hotspot/src/cpu/sparc/vm/stubGenerator_sparc.cpp
changeset 1 489c9b5090e2
child 189 4248c8e21063
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/cpu/sparc/vm/stubGenerator_sparc.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,3002 @@
+/*
+ * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_stubGenerator_sparc.cpp.incl"
+
+// Declaration and definition of StubGenerator (no .hpp file).
+// For a more detailed description of the stub routine structure
+// see the comment in stubRoutines.hpp.
+
+#define __ _masm->
+
+#ifdef PRODUCT
+#define BLOCK_COMMENT(str) /* nothing */
+#else
+#define BLOCK_COMMENT(str) __ block_comment(str)
+#endif
+
+#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
+
+// Note:  The register L7 is used as L7_thread_cache, and may not be used
+//        any other way within this module.
+
+
+static const Register& Lstub_temp = L2;
+
+// -------------------------------------------------------------------------------------------------------------------------
+// Stub Code definitions
+
+static address handle_unsafe_access() {
+  JavaThread* thread = JavaThread::current();
+  address pc  = thread->saved_exception_pc();
+  address npc = thread->saved_exception_npc();
+  // pc is the instruction which we must emulate
+  // doing a no-op is fine:  return garbage from the load
+
+  // request an async exception
+  thread->set_pending_unsafe_access_error();
+
+  // return address of next instruction to execute
+  return npc;
+}
+
+class StubGenerator: public StubCodeGenerator {
+ private:
+
+#ifdef PRODUCT
+#define inc_counter_np(a,b,c) (0)
+#else
+  void inc_counter_np_(int& counter, Register t1, Register t2) {
+    Address counter_addr(t2, (address) &counter);
+    __ sethi(counter_addr);
+    __ ld(counter_addr, t1);
+    __ inc(t1);
+    __ st(t1, counter_addr);
+  }
+#define inc_counter_np(counter, t1, t2) \
+  BLOCK_COMMENT("inc_counter " #counter); \
+  inc_counter_np_(counter, t1, t2);
+#endif
+
+  //----------------------------------------------------------------------------------------------------
+  // Call stubs are used to call Java from C
+
+  address generate_call_stub(address& return_pc) {
+    StubCodeMark mark(this, "StubRoutines", "call_stub");
+    address start = __ pc();
+
+    // Incoming arguments:
+    //
+    // o0         : call wrapper address
+    // o1         : result (address)
+    // o2         : result type
+    // o3         : method
+    // o4         : (interpreter) entry point
+    // o5         : parameters (address)
+    // [sp + 0x5c]: parameter size (in words)
+    // [sp + 0x60]: thread
+    //
+    // +---------------+ <--- sp + 0
+    // |               |
+    // . reg save area .
+    // |               |
+    // +---------------+ <--- sp + 0x40
+    // |               |
+    // . extra 7 slots .
+    // |               |
+    // +---------------+ <--- sp + 0x5c
+    // |  param. size  |
+    // +---------------+ <--- sp + 0x60
+    // |    thread     |
+    // +---------------+
+    // |               |
+
+    // note: if the link argument position changes, adjust
+    //       the code in frame::entry_frame_call_wrapper()
+
+    const Argument link           = Argument(0, false); // used only for GC
+    const Argument result         = Argument(1, false);
+    const Argument result_type    = Argument(2, false);
+    const Argument method         = Argument(3, false);
+    const Argument entry_point    = Argument(4, false);
+    const Argument parameters     = Argument(5, false);
+    const Argument parameter_size = Argument(6, false);
+    const Argument thread         = Argument(7, false);
+
+    // setup thread register
+    __ ld_ptr(thread.as_address(), G2_thread);
+
+#ifdef ASSERT
+    // make sure we have no pending exceptions
+    { const Register t = G3_scratch;
+      Label L;
+      __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
+      __ br_null(t, false, Assembler::pt, L);
+      __ delayed()->nop();
+      __ stop("StubRoutines::call_stub: entered with pending exception");
+      __ bind(L);
+    }
+#endif
+
+    // create activation frame & allocate space for parameters
+    { const Register t = G3_scratch;
+      __ ld_ptr(parameter_size.as_address(), t);                // get parameter size (in words)
+      __ add(t, frame::memory_parameter_word_sp_offset, t);     // add space for save area (in words)
+      __ round_to(t, WordsPerLong);                             // make sure it is multiple of 2 (in words)
+      __ sll(t, Interpreter::logStackElementSize(), t);                    // compute number of bytes
+      __ neg(t);                                                // negate so it can be used with save
+      __ save(SP, t, SP);                                       // setup new frame
+    }
+
+    // +---------------+ <--- sp + 0
+    // |               |
+    // . reg save area .
+    // |               |
+    // +---------------+ <--- sp + 0x40
+    // |               |
+    // . extra 7 slots .
+    // |               |
+    // +---------------+ <--- sp + 0x5c
+    // |  empty slot   |      (only if parameter size is even)
+    // +---------------+
+    // |               |
+    // .  parameters   .
+    // |               |
+    // +---------------+ <--- fp + 0
+    // |               |
+    // . reg save area .
+    // |               |
+    // +---------------+ <--- fp + 0x40
+    // |               |
+    // . extra 7 slots .
+    // |               |
+    // +---------------+ <--- fp + 0x5c
+    // |  param. size  |
+    // +---------------+ <--- fp + 0x60
+    // |    thread     |
+    // +---------------+
+    // |               |
+
+    // pass parameters if any
+    BLOCK_COMMENT("pass parameters if any");
+    { const Register src = parameters.as_in().as_register();
+      const Register dst = Lentry_args;
+      const Register tmp = G3_scratch;
+      const Register cnt = G4_scratch;
+
+      // test if any parameters & setup of Lentry_args
+      Label exit;
+      __ ld_ptr(parameter_size.as_in().as_address(), cnt);      // parameter counter
+      __ add( FP, STACK_BIAS, dst );
+      __ tst(cnt);
+      __ br(Assembler::zero, false, Assembler::pn, exit);
+      __ delayed()->sub(dst, BytesPerWord, dst);                 // setup Lentry_args
+
+      // copy parameters if any
+      Label loop;
+      __ BIND(loop);
+      // Store tag first.
+      if (TaggedStackInterpreter) {
+        __ ld_ptr(src, 0, tmp);
+        __ add(src, BytesPerWord, src);  // get next
+        __ st_ptr(tmp, dst, Interpreter::tag_offset_in_bytes());
+      }
+      // Store parameter value
+      __ ld_ptr(src, 0, tmp);
+      __ add(src, BytesPerWord, src);
+      __ st_ptr(tmp, dst, Interpreter::value_offset_in_bytes());
+      __ deccc(cnt);
+      __ br(Assembler::greater, false, Assembler::pt, loop);
+      __ delayed()->sub(dst, Interpreter::stackElementSize(), dst);
+
+      // done
+      __ BIND(exit);
+    }
+
+    // setup parameters, method & call Java function
+#ifdef ASSERT
+    // layout_activation_impl checks it's notion of saved SP against
+    // this register, so if this changes update it as well.
+    const Register saved_SP = Lscratch;
+    __ mov(SP, saved_SP);                               // keep track of SP before call
+#endif
+
+    // setup parameters
+    const Register t = G3_scratch;
+    __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
+    __ sll(t, Interpreter::logStackElementSize(), t);            // compute number of bytes
+    __ sub(FP, t, Gargs);                              // setup parameter pointer
+#ifdef _LP64
+    __ add( Gargs, STACK_BIAS, Gargs );                // Account for LP64 stack bias
+#endif
+    __ mov(SP, O5_savedSP);
+
+
+    // do the call
+    //
+    // the following register must be setup:
+    //
+    // G2_thread
+    // G5_method
+    // Gargs
+    BLOCK_COMMENT("call Java function");
+    __ jmpl(entry_point.as_in().as_register(), G0, O7);
+    __ delayed()->mov(method.as_in().as_register(), G5_method);   // setup method
+
+    BLOCK_COMMENT("call_stub_return_address:");
+    return_pc = __ pc();
+
+    // The callee, if it wasn't interpreted, can return with SP changed so
+    // we can no longer assert of change of SP.
+
+    // store result depending on type
+    // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
+    //  is treated as T_INT)
+    { const Register addr = result     .as_in().as_register();
+      const Register type = result_type.as_in().as_register();
+      Label is_long, is_float, is_double, is_object, exit;
+      __            cmp(type, T_OBJECT);  __ br(Assembler::equal, false, Assembler::pn, is_object);
+      __ delayed()->cmp(type, T_FLOAT);   __ br(Assembler::equal, false, Assembler::pn, is_float);
+      __ delayed()->cmp(type, T_DOUBLE);  __ br(Assembler::equal, false, Assembler::pn, is_double);
+      __ delayed()->cmp(type, T_LONG);    __ br(Assembler::equal, false, Assembler::pn, is_long);
+      __ delayed()->nop();
+
+      // store int result
+      __ st(O0, addr, G0);
+
+      __ BIND(exit);
+      __ ret();
+      __ delayed()->restore();
+
+      __ BIND(is_object);
+      __ ba(false, exit);
+      __ delayed()->st_ptr(O0, addr, G0);
+
+      __ BIND(is_float);
+      __ ba(false, exit);
+      __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);
+
+      __ BIND(is_double);
+      __ ba(false, exit);
+      __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);
+
+      __ BIND(is_long);
+#ifdef _LP64
+      __ ba(false, exit);
+      __ delayed()->st_long(O0, addr, G0);      // store entire long
+#else
+#if defined(COMPILER2)
+  // All return values are where we want them, except for Longs.  C2 returns
+  // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
+  // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
+  // build we simply always use G1.
+  // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
+  // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
+  // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
+
+      __ ba(false, exit);
+      __ delayed()->stx(G1, addr, G0);  // store entire long
+#else
+      __ st(O1, addr, BytesPerInt);
+      __ ba(false, exit);
+      __ delayed()->st(O0, addr, G0);
+#endif /* COMPILER2 */
+#endif /* _LP64 */
+     }
+     return start;
+  }
+
+
+  //----------------------------------------------------------------------------------------------------
+  // Return point for a Java call if there's an exception thrown in Java code.
+  // The exception is caught and transformed into a pending exception stored in
+  // JavaThread that can be tested from within the VM.
+  //
+  // Oexception: exception oop
+
+  address generate_catch_exception() {
+    StubCodeMark mark(this, "StubRoutines", "catch_exception");
+
+    address start = __ pc();
+    // verify that thread corresponds
+    __ verify_thread();
+
+    const Register& temp_reg = Gtemp;
+    Address pending_exception_addr    (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
+    Address exception_file_offset_addr(G2_thread, 0, in_bytes(Thread::exception_file_offset   ()));
+    Address exception_line_offset_addr(G2_thread, 0, in_bytes(Thread::exception_line_offset   ()));
+
+    // set pending exception
+    __ verify_oop(Oexception);
+    __ st_ptr(Oexception, pending_exception_addr);
+    __ set((intptr_t)__FILE__, temp_reg);
+    __ st_ptr(temp_reg, exception_file_offset_addr);
+    __ set((intptr_t)__LINE__, temp_reg);
+    __ st(temp_reg, exception_line_offset_addr);
+
+    // complete return to VM
+    assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
+
+    Address stub_ret(temp_reg, StubRoutines::_call_stub_return_address);
+    __ jump_to(stub_ret);
+    __ delayed()->nop();
+
+    return start;
+  }
+
+
+  //----------------------------------------------------------------------------------------------------
+  // Continuation point for runtime calls returning with a pending exception
+  // The pending exception check happened in the runtime or native call stub
+  // The pending exception in Thread is converted into a Java-level exception
+  //
+  // Contract with Java-level exception handler: O0 = exception
+  //                                             O1 = throwing pc
+
+  address generate_forward_exception() {
+    StubCodeMark mark(this, "StubRoutines", "forward_exception");
+    address start = __ pc();
+
+    // Upon entry, O7 has the return address returning into Java
+    // (interpreted or compiled) code; i.e. the return address
+    // becomes the throwing pc.
