--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/cpu/sparc/vm/c1_MacroAssembler_sparc.cpp Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,409 @@
+/*
+ * Copyright 1999-2007 Sun Microsystems, Inc. All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_c1_MacroAssembler_sparc.cpp.incl"
+
+void C1_MacroAssembler::inline_cache_check(Register receiver, Register iCache) {
+ Label L;
+ const Register temp_reg = G3_scratch;
+ // Note: needs more testing of out-of-line vs. inline slow case
+ Address ic_miss(temp_reg, SharedRuntime::get_ic_miss_stub());
+ verify_oop(receiver);
+ ld_ptr(receiver, oopDesc::klass_offset_in_bytes(), temp_reg);
+ cmp(temp_reg, iCache);
+ brx(Assembler::equal, true, Assembler::pt, L);
+ delayed()->nop();
+ jump_to(ic_miss, 0);
+ delayed()->nop();
+ align(CodeEntryAlignment);
+ bind(L);
+}
+
+
+void C1_MacroAssembler::method_exit(bool restore_frame) {
+ // this code must be structured this way so that the return
+ // instruction can be a safepoint.
+ if (restore_frame) {
+ restore();
+ }
+ retl();
+ delayed()->nop();
+}
+
+
+void C1_MacroAssembler::explicit_null_check(Register base) {
+ Unimplemented();
+}
+
+
+void C1_MacroAssembler::build_frame(int frame_size_in_bytes) {
+
+ generate_stack_overflow_check(frame_size_in_bytes);
+ // Create the frame.
+ save_frame_c1(frame_size_in_bytes);
+}
+
+
+void C1_MacroAssembler::unverified_entry(Register receiver, Register ic_klass) {
+ if (C1Breakpoint) breakpoint_trap();
+ inline_cache_check(receiver, ic_klass);
+}
+
+
+void C1_MacroAssembler::verified_entry() {
+ if (C1Breakpoint) breakpoint_trap();
+ // build frame
+ verify_FPU(0, "method_entry");
+}
+
+
+void C1_MacroAssembler::lock_object(Register Rmark, Register Roop, Register Rbox, Register Rscratch, Label& slow_case) {
+ assert_different_registers(Rmark, Roop, Rbox, Rscratch);
+
+ Label done;
+
+ Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
+
+ // The following move must be the first instruction of emitted since debug
+ // information may be generated for it.
+ // Load object header
+ ld_ptr(mark_addr, Rmark);
+
+ verify_oop(Roop);
+
+ // save object being locked into the BasicObjectLock
+ st_ptr(Roop, Rbox, BasicObjectLock::obj_offset_in_bytes());
+
+ if (UseBiasedLocking) {
+ biased_locking_enter(Roop, Rmark, Rscratch, done, &slow_case);
+ }
+
+ // Save Rbox in Rscratch to be used for the cas operation
+ mov(Rbox, Rscratch);
+
+ // and mark it unlocked
+ or3(Rmark, markOopDesc::unlocked_value, Rmark);
+
+ // save unlocked object header into the displaced header location on the stack
+ st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
+
+ // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
+ assert(mark_addr.disp() == 0, "cas must take a zero displacement");
+ casx_under_lock(mark_addr.base(), Rmark, Rscratch, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
+ // if compare/exchange succeeded we found an unlocked object and we now have locked it
+ // hence we are done
+ cmp(Rmark, Rscratch);
+ brx(Assembler::equal, false, Assembler::pt, done);
+ delayed()->sub(Rscratch, SP, Rscratch); //pull next instruction into delay slot
+ // we did not find an unlocked object so see if this is a recursive case
+ // sub(Rscratch, SP, Rscratch);
+ assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
+ andcc(Rscratch, 0xfffff003, Rscratch);
+ brx(Assembler::notZero, false, Assembler::pn, slow_case);
+ delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
+ bind(done);
+}
+
+
+void C1_MacroAssembler::unlock_object(Register Rmark, Register Roop, Register Rbox, Label& slow_case) {
+ assert_different_registers(Rmark, Roop, Rbox);
+
+ Label done;
+
+ Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
+ assert(mark_addr.disp() == 0, "cas must take a zero displacement");
+
+ if (UseBiasedLocking) {
+ // load the object out of the BasicObjectLock
+ ld_ptr(Rbox, BasicObjectLock::obj_offset_in_bytes(), Roop);
+ verify_oop(Roop);
+ biased_locking_exit(mark_addr, Rmark, done);
+ }
+ // Test first it it is a fast recursive unlock
+ ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
+ br_null(Rmark, false, Assembler::pt, done);
