);
+  }
+}
+
+void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) {
+  InstructionMark im(this);
+  relocate(rtype);
+  assert((0 <= cc) && (cc < 16), "illegal cc");
+  if (L.is_bound()) {
+    address dst = target(L);
+    assert(dst != NULL, "jcc most probably wrong");
+
+    const int short_size = 2;
+    const int long_size = 6;
+    int offs = (int)dst - ((int)_code_pos);
+    if (rtype == relocInfo::none && is8bit(offs - short_size)) {
+      // 0111 tttn #8-bit disp
+      emit_byte(0x70 | cc);
+      emit_byte((offs - short_size) & 0xFF);
+    } else {
+      // 0000 1111 1000 tttn #32-bit disp
+      emit_byte(0x0F);
+      emit_byte(0x80 | cc);
+      emit_long(offs - long_size);
+    }
+  } else {
+    // Note: could eliminate cond. jumps to this jump if condition
+    //       is the same however, seems to be rather unlikely case.
+    // Note: use jccb() if label to be bound is very close to get
+    //       an 8-bit displacement
+    L.add_patch_at(code(), locator());
+    emit_byte(0x0F);
+    emit_byte(0x80 | cc);
+    emit_long(0);
+  }
+}
+
+void Assembler::jccb(Condition cc, Label& L) {
+  if (L.is_bound()) {
+    const int short_size = 2;
+    address entry = target(L);
+    assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
+           "Dispacement too large for a short jmp");
+    intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
+    // 0111 tttn #8-bit disp
+    emit_byte(0x70 | cc);
+    emit_byte((offs - short_size) & 0xFF);
+    jcc(cc, L);
+  } else {
+    InstructionMark im(this);
+    L.add_patch_at(code(), locator());
+    emit_byte(0x70 | cc);
+    emit_byte(0);
+  }
+}
+
+// FPU instructions
+
+void Assembler::fld1() {
+  emit_byte(0xD9);
+  emit_byte(0xE8);
+}
+
+
+void Assembler::fldz() {
+  emit_byte(0xD9);
+  emit_byte(0xEE);
+}
+
+
+void Assembler::fld_s(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xD9);
+  emit_operand(rax, adr);
+}
+
+
+void Assembler::fld_s (int index) {
+  emit_farith(0xD9, 0xC0, index);
+}
+
+
+void Assembler::fld_d(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xDD);
+  emit_operand(rax, adr);
+}
+
+
+void Assembler::fld_x(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xDB);
+  emit_operand(rbp, adr);
+}
+
+
+void Assembler::fst_s(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xD9);
+  emit_operand(rdx, adr);
+}
+
+
+void Assembler::fst_d(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xDD);
+  emit_operand(rdx, adr);
+}
+
+
+void Assembler::fstp_s(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xD9);
+  emit_operand(rbx, adr);
+}
+
+
+void Assembler::fstp_d(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xDD);
+  emit_operand(rbx, adr);
+}
+
+
+void Assembler::fstp_x(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xDB);
+  emit_operand(rdi, adr);
+}
+
+
+void Assembler::fstp_d(int index) {
+  emit_farith(0xDD, 0xD8, index);
+}
+
+
+void Assembler::fild_s(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xDB);
+  emit_operand(rax, adr);
+}
+
+
+void Assembler::fild_d(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xDF);
+  emit_operand(rbp, adr);
+}
+
+
+void Assembler::fistp_s(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xDB);
+  emit_operand(rbx, adr);
+}
+
+
+void Assembler::fistp_d(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xDF);
+  emit_operand(rdi, adr);
+}
+
+
+void Assembler::fist_s(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xDB);
+  emit_operand(rdx, adr);
+}
+
+
+void Assembler::fabs() {
+  emit_byte(0xD9);
+  emit_byte(0xE1);
+}
+
+
+void Assembler::fldln2() {
+  emit_byte(0xD9);
+  emit_byte(0xED);
+}
+
+void Assembler::fyl2x() {
+  emit_byte(0xD9);
+  emit_byte(0xF1);
+}
+
+
+void Assembler::fldlg2() {
+  emit_byte(0xD9);
+  emit_byte(0xEC);
+}
+
+
+void Assembler::flog() {
+  fldln2();
+  fxch();
+  fyl2x();
+}
+
+
+void Assembler::flog10() {
+  fldlg2();
+  fxch();
+  fyl2x();
+}
+
+
+void Assembler::fsin() {
+  emit_byte(0xD9);
+  emit_byte(0xFE);
+}
+
+
+void Assembler::fcos() {
+  emit_byte(0xD9);
+  emit_byte(0xFF);
+}
+
+void Assembler::ftan() {
+  emit_byte(0xD9);
+  emit_byte(0xF2);
+  emit_byte(0xDD);
+  emit_byte(0xD8);
+}
+
+void Assembler::fsqrt() {
+  emit_byte(0xD9);
+  emit_byte(0xFA);
+}
+
+
+void Assembler::fchs() {
+  emit_byte(0xD9);
+  emit_byte(0xE0);
+}
+
+
+void Assembler::fadd_s(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xD8);
+  emit_operand(rax, src);
+}
+
+
+void Assembler::fadd_d(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xDC);
+  emit_operand(rax, src);
+}
+
+
+void Assembler::fadd(int i) {
+  emit_farith(0xD8, 0xC0, i);
+}
+
+
+void Assembler::fadda(int i) {
+  emit_farith(0xDC, 0xC0, i);
+}
+
+
+void Assembler::fsub_d(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xDC);
+  emit_operand(rsp, src);
+}
+
+
+void Assembler::fsub_s(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xD8);
+  emit_operand(rsp, src);
+}
+
+
+void Assembler::fsubr_s(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xD8);
+  emit_operand(rbp, src);
+}
+
+
+void Assembler::fsubr_d(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xDC);
+  emit_operand(rbp, src);
+}
+
+
+void Assembler::fmul_s(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xD8);
+  emit_operand(rcx, src);
+}
+
+
+void Assembler::fmul_d(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xDC);
+  emit_operand(rcx, src);
+}
+
+
+void Assembler::fmul(int i) {
+  emit_farith(0xD8, 0xC8, i);
+}
+
+
+void Assembler::fmula(int i) {
+  emit_farith(0xDC, 0xC8, i);
+}
+
+
+void Assembler::fdiv_s(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xD8);
+  emit_operand(rsi, src);
+}
+
+
+void Assembler::fdiv_d(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xDC);
+  emit_operand(rsi, src);
+}
+
+
+void Assembler::fdivr_s(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xD8);
+  emit_operand(rdi, src);
+}
+
+
+void Assembler::fdivr_d(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xDC);
+  emit_operand(rdi, src);
+}
+
+
+void Assembler::fsub(int i) {
+  emit_farith(0xD8, 0xE0, i);
+}
+
+
+void Assembler::fsuba(int i) {
+  emit_farith(0xDC, 0xE8, i);
+}
+
+
+void Assembler::fsubr(int i) {
+  emit_farith(0xD8, 0xE8, i);
+}
+
+
+void Assembler::fsubra(int i) {
+  emit_farith(0xDC, 0xE0, i);
+}
+
+
+void Assembler::fdiv(int i) {
+  emit_farith(0xD8, 0xF0, i);
+}
+
+
+void Assembler::fdiva(int i) {
+  emit_farith(0xDC, 0xF8, i);
+}
+
+
+void Assembler::fdivr(int i) {
+  emit_farith(0xD8, 0xF8, i);
+}
+
+
+void Assembler::fdivra(int i) {
+  emit_farith(0xDC, 0xF0, i);
+}
+
+
+// Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
+//       is erroneous for some of the floating-point instructions below.
+
+void Assembler::fdivp(int i) {
+  emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
+}
+
+
+void Assembler::fdivrp(int i) {
+  emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
+}
+
+
+void Assembler::fsubp(int i) {
+  emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
+}
+
+
+void Assembler::fsubrp(int i) {
+  emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
+}
+
+
+void Assembler::faddp(int i) {
+  emit_farith(0xDE, 0xC0, i);
+}
+
+
+void Assembler::fmulp(int i) {
+  emit_farith(0xDE, 0xC8, i);
+}
+
+
+void Assembler::fprem() {
+  emit_byte(0xD9);
+  emit_byte(0xF8);
+}
+
+
+void Assembler::fprem1() {
+  emit_byte(0xD9);
+  emit_byte(0xF5);
+}
+
+
+void Assembler::fxch(int i) {
+  emit_farith(0xD9, 0xC8, i);
+}
+
+
+void Assembler::fincstp() {
+  emit_byte(0xD9);
+  emit_byte(0xF7);
+}
+
+
+void Assembler::fdecstp() {
+  emit_byte(0xD9);
+  emit_byte(0xF6);
+}
+
+
+void Assembler::ffree(int i) {
+  emit_farith(0xDD, 0xC0, i);
+}
+
+
+void Assembler::fcomp_s(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xD8);
+  emit_operand(rbx, src);
+}
+
+
+void Assembler::fcomp_d(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xDC);
+  emit_operand(rbx, src);
+}
+
+
+void Assembler::fcom(int i) {
+  emit_farith(0xD8, 0xD0, i);
+}
+
+
+void Assembler::fcomp(int i) {
+  emit_farith(0xD8, 0xD8, i);
+}
+
+
+void Assembler::fcompp() {
+  emit_byte(0xDE);
+  emit_byte(0xD9);
+}
+
+
+void Assembler::fucomi(int i) {
+  // make sure the instruction is supported (introduced for P6, together with cmov)
+  guarantee(VM_Version::supports_cmov(), "illegal instruction");
+  emit_farith(0xDB, 0xE8, i);
+}
+
+
+void Assembler::fucomip(int i) {
+  // make sure the instruction is supported (introduced for P6, together with cmov)
+  guarantee(VM_Version::supports_cmov(), "illegal instruction");
+  emit_farith(0xDF, 0xE8, i);
+}
+
+
+void Assembler::ftst() {
+  emit_byte(0xD9);
+  emit_byte(0xE4);
+}
+
+
+void Assembler::fnstsw_ax() {
+  emit_byte(0xdF);
+  emit_byte(0xE0);
+}
+
+
+void Assembler::fwait() {
+  emit_byte(0x9B);
+}
+
+
+void Assembler::finit() {
+  emit_byte(0x9B);
+  emit_byte(0xDB);
+  emit_byte(0xE3);
+}
+
+
+void Assembler::fldcw(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xd9);
+  emit_operand(rbp, src);
+}
+
+
+void Assembler::fnstcw(Address src) {
+  InstructionMark im(this);
+  emit_byte(0x9B);
+  emit_byte(0xD9);
+  emit_operand(rdi, src);
+}
+
+void Assembler::fnsave(Address dst) {
+  InstructionMark im(this);
+  emit_byte(0xDD);
+  emit_operand(rsi, dst);
+}
+
+
+void Assembler::frstor(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xDD);
+  emit_operand(rsp, src);
+}
+
+