+
+    const Register& handler_reg = Gtemp;
+
+    Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
+
+#ifdef ASSERT
+    // make sure that this code is only executed if there is a pending exception
+    { Label L;
+      __ ld_ptr(exception_addr, Gtemp);
+      __ br_notnull(Gtemp, false, Assembler::pt, L);
+      __ delayed()->nop();
+      __ stop("StubRoutines::forward exception: no pending exception (1)");
+      __ bind(L);
+    }
+#endif
+
+    // compute exception handler into handler_reg
+    __ get_thread();
+    __ ld_ptr(exception_addr, Oexception);
+    __ verify_oop(Oexception);
+    __ save_frame(0);             // compensates for compiler weakness
+    __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
+    BLOCK_COMMENT("call exception_handler_for_return_address");
+    __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), Lscratch);
+    __ mov(O0, handler_reg);
+    __ restore();                 // compensates for compiler weakness
+
+    __ ld_ptr(exception_addr, Oexception);
+    __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC
+
+#ifdef ASSERT
+    // make sure exception is set
+    { Label L;
+      __ br_notnull(Oexception, false, Assembler::pt, L);
+      __ delayed()->nop();
+      __ stop("StubRoutines::forward exception: no pending exception (2)");
+      __ bind(L);
+    }
+#endif
+    // jump to exception handler
+    __ jmp(handler_reg, 0);
+    // clear pending exception
+    __ delayed()->st_ptr(G0, exception_addr);
+
+    return start;
+  }
+
+
+  //------------------------------------------------------------------------------------------------------------------------
+  // Continuation point for throwing of implicit exceptions that are not handled in
+  // the current activation. Fabricates an exception oop and initiates normal
+  // exception dispatching in this frame. Only callee-saved registers are preserved
+  // (through the normal register window / RegisterMap handling).
+  // If the compiler needs all registers to be preserved between the fault
+  // point and the exception handler then it must assume responsibility for that in
+  // AbstractCompiler::continuation_for_implicit_null_exception or
+  // continuation_for_implicit_division_by_zero_exception. All other implicit
+  // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
+  // either at call sites or otherwise assume that stack unwinding will be initiated,
+  // so caller saved registers were assumed volatile in the compiler.
+
+  // Note that we generate only this stub into a RuntimeStub, because it needs to be
+  // properly traversed and ignored during GC, so we change the meaning of the "__"
+  // macro within this method.
+#undef __
+#define __ masm->
+
+  address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc) {
+#ifdef ASSERT
+    int insts_size = VerifyThread ? 1 * K : 600;
+#else
+    int insts_size = VerifyThread ? 1 * K : 256;
+#endif /* ASSERT */
+    int locs_size  = 32;
+
+    CodeBuffer      code(name, insts_size, locs_size);
+    MacroAssembler* masm = new MacroAssembler(&code);
+
+    __ verify_thread();
+
+    // This is an inlined and slightly modified version of call_VM
+    // which has the ability to fetch the return PC out of thread-local storage
+    __ assert_not_delayed();
+
+    // Note that we always push a frame because on the SPARC
+    // architecture, for all of our implicit exception kinds at call
+    // sites, the implicit exception is taken before the callee frame
+    // is pushed.
+    __ save_frame(0);
+
+    int frame_complete = __ offset();
+
+    if (restore_saved_exception_pc) {
+      Address saved_exception_pc(G2_thread, 0, in_bytes(JavaThread::saved_exception_pc_offset()));
+      __ ld_ptr(saved_exception_pc, I7);
+      __ sub(I7, frame::pc_return_offset, I7);
+    }
+
+    // Note that we always have a runtime stub frame on the top of stack by this point
+    Register last_java_sp = SP;
+    // 64-bit last_java_sp is biased!
+    __ set_last_Java_frame(last_java_sp, G0);
+    if (VerifyThread)  __ mov(G2_thread, O0); // about to be smashed; pass early
+    __ save_thread(noreg);
+    // do the call
+    BLOCK_COMMENT("call runtime_entry");
+    __ call(runtime_entry, relocInfo::runtime_call_type);
+    if (!VerifyThread)
+      __ delayed()->mov(G2_thread, O0);  // pass thread as first argument
+    else
+      __ delayed()->nop();             // (thread already passed)
+    __ restore_thread(noreg);
+    __ reset_last_Java_frame();
+
+    // check for pending exceptions. use Gtemp as scratch register.
+#ifdef ASSERT
+    Label L;
+
+    Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
+    Register scratch_reg = Gtemp;
+    __ ld_ptr(exception_addr, scratch_reg);
+    __ br_notnull(scratch_reg, false, Assembler::pt, L);
+    __ delayed()->nop();
+    __ should_not_reach_here();
+    __ bind(L);
+#endif // ASSERT
+    BLOCK_COMMENT("call forward_exception_entry");
+    __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
+    // we use O7 linkage so that forward_exception_entry has the issuing PC
+    __ delayed()->restore();
+
+    RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
+    return stub->entry_point();
+  }
+
+#undef __
+#define __ _masm->
+
+
+  // Generate a routine that sets all the registers so we
+  // can tell if the stop routine prints them correctly.
+  address generate_test_stop() {
+    StubCodeMark mark(this, "StubRoutines", "test_stop");
+    address start = __ pc();
+
+    int i;
+
+    __ save_frame(0);
+
+    static jfloat zero = 0.0, one = 1.0;
+
+    // put addr in L0, then load through L0 to F0
+    __ set((intptr_t)&zero, L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F0);
+    __ set((intptr_t)&one,  L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1
+
+    // use add to put 2..18 in F2..F18
+    for ( i = 2;  i <= 18;  ++i ) {
+      __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1),  as_FloatRegister(i));
+    }
+
+    // Now put double 2 in F16, double 18 in F18
+    __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
+    __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );
+
+    // use add to put 20..32 in F20..F32
+    for (i = 20; i < 32; i += 2) {
+      __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2),  as_FloatRegister(i));
+    }
+
+    // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
+    for ( i = 0; i < 8; ++i ) {
+      if (i < 6) {
+        __ set(     i, as_iRegister(i));
+        __ set(16 + i, as_oRegister(i));
+        __ set(24 + i, as_gRegister(i));
+      }
+      __ set( 8 + i, as_lRegister(i));
+    }
+
+    __ stop("testing stop");
+
+
+    __ ret();
+    __ delayed()->restore();
+
+    return start;
+  }
+
+
+  address generate_stop_subroutine() {
+    StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
+    address start = __ pc();
+
+    __ stop_subroutine();
+
+    return start;
+  }
+
+  address generate_flush_callers_register_windows() {
+    StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
+    address start = __ pc();
+
+    __ flush_windows();
+    __ retl(false);
+    __ delayed()->add( FP, STACK_BIAS, O0 );
+    // The returned value must be a stack pointer whose register save area
+    // is flushed, and will stay flushed while the caller executes.
+
+    return start;
+  }
+
+  // Helper functions for v8 atomic operations.
+  //
+  void get_v8_oop_lock_ptr(Register lock_ptr_reg, Register mark_oop_reg, Register scratch_reg) {
+    if (mark_oop_reg == noreg) {
+      address lock_ptr = (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr();
+      __ set((intptr_t)lock_ptr, lock_ptr_reg);
+    } else {
+      assert(scratch_reg != noreg, "just checking");
+      address lock_ptr = (address)StubRoutines::Sparc::_v8_oop_lock_cache;
+      __ set((intptr_t)lock_ptr, lock_ptr_reg);
+      __ and3(mark_oop_reg, StubRoutines::Sparc::v8_oop_lock_mask_in_place, scratch_reg);
+      __ add(lock_ptr_reg, scratch_reg, lock_ptr_reg);
+    }
+  }
+
+  void generate_v8_lock_prologue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
+
+    get_v8_oop_lock_ptr(lock_ptr_reg, mark_oop_reg, scratch_reg);
+    __ set(StubRoutines::Sparc::locked, lock_reg);
+    // Initialize yield counter
+    __ mov(G0,yield_reg);
+
+    __ BIND(retry);
+    __ cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
+    __ br(Assembler::less, false, Assembler::pt, dontyield);
+    __ delayed()->nop();
+
+    // This code can only be called from inside the VM, this
+    // stub is only invoked from Atomic::add().  We do not
+    // want to use call_VM, because _last_java_sp and such
+    // must already be set.
+    //
+    // Save the regs and make space for a C call
+    __ save(SP, -96, SP);
+    __ save_all_globals_into_locals();
+    BLOCK_COMMENT("call os::naked_sleep");
+    __ call(CAST_FROM_FN_PTR(address, os::naked_sleep));
+    __ delayed()->nop();
+    __ restore_globals_from_locals();
+    __ restore();
+    // reset the counter
+    __ mov(G0,yield_reg);
+
+    __ BIND(dontyield);
+
+    // try to get lock
+    __ swap(lock_ptr_reg, 0, lock_reg);
+
+    // did we get the lock?
+    __ cmp(lock_reg, StubRoutines::Sparc::unlocked);
+    __ br(Assembler::notEqual, true, Assembler::pn, retry);
+    __ delayed()->add(yield_reg,1,yield_reg);
+
+    // yes, got lock. do the operation here.
+  }
+
+  void generate_v8_lock_epilogue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
+    __ st(lock_reg, lock_ptr_reg, 0); // unlock
+  }
+
+  // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
+  //
+  // Arguments :
+  //
+  //      exchange_value: O0
+  //      dest:           O1
+  //
+  // Results:
+  //
+  //     O0: the value previously stored in dest
+  //
+  address generate_atomic_xchg() {
+    StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
+    address start = __ pc();
+
+    if (UseCASForSwap) {
+      // Use CAS instead of swap, just in case the MP hardware
+      // prefers to work with just one kind of synch. instruction.
+      Label retry;
+      __ BIND(retry);
+      __ mov(O0, O3);       // scratch copy of exchange value
+      __ ld(O1, 0, O2);     // observe the previous value
+      // try to replace O2 with O3
+      __ cas_under_lock(O1, O2, O3,
+      (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
+      __ cmp(O2, O3);
+      __ br(Assembler::notEqual, false, Assembler::pn, retry);
+      __ delayed()->nop();
+
+      __ retl(false);
+      __ delayed()->mov(O2, O0);  // report previous value to caller
+
+    } else {
+      if (VM_Version::v9_instructions_work()) {
+        __ retl(false);
+        __ delayed()->swap(O1, 0, O0);
+      } else {
+        const Register& lock_reg = O2;
+        const Register& lock_ptr_reg = O3;
+        const Register& yield_reg = O4;
+
+        Label retry;
+        Label dontyield;
+
+        generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
+        // got the lock, do the swap
+        __ swap(O1, 0, O0);
+
+        generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
+        __ retl(false);
+        __ delayed()->nop();
+      }
+    }
+
+    return start;
+  }
+
+
+  // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
+  //
+  // Arguments :
+  //
+  //      exchange_value: O0
+  //      dest:           O1
+  //      compare_value:  O2
+  //
+  // Results:
+  //
+  //     O0: the value previously stored in dest
+  //
+  // Overwrites (v8): O3,O4,O5
+  //
+  address generate_atomic_cmpxchg() {
+    StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
+    address start = __ pc();
+
+    // cmpxchg(dest, compare_value, exchange_value)
+    __ cas_under_lock(O1, O2, O0,
+      (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
+    __ retl(false);
+    __ delayed()->nop();
+
+    return start;
+  }
+
+  // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
+  //
+  // Arguments :
+  //
+  //      exchange_value: O1:O0
+  //      dest:           O2
+  //      compare_value:  O4:O3
+  //
+  // Results:
+  //
+  //     O1:O0: the value previously stored in dest
+  //
+  // This only works on V9, on V8 we don't generate any
+  // code and just return NULL.
+  //
+  // Overwrites: G1,G2,G3
+  //
+  address generate_atomic_cmpxchg_long() {
+    StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
+    address start = __ pc();
+
+    if (!VM_Version::supports_cx8())
+        return NULL;;
+    __ sllx(O0, 32, O0);
+    __ srl(O1, 0, O1);
+    __ or3(O0,O1,O0);      // O0 holds 64-bit value from compare_value
+    __ sllx(O3, 32, O3);
+    __ srl(O4, 0, O4);
+    __ or3(O3,O4,O3);     // O3 holds 64-bit value from exchange_value
+    __ casx(O2, O3, O0);
+    __ srl(O0, 0, O1);    // unpacked return value in O1:O0
+    __ retl(false);
+    __ delayed()->srlx(O0, 32, O0);
+
+    return start;
+  }
+
+
+  // Support for jint Atomic::add(jint add_value, volatile jint* dest).
+  //
+  // Arguments :
+  //
+  //      add_value: O0   (e.g., +1 or -1)
+  //      dest:      O1
+  //
+  // Results:
+  //
+  //     O0: the new value stored in dest
+  //
+  // Overwrites (v9): O3
+  // Overwrites (v8): O3,O4,O5
+  //
+  address generate_atomic_add() {
+    StubCodeMark mark(this, "StubRoutines", "atomic_add");
+    address start = __ pc();
+    __ BIND(_atomic_add_stub);
+
+    if (VM_Version::v9_instructions_work()) {
+      Label(retry);
+      __ BIND(retry);
+
+      __ lduw(O1, 0, O2);
+      __ add(O0,   O2, O3);
+      __ cas(O1,   O2, O3);
+      __ cmp(      O2, O3);
+      __ br(Assembler::notEqual, false, Assembler::pn, retry);
+      __ delayed()->nop();
+      __ retl(false);
+      __ delayed()->add(O0, O2, O0); // note that cas made O2==O3
+    } else {
+      const Register& lock_reg = O2;
+      const Register& lock_ptr_reg = O3;
+      const Register& value_reg = O4;
+      const Register& yield_reg = O5;
+
+      Label(retry);
+      Label(dontyield);
+
+      generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
+      // got lock, do the increment
+      __ ld(O1, 0, value_reg);
+      __ add(O0, value_reg, value_reg);
+      __ st(value_reg, O1, 0);
+
+      // %%% only for RMO and PSO
+      __ membar(Assembler::StoreStore);
+
+      generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
+
+      __ retl(false);
+      __ delayed()->mov(value_reg, O0);
+    }
+
+    return start;
+  }
+  Label _atomic_add_stub;  // called from other stubs
+
+
+  // Support for void OrderAccess::fence().