+ delayed()->nop();
+ if (!UseBiasedLocking) {
+ // load object
+ ld_ptr(Rbox, BasicObjectLock::obj_offset_in_bytes(), Roop);
+ verify_oop(Roop);
+ }
+
+ // Check if it is still a light weight lock, this is is true if we see
+ // the stack address of the basicLock in the markOop of the object
+ casx_under_lock(mark_addr.base(), Rbox, Rmark, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
+ cmp(Rbox, Rmark);
+
+ brx(Assembler::notEqual, false, Assembler::pn, slow_case);
+ delayed()->nop();
+ // Done
+ bind(done);
+}
+
+
+void C1_MacroAssembler::try_allocate(
+ Register obj, // result: pointer to object after successful allocation
+ Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
+ int con_size_in_bytes, // object size in bytes if known at compile time
+ Register t1, // temp register
+ Register t2, // temp register
+ Label& slow_case // continuation point if fast allocation fails
+) {
+ if (UseTLAB) {
+ tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
+ } else {
+ eden_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
+ }
+}
+
+
+void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register t1, Register t2) {
+ assert_different_registers(obj, klass, len, t1, t2);
+ if (UseBiasedLocking && !len->is_valid()) {
+ ld_ptr(klass, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes(), t1);
+ } else {
+ set((intx)markOopDesc::prototype(), t1);
+ }
+ st_ptr(t1 , obj, oopDesc::mark_offset_in_bytes ());
+ st_ptr(klass, obj, oopDesc::klass_offset_in_bytes ());
+ if (len->is_valid()) st(len , obj, arrayOopDesc::length_offset_in_bytes());
+}
+
+
+void C1_MacroAssembler::initialize_body(Register base, Register index) {
+ assert_different_registers(base, index);
+ Label loop;
+ bind(loop);
+ subcc(index, HeapWordSize, index);
+ brx(Assembler::greaterEqual, true, Assembler::pt, loop);
+ delayed()->st_ptr(G0, base, index);
+}
+
+
+void C1_MacroAssembler::allocate_object(
+ Register obj, // result: pointer to object after successful allocation
+ Register t1, // temp register
+ Register t2, // temp register
+ Register t3, // temp register
+ int hdr_size, // object header size in words
+ int obj_size, // object size in words
+ Register klass, // object klass
+ Label& slow_case // continuation point if fast allocation fails
+) {
+ assert_different_registers(obj, t1, t2, t3, klass);
+ assert(klass == G5, "must be G5");
+
+ // allocate space & initialize header
+ if (!is_simm13(obj_size * wordSize)) {
+ // would need to use extra register to load
+ // object size => go the slow case for now
+ br(Assembler::always, false, Assembler::pt, slow_case);
+ delayed()->nop();
+ return;
+ }
+ try_allocate(obj, noreg, obj_size * wordSize, t2, t3, slow_case);
+
+ initialize_object(obj, klass, noreg, obj_size * HeapWordSize, t1, t2);
+}
+
+void C1_MacroAssembler::initialize_object(
+ Register obj, // result: pointer to object after successful allocation
+ Register klass, // object klass
+ Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
+ int con_size_in_bytes, // object size in bytes if known at compile time
+ Register t1, // temp register
+ Register t2 // temp register
+ ) {
+ const int hdr_size_in_bytes = oopDesc::header_size_in_bytes();
+
+ initialize_header(obj, klass, noreg, t1, t2);
+
+#ifdef ASSERT
+ {
+ Label ok;
+ ld(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes(), t1);
+ if (var_size_in_bytes != noreg) {
+ cmp(t1, var_size_in_bytes);
+ } else {
+ cmp(t1, con_size_in_bytes);
+ }
+ brx(Assembler::equal, false, Assembler::pt, ok);
+ delayed()->nop();
+ stop("bad size in initialize_object");
+ should_not_reach_here();
+
+ bind(ok);
+ }
+
+#endif
+
+ // initialize body
+ const int threshold = 5 * HeapWordSize; // approximate break even point for code size
+ if (var_size_in_bytes != noreg) {
+ // use a loop
+ add(obj, hdr_size_in_bytes, t1); // compute address of first element
+ sub(var_size_in_bytes, hdr_size_in_bytes, t2); // compute size of body
+ initialize_body(t1, t2);
+#ifndef _LP64
+ } else if (VM_Version::v9_instructions_work() && con_size_in_bytes < threshold * 2) {
+ // on v9 we can do double word stores to fill twice as much space.