+void Assembler::fldenv(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xD9);
+  emit_operand(rsp, src);
+}
+
+
+void Assembler::sahf() {
+  emit_byte(0x9E);
+}
+
+// MMX operations
+void Assembler::emit_operand(MMXRegister reg, Address adr) {
+  emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
+}
+
+void Assembler::movq( MMXRegister dst, Address src ) {
+  assert( VM_Version::supports_mmx(), "" );
+  emit_byte(0x0F);
+  emit_byte(0x6F);
+  emit_operand(dst,src);
+}
+
+void Assembler::movq( Address dst, MMXRegister src ) {
+  assert( VM_Version::supports_mmx(), "" );
+  emit_byte(0x0F);
+  emit_byte(0x7F);
+  emit_operand(src,dst);
+}
+
+void Assembler::emms() {
+  emit_byte(0x0F);
+  emit_byte(0x77);
+}
+
+
+
+
+// SSE and SSE2 instructions
+inline void Assembler::emit_sse_operand(XMMRegister reg, Address adr) {
+  assert(((Register)reg)->encoding() == reg->encoding(), "otherwise typecast is invalid");
+  emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
+}
+inline void Assembler::emit_sse_operand(Register reg, Address adr) {
+  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
+}
+
+inline void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) {
+  emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
+}
+inline void Assembler::emit_sse_operand(XMMRegister dst, Register src) {
+  emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
+}
+inline void Assembler::emit_sse_operand(Register dst, XMMRegister src) {
+  emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
+}
+
+
+// Macro for creation of SSE2 instructions
+// The SSE2 instricution set is highly regular, so this macro saves
+// a lot of cut&paste
+// Each macro expansion creates two methods (same name with different
+// parameter list)
+//
+// Macro parameters:
+//  * name: name of the created methods
+//  * sse_version: either sse or sse2 for the assertion if instruction supported by processor
+//  * prefix: first opcode byte of the instruction (or 0 if no prefix byte)
+//  * opcode: last opcode byte of the instruction
+//  * conversion instruction have parameters of type Register instead of XMMRegister,
+//    so this can also configured with macro parameters
+#define emit_sse_instruction(name, sse_version, prefix, opcode, dst_register_type, src_register_type)      \
+                                                                         \
+  void Assembler:: name (dst_register_type dst, Address src) {           \
+    assert(VM_Version::supports_##sse_version(), "");                    \
+                                                                         \
+    InstructionMark im(this);                                            \
+    if (prefix != 0) emit_byte(prefix);                                  \
+    emit_byte(0x0F);                                                     \
+    emit_byte(opcode);                                                   \
+    emit_sse_operand(dst, src);                                          \
+  }                                                                      \
+                                                                         \
+  void Assembler:: name (dst_register_type dst, src_register_type src) { \
+    assert(VM_Version::supports_##sse_version(), "");                    \
+                                                                         \
+    if (prefix != 0) emit_byte(prefix);                                  \
+    emit_byte(0x0F);                                                     \
+    emit_byte(opcode);                                                   \
+    emit_sse_operand(dst, src);                                          \
+  }                                                                      \
+
+emit_sse_instruction(addss,  sse,  0xF3, 0x58, XMMRegister, XMMRegister);
+emit_sse_instruction(addsd,  sse2, 0xF2, 0x58, XMMRegister, XMMRegister)
+emit_sse_instruction(subss,  sse,  0xF3, 0x5C, XMMRegister, XMMRegister)
+emit_sse_instruction(subsd,  sse2, 0xF2, 0x5C, XMMRegister, XMMRegister)
+emit_sse_instruction(mulss,  sse,  0xF3, 0x59, XMMRegister, XMMRegister)
+emit_sse_instruction(mulsd,  sse2, 0xF2, 0x59, XMMRegister, XMMRegister)
+emit_sse_instruction(divss,  sse,  0xF3, 0x5E, XMMRegister, XMMRegister)
+emit_sse_instruction(divsd,  sse2, 0xF2, 0x5E, XMMRegister, XMMRegister)
+emit_sse_instruction(sqrtss, sse,  0xF3, 0x51, XMMRegister, XMMRegister)
+emit_sse_instruction(sqrtsd, sse2, 0xF2, 0x51, XMMRegister, XMMRegister)
+
+emit_sse_instruction(pxor,  sse2,  0x66, 0xEF, XMMRegister, XMMRegister)
+
+emit_sse_instruction(comiss,  sse,  0,    0x2F, XMMRegister, XMMRegister)
+emit_sse_instruction(comisd,  sse2, 0x66, 0x2F, XMMRegister, XMMRegister)
+emit_sse_instruction(ucomiss, sse,  0,    0x2E, XMMRegister, XMMRegister)
+emit_sse_instruction(ucomisd, sse2, 0x66, 0x2E, XMMRegister, XMMRegister)
+
+emit_sse_instruction(cvtss2sd,  sse2, 0xF3, 0x5A, XMMRegister, XMMRegister);
+emit_sse_instruction(cvtsd2ss,  sse2, 0xF2, 0x5A, XMMRegister, XMMRegister)
+emit_sse_instruction(cvtsi2ss,  sse,  0xF3, 0x2A, XMMRegister, Register);
+emit_sse_instruction(cvtsi2sd,  sse2, 0xF2, 0x2A, XMMRegister, Register)
+emit_sse_instruction(cvtss2si,  sse,  0xF3, 0x2D, Register, XMMRegister);
+emit_sse_instruction(cvtsd2si,  sse2, 0xF2, 0x2D, Register, XMMRegister)
+emit_sse_instruction(cvttss2si, sse,  0xF3, 0x2C, Register, XMMRegister);
+emit_sse_instruction(cvttsd2si, sse2, 0xF2, 0x2C, Register, XMMRegister)
+
+emit_sse_instruction(movss, sse,  0xF3, 0x10, XMMRegister, XMMRegister)
+emit_sse_instruction(movsd, sse2, 0xF2, 0x10, XMMRegister, XMMRegister)
+
+emit_sse_instruction(movq,  sse2, 0xF3, 0x7E, XMMRegister, XMMRegister);
+emit_sse_instruction(movd,  sse2, 0x66, 0x6E, XMMRegister, Register);
+emit_sse_instruction(movdqa, sse2, 0x66, 0x6F, XMMRegister, XMMRegister);
+
+emit_sse_instruction(punpcklbw,  sse2, 0x66, 0x60, XMMRegister, XMMRegister);
+
+
+// Instruction not covered by macro
+void Assembler::movq(Address dst, XMMRegister src) {
+  assert(VM_Version::supports_sse2(), "");
+
+  InstructionMark im(this);
+  emit_byte(0x66);
+  emit_byte(0x0F);
+  emit_byte(0xD6);
+  emit_sse_operand(src, dst);
+}
+
+void Assembler::movd(Address dst, XMMRegister src) {
+  assert(VM_Version::supports_sse2(), "");
+
+  InstructionMark im(this);
+  emit_byte(0x66);
+  emit_byte(0x0F);
+  emit_byte(0x7E);
+  emit_sse_operand(src, dst);
+}
+
+void Assembler::movd(Register dst, XMMRegister src) {
+  assert(VM_Version::supports_sse2(), "");
+
+  emit_byte(0x66);
+  emit_byte(0x0F);
+  emit_byte(0x7E);
+  emit_sse_operand(src, dst);
+}
+
+void Assembler::movdqa(Address dst, XMMRegister src) {
+  assert(VM_Version::supports_sse2(), "");
+
+  InstructionMark im(this);
+  emit_byte(0x66);
+  emit_byte(0x0F);
+  emit_byte(0x7F);
+  emit_sse_operand(src, dst);
+}
+
+void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
+  assert(isByte(mode), "invalid value");
+  assert(VM_Version::supports_sse2(), "");
+
+  emit_byte(0x66);
+  emit_byte(0x0F);
+  emit_byte(0x70);
+  emit_sse_operand(dst, src);
+  emit_byte(mode & 0xFF);
+}
+
+void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
+  assert(isByte(mode), "invalid value");
+  assert(VM_Version::supports_sse2(), "");
+
+  InstructionMark im(this);
+  emit_byte(0x66);
+  emit_byte(0x0F);
+  emit_byte(0x70);
+  emit_sse_operand(dst, src);
+  emit_byte(mode & 0xFF);
+}
+
+void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
+  assert(isByte(mode), "invalid value");
+  assert(VM_Version::supports_sse2(), "");
+
+  emit_byte(0xF2);
+  emit_byte(0x0F);
+  emit_byte(0x70);
+  emit_sse_operand(dst, src);
+  emit_byte(mode & 0xFF);
+}
+
+void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
+  assert(isByte(mode), "invalid value");
+  assert(VM_Version::supports_sse2(), "");
+
+  InstructionMark im(this);
+  emit_byte(0xF2);
+  emit_byte(0x0F);
+  emit_byte(0x70);
+  emit_sse_operand(dst, src);
+  emit_byte(mode & 0xFF);
+}
+
+void Assembler::psrlq(XMMRegister dst, int shift) {
+  assert(VM_Version::supports_sse2(), "");
+
+  emit_byte(0x66);
+  emit_byte(0x0F);
+  emit_byte(0x73);
+  emit_sse_operand(xmm2, dst);
+  emit_byte(shift);
+}
+
+void Assembler::movss( Address dst, XMMRegister src ) {
+  assert(VM_Version::supports_sse(), "");
+
+  InstructionMark im(this);
+  emit_byte(0xF3); // single
+  emit_byte(0x0F);
+  emit_byte(0x11); // store
+  emit_sse_operand(src, dst);
+}
+
+void Assembler::movsd( Address dst, XMMRegister src ) {
+  assert(VM_Version::supports_sse2(), "");
+
+  InstructionMark im(this);
+  emit_byte(0xF2); // double
+  emit_byte(0x0F);
+  emit_byte(0x11); // store
+  emit_sse_operand(src,dst);
+}
+
+// New cpus require to use movaps and movapd to avoid partial register stall
+// when moving between registers.
+void Assembler::movaps(XMMRegister dst, XMMRegister src) {
+  assert(VM_Version::supports_sse(), "");
+
+  emit_byte(0x0F);
+  emit_byte(0x28);
+  emit_sse_operand(dst, src);
+}
+void Assembler::movapd(XMMRegister dst, XMMRegister src) {
+  assert(VM_Version::supports_sse2(), "");
+
+  emit_byte(0x66);
+  emit_byte(0x0F);
+  emit_byte(0x28);
+  emit_sse_operand(dst, src);
+}
+
+// New cpus require to use movsd and movss to avoid partial register stall
+// when loading from memory. But for old Opteron use movlpd instead of movsd.
+// The selection is done in MacroAssembler::movdbl() and movflt().