+  //
+  address generate_fence() {
+    StubCodeMark mark(this, "StubRoutines", "fence");
+    address start = __ pc();
+
+    __ membar(Assembler::Membar_mask_bits(Assembler::LoadLoad  | Assembler::LoadStore |
+                                          Assembler::StoreLoad | Assembler::StoreStore));
+    __ retl(false);
+    __ delayed()->nop();
+
+    return start;
+  }
+
+
+  //------------------------------------------------------------------------------------------------------------------------
+  // The following routine generates a subroutine to throw an asynchronous
+  // UnknownError when an unsafe access gets a fault that could not be
+  // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
+  //
+  // Arguments :
+  //
+  //      trapping PC:    O7
+  //
+  // Results:
+  //     posts an asynchronous exception, skips the trapping instruction
+  //
+
+  address generate_handler_for_unsafe_access() {
+    StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
+    address start = __ pc();
+
+    const int preserve_register_words = (64 * 2);
+    Address preserve_addr(FP, 0, (-preserve_register_words * wordSize) + STACK_BIAS);
+
+    Register Lthread = L7_thread_cache;
+    int i;
+
+    __ save_frame(0);
+    __ mov(G1, L1);
+    __ mov(G2, L2);
+    __ mov(G3, L3);
+    __ mov(G4, L4);
+    __ mov(G5, L5);
+    for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
+      __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
+    }
+
+    address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
+    BLOCK_COMMENT("call handle_unsafe_access");
+    __ call(entry_point, relocInfo::runtime_call_type);
+    __ delayed()->nop();
+
+    __ mov(L1, G1);
+    __ mov(L2, G2);
+    __ mov(L3, G3);
+    __ mov(L4, G4);
+    __ mov(L5, G5);
+    for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
+      __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
+    }
+
+    __ verify_thread();
+
+    __ jmp(O0, 0);
+    __ delayed()->restore();
+
+    return start;
+  }
+
+
+  // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
+  // Arguments :
+  //
+  //      ret  : O0, returned
+  //      icc/xcc: set as O0 (depending on wordSize)
+  //      sub  : O1, argument, not changed
+  //      super: O2, argument, not changed
+  //      raddr: O7, blown by call
+  address generate_partial_subtype_check() {
+    StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
+    address start = __ pc();
+    Label loop, miss;
+
+    // Compare super with sub directly, since super is not in its own SSA.
+    // The compiler used to emit this test, but we fold it in here,
+    // to increase overall code density, with no real loss of speed.
+    { Label L;
+      __ cmp(O1, O2);
+      __ brx(Assembler::notEqual, false, Assembler::pt, L);
+      __ delayed()->nop();
+      __ retl();
+      __ delayed()->addcc(G0,0,O0); // set Z flags, zero result
+      __ bind(L);
+    }
+
+#if defined(COMPILER2) && !defined(_LP64)
+    // Do not use a 'save' because it blows the 64-bit O registers.
+    __ add(SP,-4*wordSize,SP);  // Make space for 4 temps
+    __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
+    __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
+    __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
+    __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
+    Register Rret   = O0;
+    Register Rsub   = O1;
+    Register Rsuper = O2;
+#else
+    __ save_frame(0);
+    Register Rret   = I0;
+    Register Rsub   = I1;
+    Register Rsuper = I2;
+#endif
+
+    Register L0_ary_len = L0;
+    Register L1_ary_ptr = L1;
+    Register L2_super   = L2;
+    Register L3_index   = L3;
+
+    inc_counter_np(SharedRuntime::_partial_subtype_ctr, L0, L1);
+
+    __ ld_ptr( Rsub, sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes(), L3 );
+    __ lduw(L3,arrayOopDesc::length_offset_in_bytes(),L0_ary_len);
+    __ add(L3,arrayOopDesc::base_offset_in_bytes(T_OBJECT),L1_ary_ptr);
+    __ clr(L3_index);           // zero index
+    // Load a little early; will load 1 off the end of the array.
+    // Ok for now; revisit if we have other uses of this routine.
+    __ ld_ptr(L1_ary_ptr,0,L2_super);// Will load a little early
+    __ align(CodeEntryAlignment);
+
+    // The scan loop
+    __ BIND(loop);
+    __ add(L1_ary_ptr,wordSize,L1_ary_ptr); // Bump by OOP size
+    __ cmp(L3_index,L0_ary_len);
+    __ br(Assembler::equal,false,Assembler::pn,miss);
+    __ delayed()->inc(L3_index); // Bump index
+    __ subcc(L2_super,Rsuper,Rret);   // Check for match; zero in Rret for a hit
+    __ brx( Assembler::notEqual, false, Assembler::pt, loop );
+    __ delayed()->ld_ptr(L1_ary_ptr,0,L2_super); // Will load a little early
+
+    // Got a hit; report success; set cache.  Cache load doesn't
+    // happen here; for speed it is directly emitted by the compiler.
+    __ st_ptr( Rsuper, Rsub, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() );
+
+#if defined(COMPILER2) && !defined(_LP64)
+    __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
+    __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
+    __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
+    __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
+    __ retl();                  // Result in Rret is zero; flags set to Z
+    __ delayed()->add(SP,4*wordSize,SP);
+#else
+    __ ret();                   // Result in Rret is zero; flags set to Z
+    __ delayed()->restore();
+#endif
+
+    // Hit or miss falls through here
+    __ BIND(miss);
+    __ addcc(G0,1,Rret);        // set NZ flags, NZ result
+
+#if defined(COMPILER2) && !defined(_LP64)
+    __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
+    __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
+    __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
+    __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
+    __ retl();                  // Result in Rret is != 0; flags set to NZ
+    __ delayed()->add(SP,4*wordSize,SP);
+#else
+    __ ret();                   // Result in Rret is != 0; flags set to NZ
+    __ delayed()->restore();
+#endif
+
+    return start;
+  }
+
+
+  // Called from MacroAssembler::verify_oop
+  //
+  address generate_verify_oop_subroutine() {
+    StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
+
+    address start = __ pc();
+
+    __ verify_oop_subroutine();
+
+    return start;
+  }
+
+  static address disjoint_byte_copy_entry;
+  static address disjoint_short_copy_entry;
+  static address disjoint_int_copy_entry;
+  static address disjoint_long_copy_entry;
+  static address disjoint_oop_copy_entry;
+
+  static address byte_copy_entry;
+  static address short_copy_entry;
+  static address int_copy_entry;
+  static address long_copy_entry;
+  static address oop_copy_entry;
+
+  static address checkcast_copy_entry;
+
+  //
+  // Verify that a register contains clean 32-bits positive value
+  // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
+  //
+  //  Input:
+  //    Rint  -  32-bits value
+  //    Rtmp  -  scratch
+  //
+  void assert_clean_int(Register Rint, Register Rtmp) {
+#if defined(ASSERT) && defined(_LP64)
+    __ signx(Rint, Rtmp);
+    __ cmp(Rint, Rtmp);
+    __ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
+#endif
+  }
+
+  //
+  //  Generate overlap test for array copy stubs
+  //
+  //  Input:
+  //    O0    -  array1
+  //    O1    -  array2
+  //    O2    -  element count
+  //
+  //  Kills temps:  O3, O4
+  //
+  void array_overlap_test(address no_overlap_target, int log2_elem_size) {
+    assert(no_overlap_target != NULL, "must be generated");
+    array_overlap_test(no_overlap_target, NULL, log2_elem_size);
+  }
+  void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
+    array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
+  }
+  void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
+    const Register from       = O0;
+    const Register to         = O1;
+    const Register count      = O2;
+    const Register to_from    = O3; // to - from
+    const Register byte_count = O4; // count << log2_elem_size
+
+      __ subcc(to, from, to_from);
+      __ sll_ptr(count, log2_elem_size, byte_count);
+      if (NOLp == NULL)
+        __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
+      else
+        __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
+      __ delayed()->cmp(to_from, byte_count);
+      if (NOLp == NULL)
+        __ brx(Assembler::greaterEqual, false, Assembler::pt, no_overlap_target);
+      else
+        __ brx(Assembler::greaterEqual, false, Assembler::pt, (*NOLp));
+      __ delayed()->nop();
+  }
+
+  //
+  //  Generate pre-write barrier for array.
+  //
+  //  Input:
+  //     addr     - register containing starting address
+  //     count    - register containing element count
+  //     tmp      - scratch register
+  //
+  //  The input registers are overwritten.
+  //
+  void gen_write_ref_array_pre_barrier(Register addr, Register count) {
+#if 0 // G1 only
+    BarrierSet* bs = Universe::heap()->barrier_set();
+    if (bs->has_write_ref_pre_barrier()) {
+      assert(bs->has_write_ref_array_pre_opt(),
+             "Else unsupported barrier set.");
+
+      assert(addr->is_global() && count->is_global(),
+             "If not, then we have to fix this code to handle more "
+             "general cases.");
+      // Get some new fresh output registers.
+      __ save_frame(0);
+      // Save the necessary global regs... will be used after.
+      __ mov(addr, L0);
+      __ mov(count, L1);
+
+      __ mov(addr, O0);
+      // Get the count into O1
+      __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
+      __ delayed()->mov(count, O1);
+      __ mov(L0, addr);
+      __ mov(L1, count);
+      __ restore();
+    }
+#endif // 0
+  }
+
+  //
+  //  Generate post-write barrier for array.
+  //
+  //  Input:
+  //     addr     - register containing starting address
+  //     count    - register containing element count
+  //     tmp      - scratch register
+  //
+  //  The input registers are overwritten.
+  //
+  void gen_write_ref_array_post_barrier(Register addr, Register count,
+                                   Register tmp) {
+    BarrierSet* bs = Universe::heap()->barrier_set();
+
+    switch (bs->kind()) {
+#if 0 // G1 - only
+      case BarrierSet::G1SATBCT:
+      case BarrierSet::G1SATBCTLogging:
+        {
+          assert(addr->is_global() && count->is_global(),
+                 "If not, then we have to fix this code to handle more "
+                 "general cases.");
+          // Get some new fresh output registers.
+          __ save_frame(0);
+          __ mov(addr, O0);
+          __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
+          __ delayed()->mov(count, O1);
+          __ restore();
+        }
+        break;
+#endif // 0 G1 - only
+      case BarrierSet::CardTableModRef:
+      case BarrierSet::CardTableExtension:
+        {
+          CardTableModRefBS* ct = (CardTableModRefBS*)bs;
+          assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
+          assert_different_registers(addr, count, tmp);
+
+          Label L_loop;
+
+          __ sll_ptr(count, LogBytesPerOop, count);
+          __ sub(count, BytesPerOop, count);
+          __ add(count, addr, count);
+          // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
+          __ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
+          __ srl_ptr(count, CardTableModRefBS::card_shift, count);
+          __ sub(count, addr, count);
+          Address rs(tmp, (address)ct->byte_map_base);
+          __ load_address(rs);
+        __ BIND(L_loop);
+          __ stb(G0, rs.base(), addr);
+          __ subcc(count, 1, count);
+          __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
+          __ delayed()->add(addr, 1, addr);
+
+          }
+        break;
+      case BarrierSet::ModRef:
+        break;
+      default      :
+        ShouldNotReachHere();
+
+    }
+
+  }
+
+
+  // Copy big chunks forward with shift
+  //
+  // Inputs:
+  //   from      - source arrays
+  //   to        - destination array aligned to 8-bytes
+  //   count     - elements count to copy >= the count equivalent to 16 bytes
+  //   count_dec - elements count's decrement equivalent to 16 bytes
+  //   L_copy_bytes - copy exit label
+  //
+  void copy_16_bytes_forward_with_shift(Register from, Register to,
+                     Register count, int count_dec, Label& L_copy_bytes) {
+    Label L_loop, L_aligned_copy, L_copy_last_bytes;
+
+    // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
+      __ andcc(from, 7, G1); // misaligned bytes
+      __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
+      __ delayed()->nop();
+
+    const Register left_shift  = G1; // left  shift bit counter
+    const Register right_shift = G5; // right shift bit counter
+
+      __ sll(G1, LogBitsPerByte, left_shift);
+      __ mov(64, right_shift);
+      __ sub(right_shift, left_shift, right_shift);
+
+    //
+    // Load 2 aligned 8-bytes chunks and use one from previous iteration
+    // to form 2 aligned 8-bytes chunks to store.