+ assert(hdr_size_in_bytes % 8 == 0, "double word aligned");
+ assert(con_size_in_bytes % 8 == 0, "double word aligned");
+ for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += 2 * HeapWordSize) stx(G0, obj, i);
+#endif
+ } else if (con_size_in_bytes <= threshold) {
+ // use explicit NULL stores
+ for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += HeapWordSize) st_ptr(G0, obj, i);
+ } else if (con_size_in_bytes > hdr_size_in_bytes) {
+ // use a loop
+ const Register base = t1;
+ const Register index = t2;
+ add(obj, hdr_size_in_bytes, base); // compute address of first element
+ // compute index = number of words to clear
+ set(con_size_in_bytes - hdr_size_in_bytes, index);
+ initialize_body(base, index);
+ }
+
+ if (DTraceAllocProbes) {
+ assert(obj == O0, "must be");
+ call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)),
+ relocInfo::runtime_call_type);
+ delayed()->nop();
+ }
+
+ verify_oop(obj);
+}
+
+
+void C1_MacroAssembler::allocate_array(
+ Register obj, // result: pointer to array after successful allocation
+ Register len, // array length
+ Register t1, // temp register
+ Register t2, // temp register
+ Register t3, // temp register
+ int hdr_size, // object header size in words
+ int elt_size, // element size in bytes
+ Register klass, // object klass
+ Label& slow_case // continuation point if fast allocation fails
+) {
+ assert_different_registers(obj, len, t1, t2, t3, klass);
+ assert(klass == G5, "must be G5");
+ assert(t1 == G1, "must be G1");
+
+ // determine alignment mask
+ assert(!(BytesPerWord & 1), "must be a multiple of 2 for masking code to work");
+
+ // check for negative or excessive length
+ // note: the maximum length allowed is chosen so that arrays of any
+ // element size with this length are always smaller or equal
+ // to the largest integer (i.e., array size computation will
+ // not overflow)
+ set(max_array_allocation_length, t1);
+ cmp(len, t1);
+ br(Assembler::greaterUnsigned, false, Assembler::pn, slow_case);
+
+ // compute array size
+ // note: if 0 <= len <= max_length, len*elt_size + header + alignment is
+ // smaller or equal to the largest integer; also, since top is always
+ // aligned, we can do the alignment here instead of at the end address
+ // computation
+ const Register arr_size = t1;
+ switch (elt_size) {
+ case 1: delayed()->mov(len, arr_size); break;
+ case 2: delayed()->sll(len, 1, arr_size); break;
+ case 4: delayed()->sll(len, 2, arr_size); break;
+ case 8: delayed()->sll(len, 3, arr_size); break;
+ default: ShouldNotReachHere();
+ }
+ add(arr_size, hdr_size * wordSize + MinObjAlignmentInBytesMask, arr_size); // add space for header & alignment
+ and3(arr_size, ~MinObjAlignmentInBytesMask, arr_size); // align array size
+
+ // allocate space & initialize header
+ if (UseTLAB) {
+ tlab_allocate(obj, arr_size, 0, t2, slow_case);
+ } else {
+ eden_allocate(obj, arr_size, 0, t2, t3, slow_case);
+ }
+ initialize_header(obj, klass, len, t2, t3);
+
+ // initialize body
+ const Register base = t2;
+ const Register index = t3;
+ add(obj, hdr_size * wordSize, base); // compute address of first element
+ sub(arr_size, hdr_size * wordSize, index); // compute index = number of words to clear
+ initialize_body(base, index);
+
+ if (DTraceAllocProbes) {
+ assert(obj == O0, "must be");
+ call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)),
+ relocInfo::runtime_call_type);
+ delayed()->nop();
+ }
+
+ verify_oop(obj);
+}
+
+
+#ifndef PRODUCT
+
+void C1_MacroAssembler::verify_stack_oop(int stack_offset) {
+ if (!VerifyOops) return;
+ verify_oop_addr(Address(SP, 0, stack_offset + STACK_BIAS));
+}
+
+void C1_MacroAssembler::verify_not_null_oop(Register r) {
+ Label not_null;
+ br_zero(Assembler::notEqual, false, Assembler::pt, r, not_null);
+ delayed()->nop();
+ stop("non-null oop required");
+ bind(not_null);
+ if (!VerifyOops) return;
+ verify_oop(r);
+}
+
+void C1_MacroAssembler::invalidate_registers(bool iregisters, bool lregisters, bool oregisters,
+ Register preserve1, Register preserve2) {
+ if (iregisters) {
+ for (int i = 0; i < 6; i++) {
+ Register r = as_iRegister(i);
+ if (r != preserve1 && r != preserve2) set(0xdead, r);
+ }
+ }
+ if (oregisters) {
+ for (int i = 0; i < 6; i++) {
+ Register r = as_oRegister(i);
+ if (r != preserve1 && r != preserve2) set(0xdead, r);
+ }
+ }
+ if (lregisters) {
+ for (int i = 0; i < 8; i++) {
+ Register r = as_lRegister(i);
+ if (r != preserve1 && r != preserve2) set(0xdead, r);
+ }
+ }
+}
+
+
+#endif