+void Assembler::movlpd(XMMRegister dst, Address src) {
+  assert(VM_Version::supports_sse(), "");
+
+  InstructionMark im(this);
+  emit_byte(0x66);
+  emit_byte(0x0F);
+  emit_byte(0x12);
+  emit_sse_operand(dst, src);
+}
+
+
+emit_sse_instruction(andps,  sse,  0,    0x54, XMMRegister, XMMRegister);
+emit_sse_instruction(andpd,  sse2, 0x66, 0x54, XMMRegister, XMMRegister);
+emit_sse_instruction(andnps, sse,  0,    0x55, XMMRegister, XMMRegister);
+emit_sse_instruction(andnpd, sse2, 0x66, 0x55, XMMRegister, XMMRegister);
+emit_sse_instruction(orps,   sse,  0,    0x56, XMMRegister, XMMRegister);
+emit_sse_instruction(orpd,   sse2, 0x66, 0x56, XMMRegister, XMMRegister);
+emit_sse_instruction(xorps,  sse,  0,    0x57, XMMRegister, XMMRegister);
+emit_sse_instruction(xorpd,  sse2, 0x66, 0x57, XMMRegister, XMMRegister);
+
+
+void Assembler::ldmxcsr( Address src) {
+  InstructionMark im(this);
+  emit_byte(0x0F);
+  emit_byte(0xAE);
+  emit_operand(rdx /* 2 */, src);
+}
+
+void Assembler::stmxcsr( Address dst) {
+  InstructionMark im(this);
+  emit_byte(0x0F);
+  emit_byte(0xAE);
+  emit_operand(rbx /* 3 */, dst);
+}
+
+// Implementation of MacroAssembler
+
+Address MacroAssembler::as_Address(AddressLiteral adr) {
+  // amd64 always does this as a pc-rel
+  // we can be absolute or disp based on the instruction type
+  // jmp/call are displacements others are absolute
+  assert(!adr.is_lval(), "must be rval");
+
+  return Address(adr.target(), adr.rspec());
+}
+
+Address MacroAssembler::as_Address(ArrayAddress adr) {
+  return Address::make_array(adr);
+}
+
+void MacroAssembler::fat_nop() {
+  // A 5 byte nop that is safe for patching (see patch_verified_entry)
+  emit_byte(0x26); // es:
+  emit_byte(0x2e); // cs:
+  emit_byte(0x64); // fs:
+  emit_byte(0x65); // gs:
+  emit_byte(0x90);
+}
+
+// 32bit can do a case table jump in one instruction but we no longer allow the base
+// to be installed in the Address class
+void MacroAssembler::jump(ArrayAddress entry) {
+  jmp(as_Address(entry));
+}
+
+void MacroAssembler::jump(AddressLiteral dst) {
+  jmp_literal(dst.target(), dst.rspec());
+}
+
+void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
+  assert((0 <= cc) && (cc < 16), "illegal cc");
+
+  InstructionMark im(this);
+
+  relocInfo::relocType rtype = dst.reloc();
+  relocate(rtype);
+  const int short_size = 2;
+  const int long_size = 6;
+  int offs = (int)dst.target() - ((int)_code_pos);
+  if (rtype == relocInfo::none && is8bit(offs - short_size)) {
+    // 0111 tttn #8-bit disp
+    emit_byte(0x70 | cc);
+    emit_byte((offs - short_size) & 0xFF);
+  } else {
+    // 0000 1111 1000 tttn #32-bit disp
+    emit_byte(0x0F);
+    emit_byte(0x80 | cc);
+    emit_long(offs - long_size);
+  }
+}
+
+// Calls
+void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
+  Assembler::call(L, rtype);
+}
+
+void MacroAssembler::call(Register entry) {
+  Assembler::call(entry);
+}
+
+void MacroAssembler::call(AddressLiteral entry) {
+  Assembler::call_literal(entry.target(), entry.rspec());
+}
+
+
+void MacroAssembler::cmp8(AddressLiteral src1, int8_t imm) {
+  Assembler::cmpb(as_Address(src1), imm);
+}
+
+void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
+  Assembler::cmpl(as_Address(src1), imm);
+}
+
+void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
+  if (src2.is_lval()) {
+    cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
+  } else {
+    Assembler::cmpl(src1, as_Address(src2));
+  }
+}
+
+void MacroAssembler::cmp32(Register src1, int32_t imm) {
+  Assembler::cmpl(src1, imm);
+}
+
+void MacroAssembler::cmp32(Register src1, Address src2) {
+  Assembler::cmpl(src1, src2);
+}
+
+void MacroAssembler::cmpoop(Address src1, jobject obj) {
+  cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
+}
+
+void MacroAssembler::cmpoop(Register src1, jobject obj) {
+  cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
+}
+
+void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
+  if (src2.is_lval()) {
+    // compare the effect address of src2 to src1
+    cmp_literal32(src1, (int32_t)src2.target(), src2.rspec());
+  } else {
+    Assembler::cmpl(src1, as_Address(src2));
+  }
+}
+
+void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
+  assert(src2.is_lval(), "not a mem-mem compare");
+  cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
+}
+
+
+void MacroAssembler::cmpxchgptr(Register reg, AddressLiteral adr) {
+  cmpxchg(reg, as_Address(adr));
+}
+
+void MacroAssembler::increment(AddressLiteral dst) {
+  increment(as_Address(dst));
+}
+
+void MacroAssembler::increment(ArrayAddress dst) {
+  increment(as_Address(dst));
+}
+
+void MacroAssembler::lea(Register dst, AddressLiteral adr) {
+  // leal(dst, as_Address(adr));
+  // see note in movl as to why we musr use a move
+  mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
+}
+
+void MacroAssembler::lea(Address dst, AddressLiteral adr) {
+  // leal(dst, as_Address(adr));
+  // see note in movl as to why we musr use a move
+  mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
+}
+
+void MacroAssembler::mov32(AddressLiteral dst, Register src) {
+  Assembler::movl(as_Address(dst), src);
+}
+
+void MacroAssembler::mov32(Register dst, AddressLiteral src) {
+  Assembler::movl(dst, as_Address(src));
+}
+
+void MacroAssembler::movbyte(ArrayAddress dst, int src) {
+  movb(as_Address(dst), src);
+}
+
+void MacroAssembler::movoop(Address dst, jobject obj) {
+  mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
+}
+
+void MacroAssembler::movoop(Register dst, jobject obj) {
+  mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
+}
+
+void MacroAssembler::movptr(Register dst, AddressLiteral src) {
+  if (src.is_lval()) {
+    // essentially an lea
+    mov_literal32(dst, (int32_t) src.target(), src.rspec());
+  } else {
+    // mov 32bits from an absolute address
+    movl(dst, as_Address(src));
+  }
+}
+
+void MacroAssembler::movptr(ArrayAddress dst, Register src) {
+  movl(as_Address(dst), src);
+}
+
+void MacroAssembler::movptr(Register dst, ArrayAddress src) {
+  movl(dst, as_Address(src));
+}
+
+void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
+  movss(dst, as_Address(src));
+}
+
+void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
+  if (UseXmmLoadAndClearUpper) { movsd (dst, as_Address(src)); return; }
+  else                         { movlpd(dst, as_Address(src)); return; }
+}
+
+void Assembler::pushoop(jobject obj) {
+  push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
+}
+
+
+void MacroAssembler::pushptr(AddressLiteral src) {
+  if (src.is_lval()) {
+    push_literal32((int32_t)src.target(), src.rspec());
+  } else {
+    pushl(as_Address(src));
+  }
+}
+
+void MacroAssembler::test32(Register src1, AddressLiteral src2) {
+  // src2 must be rval
+  testl(src1, as_Address(src2));
+}
+
+// FPU
+
+void MacroAssembler::fld_x(AddressLiteral src) {
+  Assembler::fld_x(as_Address(src));
+}
+
+void MacroAssembler::fld_d(AddressLiteral src) {
+  fld_d(as_Address(src));
+}
+
+void MacroAssembler::fld_s(AddressLiteral src) {
+  fld_s(as_Address(src));
+}
+
+void MacroAssembler::fldcw(AddressLiteral src) {
+  Assembler::fldcw(as_Address(src));
+}
+
+void MacroAssembler::ldmxcsr(AddressLiteral src) {
+  Assembler::ldmxcsr(as_Address(src));
+}
+
+// SSE
+
+void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
+  andpd(dst, as_Address(src));
+}
+
+void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
+  comisd(dst, as_Address(src));
+}
+
+void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
+  comiss(dst, as_Address(src));
+}
+
+void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
+  movsd(dst, as_Address(src));
+}
+
+void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
+  movss(dst, as_Address(src));
+}
+
+void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
+  xorpd(dst, as_Address(src));
+}
+
+void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
+  xorps(dst, as_Address(src));
+}
+
+void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
+  ucomisd(dst, as_Address(src));
+}
+
+void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
+  ucomiss(dst, as_Address(src));
+}
+
+void MacroAssembler::null_check(Register reg, int offset) {
+  if (needs_explicit_null_check(offset)) {
+    // provoke OS NULL exception if reg = NULL by
+    // accessing M[reg] w/o changing any (non-CC) registers
+    cmpl(rax, Address(reg, 0));
+    // Note: should probably use testl(rax, Address(reg, 0));
+    //       may be shorter code (however, this version of
+    //       testl needs to be implemented first)
+  } else {
+    // nothing to do, (later) access of M[reg + offset]
+    // will provoke OS NULL exception if reg = NULL
+  }
+}
+
+
+int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
+  // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
+  // and "3.9 Partial Register Penalties", p. 22).
+  int off;
+  if (VM_Version::is_P6() || src.uses(dst)) {
+    off = offset();
+    movzxb(dst, src);
+  } else {
+    xorl(dst, dst);
+    off = offset();
+    movb(dst, src);
+  }
+  return off;
+}
+
+
+int MacroAssembler::load_unsigned_word(Register dst, Address src) {
+  // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
+  // and "3.9 Partial Register Penalties", p. 22).
+  int off;
+  if (VM_Version::is_P6() || src.uses(dst)) {
+    off = offset();
+    movzxw(dst, src);
+  } else {
+    xorl(dst, dst);
+    off = offset();
+    movw(dst, src);
+  }
+  return off;
+}
+
+
+int MacroAssembler::load_signed_byte(Register dst, Address src) {
+  int off;
+  if (VM_Version::is_P6()) {
+    off = offset();
+    movsxb(dst, src);
+  } else {
+    off = load_unsigned_byte(dst, src);
+    shll(dst, 24);
+    sarl(dst, 24);
+  }
+  return off;
+}
+
+
+int MacroAssembler::load_signed_word(Register dst, Address src) {
+  int off;
+  if (VM_Version::is_P6()) {
+    off = offset();
+    movsxw(dst, src);
+  } else {
+    off = load_unsigned_word(dst, src);
+    shll(dst, 16);
+    sarl(dst, 16);
+  }
+  return off;
+}
+
+
+void MacroAssembler::extend_sign(Register hi, Register lo) {
+  // According to Intel Doc. AP-526, "Integer Divide", p.18.