+    //
+      __ deccc(count, count_dec); // Pre-decrement 'count'
+      __ andn(from, 7, from);     // Align address
+      __ ldx(from, 0, O3);
+      __ inc(from, 8);
+      __ align(16);
+    __ BIND(L_loop);
+      __ ldx(from, 0, O4);
+      __ deccc(count, count_dec); // Can we do next iteration after this one?
+      __ ldx(from, 8, G4);
+      __ inc(to, 16);
+      __ inc(from, 16);
+      __ sllx(O3, left_shift,  O3);
+      __ srlx(O4, right_shift, G3);
+      __ bset(G3, O3);
+      __ stx(O3, to, -16);
+      __ sllx(O4, left_shift,  O4);
+      __ srlx(G4, right_shift, G3);
+      __ bset(G3, O4);
+      __ stx(O4, to, -8);
+      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
+      __ delayed()->mov(G4, O3);
+
+      __ inccc(count, count_dec>>1 ); // + 8 bytes
+      __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
+      __ delayed()->inc(count, count_dec>>1); // restore 'count'
+
+      // copy 8 bytes, part of them already loaded in O3
+      __ ldx(from, 0, O4);
+      __ inc(to, 8);
+      __ inc(from, 8);
+      __ sllx(O3, left_shift,  O3);
+      __ srlx(O4, right_shift, G3);
+      __ bset(O3, G3);
+      __ stx(G3, to, -8);
+
+    __ BIND(L_copy_last_bytes);
+      __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
+      __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
+      __ delayed()->sub(from, right_shift, from);       // restore address
+
+    __ BIND(L_aligned_copy);
+  }
+
+  // Copy big chunks backward with shift
+  //
+  // Inputs:
+  //   end_from  - source arrays end address
+  //   end_to    - destination array end address aligned to 8-bytes
+  //   count     - elements count to copy >= the count equivalent to 16 bytes
+  //   count_dec - elements count's decrement equivalent to 16 bytes
+  //   L_aligned_copy - aligned copy exit label
+  //   L_copy_bytes   - copy exit label
+  //
+  void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
+                     Register count, int count_dec,
+                     Label& L_aligned_copy, Label& L_copy_bytes) {
+    Label L_loop, L_copy_last_bytes;
+
+    // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
+      __ andcc(end_from, 7, G1); // misaligned bytes
+      __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
+      __ delayed()->deccc(count, count_dec); // Pre-decrement 'count'
+
+    const Register left_shift  = G1; // left  shift bit counter
+    const Register right_shift = G5; // right shift bit counter
+
+      __ sll(G1, LogBitsPerByte, left_shift);
+      __ mov(64, right_shift);
+      __ sub(right_shift, left_shift, right_shift);
+
+    //
+    // Load 2 aligned 8-bytes chunks and use one from previous iteration
+    // to form 2 aligned 8-bytes chunks to store.
+    //
+      __ andn(end_from, 7, end_from);     // Align address
+      __ ldx(end_from, 0, O3);
+      __ align(16);
+    __ BIND(L_loop);
+      __ ldx(end_from, -8, O4);
+      __ deccc(count, count_dec); // Can we do next iteration after this one?
+      __ ldx(end_from, -16, G4);
+      __ dec(end_to, 16);
+      __ dec(end_from, 16);
+      __ srlx(O3, right_shift, O3);
+      __ sllx(O4, left_shift,  G3);
+      __ bset(G3, O3);
+      __ stx(O3, end_to, 8);
+      __ srlx(O4, right_shift, O4);
+      __ sllx(G4, left_shift,  G3);
+      __ bset(G3, O4);
+      __ stx(O4, end_to, 0);
+      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
+      __ delayed()->mov(G4, O3);
+
+      __ inccc(count, count_dec>>1 ); // + 8 bytes
+      __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
+      __ delayed()->inc(count, count_dec>>1); // restore 'count'
+
+      // copy 8 bytes, part of them already loaded in O3
+      __ ldx(end_from, -8, O4);
+      __ dec(end_to, 8);
+      __ dec(end_from, 8);
+      __ srlx(O3, right_shift, O3);
+      __ sllx(O4, left_shift,  G3);
+      __ bset(O3, G3);
+      __ stx(G3, end_to, 0);
+
+    __ BIND(L_copy_last_bytes);
+      __ srl(left_shift, LogBitsPerByte, left_shift);    // misaligned bytes
+      __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
+      __ delayed()->add(end_from, left_shift, end_from); // restore address
+  }
+
+  //
+  //  Generate stub for disjoint byte copy.  If "aligned" is true, the
+  //  "from" and "to" addresses are assumed to be heapword aligned.
+  //
+  // Arguments for generated stub:
+  //      from:  O0
+  //      to:    O1
+  //      count: O2 treated as signed
+  //
+  address generate_disjoint_byte_copy(bool aligned, const char * name) {
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", name);
+    address start = __ pc();
+
+    Label L_skip_alignment, L_align;
+    Label L_copy_byte, L_copy_byte_loop, L_exit;
+
+    const Register from      = O0;   // source array address
+    const Register to        = O1;   // destination array address
+    const Register count     = O2;   // elements count
+    const Register offset    = O5;   // offset from start of arrays
+    // O3, O4, G3, G4 are used as temp registers
+
+    assert_clean_int(count, O3);     // Make sure 'count' is clean int.
+
+    if (!aligned)  disjoint_byte_copy_entry = __ pc();
+    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
+    if (!aligned)  BLOCK_COMMENT("Entry:");
+
+    // for short arrays, just do single element copy
+    __ cmp(count, 23); // 16 + 7
+    __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
+    __ delayed()->mov(G0, offset);
+
+    if (aligned) {
+      // 'aligned' == true when it is known statically during compilation
+      // of this arraycopy call site that both 'from' and 'to' addresses
+      // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
+      //
+      // Aligned arrays have 4 bytes alignment in 32-bits VM
+      // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
+      //
+#ifndef _LP64
+      // copy a 4-bytes word if necessary to align 'to' to 8 bytes
+      __ andcc(to, 7, G0);
+      __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
+      __ delayed()->ld(from, 0, O3);
+      __ inc(from, 4);
+      __ inc(to, 4);
+      __ dec(count, 4);
+      __ st(O3, to, -4);
+    __ BIND(L_skip_alignment);
+#endif
+    } else {
+      // copy bytes to align 'to' on 8 byte boundary
+      __ andcc(to, 7, G1); // misaligned bytes
+      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
+      __ delayed()->neg(G1);
+      __ inc(G1, 8);       // bytes need to copy to next 8-bytes alignment
+      __ sub(count, G1, count);
+    __ BIND(L_align);
+      __ ldub(from, 0, O3);
+      __ deccc(G1);
+      __ inc(from);
+      __ stb(O3, to, 0);
+      __ br(Assembler::notZero, false, Assembler::pt, L_align);
+      __ delayed()->inc(to);
+    __ BIND(L_skip_alignment);
+    }
+#ifdef _LP64
+    if (!aligned)
+#endif
+    {
+      // Copy with shift 16 bytes per iteration if arrays do not have
+      // the same alignment mod 8, otherwise fall through to the next
+      // code for aligned copy.
+      // The compare above (count >= 23) guarantes 'count' >= 16 bytes.
+      // Also jump over aligned copy after the copy with shift completed.
+
+      copy_16_bytes_forward_with_shift(from, to, count, 16, L_copy_byte);
+    }
+
+    // Both array are 8 bytes aligned, copy 16 bytes at a time
+      __ and3(count, 7, G4); // Save count
+      __ srl(count, 3, count);
+     generate_disjoint_long_copy_core(aligned);
+      __ mov(G4, count);     // Restore count
+
+    // copy tailing bytes
+    __ BIND(L_copy_byte);
+      __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
+      __ delayed()->nop();
+      __ align(16);
+    __ BIND(L_copy_byte_loop);
+      __ ldub(from, offset, O3);
+      __ deccc(count);
+      __ stb(O3, to, offset);
+      __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
+      __ delayed()->inc(offset);
+
+    __ BIND(L_exit);
+      // O3, O4 are used as temp registers
+      inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
+      __ retl();
+      __ delayed()->mov(G0, O0); // return 0
+    return start;
+  }
+
+  //
+  //  Generate stub for conjoint byte copy.  If "aligned" is true, the
+  //  "from" and "to" addresses are assumed to be heapword aligned.
+  //
+  // Arguments for generated stub:
+  //      from:  O0
+  //      to:    O1
+  //      count: O2 treated as signed
+  //
+  address generate_conjoint_byte_copy(bool aligned, const char * name) {
+    // Do reverse copy.
+
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", name);
+    address start = __ pc();
+    address nooverlap_target = aligned ?
+        StubRoutines::arrayof_jbyte_disjoint_arraycopy() :
+        disjoint_byte_copy_entry;
+
+    Label L_skip_alignment, L_align, L_aligned_copy;
+    Label L_copy_byte, L_copy_byte_loop, L_exit;
+
+    const Register from      = O0;   // source array address
+    const Register to        = O1;   // destination array address
+    const Register count     = O2;   // elements count
+    const Register end_from  = from; // source array end address
+    const Register end_to    = to;   // destination array end address
+
+    assert_clean_int(count, O3);     // Make sure 'count' is clean int.
+
+    if (!aligned)  byte_copy_entry = __ pc();
+    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
+    if (!aligned)  BLOCK_COMMENT("Entry:");
+
+    array_overlap_test(nooverlap_target, 0);
+
+    __ add(to, count, end_to);       // offset after last copied element
+
+    // for short arrays, just do single element copy
+    __ cmp(count, 23); // 16 + 7
+    __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
+    __ delayed()->add(from, count, end_from);
+
+    {
+      // Align end of arrays since they could be not aligned even
+      // when arrays itself are aligned.
+
+      // copy bytes to align 'end_to' on 8 byte boundary
+      __ andcc(end_to, 7, G1); // misaligned bytes
+      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
+      __ delayed()->nop();
+      __ sub(count, G1, count);
+    __ BIND(L_align);
+      __ dec(end_from);
+      __ dec(end_to);
+      __ ldub(end_from, 0, O3);
+      __ deccc(G1);
+      __ brx(Assembler::notZero, false, Assembler::pt, L_align);
+      __ delayed()->stb(O3, end_to, 0);
+    __ BIND(L_skip_alignment);
+    }
+#ifdef _LP64
+    if (aligned) {
+      // Both arrays are aligned to 8-bytes in 64-bits VM.
+      // The 'count' is decremented in copy_16_bytes_backward_with_shift()
+      // in unaligned case.
+      __ dec(count, 16);
+    } else
+#endif
+    {
+      // Copy with shift 16 bytes per iteration if arrays do not have
+      // the same alignment mod 8, otherwise jump to the next
+      // code for aligned copy (and substracting 16 from 'count' before jump).
+      // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
+      // Also jump over aligned copy after the copy with shift completed.
+
+      copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
+                                        L_aligned_copy, L_copy_byte);
+    }
+    // copy 4 elements (16 bytes) at a time
+      __ align(16);
+    __ BIND(L_aligned_copy);
+      __ dec(end_from, 16);
+      __ ldx(end_from, 8, O3);
+      __ ldx(end_from, 0, O4);
+      __ dec(end_to, 16);
+      __ deccc(count, 16);
+      __ stx(O3, end_to, 8);
+      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
+      __ delayed()->stx(O4, end_to, 0);
+      __ inc(count, 16);
+
+    // copy 1 element (2 bytes) at a time
+    __ BIND(L_copy_byte);
+      __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
+      __ delayed()->nop();
+      __ align(16);
+    __ BIND(L_copy_byte_loop);
+      __ dec(end_from);
+      __ dec(end_to);
+      __ ldub(end_from, 0, O4);
+      __ deccc(count);
+      __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
+      __ delayed()->stb(O4, end_to, 0);
+
+    __ BIND(L_exit);
+    // O3, O4 are used as temp registers
+    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
+    __ retl();
+    __ delayed()->mov(G0, O0); // return 0
+    return start;
+  }
+
+  //
+  //  Generate stub for disjoint short copy.  If "aligned" is true, the
+  //  "from" and "to" addresses are assumed to be heapword aligned.
+  //
+  // Arguments for generated stub:
+  //      from:  O0
+  //      to:    O1
+  //      count: O2 treated as signed
+  //
+  address generate_disjoint_short_copy(bool aligned, const char * name) {
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", name);
+    address start = __ pc();
+
+    Label L_skip_alignment, L_skip_alignment2;
+    Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
+
+    const Register from      = O0;   // source array address
+    const Register to        = O1;   // destination array address
+    const Register count     = O2;   // elements count
+    const Register offset    = O5;   // offset from start of arrays
+    // O3, O4, G3, G4 are used as temp registers
+
+    assert_clean_int(count, O3);     // Make sure 'count' is clean int.