+  if (VM_Version::is_P6() && hi == rdx && lo == rax) {
+    cdql();
+  } else {
+    movl(hi, lo);
+    sarl(hi, 31);
+  }
+}
+
+
+void MacroAssembler::increment(Register reg, int value) {
+  if (value == min_jint) {addl(reg, value); return; }
+  if (value <  0) { decrement(reg, -value); return; }
+  if (value == 0) {                       ; return; }
+  if (value == 1 && UseIncDec) { incl(reg); return; }
+  /* else */      { addl(reg, value)      ; return; }
+}
+
+void MacroAssembler::increment(Address dst, int value) {
+  if (value == min_jint) {addl(dst, value); return; }
+  if (value <  0) { decrement(dst, -value); return; }
+  if (value == 0) {                       ; return; }
+  if (value == 1 && UseIncDec) { incl(dst); return; }
+  /* else */      { addl(dst, value)      ; return; }
+}
+
+void MacroAssembler::decrement(Register reg, int value) {
+  if (value == min_jint) {subl(reg, value); return; }
+  if (value <  0) { increment(reg, -value); return; }
+  if (value == 0) {                       ; return; }
+  if (value == 1 && UseIncDec) { decl(reg); return; }
+  /* else */      { subl(reg, value)      ; return; }
+}
+
+void MacroAssembler::decrement(Address dst, int value) {
+  if (value == min_jint) {subl(dst, value); return; }
+  if (value <  0) { increment(dst, -value); return; }
+  if (value == 0) {                       ; return; }
+  if (value == 1 && UseIncDec) { decl(dst); return; }
+  /* else */      { subl(dst, value)      ; return; }
+}
+
+void MacroAssembler::align(int modulus) {
+  if (offset() % modulus != 0) nop(modulus - (offset() % modulus));
+}
+
+
+void MacroAssembler::enter() {
+  pushl(rbp);
+  movl(rbp, rsp);
+}
+
+
+void MacroAssembler::leave() {
+  movl(rsp, rbp);
+  popl(rbp);
+}
+
+void MacroAssembler::set_last_Java_frame(Register java_thread,
+                                         Register last_java_sp,
+                                         Register last_java_fp,
+                                         address  last_java_pc) {
+  // determine java_thread register
+  if (!java_thread->is_valid()) {
+    java_thread = rdi;
+    get_thread(java_thread);
+  }
+  // determine last_java_sp register
+  if (!last_java_sp->is_valid()) {
+    last_java_sp = rsp;
+  }
+
+  // last_java_fp is optional
+
+  if (last_java_fp->is_valid()) {
+    movl(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
+  }
+
+  // last_java_pc is optional
+
+  if (last_java_pc != NULL) {
+    lea(Address(java_thread,
+                 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
+        InternalAddress(last_java_pc));
+
+  }
+  movl(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
+}
+
+void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
+  // determine java_thread register
+  if (!java_thread->is_valid()) {
+    java_thread = rdi;
+    get_thread(java_thread);
+  }
+  // we must set sp to zero to clear frame
+  movl(Address(java_thread, JavaThread::last_Java_sp_offset()), 0);
+  if (clear_fp) {
+    movl(Address(java_thread, JavaThread::last_Java_fp_offset()), 0);
+  }
+
+  if (clear_pc)
+    movl(Address(java_thread, JavaThread::last_Java_pc_offset()), 0);
+
+}
+
+
+
+// Implementation of call_VM versions
+
+void MacroAssembler::call_VM_leaf_base(
+  address entry_point,
+  int     number_of_arguments
+) {
+  call(RuntimeAddress(entry_point));
+  increment(rsp, number_of_arguments * wordSize);
+}
+
+
+void MacroAssembler::call_VM_base(
+  Register oop_result,
+  Register java_thread,
+  Register last_java_sp,
+  address  entry_point,
+  int      number_of_arguments,
+  bool     check_exceptions
+) {
+  // determine java_thread register
+  if (!java_thread->is_valid()) {
+    java_thread = rdi;
+    get_thread(java_thread);
+  }
+  // determine last_java_sp register
+  if (!last_java_sp->is_valid()) {
+    last_java_sp = rsp;
+  }
+  // debugging support
+  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
+  assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
+  assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
+  // push java thread (becomes first argument of C function)
+  pushl(java_thread);
+  // set last Java frame before call
+  assert(last_java_sp != rbp, "this code doesn't work for last_java_sp == rbp, which currently can't portably work anyway since C2 doesn't save rbp,");
+  // Only interpreter should have to set fp
+  set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
+  // do the call
+  call(RuntimeAddress(entry_point));
+  // restore the thread (cannot use the pushed argument since arguments
+  // may be overwritten by C code generated by an optimizing compiler);
+  // however can use the register value directly if it is callee saved.
+  if (java_thread == rdi || java_thread == rsi) {
+    // rdi & rsi are callee saved -> nothing to do
+#ifdef ASSERT
+    guarantee(java_thread != rax, "change this code");
+    pushl(rax);
+    { Label L;
+      get_thread(rax);
+      cmpl(java_thread, rax);
+      jcc(Assembler::equal, L);
+      stop("MacroAssembler::call_VM_base: rdi not callee saved?");
+      bind(L);
+    }
+    popl(rax);
+#endif
+  } else {
+    get_thread(java_thread);
+  }
+  // reset last Java frame
+  // Only interpreter should have to clear fp
+  reset_last_Java_frame(java_thread, true, false);
+  // discard thread and arguments
+  addl(rsp, (1 + number_of_arguments)*wordSize);
+
+#ifndef CC_INTERP
+   // C++ interp handles this in the interpreter
+  check_and_handle_popframe(java_thread);
+  check_and_handle_earlyret(java_thread);
+#endif /* CC_INTERP */
+
+  if (check_exceptions) {
+    // check for pending exceptions (java_thread is set upon return)
+    cmpl(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD);
+    jump_cc(Assembler::notEqual,
+            RuntimeAddress(StubRoutines::forward_exception_entry()));
+  }
+
+  // get oop result if there is one and reset the value in the thread
+  if (oop_result->is_valid()) {
+    movl(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
+    movl(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
+    verify_oop(oop_result);
+  }
+}
+
+
+void MacroAssembler::check_and_handle_popframe(Register java_thread) {
+}
+
+void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
+}
+
+void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
+  leal(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
+  call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
+}
+
+
+void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
+  Label C, E;
+  call(C, relocInfo::none);
+  jmp(E);
+
+  bind(C);
+  call_VM_helper(oop_result, entry_point, 0, check_exceptions);
+  ret(0);
+
+  bind(E);
+}
+
+
+void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
+  Label C, E;
+  call(C, relocInfo::none);
+  jmp(E);
+
+  bind(C);
+  pushl(arg_1);
+  call_VM_helper(oop_result, entry_point, 1, check_exceptions);
+  ret(0);
+
+  bind(E);
+}
+
+
+void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
+  Label C, E;
+  call(C, relocInfo::none);
+  jmp(E);
+
+  bind(C);
+  pushl(arg_2);
+  pushl(arg_1);
+  call_VM_helper(oop_result, entry_point, 2, check_exceptions);
+  ret(0);
+
+  bind(E);
+}
+
+
+void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
+  Label C, E;
+  call(C, relocInfo::none);
+  jmp(E);
+
+  bind(C);
+  pushl(arg_3);
+  pushl(arg_2);
+  pushl(arg_1);
+  call_VM_helper(oop_result, entry_point, 3, check_exceptions);
+  ret(0);
+
+  bind(E);
+}
+
+
+void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
+  call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
+}
+
+
+void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
+  pushl(arg_1);
+  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
+}
+
+
+void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
+  pushl(arg_2);
+  pushl(arg_1);
+  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
+}
+
+
+void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
+  pushl(arg_3);
+  pushl(arg_2);
+  pushl(arg_1);
+  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
+}
+
+
+void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
+  call_VM_leaf_base(entry_point, number_of_arguments);
+}
+
+
+void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
+  pushl(arg_1);
+  call_VM_leaf(entry_point, 1);
+}
+
+
+void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
+  pushl(arg_2);
+  pushl(arg_1);
+  call_VM_leaf(entry_point, 2);
+}
+
+
+void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
+  pushl(arg_3);
+  pushl(arg_2);
+  pushl(arg_1);
+  call_VM_leaf(entry_point, 3);
+}
+
+
+// Calls to C land
+//
+// When entering C land, the rbp, & rsp of the last Java frame have to be recorded
+// in the (thread-local) JavaThread object. When leaving C land, the last Java fp
+// has to be reset to 0. This is required to allow proper stack traversal.
+
+void MacroAssembler::store_check(Register obj) {
+  // Does a store check for the oop in register obj. The content of
+  // register obj is destroyed afterwards.
+  store_check_part_1(obj);
+  store_check_part_2(obj);
+}
+
+
+void MacroAssembler::store_check(Register obj, Address dst) {
+  store_check(obj);
+}
+
+
+// split the store check operation so that other instructions can be scheduled inbetween
+void MacroAssembler::store_check_part_1(Register obj) {
+  BarrierSet* bs = Universe::heap()->barrier_set();
+  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
+  shrl(obj, CardTableModRefBS::card_shift);
+}
+
+
+void MacroAssembler::store_check_part_2(Register obj) {
+  BarrierSet* bs = Universe::heap()->barrier_set();
+  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
+  CardTableModRefBS* ct = (CardTableModRefBS*)bs;
+  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
+  ExternalAddress cardtable((address)ct->byte_map_base);
+  Address index(noreg, obj, Address::times_1);
+
+  movb(as_Address(ArrayAddress(cardtable, index)), 0);
+}
+
+
+void MacroAssembler::c2bool(Register x) {
+  // implements x == 0 ? 0 : 1
+  // note: must only look at least-significant byte of x
+  //       since C-style booleans are stored in one byte
+  //       only! (was bug)
+  andl(x, 0xFF);
+  setb(Assembler::notZero, x);
+}
+
+
+int MacroAssembler::corrected_idivl(Register reg) {
+  // Full implementation of Java idiv and irem; checks for
+  // special case as described in JVM spec., p.243 & p.271.
+  // The function returns the (pc) offset of the idivl
+  // instruction - may be needed for implicit exceptions.
+  //
+  //         normal case                           special case
+  //
+  // input : rax,: dividend                         min_int
+  //         reg: divisor   (may not be rax,/rdx)   -1
+  //
+  // output: rax,: quotient  (= rax, idiv reg)       min_int
+  //         rdx: remainder (= rax, irem reg)       0
+  assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
+  const int min_int = 0x80000000;
+  Label normal_case, special_case;
+
+  // check for special case
+  cmpl(rax, min_int);
+  jcc(Assembler::notEqual, normal_case);
+  xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
+  cmpl(reg, -1);
+  jcc(Assembler::equal, special_case);
+
+  // handle normal case
+  bind(normal_case);
+  cdql();
+  int idivl_offset = offset();
+  idivl(reg);
+
+  // normal and special case exit
+  bind(special_case);
+
+  return idivl_offset;
+}
+
+
+void MacroAssembler::lneg(Register hi, Register lo) {
+  negl(lo);
+  adcl(hi, 0);
+  negl(hi);
+}
+
+
+void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
+  // Multiplication of two Java long values stored on the stack
+  // as illustrated below. Result is in rdx:rax.
+  //
+  // rsp ---> [  ??  ] \               \
+  //            ....    | y_rsp_offset  |
+  //          [ y_lo ] /  (in bytes)    | x_rsp_offset
+  //          [ y_hi ]                  | (in bytes)
+  //            ....                    |
+  //          [ x_lo ]                 /
+  //          [ x_hi ]
+  //            ....
+  //
+  // Basic idea: lo(result) = lo(x_lo * y_lo)
+  //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
+  Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
+  Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
+  Label quick;
+  // load x_hi, y_hi and check if quick
+  // multiplication is possible
+  movl(rbx, x_hi);
+  movl(rcx, y_hi);
+  movl(rax, rbx);
+  orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
+  jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
+  // do full multiplication
+  // 1st step
+  mull(y_lo);                                    // x_hi * y_lo
+  movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
+  // 2nd step
+  movl(rax, x_lo);
+  mull(rcx);                                     // x_lo * y_hi
+  addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
+  // 3rd step
+  bind(quick);                                   // note: rbx, = 0 if quick multiply!
+  movl(rax, x_lo);
+  mull(y_lo);                                    // x_lo * y_lo
+  addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
+}
+
+
+void MacroAssembler::lshl(Register hi, Register lo) {
+  // Java shift left long support (semantics as described in JVM spec., p.305)
+  // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
+  // shift value is in rcx !
+  assert(hi != rcx, "must not use rcx");
+  assert(lo != rcx, "must not use rcx");
+  const Register s = rcx;                        // shift count
+  const int      n = BitsPerWord;
+  Label L;
+  andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
+  cmpl(s, n);                                    // if (s < n)
+  jcc(Assembler::less, L);                       // else (s >= n)
+  movl(hi, lo);                                  // x := x << n
+  xorl(lo, lo);
+  // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
+  bind(L);                                       // s (mod n) < n
+  shldl(hi, lo);                                 // x := x << s
+  shll(lo);
+}
+
+
+void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
+  // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
+  // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
+  assert(hi != rcx, "must not use rcx");
+  assert(lo != rcx, "must not use rcx");
+  const Register s = rcx;                        // shift count
+  const int      n = BitsPerWord;
+  Label L;
+  andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
+  cmpl(s, n);                                    // if (s < n)
+  jcc(Assembler::less, L);                       // else (s >= n)
+  movl(lo, hi);                                  // x := x >> n
+  if (sign_extension) sarl(hi, 31);
+  else                xorl(hi, hi);
+  // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
+  bind(L);                                       // s (mod n) < n
+  shrdl(lo, hi);                                 // x := x >> s
+  if (sign_extension) sarl(hi);
+  else                shrl(hi);
+}
+
+
+// Note: y_lo will be destroyed
+void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
+  // Long compare for Java (semantics as described in JVM spec.)
+  Label high, low, done;
+
+  cmpl(x_hi, y_hi);
+  jcc(Assembler::less, low);
+  jcc(Assembler::greater, high);
+  // x_hi is the return register
+  xorl(x_hi, x_hi);
+  cmpl(x_lo, y_lo);
+  jcc(Assembler::below, low);
+  jcc(Assembler::equal, done);
+
+  bind(high);
+  xorl(x_hi, x_hi);
+  increment(x_hi);
+  jmp(done);
+
+  bind(low);
+  xorl(x_hi, x_hi);
+  decrement(x_hi);
+
+  bind(done);
+}
+
+
+void MacroAssembler::save_rax(Register tmp) {
+  if (tmp == noreg) pushl(rax);
+  else if (tmp != rax) movl(tmp, rax);
+}
+
+
+void MacroAssembler::restore_rax(Register tmp) {
+  if (tmp == noreg) popl(rax);
+  else if (tmp != rax) movl(rax, tmp);
+}
+
+
+void MacroAssembler::fremr(Register tmp) {
+  save_rax(tmp);
+  { Label L;
+    bind(L);
+    fprem();
+    fwait(); fnstsw_ax();
+    sahf();
+    jcc(Assembler::parity, L);
+  }
+  restore_rax(tmp);
+  // Result is in ST0.
+  // Note: fxch & fpop to get rid of ST1
+  // (otherwise FPU stack could overflow eventually)
+  fxch(1);
+  fpop();
+}
+
+
+static const double     pi_4 =  0.7853981633974483;
+
+void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
+  // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
+  // was attempted in this code; unfortunately it appears that the
+  // switch to 80-bit precision and back causes this to be
+  // unprofitable compared with simply performing a runtime call if
+  // the argument is out of the (-pi/4, pi/4) range.
+
+  Register tmp = noreg;
+  if (!VM_Version::supports_cmov()) {
+    // fcmp needs a temporary so preserve rbx,
+    tmp = rbx;
+    pushl(tmp);
+  }
+
+  Label slow_case, done;
+
+  // x ?<= pi/4
+  fld_d(ExternalAddress((address)&pi_4));
+  fld_s(1);                // Stack:  X  PI/4  X
+  fabs();                  // Stack: |X| PI/4  X
+  fcmp(tmp);
+  jcc(Assembler::above, slow_case);
+
+  // fastest case: -pi/4 <= x <= pi/4
+  switch(trig) {
+  case 's':
+    fsin();
+    break;
+  case 'c':
+    fcos();
+    break;
+  case 't':
+    ftan();
+    break;
+  default:
+    assert(false, "bad intrinsic");
+    break;
+  }
+  jmp(done);
+
+  // slow case: runtime call
+  bind(slow_case);
+  // Preserve registers across runtime call
+  pushad();
+  int incoming_argument_and_return_value_offset = -1;
+  if (num_fpu_regs_in_use > 1) {
+    // Must preserve all other FPU regs (could alternatively convert
+    // SharedRuntime::dsin and dcos into assembly routines known not to trash
+    // FPU state, but can not trust C compiler)
+    NEEDS_CLEANUP;
+    // NOTE that in this case we also push the incoming argument to
+    // the stack and restore it later; we also use this stack slot to
+    // hold the return value from dsin or dcos.
+    for (int i = 0; i < num_fpu_regs_in_use; i++) {
+      subl(rsp, wordSize*2);
+      fstp_d(Address(rsp, 0));
+    }
+    incoming_argument_and_return_value_offset = 2*wordSize*(num_fpu_regs_in_use-1);
+    fld_d(Address(rsp, incoming_argument_and_return_value_offset));
+  }
+  subl(rsp, wordSize*2);
+  fstp_d(Address(rsp, 0));
+  // NOTE: we must not use call_VM_leaf here because that requires a
+  // complete interpreter frame in debug mode -- same bug as 4387334
+  NEEDS_CLEANUP;
+  // Need to add stack banging before this runtime call if it needs to
+  // be taken; however, there is no generic stack banging routine at
+  // the MacroAssembler level
+  switch(trig) {
+  case 's':
+    {
+      call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dsin)));
+    }
+    break;
+  case 'c':
+    {
+      call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dcos)));
+    }
+    break;
+  case 't':
+    {
+      call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtan)));
+    }
+    break;
+  default:
+    assert(false, "bad intrinsic");
+    break;
+  }
+  addl(rsp, wordSize * 2);
+  if (num_fpu_regs_in_use > 1) {
+    // Must save return value to stack and then restore entire FPU stack
+    fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
+    for (int i = 0; i < num_fpu_regs_in_use; i++) {
+      fld_d(Address(rsp, 0));
+      addl(rsp, wordSize*2);
+    }
+  }
+  popad();
+
+  // Come here with result in F-TOS
+  bind(done);
+
+  if (tmp != noreg) {
+    popl(tmp);
+  }
+}
+
+void MacroAssembler::jC2(Register tmp, Label& L) {
+  // set parity bit if FPU flag C2 is set (via rax)
+  save_rax(tmp);
+  fwait(); fnstsw_ax();
+  sahf();
+  restore_rax(tmp);
+  // branch
+  jcc(Assembler::parity, L);
+}
+
+
+void MacroAssembler::jnC2(Register tmp, Label& L) {
+  // set parity bit if FPU flag C2 is set (via rax)
+  save_rax(tmp);
+  fwait(); fnstsw_ax();
+  sahf();
+  restore_rax(tmp);
+  // branch
+  jcc(Assembler::noParity, L);
+}
+
+
+void MacroAssembler::fcmp(Register tmp) {
+  fcmp(tmp, 1, true, true);
+}
+
+
+void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
+  assert(!pop_right || pop_left, "usage error");
+  if (VM_Version::supports_cmov()) {
+    assert(tmp == noreg, "unneeded temp");
+    if (pop_left) {
+      fucomip(index);
+    } else {
+      fucomi(index);
+    }
+    if (pop_right) {
+      fpop();
+    }
+  } else {
+    assert(tmp != noreg, "need temp");
+    if (pop_left) {
+      if (pop_right) {
+        fcompp();
+      } else {
+        fcomp(index);
+      }
+    } else {
+      fcom(index);
+    }
+    // convert FPU condition into eflags condition via rax,
+    save_rax(tmp);
+    fwait(); fnstsw_ax();
+    sahf();
+    restore_rax(tmp);
+  }
+  // condition codes set as follows:
+  //
+  // CF (corresponds to C0) if x < y
+  // PF (corresponds to C2) if unordered
+  // ZF (corresponds to C3) if x = y
+}
+
+
+void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
+  fcmp2int(dst, unordered_is_less, 1, true, true);
+}
+
+
+void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
+  fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
+  Label L;
+  if (unordered_is_less) {
+    movl(dst, -1);
+    jcc(Assembler::parity, L);
+    jcc(Assembler::below , L);
+    movl(dst, 0);
+    jcc(Assembler::equal , L);
+    increment(dst);
+  } else { // unordered is greater
+    movl(dst, 1);
+    jcc(Assembler::parity, L);
+    jcc(Assembler::above , L);
+    movl(dst, 0);
+    jcc(Assembler::equal , L);
+    decrement(dst);
+  }
+  bind(L);
+}
+
+void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
+  ucomiss(opr1, opr2);
+
+  Label L;
+  if (unordered_is_less) {
+    movl(dst, -1);
+    jcc(Assembler::parity, L);
+    jcc(Assembler::below , L);
+    movl(dst, 0);
+    jcc(Assembler::equal , L);
+    increment(dst);
+  } else { // unordered is greater
+    movl(dst, 1);
+    jcc(Assembler::parity, L);
+    jcc(Assembler::above , L);
+    movl(dst, 0);
+    jcc(Assembler::equal , L);
+    decrement(dst);
+  }
+  bind(L);
+}
+
+void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
+  ucomisd(opr1, opr2);
+
+  Label L;
+  if (unordered_is_less) {
+    movl(dst, -1);
+    jcc(Assembler::parity, L);
+    jcc(Assembler::below , L);
+    movl(dst, 0);
+    jcc(Assembler::equal , L);
+    increment(dst);
+  } else { // unordered is greater
+    movl(dst, 1);
+    jcc(Assembler::parity, L);
+    jcc(Assembler::above , L);
+    movl(dst, 0);
+    jcc(Assembler::equal , L);
+    decrement(dst);
+  }
+  bind(L);
+}
+
+
+
+void MacroAssembler::fpop() {
+  ffree();
+  fincstp();
+}
+
+
+void MacroAssembler::sign_extend_short(Register reg) {
+  if (VM_Version::is_P6()) {
+    movsxw(reg, reg);
+  } else {
+    shll(reg, 16);
+    sarl(reg, 16);
+  }
+}
+
+
+void MacroAssembler::sign_extend_byte(Register reg) {
+  if (VM_Version::is_P6() && reg->has_byte_register()) {
+    movsxb(reg, reg);
+  } else {
+    shll(reg, 24);
+    sarl(reg, 24);
+  }
+}
+
+
+void MacroAssembler::division_with_shift (Register reg, int shift_value) {
+  assert (shift_value > 0, "illegal shift value");
+  Label _is_positive;
+  testl (reg, reg);
+  jcc (Assembler::positive, _is_positive);
+  int offset = (1 << shift_value) - 1 ;
+
+  increment(reg, offset);
+
+  bind (_is_positive);
+  sarl(reg, shift_value);
+}
+
+
+void MacroAssembler::round_to(Register reg, int modulus) {
+  addl(reg, modulus - 1);
+  andl(reg, -modulus);
+}
+
+// C++ bool manipulation
+
+void MacroAssembler::movbool(Register dst, Address src) {
+  if(sizeof(bool) == 1)
+    movb(dst, src);
+  else if(sizeof(bool) == 2)
+    movw(dst, src);
+  else if(sizeof(bool) == 4)
+    movl(dst, src);
+  else
+    // unsupported
+    ShouldNotReachHere();
+}
+
+void MacroAssembler::movbool(Address dst, bool boolconst) {
+  if(sizeof(bool) == 1)
+    movb(dst, (int) boolconst);
+  else if(sizeof(bool) == 2)
+    movw(dst, (int) boolconst);
+  else if(sizeof(bool) == 4)
+    movl(dst, (int) boolconst);
+  else
+    // unsupported
+    ShouldNotReachHere();
+}
+
+void MacroAssembler::movbool(Address dst, Register src) {
+  if(sizeof(bool) == 1)
+    movb(dst, src);
+  else if(sizeof(bool) == 2)
+    movw(dst, src);
+  else if(sizeof(bool) == 4)
+    movl(dst, src);
+  else
+    // unsupported
+    ShouldNotReachHere();
+}
+
+void MacroAssembler::testbool(Register dst) {
+  if(sizeof(bool) == 1)
+    testb(dst, (int) 0xff);
+  else if(sizeof(bool) == 2) {
+    // testw implementation needed for two byte bools
+    ShouldNotReachHere();
+  } else if(sizeof(bool) == 4)
+    testl(dst, dst);
+  else
+    // unsupported
+    ShouldNotReachHere();
+}
+
+void MacroAssembler::verify_oop(Register reg, const char* s) {
+  if (!VerifyOops) return;
+  // Pass register number to verify_oop_subroutine
+  char* b = new char[strlen(s) + 50];
+  sprintf(b, "verify_oop: %s: %s", reg->name(), s);
+  pushl(rax);                          // save rax,
+  pushl(reg);                          // pass register argument
+  ExternalAddress buffer((address) b);
+  pushptr(buffer.addr());
+  // call indirectly to solve generation ordering problem
+  movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
+  call(rax);
+}
+
+