+
+    if (!aligned)  disjoint_short_copy_entry = __ pc();
+    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
+    if (!aligned)  BLOCK_COMMENT("Entry:");
+
+    // for short arrays, just do single element copy
+    __ cmp(count, 11); // 8 + 3  (22 bytes)
+    __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
+    __ delayed()->mov(G0, offset);
+
+    if (aligned) {
+      // 'aligned' == true when it is known statically during compilation
+      // of this arraycopy call site that both 'from' and 'to' addresses
+      // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
+      //
+      // Aligned arrays have 4 bytes alignment in 32-bits VM
+      // and 8 bytes - in 64-bits VM.
+      //
+#ifndef _LP64
+      // copy a 2-elements word if necessary to align 'to' to 8 bytes
+      __ andcc(to, 7, G0);
+      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
+      __ delayed()->ld(from, 0, O3);
+      __ inc(from, 4);
+      __ inc(to, 4);
+      __ dec(count, 2);
+      __ st(O3, to, -4);
+    __ BIND(L_skip_alignment);
+#endif
+    } else {
+      // copy 1 element if necessary to align 'to' on an 4 bytes
+      __ andcc(to, 3, G0);
+      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
+      __ delayed()->lduh(from, 0, O3);
+      __ inc(from, 2);
+      __ inc(to, 2);
+      __ dec(count);
+      __ sth(O3, to, -2);
+    __ BIND(L_skip_alignment);
+
+      // copy 2 elements to align 'to' on an 8 byte boundary
+      __ andcc(to, 7, G0);
+      __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
+      __ delayed()->lduh(from, 0, O3);
+      __ dec(count, 2);
+      __ lduh(from, 2, O4);
+      __ inc(from, 4);
+      __ inc(to, 4);
+      __ sth(O3, to, -4);
+      __ sth(O4, to, -2);
+    __ BIND(L_skip_alignment2);
+    }
+#ifdef _LP64
+    if (!aligned)
+#endif
+    {
+      // Copy with shift 16 bytes per iteration if arrays do not have
+      // the same alignment mod 8, otherwise fall through to the next
+      // code for aligned copy.
+      // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
+      // Also jump over aligned copy after the copy with shift completed.
+
+      copy_16_bytes_forward_with_shift(from, to, count, 8, L_copy_2_bytes);
+    }
+
+    // Both array are 8 bytes aligned, copy 16 bytes at a time
+      __ and3(count, 3, G4); // Save
+      __ srl(count, 2, count);
+     generate_disjoint_long_copy_core(aligned);
+      __ mov(G4, count); // restore
+
+    // copy 1 element at a time
+    __ BIND(L_copy_2_bytes);
+      __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
+      __ delayed()->nop();
+      __ align(16);
+    __ BIND(L_copy_2_bytes_loop);
+      __ lduh(from, offset, O3);
+      __ deccc(count);
+      __ sth(O3, to, offset);
+      __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
+      __ delayed()->inc(offset, 2);
+
+    __ BIND(L_exit);
+      // O3, O4 are used as temp registers
+      inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
+      __ retl();
+      __ delayed()->mov(G0, O0); // return 0
+    return start;
+  }
+
+  //
+  //  Generate stub for conjoint short copy.  If "aligned" is true, the
+  //  "from" and "to" addresses are assumed to be heapword aligned.
+  //
+  // Arguments for generated stub:
+  //      from:  O0
+  //      to:    O1
+  //      count: O2 treated as signed
+  //
+  address generate_conjoint_short_copy(bool aligned, const char * name) {
+    // Do reverse copy.
+
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", name);
+    address start = __ pc();
+    address nooverlap_target = aligned ?
+        StubRoutines::arrayof_jshort_disjoint_arraycopy() :
+        disjoint_short_copy_entry;
+
+    Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
+    Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
+
+    const Register from      = O0;   // source array address
+    const Register to        = O1;   // destination array address
+    const Register count     = O2;   // elements count
+    const Register end_from  = from; // source array end address
+    const Register end_to    = to;   // destination array end address
+
+    const Register byte_count = O3;  // bytes count to copy
+
+    assert_clean_int(count, O3);     // Make sure 'count' is clean int.
+
+    if (!aligned)  short_copy_entry = __ pc();
+    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
+    if (!aligned)  BLOCK_COMMENT("Entry:");
+
+    array_overlap_test(nooverlap_target, 1);
+
+    __ sllx(count, LogBytesPerShort, byte_count);
+    __ add(to, byte_count, end_to);  // offset after last copied element
+
+    // for short arrays, just do single element copy
+    __ cmp(count, 11); // 8 + 3  (22 bytes)
+    __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
+    __ delayed()->add(from, byte_count, end_from);
+
+    {
+      // Align end of arrays since they could be not aligned even
+      // when arrays itself are aligned.
+
+      // copy 1 element if necessary to align 'end_to' on an 4 bytes
+      __ andcc(end_to, 3, G0);
+      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
+      __ delayed()->lduh(end_from, -2, O3);
+      __ dec(end_from, 2);
+      __ dec(end_to, 2);
+      __ dec(count);
+      __ sth(O3, end_to, 0);
+    __ BIND(L_skip_alignment);
+
+      // copy 2 elements to align 'end_to' on an 8 byte boundary
+      __ andcc(end_to, 7, G0);
+      __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
+      __ delayed()->lduh(end_from, -2, O3);
+      __ dec(count, 2);
+      __ lduh(end_from, -4, O4);
+      __ dec(end_from, 4);
+      __ dec(end_to, 4);
+      __ sth(O3, end_to, 2);
+      __ sth(O4, end_to, 0);
+    __ BIND(L_skip_alignment2);
+    }
+#ifdef _LP64
+    if (aligned) {
+      // Both arrays are aligned to 8-bytes in 64-bits VM.
+      // The 'count' is decremented in copy_16_bytes_backward_with_shift()
+      // in unaligned case.
+      __ dec(count, 8);
+    } else
+#endif
+    {
+      // Copy with shift 16 bytes per iteration if arrays do not have
+      // the same alignment mod 8, otherwise jump to the next
+      // code for aligned copy (and substracting 8 from 'count' before jump).
+      // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
+      // Also jump over aligned copy after the copy with shift completed.
+
+      copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
+                                        L_aligned_copy, L_copy_2_bytes);
+    }
+    // copy 4 elements (16 bytes) at a time
+      __ align(16);
+    __ BIND(L_aligned_copy);
+      __ dec(end_from, 16);
+      __ ldx(end_from, 8, O3);
+      __ ldx(end_from, 0, O4);
+      __ dec(end_to, 16);
+      __ deccc(count, 8);
+      __ stx(O3, end_to, 8);
+      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
+      __ delayed()->stx(O4, end_to, 0);
+      __ inc(count, 8);
+
+    // copy 1 element (2 bytes) at a time
+    __ BIND(L_copy_2_bytes);
+      __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
+      __ delayed()->nop();
+    __ BIND(L_copy_2_bytes_loop);
+      __ dec(end_from, 2);
+      __ dec(end_to, 2);
+      __ lduh(end_from, 0, O4);
+      __ deccc(count);
+      __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
+      __ delayed()->sth(O4, end_to, 0);
+
+    __ BIND(L_exit);
+    // O3, O4 are used as temp registers
+    inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
+    __ retl();
+    __ delayed()->mov(G0, O0); // return 0
+    return start;
+  }
+
+  //
+  //  Generate core code for disjoint int copy (and oop copy on 32-bit).
+  //  If "aligned" is true, the "from" and "to" addresses are assumed
+  //  to be heapword aligned.
+  //
+  // Arguments:
+  //      from:  O0
+  //      to:    O1
+  //      count: O2 treated as signed
+  //
+  void generate_disjoint_int_copy_core(bool aligned) {
+
+    Label L_skip_alignment, L_aligned_copy;
+    Label L_copy_16_bytes,  L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
+
+    const Register from      = O0;   // source array address
+    const Register to        = O1;   // destination array address
+    const Register count     = O2;   // elements count
+    const Register offset    = O5;   // offset from start of arrays
+    // O3, O4, G3, G4 are used as temp registers
+
+    // 'aligned' == true when it is known statically during compilation
+    // of this arraycopy call site that both 'from' and 'to' addresses
+    // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
+    //
+    // Aligned arrays have 4 bytes alignment in 32-bits VM
+    // and 8 bytes - in 64-bits VM.
+    //
+#ifdef _LP64
+    if (!aligned)
+#endif
+    {
+      // The next check could be put under 'ifndef' since the code in
+      // generate_disjoint_long_copy_core() has own checks and set 'offset'.
+
+      // for short arrays, just do single element copy
+      __ cmp(count, 5); // 4 + 1 (20 bytes)
+      __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
+      __ delayed()->mov(G0, offset);
+
+      // copy 1 element to align 'to' on an 8 byte boundary
+      __ andcc(to, 7, G0);
+      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
+      __ delayed()->ld(from, 0, O3);
+      __ inc(from, 4);
+      __ inc(to, 4);
+      __ dec(count);
+      __ st(O3, to, -4);
+    __ BIND(L_skip_alignment);
+
+    // if arrays have same alignment mod 8, do 4 elements copy
+      __ andcc(from, 7, G0);
+      __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
+      __ delayed()->ld(from, 0, O3);
+
+    //
+    // Load 2 aligned 8-bytes chunks and use one from previous iteration
+    // to form 2 aligned 8-bytes chunks to store.
+    //
+    // copy_16_bytes_forward_with_shift() is not used here since this
+    // code is more optimal.
+
+    // copy with shift 4 elements (16 bytes) at a time
+      __ dec(count, 4);   // The cmp at the beginning guaranty count >= 4
+
+      __ align(16);
+    __ BIND(L_copy_16_bytes);
+      __ ldx(from, 4, O4);
+      __ deccc(count, 4); // Can we do next iteration after this one?
+      __ ldx(from, 12, G4);
+      __ inc(to, 16);
+      __ inc(from, 16);
+      __ sllx(O3, 32, O3);
+      __ srlx(O4, 32, G3);
+      __ bset(G3, O3);
+      __ stx(O3, to, -16);
+      __ sllx(O4, 32, O4);
+      __ srlx(G4, 32, G3);
+      __ bset(G3, O4);
+      __ stx(O4, to, -8);
+      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
+      __ delayed()->mov(G4, O3);
+
+      __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
+      __ delayed()->inc(count, 4); // restore 'count'
+
+    __ BIND(L_aligned_copy);
+    }
+    // copy 4 elements (16 bytes) at a time
+      __ and3(count, 1, G4); // Save
+      __ srl(count, 1, count);
+     generate_disjoint_long_copy_core(aligned);
+      __ mov(G4, count);     // Restore
+
+    // copy 1 element at a time
+    __ BIND(L_copy_4_bytes);
+      __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
+      __ delayed()->nop();
+    __ BIND(L_copy_4_bytes_loop);
+      __ ld(from, offset, O3);
+      __ deccc(count);
+      __ st(O3, to, offset);
+      __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
+      __ delayed()->inc(offset, 4);
+    __ BIND(L_exit);
+  }
+
+  //
+  //  Generate stub for disjoint int copy.  If "aligned" is true, the
+  //  "from" and "to" addresses are assumed to be heapword aligned.
+  //
+  // Arguments for generated stub:
+  //      from:  O0
+  //      to:    O1
+  //      count: O2 treated as signed
+  //
+  address generate_disjoint_int_copy(bool aligned, const char * name) {
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", name);
+    address start = __ pc();
+
+    const Register count = O2;
+    assert_clean_int(count, O3);     // Make sure 'count' is clean int.
+
+    if (!aligned)  disjoint_int_copy_entry = __ pc();
+    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
+    if (!aligned)  BLOCK_COMMENT("Entry:");
+
+    generate_disjoint_int_copy_core(aligned);
+
+    // O3, O4 are used as temp registers
+    inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
+    __ retl();
+    __ delayed()->mov(G0, O0); // return 0
+    return start;
+  }
+
+  //
+  //  Generate core code for conjoint int copy (and oop copy on 32-bit).
+  //  If "aligned" is true, the "from" and "to" addresses are assumed
+  //  to be heapword aligned.
+  //
+  // Arguments:
+  //      from:  O0
+  //      to:    O1
+  //      count: O2 treated as signed
+  //
+  void generate_conjoint_int_copy_core(bool aligned) {
+    // Do reverse copy.