+void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
+  if (!VerifyOops) return;
+  // QQQ fix this
+  // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
+  // Pass register number to verify_oop_subroutine
+  char* b = new char[strlen(s) + 50];
+  sprintf(b, "verify_oop_addr: %s", s);
+  pushl(rax);                          // save rax,
+  // addr may contain rsp so we will have to adjust it based on the push
+  // we just did
+  if (addr.uses(rsp)) {
+    leal(rax, addr);
+    pushl(Address(rax, BytesPerWord));
+  } else {
+    pushl(addr);
+  }
+  ExternalAddress buffer((address) b);
+  // pass msg argument
+  pushptr(buffer.addr());
+  // call indirectly to solve generation ordering problem
+  movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
+  call(rax);
+  // Caller pops the arguments and restores rax, from the stack
+}
+
+
+void MacroAssembler::stop(const char* msg) {
+  ExternalAddress message((address)msg);
+  // push address of message
+  pushptr(message.addr());
+  { Label L; call(L, relocInfo::none); bind(L); }     // push eip
+  pushad();                                           // push registers
+  call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug)));
+  hlt();
+}
+
+
+void MacroAssembler::warn(const char* msg) {
+  push_CPU_state();
+
+  ExternalAddress message((address) msg);
+  // push address of message
+  pushptr(message.addr());
+
+  call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
+  addl(rsp, wordSize);       // discard argument
+  pop_CPU_state();
+}
+
+
+void MacroAssembler::debug(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
+  // In order to get locks to work, we need to fake a in_VM state
+  JavaThread* thread = JavaThread::current();
+  JavaThreadState saved_state = thread->thread_state();
+  thread->set_thread_state(_thread_in_vm);
+  if (ShowMessageBoxOnError) {
+    JavaThread* thread = JavaThread::current();
+    JavaThreadState saved_state = thread->thread_state();
+    thread->set_thread_state(_thread_in_vm);
+    ttyLocker ttyl;
+    if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
+      BytecodeCounter::print();
+    }
+    // To see where a verify_oop failed, get $ebx+40/X for this frame.
+    // This is the value of eip which points to where verify_oop will return.
+    if (os::message_box(msg, "Execution stopped, print registers?")) {
+      tty->print_cr("eip = 0x%08x", eip);
+      tty->print_cr("rax, = 0x%08x", rax);
+      tty->print_cr("rbx, = 0x%08x", rbx);
+      tty->print_cr("rcx = 0x%08x", rcx);
+      tty->print_cr("rdx = 0x%08x", rdx);
+      tty->print_cr("rdi = 0x%08x", rdi);
+      tty->print_cr("rsi = 0x%08x", rsi);
+      tty->print_cr("rbp, = 0x%08x", rbp);
+      tty->print_cr("rsp = 0x%08x", rsp);
+      BREAKPOINT;
+    }
+  } else {
+    ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
+    assert(false, "DEBUG MESSAGE");
+  }
+  ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
+}
+
+
+
+void MacroAssembler::os_breakpoint() {
+  // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
+  // (e.g., MSVC can't call ps() otherwise)
+  call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
+}
+
+
+void MacroAssembler::push_fTOS() {
+  subl(rsp, 2 * wordSize);
+  fstp_d(Address(rsp, 0));
+}
+
+
+void MacroAssembler::pop_fTOS() {
+  fld_d(Address(rsp, 0));
+  addl(rsp, 2 * wordSize);
+}
+
+
+void MacroAssembler::empty_FPU_stack() {
+  if (VM_Version::supports_mmx()) {
+    emms();
+  } else {
+    for (int i = 8; i-- > 0; ) ffree(i);
+  }
+}
+
+
+class ControlWord {
+ public:
+  int32_t _value;
+
+  int  rounding_control() const        { return  (_value >> 10) & 3      ; }
+  int  precision_control() const       { return  (_value >>  8) & 3      ; }
+  bool precision() const               { return ((_value >>  5) & 1) != 0; }
+  bool underflow() const               { return ((_value >>  4) & 1) != 0; }
+  bool overflow() const                { return ((_value >>  3) & 1) != 0; }
+  bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
+  bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
+  bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
+
+  void print() const {
+    // rounding control
+    const char* rc;
+    switch (rounding_control()) {
+      case 0: rc = "round near"; break;
+      case 1: rc = "round down"; break;
+      case 2: rc = "round up  "; break;
+      case 3: rc = "chop      "; break;
+    };
+    // precision control
+    const char* pc;
+    switch (precision_control()) {
+      case 0: pc = "24 bits "; break;
+      case 1: pc = "reserved"; break;
+      case 2: pc = "53 bits "; break;
+      case 3: pc = "64 bits "; break;
+    };
+    // flags
+    char f[9];
+    f[0] = ' ';
+    f[1] = ' ';
+    f[2] = (precision   ()) ? 'P' : 'p';
+    f[3] = (underflow   ()) ? 'U' : 'u';
+    f[4] = (overflow    ()) ? 'O' : 'o';
+    f[5] = (zero_divide ()) ? 'Z' : 'z';
+    f[6] = (denormalized()) ? 'D' : 'd';
+    f[7] = (invalid     ()) ? 'I' : 'i';
+    f[8] = '\x0';
+    // output
+    printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
+  }
+
+};
+
+
+class StatusWord {
+ public:
+  int32_t _value;
+
+  bool busy() const                    { return ((_value >> 15) & 1) != 0; }
+  bool C3() const                      { return ((_value >> 14) & 1) != 0; }
+  bool C2() const                      { return ((_value >> 10) & 1) != 0; }
+  bool C1() const                      { return ((_value >>  9) & 1) != 0; }
+  bool C0() const                      { return ((_value >>  8) & 1) != 0; }
+  int  top() const                     { return  (_value >> 11) & 7      ; }
+  bool error_status() const            { return ((_value >>  7) & 1) != 0; }
+  bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
+  bool precision() const               { return ((_value >>  5) & 1) != 0; }
+  bool underflow() const               { return ((_value >>  4) & 1) != 0; }
+  bool overflow() const                { return ((_value >>  3) & 1) != 0; }
+  bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
+  bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
+  bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
+
+  void print() const {
+    // condition codes
+    char c[5];
+    c[0] = (C3()) ? '3' : '-';
+    c[1] = (C2()) ? '2' : '-';
+    c[2] = (C1()) ? '1' : '-';
+    c[3] = (C0()) ? '0' : '-';
+    c[4] = '\x0';
+    // flags
+    char f[9];
+    f[0] = (error_status()) ? 'E' : '-';
+    f[1] = (stack_fault ()) ? 'S' : '-';
+    f[2] = (precision   ()) ? 'P' : '-';
+    f[3] = (underflow   ()) ? 'U' : '-';
+    f[4] = (overflow    ()) ? 'O' : '-';
+    f[5] = (zero_divide ()) ? 'Z' : '-';
+    f[6] = (denormalized()) ? 'D' : '-';
+    f[7] = (invalid     ()) ? 'I' : '-';
+    f[8] = '\x0';
+    // output
+    printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
+  }
+
+};
+
+
+class TagWord {
+ public:
+  int32_t _value;
+
+  int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
+
+  void print() const {
+    printf("%04x", _value & 0xFFFF);
+  }
+
+};
+
+
+class FPU_Register {
+ public:
+  int32_t _m0;
+  int32_t _m1;
+  int16_t _ex;
+
+  bool is_indefinite() const           {
+    return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
+  }
+
+  void print() const {
+    char  sign = (_ex < 0) ? '-' : '+';
+    const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
+    printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
+  };
+
+};
+
+
+class FPU_State {
+ public:
+  enum {
+    register_size       = 10,
+    number_of_registers =  8,
+    register_mask       =  7
+  };
+
+  ControlWord  _control_word;
+  StatusWord   _status_word;
+  TagWord      _tag_word;
+  int32_t      _error_offset;
+  int32_t      _error_selector;
+  int32_t      _data_offset;
+  int32_t      _data_selector;
+  int8_t       _register[register_size * number_of_registers];
+
+  int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
+  FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
+
+  const char* tag_as_string(int tag) const {
+    switch (tag) {
+      case 0: return "valid";
+      case 1: return "zero";
+      case 2: return "special";
+      case 3: return "empty";
+    }
+    ShouldNotReachHere()
+    return NULL;
+  }
+
+  void print() const {
+    // print computation registers
+    { int t = _status_word.top();
+      for (int i = 0; i < number_of_registers; i++) {
+        int j = (i - t) & register_mask;
+        printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
+        st(j)->print();
+        printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
+      }
+    }
+    printf("\n");
+    // print control registers
+    printf("ctrl = "); _control_word.print(); printf("\n");
+    printf("stat = "); _status_word .print(); printf("\n");
+    printf("tags = "); _tag_word    .print(); printf("\n");
+  }
+
+};
+
+
+class Flag_Register {
+ public:
+  int32_t _value;
+
+  bool overflow() const                { return ((_value >> 11) & 1) != 0; }
+  bool direction() const               { return ((_value >> 10) & 1) != 0; }
+  bool sign() const                    { return ((_value >>  7) & 1) != 0; }
+  bool zero() const                    { return ((_value >>  6) & 1) != 0; }
+  bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
+  bool parity() const                  { return ((_value >>  2) & 1) != 0; }
+  bool carry() const                   { return ((_value >>  0) & 1) != 0; }
+
+  void print() const {
+    // flags
+    char f[8];
+    f[0] = (overflow       ()) ? 'O' : '-';
+    f[1] = (direction      ()) ? 'D' : '-';
+    f[2] = (sign           ()) ? 'S' : '-';
+    f[3] = (zero           ()) ? 'Z' : '-';
+    f[4] = (auxiliary_carry()) ? 'A' : '-';
+    f[5] = (parity         ()) ? 'P' : '-';
+    f[6] = (carry          ()) ? 'C' : '-';
+    f[7] = '\x0';
+    // output
+    printf("%08x  flags = %s", _value, f);
+  }
+
+};
+
+
+class IU_Register {
+ public:
+  int32_t _value;
+
+  void print() const {
+    printf("%08x  %11d", _value, _value);
+  }
+
+};
+
+
+class IU_State {
+ public:
+  Flag_Register _eflags;
+  IU_Register   _rdi;
+  IU_Register   _rsi;
+  IU_Register   _rbp;
+  IU_Register   _rsp;
+  IU_Register   _rbx;
+  IU_Register   _rdx;
+  IU_Register   _rcx;
+  IU_Register   _rax;
+
+  void print() const {
+    // computation registers
+    printf("rax,  = "); _rax.print(); printf("\n");
+    printf("rbx,  = "); _rbx.print(); printf("\n");
+    printf("rcx  = "); _rcx.print(); printf("\n");
+    printf("rdx  = "); _rdx.print(); printf("\n");
+    printf("rdi  = "); _rdi.print(); printf("\n");
+    printf("rsi  = "); _rsi.print(); printf("\n");
+    printf("rbp,  = "); _rbp.print(); printf("\n");
+    printf("rsp  = "); _rsp.print(); printf("\n");
+    printf("\n");
+    // control registers
+    printf("flgs = "); _eflags.print(); printf("\n");
+  }
+};
+
+
+class CPU_State {
+ public:
+  FPU_State _fpu_state;
+  IU_State  _iu_state;
+
+  void print() const {
+    printf("--------------------------------------------------\n");
+    _iu_state .print();
+    printf("\n");
+    _fpu_state.print();
+    printf("--------------------------------------------------\n");
+  }
+
+};
+
+
+static void _print_CPU_state(CPU_State* state) {
+  state->print();
+};
+
+
+void MacroAssembler::print_CPU_state() {
+  push_CPU_state();
+  pushl(rsp);                // pass CPU state
+  call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
+  addl(rsp, wordSize);       // discard argument
+  pop_CPU_state();
+}
+
+
+static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
+  static int counter = 0;
+  FPU_State* fs = &state->_fpu_state;
+  counter++;
+  // For leaf calls, only verify that the top few elements remain empty.
+  // We only need 1 empty at the top for C2 code.
+  if( stack_depth < 0 ) {
+    if( fs->tag_for_st(7) != 3 ) {
+      printf("FPR7 not empty\n");
+      state->print();
+      assert(false, "error");
+      return false;
+    }
+    return true;                // All other stack states do not matter
+  }
+
+  assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
+         "bad FPU control word");
+
+  // compute stack depth
+  int i = 0;
+  while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
+  int d = i;
+  while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
+  // verify findings
+  if (i != FPU_State::number_of_registers) {
+    // stack not contiguous
+    printf("%s: stack not contiguous at ST%d\n", s, i);
+    state->print();
+    assert(false, "error");
+    return false;
+  }
+  // check if computed stack depth corresponds to expected stack depth
+  if (stack_depth < 0) {
+    // expected stack depth is -stack_depth or less
+    if (d > -stack_depth) {
+      // too many elements on the stack
+      printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
+      state->print();
+      assert(false, "error");
+      return false;
+    }
+  } else {
+    // expected stack depth is stack_depth
+    if (d != stack_depth) {
+      // wrong stack depth
+      printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
+      state->print();
+      assert(false, "error");
+      return false;
+    }
+  }
+  // everything is cool
+  return true;
+}
+
+
+void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
+  if (!VerifyFPU) return;
+  push_CPU_state();
+  pushl(rsp);                // pass CPU state
+  ExternalAddress msg((address) s);
+  // pass message string s
+  pushptr(msg.addr());
+  pushl(stack_depth);        // pass stack depth
+  call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
+  addl(rsp, 3 * wordSize);   // discard arguments
+  // check for error
+  { Label L;
+    testl(rax, rax);
+    jcc(Assembler::notZero, L);
+    int3();                  // break if error condition
+    bind(L);
+  }
+  pop_CPU_state();
+}
+
+
+void MacroAssembler::push_IU_state() {
+  pushad();
+  pushfd();
+}
+
+
+void MacroAssembler::pop_IU_state() {
+  popfd();
+  popad();
+}
+
+
+void MacroAssembler::push_FPU_state() {
+  subl(rsp, FPUStateSizeInWords * wordSize);
+  fnsave(Address(rsp, 0));
+  fwait();
+}
+
+
+void MacroAssembler::pop_FPU_state() {
+  frstor(Address(rsp, 0));
+  addl(rsp, FPUStateSizeInWords * wordSize);
+}
+
+
+void MacroAssembler::push_CPU_state() {
+  push_IU_state();
+  push_FPU_state();
+}
+
+
+void MacroAssembler::pop_CPU_state() {
+  pop_FPU_state();
+  pop_IU_state();
+}
+
+
+void MacroAssembler::push_callee_saved_registers() {
+  pushl(rsi);
+  pushl(rdi);
+  pushl(rdx);
+  pushl(rcx);
+}
+
+
+void MacroAssembler::pop_callee_saved_registers() {
+  popl(rcx);
+  popl(rdx);
+  popl(rdi);
+  popl(rsi);
+}
+
+
+void MacroAssembler::set_word_if_not_zero(Register dst) {
+  xorl(dst, dst);
+  set_byte_if_not_zero(dst);
+}
+
+// Write serialization page so VM thread can do a pseudo remote membar.
+// We use the current thread pointer to calculate a thread specific
+// offset to write to within the page. This minimizes bus traffic
+// due to cache line collision.
+void MacroAssembler::serialize_memory(Register thread, Register tmp) {
+  movl(tmp, thread);
+  shrl(tmp, os::get_serialize_page_shift_count());
+  andl(tmp, (os::vm_page_size() - sizeof(int)));
+
+  Address index(noreg, tmp, Address::times_1);
+  ExternalAddress page(os::get_memory_serialize_page());
+
+  movptr(ArrayAddress(page, index), tmp);
+}
+
+
+void MacroAssembler::verify_tlab() {
+#ifdef ASSERT
+  if (UseTLAB && VerifyOops) {
+    Label next, ok;
+    Register t1 = rsi;
+    Register thread_reg = rbx;
+
+    pushl(t1);
+    pushl(thread_reg);
+    get_thread(thread_reg);
+
+    movl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
+    cmpl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
+    jcc(Assembler::aboveEqual, next);
+    stop("assert(top >= start)");
+    should_not_reach_here();
+
+    bind(next);
+    movl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
+    cmpl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
+    jcc(Assembler::aboveEqual, ok);
+    stop("assert(top <= end)");
+    should_not_reach_here();
+
+    bind(ok);
+    popl(thread_reg);
+    popl(t1);
+  }
+#endif
+}
+
+
+// Defines obj, preserves var_size_in_bytes
+void MacroAssembler::eden_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes,
+                                   Register t1, Label& slow_case) {
+  assert(obj == rax, "obj must be in rax, for cmpxchg");
+  assert_different_registers(obj, var_size_in_bytes, t1);
+  Register end = t1;
+  Label retry;
+  bind(retry);
+  ExternalAddress heap_top((address) Universe::heap()->top_addr());
+  movptr(obj, heap_top);
+  if (var_size_in_bytes == noreg) {
+    leal(end, Address(obj, con_size_in_bytes));
+  } else {
+    leal(end, Address(obj, var_size_in_bytes, Address::times_1));
+  }
+  // if end < obj then we wrapped around => object too long => slow case
+  cmpl(end, obj);
+  jcc(Assembler::below, slow_case);
+  cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
+  jcc(Assembler::above, slow_case);
+  // Compare obj with the top addr, and if still equal, store the new top addr in
+  // end at the address of the top addr pointer. Sets ZF if was equal, and clears
+  // it otherwise. Use lock prefix for atomicity on MPs.
+  if (os::is_MP()) {
+    lock();
+  }
+  cmpxchgptr(end, heap_top);
+  jcc(Assembler::notEqual, retry);
+}
+
+
+// Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
+void MacroAssembler::tlab_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes,
+                                   Register t1, Register t2, Label& slow_case) {
+  assert_different_registers(obj, t1, t2);
+  assert_different_registers(obj, var_size_in_bytes, t1);
+  Register end = t2;
+  Register thread = t1;
+
+  verify_tlab();
+
+  get_thread(thread);
+
+  movl(obj, Address(thread, JavaThread::tlab_top_offset()));
+  if (var_size_in_bytes == noreg) {
+    leal(end, Address(obj, con_size_in_bytes));
+  } else {
+    leal(end, Address(obj, var_size_in_bytes, Address::times_1));
+  }
+  cmpl(end, Address(thread, JavaThread::tlab_end_offset()));
+  jcc(Assembler::above, slow_case);
+
+  // update the tlab top pointer
+  movl(Address(thread, JavaThread::tlab_top_offset()), end);
+
+  // recover var_size_in_bytes if necessary
+  if (var_size_in_bytes == end) {
+    subl(var_size_in_bytes, obj);
+  }
+  verify_tlab();
+}
+
+// Preserves rbx, and rdx.
+void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
+  Register top = rax;
+  Register t1  = rcx;
+  Register t2  = rsi;
+  Register thread_reg = rdi;
+  assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
+  Label do_refill, discard_tlab;
+
+  if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
+    // No allocation in the shared eden.
+    jmp(slow_case);
+  }
+
+  get_thread(thread_reg);
+
+  movl(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
+  movl(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
+
+  // calculate amount of free space
+  subl(t1, top);
+  shrl(t1, LogHeapWordSize);
+
+  // Retain tlab and allocate object in shared space if
+  // the amount free in the tlab is too large to discard.
+  cmpl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
+  jcc(Assembler::lessEqual, discard_tlab);
+
+  // Retain
+  movl(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment());
+  addl(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
+  if (TLABStats) {
+    // increment number of slow_allocations
+    addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
+  }
+  jmp(try_eden);
+
+  bind(discard_tlab);
+  if (TLABStats) {
+    // increment number of refills
+    addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
+    // accumulate wastage -- t1 is amount free in tlab
+    addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
+  }
+
+  // if tlab is currently allocated (top or end != null) then
+  // fill [top, end + alignment_reserve) with array object
+  testl (top, top);
+  jcc(Assembler::zero, do_refill);
+
+  // set up the mark word
+  movl(Address(top, oopDesc::mark_offset_in_bytes()), (int)markOopDesc::prototype()->copy_set_hash(0x2));
+  // set the length to the remaining space
+  subl(t1, typeArrayOopDesc::header_size(T_INT));
+  addl(t1, ThreadLocalAllocBuffer::alignment_reserve());
+  shll(t1, log2_intptr(HeapWordSize/sizeof(jint)));
+  movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
+  // set klass to intArrayKlass
+  // dubious reloc why not an oop reloc?
+  movptr(t1, ExternalAddress((address) Universe::intArrayKlassObj_addr()));
+  movl(Address(top, oopDesc::klass_offset_in_bytes()), t1);
+
+  // refill the tlab with an eden allocation
+  bind(do_refill);
+  movl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
+  shll(t1, LogHeapWordSize);
+  // add object_size ??
+  eden_allocate(top, t1, 0, t2, slow_case);
+
+  // Check that t1 was preserved in eden_allocate.