+
+    Label L_skip_alignment, L_aligned_copy;
+    Label L_copy_16_bytes,  L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
+
+    const Register from      = O0;   // source array address
+    const Register to        = O1;   // destination array address
+    const Register count     = O2;   // elements count
+    const Register end_from  = from; // source array end address
+    const Register end_to    = to;   // destination array end address
+    // O3, O4, O5, G3 are used as temp registers
+
+    const Register byte_count = O3;  // bytes count to copy
+
+      __ sllx(count, LogBytesPerInt, byte_count);
+      __ add(to, byte_count, end_to); // offset after last copied element
+
+      __ cmp(count, 5); // for short arrays, just do single element copy
+      __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
+      __ delayed()->add(from, byte_count, end_from);
+
+    // copy 1 element to align 'to' on an 8 byte boundary
+      __ andcc(end_to, 7, G0);
+      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
+      __ delayed()->nop();
+      __ dec(count);
+      __ dec(end_from, 4);
+      __ dec(end_to,   4);
+      __ ld(end_from, 0, O4);
+      __ st(O4, end_to, 0);
+    __ BIND(L_skip_alignment);
+
+    // Check if 'end_from' and 'end_to' has the same alignment.
+      __ andcc(end_from, 7, G0);
+      __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
+      __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4
+
+    // copy with shift 4 elements (16 bytes) at a time
+    //
+    // Load 2 aligned 8-bytes chunks and use one from previous iteration
+    // to form 2 aligned 8-bytes chunks to store.
+    //
+      __ ldx(end_from, -4, O3);
+      __ align(16);
+    __ BIND(L_copy_16_bytes);
+      __ ldx(end_from, -12, O4);
+      __ deccc(count, 4);
+      __ ldx(end_from, -20, O5);
+      __ dec(end_to, 16);
+      __ dec(end_from, 16);
+      __ srlx(O3, 32, O3);
+      __ sllx(O4, 32, G3);
+      __ bset(G3, O3);
+      __ stx(O3, end_to, 8);
+      __ srlx(O4, 32, O4);
+      __ sllx(O5, 32, G3);
+      __ bset(O4, G3);
+      __ stx(G3, end_to, 0);
+      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
+      __ delayed()->mov(O5, O3);
+
+      __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
+      __ delayed()->inc(count, 4);
+
+    // copy 4 elements (16 bytes) at a time
+      __ align(16);
+    __ BIND(L_aligned_copy);
+      __ dec(end_from, 16);
+      __ ldx(end_from, 8, O3);
+      __ ldx(end_from, 0, O4);
+      __ dec(end_to, 16);
+      __ deccc(count, 4);
+      __ stx(O3, end_to, 8);
+      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
+      __ delayed()->stx(O4, end_to, 0);
+      __ inc(count, 4);
+
+    // copy 1 element (4 bytes) at a time
+    __ BIND(L_copy_4_bytes);
+      __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
+      __ delayed()->nop();
+    __ BIND(L_copy_4_bytes_loop);
+      __ dec(end_from, 4);
+      __ dec(end_to, 4);
+      __ ld(end_from, 0, O4);
+      __ deccc(count);
+      __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
+      __ delayed()->st(O4, end_to, 0);
+    __ BIND(L_exit);
+  }
+
+  //
+  //  Generate stub for conjoint int copy.  If "aligned" is true, the
+  //  "from" and "to" addresses are assumed to be heapword aligned.
+  //
+  // Arguments for generated stub:
+  //      from:  O0
+  //      to:    O1
+  //      count: O2 treated as signed
+  //
+  address generate_conjoint_int_copy(bool aligned, const char * name) {
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", name);
+    address start = __ pc();
+
+    address nooverlap_target = aligned ?
+        StubRoutines::arrayof_jint_disjoint_arraycopy() :
+        disjoint_int_copy_entry;
+
+    assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
+
+    if (!aligned)  int_copy_entry = __ pc();
+    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
+    if (!aligned)  BLOCK_COMMENT("Entry:");
+
+    array_overlap_test(nooverlap_target, 2);
+
+    generate_conjoint_int_copy_core(aligned);
+
+    // O3, O4 are used as temp registers
+    inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
+    __ retl();
+    __ delayed()->mov(G0, O0); // return 0
+    return start;
+  }
+
+  //
+  //  Generate core code for disjoint long copy (and oop copy on 64-bit).
+  //  "aligned" is ignored, because we must make the stronger
+  //  assumption that both addresses are always 64-bit aligned.
+  //
+  // Arguments:
+  //      from:  O0
+  //      to:    O1
+  //      count: O2 treated as signed
+  //
+  void generate_disjoint_long_copy_core(bool aligned) {
+    Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
+    const Register from    = O0;  // source array address
+    const Register to      = O1;  // destination array address
+    const Register count   = O2;  // elements count
+    const Register offset0 = O4;  // element offset
+    const Register offset8 = O5;  // next element offset
+
+      __ deccc(count, 2);
+      __ mov(G0, offset0);   // offset from start of arrays (0)
+      __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
+      __ delayed()->add(offset0, 8, offset8);
+      __ align(16);
+    __ BIND(L_copy_16_bytes);
+      __ ldx(from, offset0, O3);
+      __ ldx(from, offset8, G3);
+      __ deccc(count, 2);
+      __ stx(O3, to, offset0);
+      __ inc(offset0, 16);
+      __ stx(G3, to, offset8);
+      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
+      __ delayed()->inc(offset8, 16);
+
+    __ BIND(L_copy_8_bytes);
+      __ inccc(count, 2);
+      __ brx(Assembler::zero, true, Assembler::pn, L_exit );
+      __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
+      __ ldx(from, offset0, O3);
+      __ stx(O3, to, offset0);
+    __ BIND(L_exit);
+  }
+
+  //
+  //  Generate stub for disjoint long copy.
+  //  "aligned" is ignored, because we must make the stronger
+  //  assumption that both addresses are always 64-bit aligned.
+  //
+  // Arguments for generated stub:
+  //      from:  O0
+  //      to:    O1
+  //      count: O2 treated as signed
+  //
+  address generate_disjoint_long_copy(bool aligned, const char * name) {
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", name);
+    address start = __ pc();
+
+    assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
+
+    if (!aligned)  disjoint_long_copy_entry = __ pc();
+    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
+    if (!aligned)  BLOCK_COMMENT("Entry:");
+
+    generate_disjoint_long_copy_core(aligned);
+
+    // O3, O4 are used as temp registers
+    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
+    __ retl();
+    __ delayed()->mov(G0, O0); // return 0
+    return start;
+  }
+
+  //
+  //  Generate core code for conjoint long copy (and oop copy on 64-bit).
+  //  "aligned" is ignored, because we must make the stronger
+  //  assumption that both addresses are always 64-bit aligned.
+  //
+  // Arguments:
+  //      from:  O0
+  //      to:    O1
+  //      count: O2 treated as signed
+  //
+  void generate_conjoint_long_copy_core(bool aligned) {
+    // Do reverse copy.
+    Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
+    const Register from    = O0;  // source array address
+    const Register to      = O1;  // destination array address
+    const Register count   = O2;  // elements count
+    const Register offset8 = O4;  // element offset
+    const Register offset0 = O5;  // previous element offset
+
+      __ subcc(count, 1, count);
+      __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
+      __ delayed()->sllx(count, LogBytesPerLong, offset8);
+      __ sub(offset8, 8, offset0);
+      __ align(16);
+    __ BIND(L_copy_16_bytes);
+      __ ldx(from, offset8, O2);
+      __ ldx(from, offset0, O3);
+      __ stx(O2, to, offset8);
+      __ deccc(offset8, 16);      // use offset8 as counter
+      __ stx(O3, to, offset0);
+      __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
+      __ delayed()->dec(offset0, 16);
+
+    __ BIND(L_copy_8_bytes);
+      __ brx(Assembler::negative, false, Assembler::pn, L_exit );
+      __ delayed()->nop();
+      __ ldx(from, 0, O3);
+      __ stx(O3, to, 0);
+    __ BIND(L_exit);
+  }
+
+  //  Generate stub for conjoint long copy.
+  //  "aligned" is ignored, because we must make the stronger
+  //  assumption that both addresses are always 64-bit aligned.
+  //
+  // Arguments for generated stub:
+  //      from:  O0
+  //      to:    O1
+  //      count: O2 treated as signed
+  //
+  address generate_conjoint_long_copy(bool aligned, const char * name) {
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", name);
+    address start = __ pc();
+
+    assert(!aligned, "usage");
+    address nooverlap_target = disjoint_long_copy_entry;
+
+    assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
+
+    if (!aligned)  long_copy_entry = __ pc();
+    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
+    if (!aligned)  BLOCK_COMMENT("Entry:");
+
+    array_overlap_test(nooverlap_target, 3);
+
+    generate_conjoint_long_copy_core(aligned);
+
+    // O3, O4 are used as temp registers
+    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
+    __ retl();
+    __ delayed()->mov(G0, O0); // return 0
+    return start;
+  }
+
+  //  Generate stub for disjoint oop copy.  If "aligned" is true, the
+  //  "from" and "to" addresses are assumed to be heapword aligned.
+  //
+  // Arguments for generated stub:
+  //      from:  O0
+  //      to:    O1
+  //      count: O2 treated as signed
+  //
+  address generate_disjoint_oop_copy(bool aligned, const char * name) {
+
+    const Register from  = O0;  // source array address
+    const Register to    = O1;  // destination array address
+    const Register count = O2;  // elements count
+
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", name);
+    address start = __ pc();
+
+    assert_clean_int(count, O3);     // Make sure 'count' is clean int.
+
+    if (!aligned)  disjoint_oop_copy_entry = __ pc();
+    // caller can pass a 64-bit byte count here
+    if (!aligned)  BLOCK_COMMENT("Entry:");
+
+    // save arguments for barrier generation
+    __ mov(to, G1);
+    __ mov(count, G5);
+    gen_write_ref_array_pre_barrier(G1, G5);
+  #ifdef _LP64
+    generate_disjoint_long_copy_core(aligned);
+  #else
+    generate_disjoint_int_copy_core(aligned);
+  #endif
+    // O0 is used as temp register
+    gen_write_ref_array_post_barrier(G1, G5, O0);
+
+    // O3, O4 are used as temp registers
+    inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
+    __ retl();
+    __ delayed()->mov(G0, O0); // return 0
+    return start;
+  }
+
+  //  Generate stub for conjoint oop copy.  If "aligned" is true, the
+  //  "from" and "to" addresses are assumed to be heapword aligned.
+  //
+  // Arguments for generated stub:
+  //      from:  O0
+  //      to:    O1
+  //      count: O2 treated as signed
+  //
+  address generate_conjoint_oop_copy(bool aligned, const char * name) {
+
+    const Register from  = O0;  // source array address
+    const Register to    = O1;  // destination array address
+    const Register count = O2;  // elements count
+
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", name);
+    address start = __ pc();
+
+    assert_clean_int(count, O3);     // Make sure 'count' is clean int.
+
+    if (!aligned)  oop_copy_entry = __ pc();
+    // caller can pass a 64-bit byte count here
+    if (!aligned)  BLOCK_COMMENT("Entry:");
+
+    // save arguments for barrier generation
+    __ mov(to, G1);
+    __ mov(count, G5);
+
+    gen_write_ref_array_pre_barrier(G1, G5);
+
+    address nooverlap_target = aligned ?
+        StubRoutines::arrayof_oop_disjoint_arraycopy() :
+        disjoint_oop_copy_entry;
+
+    array_overlap_test(nooverlap_target, LogBytesPerWord);
+
+  #ifdef _LP64
+    generate_conjoint_long_copy_core(aligned);
+  #else
+    generate_conjoint_int_copy_core(aligned);
+  #endif
+
+    // O0 is used as temp register
+    gen_write_ref_array_post_barrier(G1, G5, O0);
+
+    // O3, O4 are used as temp registers
+    inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
+    __ retl();
+    __ delayed()->mov(G0, O0); // return 0
+    return start;
+  }
+
+
+  // Helper for generating a dynamic type check.
+  // Smashes only the given temp registers.
+  void generate_type_check(Register sub_klass,
+                           Register super_check_offset,
+                           Register super_klass,
+                           Register temp,
+                           Label& L_success,
+                           Register deccc_hack = noreg) {
+    assert_different_registers(sub_klass, super_check_offset, super_klass, temp);
+
+    BLOCK_COMMENT("type_check:");
+
+    Label L_miss;
+
+    assert_clean_int(super_check_offset, temp);
+
+    // maybe decrement caller's trip count:
+#define DELAY_SLOT delayed();   \
+    { if (deccc_hack == noreg) __ nop(); else __ deccc(deccc_hack); }
+
+    // if the pointers are equal, we are done (e.g., String[] elements)
+    __ cmp(sub_klass, super_klass);
+    __ brx(Assembler::equal, true, Assembler::pt, L_success);
+    __ DELAY_SLOT;
+
+    // check the supertype display:
+    __ ld_ptr(sub_klass, super_check_offset, temp); // query the super type
+    __ cmp(super_klass,                      temp); // test the super type
+    __ brx(Assembler::equal, true, Assembler::pt, L_success);
+    __ DELAY_SLOT;
+
+    int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
+                     Klass::secondary_super_cache_offset_in_bytes());
+    __ cmp(super_klass, sc_offset);
+    __ brx(Assembler::notEqual, true, Assembler::pt, L_miss);
+    __ delayed()->nop();
+
+    __ save_frame(0);
+    __ mov(sub_klass->after_save(), O1);
+    // mov(super_klass->after_save(), O2); //fill delay slot
+    assert(StubRoutines::Sparc::_partial_subtype_check != NULL, "order of generation");
+    __ call(StubRoutines::Sparc::_partial_subtype_check);
+    __ delayed()->mov(super_klass->after_save(), O2);
+    __ restore();
+
+    // Upon return, the condition codes are already set.
+    __ brx(Assembler::equal, true, Assembler::pt, L_success);
+    __ DELAY_SLOT;
+
+#undef DELAY_SLOT
+
+    // Fall through on failure!
+    __ BIND(L_miss);
+  }
+
+
+  //  Generate stub for checked oop copy.
+  //
+  // Arguments for generated stub:
+  //      from:  O0
+  //      to:    O1
+  //      count: O2 treated as signed
+  //      ckoff: O3 (super_check_offset)
+  //      ckval: O4 (super_klass)
+  //      ret:   O0 zero for success; (-1^K) where K is partial transfer count
+  //
+  address generate_checkcast_copy(const char* name) {
+
+    const Register O0_from   = O0;      // source array address
+    const Register O1_to     = O1;      // destination array address
+    const Register O2_count  = O2;      // elements count
+    const Register O3_ckoff  = O3;      // super_check_offset
+    const Register O4_ckval  = O4;      // super_klass
+
+    const Register O5_offset = O5;      // loop var, with stride wordSize
+    const Register G1_remain = G1;      // loop var, with stride -1
+    const Register G3_oop    = G3;      // actual oop copied
+    const Register G4_klass  = G4;      // oop._klass
+    const Register G5_super  = G5;      // oop._klass._primary_supers[ckval]
+
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", name);
+    address start = __ pc();
+
+    int klass_off = oopDesc::klass_offset_in_bytes();
+
+    gen_write_ref_array_pre_barrier(G1, G5);
+
+
+#ifdef ASSERT
+    // We sometimes save a frame (see partial_subtype_check below).
+    // If this will cause trouble, let's fail now instead of later.
+    __ save_frame(0);
+    __ restore();
+#endif
+
+#ifdef ASSERT
+    // caller guarantees that the arrays really are different
+    // otherwise, we would have to make conjoint checks
+    { Label L;
+      __ mov(O3, G1);           // spill: overlap test smashes O3
+      __ mov(O4, G4);           // spill: overlap test smashes O4
+      array_overlap_test(L, LogBytesPerWord);
+      __ stop("checkcast_copy within a single array");
+      __ bind(L);
+      __ mov(G1, O3);
+      __ mov(G4, O4);
+    }
+#endif //ASSERT
+
+    assert_clean_int(O2_count, G1);     // Make sure 'count' is clean int.
+
+    checkcast_copy_entry = __ pc();
+    // caller can pass a 64-bit byte count here (from generic stub)
+    BLOCK_COMMENT("Entry:");
+
+    Label load_element, store_element, do_card_marks, fail, done;
+    __ addcc(O2_count, 0, G1_remain);   // initialize loop index, and test it
+    __ brx(Assembler::notZero, false, Assembler::pt, load_element);
+    __ delayed()->mov(G0, O5_offset);   // offset from start of arrays
+
+    // Empty array:  Nothing to do.
+    inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
+    __ retl();
+    __ delayed()->set(0, O0);           // return 0 on (trivial) success
+
+    // ======== begin loop ========
+    // (Loop is rotated; its entry is load_element.)
+    // Loop variables:
+    //   (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
+    //   (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
+    //   G3, G4, G5 --- current oop, oop.klass, oop.klass.super
+    __ align(16);
+
+    __ bind(store_element);
+    // deccc(G1_remain);                // decrement the count (hoisted)
+    __ st_ptr(G3_oop, O1_to, O5_offset); // store the oop
+    __ inc(O5_offset, wordSize);        // step to next offset
+    __ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
+    __ delayed()->set(0, O0);           // return -1 on success
+
+    // ======== loop entry is here ========
+    __ bind(load_element);
+    __ ld_ptr(O0_from, O5_offset, G3_oop);  // load the oop
+    __ br_null(G3_oop, true, Assembler::pt, store_element);
+    __ delayed()->deccc(G1_remain);     // decrement the count
+
+    __ ld_ptr(G3_oop, klass_off, G4_klass); // query the object klass
+
+    generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
+                        // branch to this on success:
+                        store_element,
+                        // decrement this on success:
+                        G1_remain);
+    // ======== end loop ========
+
+    // It was a real error; we must depend on the caller to finish the job.
+    // Register G1 has number of *remaining* oops, O2 number of *total* oops.
+    // Emit GC store barriers for the oops we have copied (O2 minus G1),
+    // and report their number to the caller.
+    __ bind(fail);
+    __ subcc(O2_count, G1_remain, O2_count);
+    __ brx(Assembler::zero, false, Assembler::pt, done);
+    __ delayed()->not1(O2_count, O0);   // report (-1^K) to caller
+
+    __ bind(do_card_marks);
+    gen_write_ref_array_post_barrier(O1_to, O2_count, O3);   // store check on O1[0..O2]
+
+    __ bind(done);
+    inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
+    __ retl();
+    __ delayed()->nop();             // return value in 00
+
+    return start;
+  }
+
+
+  //  Generate 'unsafe' array copy stub
+  //  Though just as safe as the other stubs, it takes an unscaled
+  //  size_t argument instead of an element count.
+  //
+  // Arguments for generated stub:
+  //      from:  O0
+  //      to:    O1
+  //      count: O2 byte count, treated as ssize_t, can be zero
+  //
+  // Examines the alignment of the operands and dispatches
+  // to a long, int, short, or byte copy loop.
+  //
+  address generate_unsafe_copy(const char* name) {
+
+    const Register O0_from   = O0;      // source array address
+    const Register O1_to     = O1;      // destination array address
+    const Register O2_count  = O2;      // elements count
+
+    const Register G1_bits   = G1;      // test copy of low bits
+
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", name);
+    address start = __ pc();
+
+    // bump this on entry, not on exit:
+    inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);
+
+    __ or3(O0_from, O1_to, G1_bits);
+    __ or3(O2_count,       G1_bits, G1_bits);
+
+    __ btst(BytesPerLong-1, G1_bits);
+    __ br(Assembler::zero, true, Assembler::pt,
+          long_copy_entry, relocInfo::runtime_call_type);
+    // scale the count on the way out:
+    __ delayed()->srax(O2_count, LogBytesPerLong, O2_count);
+
+    __ btst(BytesPerInt-1, G1_bits);
+    __ br(Assembler::zero, true, Assembler::pt,
+          int_copy_entry, relocInfo::runtime_call_type);
+    // scale the count on the way out:
+    __ delayed()->srax(O2_count, LogBytesPerInt, O2_count);
+
+    __ btst(BytesPerShort-1, G1_bits);
+    __ br(Assembler::zero, true, Assembler::pt,
+          short_copy_entry, relocInfo::runtime_call_type);
+    // scale the count on the way out:
+    __ delayed()->srax(O2_count, LogBytesPerShort, O2_count);
+
+    __ br(Assembler::always, false, Assembler::pt,
+          byte_copy_entry, relocInfo::runtime_call_type);
+    __ delayed()->nop();
+
+    return start;
+  }
+
+
+  // Perform range checks on the proposed arraycopy.
+  // Kills the two temps, but nothing else.
+  // Also, clean the sign bits of src_pos and dst_pos.
+  void arraycopy_range_checks(Register src,     // source array oop (O0)
+                              Register src_pos, // source position (O1)
+                              Register dst,     // destination array oo (O2)
+                              Register dst_pos, // destination position (O3)
+                              Register length,  // length of copy (O4)
+                              Register temp1, Register temp2,
+                              Label& L_failed) {
+    BLOCK_COMMENT("arraycopy_range_checks:");
+
+    //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
+
+    const Register array_length = temp1;  // scratch
+    const Register end_pos      = temp2;  // scratch
+
+    // Note:  This next instruction may be in the delay slot of a branch:
+    __ add(length, src_pos, end_pos);  // src_pos + length
+    __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
+    __ cmp(end_pos, array_length);
+    __ br(Assembler::greater, false, Assembler::pn, L_failed);
+
+    //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
+    __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
+    __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
+    __ cmp(end_pos, array_length);
+    __ br(Assembler::greater, false, Assembler::pn, L_failed);
+
+    // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
+    // Move with sign extension can be used since they are positive.
+    __ delayed()->signx(src_pos, src_pos);
+    __ signx(dst_pos, dst_pos);
+
+    BLOCK_COMMENT("arraycopy_range_checks done");
+  }
+
+
+  //
+  //  Generate generic array copy stubs
+  //
+  //  Input:
+  //    O0    -  src oop
+  //    O1    -  src_pos
+  //    O2    -  dst oop
+  //    O3    -  dst_pos
+  //    O4    -  element count
+  //
+  //  Output:
+  //    O0 ==  0  -  success
+  //    O0 == -1  -  need to call System.arraycopy
+  //
+  address generate_generic_copy(const char *name) {
+
+    Label L_failed, L_objArray;
+
+    // Input registers
+    const Register src      = O0;  // source array oop
+    const Register src_pos  = O1;  // source position
+    const Register dst      = O2;  // destination array oop
+    const Register dst_pos  = O3;  // destination position
+    const Register length   = O4;  // elements count
+
+    // registers used as temp
+    const Register G3_src_klass = G3; // source array klass
+    const Register G4_dst_klass = G4; // destination array klass
+    const Register G5_lh        = G5; // layout handler
+    const Register O5_temp      = O5;
+
+    __ align(CodeEntryAlignment);
+    StubCodeMark mark(this, "StubRoutines", name);
+    address start = __ pc();
+
+    // bump this on entry, not on exit:
+    inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);
+
+    // In principle, the int arguments could be dirty.
+    //assert_clean_int(src_pos, G1);
+    //assert_clean_int(dst_pos, G1);
+    //assert_clean_int(length, G1);
+
+    //-----------------------------------------------------------------------
+    // Assembler stubs will be used for this call to arraycopy
+    // if the following conditions are met:
+    //
+    // (1) src and dst must not be null.
+    // (2) src_pos must not be negative.
+    // (3) dst_pos must not be negative.
+    // (4) length  must not be negative.
+    // (5) src klass and dst klass should be the same and not NULL.
+    // (6) src and dst should be arrays.
+    // (7) src_pos + length must not exceed length of src.
+    // (8) dst_pos + length must not exceed length of dst.
+    BLOCK_COMMENT("arraycopy initial argument checks");
+
+    //  if (src == NULL) return -1;
+    __ br_null(src, false, Assembler::pn, L_failed);
+
+    //  if (src_pos < 0) return -1;
+    __ delayed()->tst(src_pos);
+    __ br(Assembler::negative, false, Assembler::pn, L_failed);
+    __ delayed()->nop();
+
+    //  if (dst == NULL) return -1;
+    __ br_null(dst, false, Assembler::pn, L_failed);
+
+    //  if (dst_pos < 0) return -1;
+    __ delayed()->tst(dst_pos);
+    __ br(Assembler::negative, false, Assembler::pn, L_failed);
+
+    //  if (length < 0) return -1;
+    __ delayed()->tst(length);
+    __ br(Assembler::negative, false, Assembler::pn, L_failed);
+
+    BLOCK_COMMENT("arraycopy argument klass checks");
+    //  get src->klass()
+    __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
+
+#ifdef ASSERT
+    //  assert(src->klass() != NULL);
+    BLOCK_COMMENT("assert klasses not null");
+    { Label L_a, L_b;
+      __ br_notnull(G3_src_klass, false, Assembler::pt, L_b); // it is broken if klass is NULL
+      __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
+      __ bind(L_a);
+      __ stop("broken null klass");
+      __ bind(L_b);
+      __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
+      __ delayed()->mov(G0, G4_dst_klass);      // scribble the temp
+      BLOCK_COMMENT("assert done");
+    }
+#endif
+
+    // Load layout helper
+    //
+    //  |array_tag|     | header_size | element_type |     |log2_element_size|
+    // 32        30    24            16              8     2                 0
+    //
+    //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
+    //
+
+    int lh_offset = klassOopDesc::header_size() * HeapWordSize +
+                    Klass::layout_helper_offset_in_bytes();
+
+    // Load 32-bits signed value. Use br() instruction with it to check icc.
+    __ lduw(G3_src_klass, lh_offset, G5_lh);
+
+    // Handle objArrays completely differently...