+#ifdef ASSERT
+  if (UseTLAB) {
+    Label ok;
+    Register tsize = rsi;
+    assert_different_registers(tsize, thread_reg, t1);
+    pushl(tsize);
+    movl(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
+    shll(tsize, LogHeapWordSize);
+    cmpl(t1, tsize);
+    jcc(Assembler::equal, ok);
+    stop("assert(t1 != tlab size)");
+    should_not_reach_here();
+
+    bind(ok);
+    popl(tsize);
+  }
+#endif
+  movl(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
+  movl(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
+  addl(top, t1);
+  subl(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
+  movl(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
+  verify_tlab();
+  jmp(retry);
+}
+
+
+int MacroAssembler::biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg,
+                                         bool swap_reg_contains_mark,
+                                         Label& done, Label* slow_case,
+                                         BiasedLockingCounters* counters) {
+  assert(UseBiasedLocking, "why call this otherwise?");
+  assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
+  assert_different_registers(lock_reg, obj_reg, swap_reg);
+
+  if (PrintBiasedLockingStatistics && counters == NULL)
+    counters = BiasedLocking::counters();
+
+  bool need_tmp_reg = false;
+  if (tmp_reg == noreg) {
+    need_tmp_reg = true;
+    tmp_reg = lock_reg;
+  } else {
+    assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
+  }
+  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
+  Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
+  Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
+  Address saved_mark_addr(lock_reg, 0);
+
+  // Biased locking
+  // See whether the lock is currently biased toward our thread and
+  // whether the epoch is still valid
+  // Note that the runtime guarantees sufficient alignment of JavaThread
+  // pointers to allow age to be placed into low bits
+  // First check to see whether biasing is even enabled for this object
+  Label cas_label;
+  int null_check_offset = -1;
+  if (!swap_reg_contains_mark) {
+    null_check_offset = offset();
+    movl(swap_reg, mark_addr);
+  }
+  if (need_tmp_reg) {
+    pushl(tmp_reg);
+  }
+  movl(tmp_reg, swap_reg);
+  andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
+  cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
+  if (need_tmp_reg) {
+    popl(tmp_reg);
+  }
+  jcc(Assembler::notEqual, cas_label);
+  // The bias pattern is present in the object's header. Need to check
+  // whether the bias owner and the epoch are both still current.
+  // Note that because there is no current thread register on x86 we
+  // need to store off the mark word we read out of the object to
+  // avoid reloading it and needing to recheck invariants below. This
+  // store is unfortunate but it makes the overall code shorter and
+  // simpler.
+  movl(saved_mark_addr, swap_reg);
+  if (need_tmp_reg) {
+    pushl(tmp_reg);
+  }
+  get_thread(tmp_reg);
+  xorl(swap_reg, tmp_reg);
+  if (swap_reg_contains_mark) {
+    null_check_offset = offset();
+  }
+  movl(tmp_reg, klass_addr);
+  xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
+  andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
+  if (need_tmp_reg) {
+    popl(tmp_reg);
+  }
+  if (counters != NULL) {
+    cond_inc32(Assembler::zero,
+               ExternalAddress((address)counters->biased_lock_entry_count_addr()));
+  }
+  jcc(Assembler::equal, done);
+
+  Label try_revoke_bias;
+  Label try_rebias;
+
+  // At this point we know that the header has the bias pattern and
+  // that we are not the bias owner in the current epoch. We need to
+  // figure out more details about the state of the header in order to
+  // know what operations can be legally performed on the object's
+  // header.
+
+  // If the low three bits in the xor result aren't clear, that means
+  // the prototype header is no longer biased and we have to revoke
+  // the bias on this object.
+  testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
+  jcc(Assembler::notZero, try_revoke_bias);
+
+  // Biasing is still enabled for this data type. See whether the
+  // epoch of the current bias is still valid, meaning that the epoch
+  // bits of the mark word are equal to the epoch bits of the
+  // prototype header. (Note that the prototype header's epoch bits
+  // only change at a safepoint.) If not, attempt to rebias the object
+  // toward the current thread. Note that we must be absolutely sure
+  // that the current epoch is invalid in order to do this because
+  // otherwise the manipulations it performs on the mark word are
+  // illegal.
+  testl(swap_reg, markOopDesc::epoch_mask_in_place);
+  jcc(Assembler::notZero, try_rebias);
+
+  // The epoch of the current bias is still valid but we know nothing
+  // about the owner; it might be set or it might be clear. Try to
+  // acquire the bias of the object using an atomic operation. If this
+  // fails we will go in to the runtime to revoke the object's bias.
+  // Note that we first construct the presumed unbiased header so we
+  // don't accidentally blow away another thread's valid bias.
+  movl(swap_reg, saved_mark_addr);
+  andl(swap_reg,
+       markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
+  if (need_tmp_reg) {
+    pushl(tmp_reg);
+  }
+  get_thread(tmp_reg);
+  orl(tmp_reg, swap_reg);
+  if (os::is_MP()) {
+    lock();
+  }
+  cmpxchg(tmp_reg, Address(obj_reg, 0));
+  if (need_tmp_reg) {
+    popl(tmp_reg);
+  }
+  // If the biasing toward our thread failed, this means that
+  // another thread succeeded in biasing it toward itself and we
+  // need to revoke that bias. The revocation will occur in the
+  // interpreter runtime in the slow case.
+  if (counters != NULL) {
+    cond_inc32(Assembler::zero,
+               ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
+  }
+  if (slow_case != NULL) {
+    jcc(Assembler::notZero, *slow_case);
+  }
+  jmp(done);
+
+  bind(try_rebias);
+  // At this point we know the epoch has expired, meaning that the
+  // current "bias owner", if any, is actually invalid. Under these
+  // circumstances _only_, we are allowed to use the current header's
+  // value as the comparison value when doing the cas to acquire the
+  // bias in the current epoch. In other words, we allow transfer of
+  // the bias from one thread to another directly in this situation.
+  //
+  // FIXME: due to a lack of registers we currently blow away the age
+  // bits in this situation. Should attempt to preserve them.
+  if (need_tmp_reg) {
+    pushl(tmp_reg);
+  }
+  get_thread(tmp_reg);
+  movl(swap_reg, klass_addr);
+  orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
+  movl(swap_reg, saved_mark_addr);
+  if (os::is_MP()) {
+    lock();
+  }
+  cmpxchg(tmp_reg, Address(obj_reg, 0));
+  if (need_tmp_reg) {
+    popl(tmp_reg);
+  }
+  // If the biasing toward our thread failed, then another thread
+  // succeeded in biasing it toward itself and we need to revoke that
+  // bias. The revocation will occur in the runtime in the slow case.
+  if (counters != NULL) {
+    cond_inc32(Assembler::zero,
+               ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
+  }
+  if (slow_case != NULL) {
+    jcc(Assembler::notZero, *slow_case);
+  }
+  jmp(done);
+
+  bind(try_revoke_bias);
+  // The prototype mark in the klass doesn't have the bias bit set any
+  // more, indicating that objects of this data type are not supposed
+  // to be biased any more. We are going to try to reset the mark of
+  // this object to the prototype value and fall through to the
+  // CAS-based locking scheme. Note that if our CAS fails, it means
+  // that another thread raced us for the privilege of revoking the
+  // bias of this particular object, so it's okay to continue in the
+  // normal locking code.
+  //
+  // FIXME: due to a lack of registers we currently blow away the age
+  // bits in this situation. Should attempt to preserve them.
+  movl(swap_reg, saved_mark_addr);
+  if (need_tmp_reg) {
+    pushl(tmp_reg);
+  }
+  movl(tmp_reg, klass_addr);
+  movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
+  if (os::is_MP()) {
+    lock();
+  }
+  cmpxchg(tmp_reg, Address(obj_reg, 0));
+  if (need_tmp_reg) {
+    popl(tmp_reg);
+  }
+  // Fall through to the normal CAS-based lock, because no matter what
+  // the result of the above CAS, some thread must have succeeded in
+  // removing the bias bit from the object's header.
+  if (counters != NULL) {
+    cond_inc32(Assembler::zero,
+               ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
+  }
+
+  bind(cas_label);
+
+  return null_check_offset;
+}
+
+
+void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
+  assert(UseBiasedLocking, "why call this otherwise?");
+
+  // Check for biased locking unlock case, which is a no-op
+  // Note: we do not have to check the thread ID for two reasons.
+  // First, the interpreter checks for IllegalMonitorStateException at
+  // a higher level. Second, if the bias was revoked while we held the
+  // lock, the object could not be rebiased toward another thread, so
+  // the bias bit would be clear.
+  movl(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
+  andl(temp_reg, markOopDesc::biased_lock_mask_in_place);
+  cmpl(temp_reg, markOopDesc::biased_lock_pattern);
+  jcc(Assembler::equal, done);
+}
+
+
+Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
+  switch (cond) {
+    // Note some conditions are synonyms for others
+    case Assembler::zero:         return Assembler::notZero;
+    case Assembler::notZero:      return Assembler::zero;
+    case Assembler::less:         return Assembler::greaterEqual;
+    case Assembler::lessEqual:    return Assembler::greater;
+    case Assembler::greater:      return Assembler::lessEqual;
+    case Assembler::greaterEqual: return Assembler::less;
+    case Assembler::below:        return Assembler::aboveEqual;
+    case Assembler::belowEqual:   return Assembler::above;
+    case Assembler::above:        return Assembler::belowEqual;
+    case Assembler::aboveEqual:   return Assembler::below;
+    case Assembler::overflow:     return Assembler::noOverflow;
+    case Assembler::noOverflow:   return Assembler::overflow;
+    case Assembler::negative:     return Assembler::positive;
+    case Assembler::positive:     return Assembler::negative;
+    case Assembler::parity:       return Assembler::noParity;
+    case Assembler::noParity:     return Assembler::parity;
+  }
+  ShouldNotReachHere(); return Assembler::overflow;
+}
+
+
+void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
+  Condition negated_cond = negate_condition(cond);
+  Label L;
+  jcc(negated_cond, L);
+  atomic_incl(counter_addr);
+  bind(L);
+}
+
+void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
+  pushfd();
+  if (os::is_MP())
+    lock();
+  increment(counter_addr);
+  popfd();
+}
+
+SkipIfEqual::SkipIfEqual(
+    MacroAssembler* masm, const bool* flag_addr, bool value) {
+  _masm = masm;
+  _masm->cmp8(ExternalAddress((address)flag_addr), value);
+  _masm->jcc(Assembler::equal, _label);
+}
+
+SkipIfEqual::~SkipIfEqual() {
+  _masm->bind(_label);
+}
+
+
+// Writes to stack successive pages until offset reached to check for
+// stack overflow + shadow pages.  This clobbers tmp.
+void MacroAssembler::bang_stack_size(Register size, Register tmp) {
+  movl(tmp, rsp);
+  // Bang stack for total size given plus shadow page size.
+  // Bang one page at a time because large size can bang beyond yellow and
+  // red zones.
+  Label loop;
+  bind(loop);
+  movl(Address(tmp, (-os::vm_page_size())), size );
+  subl(tmp, os::vm_page_size());
+  subl(size, os::vm_page_size());
+  jcc(Assembler::greater, loop);
+
+  // Bang down shadow pages too.
+  // The -1 because we already subtracted 1 page.
+  for (int i = 0; i< StackShadowPages-1; i++) {
+    movl(Address(tmp, (-i*os::vm_page_size())), size );
+  }
+}