+    juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
+    __ set(objArray_lh, O5_temp);
+    __ cmp(G5_lh,       O5_temp);
+    __ br(Assembler::equal, false, Assembler::pt, L_objArray);
+    __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
+
+    //  if (src->klass() != dst->klass()) return -1;
+    __ cmp(G3_src_klass, G4_dst_klass);
+    __ brx(Assembler::notEqual, false, Assembler::pn, L_failed);
+    __ delayed()->nop();
+
+    //  if (!src->is_Array()) return -1;
+    __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
+    __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);
+
+    // At this point, it is known to be a typeArray (array_tag 0x3).
+#ifdef ASSERT
+    __ delayed()->nop();
+    { Label L;
+      jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
+      __ set(lh_prim_tag_in_place, O5_temp);
+      __ cmp(G5_lh,                O5_temp);
+      __ br(Assembler::greaterEqual, false, Assembler::pt, L);
+      __ delayed()->nop();
+      __ stop("must be a primitive array");
+      __ bind(L);
+    }
+#else
+    __ delayed();                               // match next insn to prev branch
+#endif
+
+    arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
+                           O5_temp, G4_dst_klass, L_failed);
+
+    // typeArrayKlass
+    //
+    // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
+    // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
+    //
+
+    const Register G4_offset = G4_dst_klass;    // array offset
+    const Register G3_elsize = G3_src_klass;    // log2 element size
+
+    __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
+    __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
+    __ add(src, G4_offset, src);       // src array offset
+    __ add(dst, G4_offset, dst);       // dst array offset
+    __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size
+
+    // next registers should be set before the jump to corresponding stub
+    const Register from     = O0;  // source array address
+    const Register to       = O1;  // destination array address
+    const Register count    = O2;  // elements count
+
+    // 'from', 'to', 'count' registers should be set in this order
+    // since they are the same as 'src', 'src_pos', 'dst'.
+
+    BLOCK_COMMENT("scale indexes to element size");
+    __ sll_ptr(src_pos, G3_elsize, src_pos);
+    __ sll_ptr(dst_pos, G3_elsize, dst_pos);
+    __ add(src, src_pos, from);       // src_addr
+    __ add(dst, dst_pos, to);         // dst_addr
+
+    BLOCK_COMMENT("choose copy loop based on element size");
+    __ cmp(G3_elsize, 0);
+    __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jbyte_arraycopy);
+    __ delayed()->signx(length, count); // length
+
+    __ cmp(G3_elsize, LogBytesPerShort);
+    __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jshort_arraycopy);
+    __ delayed()->signx(length, count); // length
+
+    __ cmp(G3_elsize, LogBytesPerInt);
+    __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jint_arraycopy);
+    __ delayed()->signx(length, count); // length
+#ifdef ASSERT
+    { Label L;
+      __ cmp(G3_elsize, LogBytesPerLong);
+      __ br(Assembler::equal, false, Assembler::pt, L);
+      __ delayed()->nop();
+      __ stop("must be long copy, but elsize is wrong");
+      __ bind(L);
+    }
+#endif
+    __ br(Assembler::always,false,Assembler::pt,StubRoutines::_jlong_arraycopy);
+    __ delayed()->signx(length, count); // length
+
+    // objArrayKlass
+  __ BIND(L_objArray);
+    // live at this point:  G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length
+
+    Label L_plain_copy, L_checkcast_copy;
+    //  test array classes for subtyping
+    __ cmp(G3_src_klass, G4_dst_klass);         // usual case is exact equality
+    __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
+    __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below
+
+    // Identically typed arrays can be copied without element-wise checks.
+    arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
+                           O5_temp, G5_lh, L_failed);
+
+    __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
+    __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
+    __ sll_ptr(src_pos, LogBytesPerOop, src_pos);
+    __ sll_ptr(dst_pos, LogBytesPerOop, dst_pos);
+    __ add(src, src_pos, from);       // src_addr
+    __ add(dst, dst_pos, to);         // dst_addr
+  __ BIND(L_plain_copy);
+    __ br(Assembler::always, false, Assembler::pt,StubRoutines::_oop_arraycopy);
+    __ delayed()->signx(length, count); // length
+
+  __ BIND(L_checkcast_copy);
+    // live at this point:  G3_src_klass, G4_dst_klass
+    {
+      // Before looking at dst.length, make sure dst is also an objArray.
+      // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
+      __ cmp(G5_lh,                    O5_temp);
+      __ br(Assembler::notEqual, false, Assembler::pn, L_failed);
+
+      // It is safe to examine both src.length and dst.length.
+      __ delayed();                             // match next insn to prev branch
+      arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
+                             O5_temp, G5_lh, L_failed);
+
+      // Marshal the base address arguments now, freeing registers.
+      __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
+      __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
+      __ sll_ptr(src_pos, LogBytesPerOop, src_pos);
+      __ sll_ptr(dst_pos, LogBytesPerOop, dst_pos);
+      __ add(src, src_pos, from);               // src_addr
+      __ add(dst, dst_pos, to);                 // dst_addr
+      __ signx(length, count);                  // length (reloaded)
+
+      Register sco_temp = O3;                   // this register is free now
+      assert_different_registers(from, to, count, sco_temp,
+                                 G4_dst_klass, G3_src_klass);
+
+      // Generate the type check.
+      int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
+                        Klass::super_check_offset_offset_in_bytes());
+      __ lduw(G4_dst_klass, sco_offset, sco_temp);
+      generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
+                          O5_temp, L_plain_copy);
+
+      // Fetch destination element klass from the objArrayKlass header.
+      int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
+                       objArrayKlass::element_klass_offset_in_bytes());
+
+      // the checkcast_copy loop needs two extra arguments:
+      __ ld_ptr(G4_dst_klass, ek_offset, O4);   // dest elem klass
+      // lduw(O4, sco_offset, O3);              // sco of elem klass
+
+      __ br(Assembler::always, false, Assembler::pt, checkcast_copy_entry);
+      __ delayed()->lduw(O4, sco_offset, O3);
+    }
+
+  __ BIND(L_failed);
+    __ retl();
+    __ delayed()->sub(G0, 1, O0); // return -1
+    return start;
+  }
+
+  void generate_arraycopy_stubs() {
+
+    // Note:  the disjoint stubs must be generated first, some of
+    //        the conjoint stubs use them.
+    StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
+    StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
+    StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_copy(false, "jint_disjoint_arraycopy");
+    StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_copy(false, "jlong_disjoint_arraycopy");
+    StubRoutines::_oop_disjoint_arraycopy    = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy");
+    StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(true, "arrayof_jbyte_disjoint_arraycopy");
+    StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, "arrayof_jshort_disjoint_arraycopy");
+    StubRoutines::_arrayof_jint_disjoint_arraycopy   = generate_disjoint_int_copy(true, "arrayof_jint_disjoint_arraycopy");
+    StubRoutines::_arrayof_jlong_disjoint_arraycopy  = generate_disjoint_long_copy(true, "arrayof_jlong_disjoint_arraycopy");
+    StubRoutines::_arrayof_oop_disjoint_arraycopy    =  generate_disjoint_oop_copy(true, "arrayof_oop_disjoint_arraycopy");
+
+    StubRoutines::_jbyte_arraycopy  = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
+    StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy");
+    StubRoutines::_jint_arraycopy   = generate_conjoint_int_copy(false, "jint_arraycopy");
+    StubRoutines::_jlong_arraycopy  = generate_conjoint_long_copy(false, "jlong_arraycopy");
+    StubRoutines::_oop_arraycopy    = generate_conjoint_oop_copy(false, "oop_arraycopy");
+    StubRoutines::_arrayof_jbyte_arraycopy    = generate_conjoint_byte_copy(true, "arrayof_jbyte_arraycopy");
+    StubRoutines::_arrayof_jshort_arraycopy   = generate_conjoint_short_copy(true, "arrayof_jshort_arraycopy");
+#ifdef _LP64
+    // since sizeof(jint) < sizeof(HeapWord), there's a different flavor:
+    StubRoutines::_arrayof_jint_arraycopy     = generate_conjoint_int_copy(true, "arrayof_jint_arraycopy");
+  #else
+    StubRoutines::_arrayof_jint_arraycopy     = StubRoutines::_jint_arraycopy;
+#endif
+    StubRoutines::_arrayof_jlong_arraycopy    = StubRoutines::_jlong_arraycopy;
+    StubRoutines::_arrayof_oop_arraycopy      = StubRoutines::_oop_arraycopy;
+
+    StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
+    StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy");
+    StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy");
+  }
+
+  void generate_initial() {
+    // Generates all stubs and initializes the entry points
+
+    //------------------------------------------------------------------------------------------------------------------------
+    // entry points that exist in all platforms
+    // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
+    //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
+    StubRoutines::_forward_exception_entry                 = generate_forward_exception();
+
+    StubRoutines::_call_stub_entry                         = generate_call_stub(StubRoutines::_call_stub_return_address);
+    StubRoutines::_catch_exception_entry                   = generate_catch_exception();
+
+    //------------------------------------------------------------------------------------------------------------------------
+    // entry points that are platform specific
+    StubRoutines::Sparc::_test_stop_entry                  = generate_test_stop();
+
+    StubRoutines::Sparc::_stop_subroutine_entry            = generate_stop_subroutine();
+    StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();
+
+#if !defined(COMPILER2) && !defined(_LP64)
+    StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
+    StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
+    StubRoutines::_atomic_add_entry          = generate_atomic_add();
+    StubRoutines::_atomic_xchg_ptr_entry     = StubRoutines::_atomic_xchg_entry;
+    StubRoutines::_atomic_cmpxchg_ptr_entry  = StubRoutines::_atomic_cmpxchg_entry;
+    StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
+    StubRoutines::_atomic_add_ptr_entry      = StubRoutines::_atomic_add_entry;
+    StubRoutines::_fence_entry               = generate_fence();
+#endif  // COMPILER2 !=> _LP64
+
+    StubRoutines::Sparc::_partial_subtype_check                = generate_partial_subtype_check();
+  }
+
+
+  void generate_all() {
+    // Generates all stubs and initializes the entry points
+
+    // These entry points require SharedInfo::stack0 to be set up in non-core builds
+    StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError),  false);
+    StubRoutines::_throw_ArithmeticException_entry         = generate_throw_exception("ArithmeticException throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException),  true);
+    StubRoutines::_throw_NullPointerException_entry        = generate_throw_exception("NullPointerException throw_exception",         CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
+    StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
+    StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError),   false);
+
+    StubRoutines::_handler_for_unsafe_access_entry =
+      generate_handler_for_unsafe_access();
+
+    // support for verify_oop (must happen after universe_init)
+    StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop_subroutine();
+
+    // arraycopy stubs used by compilers
+    generate_arraycopy_stubs();
+  }
+
+
+ public:
+  StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
+    // replace the standard masm with a special one:
+    _masm = new MacroAssembler(code);
+
+    _stub_count = !all ? 0x100 : 0x200;
+    if (all) {
+      generate_all();
+    } else {
+      generate_initial();
+    }
+
+    // make sure this stub is available for all local calls
+    if (_atomic_add_stub.is_unbound()) {
+      // generate a second time, if necessary
+      (void) generate_atomic_add();
+    }
+  }
+
+
+ private:
+  int _stub_count;
+  void stub_prolog(StubCodeDesc* cdesc) {
+    # ifdef ASSERT
+      // put extra information in the stub code, to make it more readable
+#ifdef _LP64
+// Write the high part of the address
+// [RGV] Check if there is a dependency on the size of this prolog
+      __ emit_data((intptr_t)cdesc >> 32,    relocInfo::none);
+#endif
+      __ emit_data((intptr_t)cdesc,    relocInfo::none);
+      __ emit_data(++_stub_count, relocInfo::none);
+    # endif
+    align(true);
+  }
+
+  void align(bool at_header = false) {
+    // %%%%% move this constant somewhere else
+    // UltraSPARC cache line size is 8 instructions:
+    const unsigned int icache_line_size = 32;
+    const unsigned int icache_half_line_size = 16;
+
+    if (at_header) {
+      while ((intptr_t)(__ pc()) % icache_line_size != 0) {
+        __ emit_data(0, relocInfo::none);
+      }
+    } else {
+      while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
+        __ nop();
+      }
+    }
+  }
+
+}; // end class declaration
+
+
+address StubGenerator::disjoint_byte_copy_entry  = NULL;
+address StubGenerator::disjoint_short_copy_entry = NULL;
+address StubGenerator::disjoint_int_copy_entry   = NULL;
+address StubGenerator::disjoint_long_copy_entry  = NULL;
+address StubGenerator::disjoint_oop_copy_entry   = NULL;
+
+address StubGenerator::byte_copy_entry  = NULL;
+address StubGenerator::short_copy_entry = NULL;
+address StubGenerator::int_copy_entry   = NULL;
+address StubGenerator::long_copy_entry  = NULL;
+address StubGenerator::oop_copy_entry   = NULL;
+
+address StubGenerator::checkcast_copy_entry = NULL;
+
+void StubGenerator_generate(CodeBuffer* code, bool all) {
+  StubGenerator g(code, all);
+}